JP6004008B2 - 評価方法及び装置、加工方法、並びに露光システム - Google Patents

評価方法及び装置、加工方法、並びに露光システム Download PDF

Info

Publication number
JP6004008B2
JP6004008B2 JP2014553218A JP2014553218A JP6004008B2 JP 6004008 B2 JP6004008 B2 JP 6004008B2 JP 2014553218 A JP2014553218 A JP 2014553218A JP 2014553218 A JP2014553218 A JP 2014553218A JP 6004008 B2 JP6004008 B2 JP 6004008B2
Authority
JP
Japan
Prior art keywords
processing
evaluation
conditions
condition
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014553218A
Other languages
English (en)
Other versions
JPWO2014098220A1 (ja
Inventor
和彦 深澤
和彦 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Application granted granted Critical
Publication of JP6004008B2 publication Critical patent/JP6004008B2/ja
Publication of JPWO2014098220A1 publication Critical patent/JPWO2014098220A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70641Focus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8848Polarisation of light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、複数の加工条件のもとでの加工により設けられた構造体を有する基板の評価技術、この評価技術を用いる加工技術及び露光技術、並びにその加工技術を用いるデバイス製造技術に関する。
半導体デバイス等を製造するためのリソグラフィー工程で使用されるスキャニングステッパー又はステッパー等の露光装置においては、ドーズ量(露光量)、フォーカス位置(投影光学系の像面に対する露光対象の基板のデフォーカス量)、及び露光波長等の複数の露光条件を高精度に管理する必要がある。そのためには、露光装置で基板を露光して、露光された基板に形成されるパターン等を用いて、その露光装置の実際の露光条件を高精度に評価する必要がある。
例えば露光装置のフォーカス位置の従来の評価方法として、主光線が傾斜した照明光でレチクルの評価用のパターンを照明し、ステージで基板の高さを変化させながらそのパターンの像をその基板の複数のショットに順次露光し、露光後の現像によって得られたレジストパターンの横ずれ量を計測し、この計測結果から各ショットの露光時のフォーカス位置を評価する方法が知られている(例えば、特許文献1参照)。
米国特許出願公開第2002/0100012号明細書 米国特許出願公開第2007/242247号明細書
従来のフォーカス位置の評価方法においては、計測結果にドーズ量のばらつき等の影響もある程度は含まれている恐れがある。今後、個別の露光条件をより高精度に評価するためには、他の露光条件の影響をできるだけ抑制することが好ましい。
また、従来のフォーカス位置の評価方法では、専用の評価用のパターンを露光する必要があり、実デバイス用のパターンを露光する場合の評価が困難であった。
本発明の態様は、このような問題に鑑みてなされたものであり、複数の加工条件(例えば露光条件)のもとでの加工により設けられた構造体を有する基板を用いて、その複数の加工条件のうちの一つの加工条件を高精度に評価することを目的とする。
本発明の第1の態様によれば、第1及び第2加工条件を含む複数の加工条件のもとでの加工により設けられた構造体を有する基板を照明光で照明する照明部と、その照明光によりその基板の被加工面から発生する光を検出する検出部と、複数の回折条件のもとで前記検出部により得られた検出結果を演算し、前記基板の加工時の前記第1加工条件または前記第2の加工条件を推定するための算出結果を出力する演算部と、その照明部の照明条件とその検出部の検出条件との少なくとも一方が異なる複数の評価条件のもとでその検出部により得られた検出結果に基づいてその基板の加工時のその第1加工条件とその第2加工条件との少なくとも一方を推定する推定部と、を備え、前記検出部は、前記基板の前記被加工面からの反射または回折光を検出し、前記複数の評価条件は、回折条件が異なる評価装置が提供される。
また、第2の態様によれば、基板の表面にパターンを露光する投影光学系を有する露光部と、その第1の態様の評価装置と、を備え、その評価装置のその推定部によって推定されるその第1加工条件に応じてその露光部における加工条件を補正する露光システムが提供される。
また、第3の態様によれば、第1及び第2加工条件を含む複数の加工条件のもとでの加工により設けられた構造体を有する基板を照明光で照明し、その照明光によりその基板の被加工面から発生する光を検出し、複数の回折条件のもとで前記検出部により得られた検出結果を演算して、前記基板の加工時の前記第1加工条件または前記第2の加工条件を推定するための算出結果を演算し、その照明光の照明条件とその被加工面から発生する光の検出条件との少なくとも一方が異なる複数の評価条件のもとでその被加工面から発生する光を検出して得られた検出結果に基づいてその基板の加工時のその第1加工条件とその第2加工条件との少なくとも一方を推定することを含み、前記基板の被加工面から発生する光を検出するときに、前記被加工面からの反射または回折光を検出し、前記複数の評価条件は、回折条件が異なる評価方法が提供される。
また、第4の態様によれば、基板の表面に加工によりパターンを設け、その第3の態様の評価方法を用いてその基板のその第1加工条件を推定し、その評価方法によって推定されるその第1加工条件に応じてその基板の露光時の加工条件を補正する加工方法が提供される。
また、第5の態様によれば、基板の表面にパターンを設ける加工工程を有するデバイス製造方法であって、その加工工程で第4の態様の加工方法を用いるデバイス製造方法が提供される。
また、第6の態様によれば、基板の表面にパターンを設ける加工工程を有するデバイス製造方法であって、その加工工程で第4の態様の加工方法を用い、製造対象のデバイスに応じてその第2加工条件の変化に対する変化量を抑制するために施す演算式を記憶するデバイス製造方法が提供される。
本発明の態様によれば、複数の加工条件のもとでの加工により設けられた構造体を有する基板を用いて、その複数の加工条件のうちの一つの加工条件を高精度に評価できる。
(a)は実施形態に係る評価装置の全体構成を示す図、(b)はデバイス製造システムを示すブロック図である。 (a)は光路上に偏光フィルタが挿入された評価装置を示す図、(b)は半導体ウェハの表面のパターンの一例を示す平面図である。 (a)は繰り返しパターンの凹凸構造を示す拡大斜視図、(b)は直線偏光の入射面と繰り返しパターンの周期方向(又は繰り返し方向)との関係を示す図である。 評価条件を求める方法(条件出し)の一例を示すフローチャートである。 ドーズ量の評価方法を示すフローチャートである。 (a)は条件振りウェハ10の一例を示す平面図、(b)は一つのショットを示す拡大図、(c)はショット中の複数の設定領域の配列の一例を示す拡大図である。 複数の回折条件で撮像されたウェハの像を示す図である。 (a)は複数のフォーカス変化曲線を示す図、(b)は複数のドーズ変化曲線を示す図である。 (a)及び(b)はそれぞれ2つの回折条件で計測されたフォーカス変化曲線及びドーズ変化曲線を示す図である。 (a)はフォーカス位置の残差を示す図、(b)はドーズ量の差分を示す図である。 (a)はウェハ面のドーズ量の分布の一例を示す図、(b)はウェハ面のフォーカス値の分布の一例を示す図である。 (a)は条件出しの他の例の要部を示すフローチャート、(b)はフォーカス値の評価方法の要部を示すフローチャートである。 (a)及び(b)はそれぞれ2つの回折条件で計測されたドーズ変化曲線及びフォーカス変化曲線を示す図である。 (a)はウェハの要部を示す拡大断面図、(b)は別のウェハの要部を示す拡大断面図、(c)は図14(b)の後工程のウェハを示す拡大断面図、(d)はウェハに形成されたパターンの一部を示す拡大断面図、(e)は2つのスペーサ変化曲線及びその残差を示す図、(f)は2つのエッチング変化曲線及びその差分を示す図である。 (a)は第2の実施形態の条件出しの一例を示すフローチャート、(b)は第2の実施形態のエッチングの評価方法を示すフローチャートである。 半導体デバイス製造方法を示すフローチャートである。
[第1の実施形態]
以下、本発明の好ましい第1の実施形態につき図1〜図11を参照して説明する。図1(a)は本実施形態に係る評価装置1を示し、図1(b)は本実施形態に係るデバイス製造システムDMSを示す。図1(b)において、デバイス製造システムDMSは、半導体基板である半導体ウェハ(以下、単にウェハという。)の表面(ウェハ面)に薄膜を形成する薄膜形成装置(不図示)、ウェハ面に対するレジスト(感光材料)の塗布及び現像を行うコータ・デベロッパ200、レジストが塗布されたウェハ面に半導体デバイス等の回路パターンを露光する露光装置100、並びに露光及び現像後にウェハ面に形成される構造体を用いて加工条件としての露光装置100における露光条件を評価する評価装置1を備えている。露光装置100としては、例えば参照として援用する特許文献2等に開示されている液浸型のスキャニングステッパー(走査型の投影露光装置)が使用される。さらに、デバイス製造システムDMSは、現像後のウェハを加工するエッチング装置、これらの装置間でウェハを搬送する搬送系500、及びこれらの装置間での制御情報の仲介等を行うホスト・コンピュータ600を備えている。
図1(a)において、評価装置1は、略円板形のウェハ10を支持するステージ5を備え、図1(b)の搬送系500によって搬送されてくるウェハ10は、ステージ5の上面(載置面)に載置され、例えば真空吸着によって固定保持される。ステージ5は、ステージ5の中心軸を回転軸とする角度φ1を制御する第1駆動部(不図示)と、例えばステージ5の上面を通り、図1(a)の紙面に垂直な軸を回転軸とする傾斜角であるチルト角φ2(ウェハ10の表面のチルト角)を制御する第2駆動部(不図示)とを介してベース部材(不図示)に支持されている。
評価装置1はさらに、ステージ5に支持されたウェハ10の表面(ウェハ面)に照明光ILIを平行光として照射する照明系20と、照明光ILIの照射を受けたウェハ面から射出する光(反射光又は回折光等)を集光する受光系30と、受光系30により集光された光を受けてウェハ面の像を検出する撮像装置35と、撮像装置35から出力される画像信号の処理等を行う演算部50と、を備えている。撮像装置35は、ウェハ面の像を形成する結像レンズ35aと、CCD又はCMOS型の2次元の撮像素子35bとを有し、撮像素子35bはウェハ10の全面の像を一括して撮像して画像信号を出力する。演算部50は、撮像装置35から入力されたウェハ10の画像信号に基づいてウェハ10のデジタル画像(画素毎の輝度、ショット毎に平均化された輝度、又はショットより小さい領域毎に平均化された輝度等)の情報を生成する画像処理部40と、画像処理部40から出力される画像情報を処理する演算部60a,60b,60cを含む検査部60と、画像処理部40及び検査部60の動作等を制御する制御部80と、画像に関する情報等を記憶する記憶部85と、得られる露光条件の評価結果をホスト・コンピュータ600を介して露光装置100内の制御部(不図示)に出力する信号出力部90とを備えている。なお、演算部50を全体としてコンピュータより構成し、検査部60及び制御部80等をコンピュータのソフトウェア上の機能としてもよい。
照明系20は、照明光を射出する照明ユニット21と、照明ユニット21から射出された照明光をウェハ面に向けて平行光として反射する照明側凹面鏡25とを有する。照明ユニット21は、メタルハライドランプ又は水銀ランプ等の光源部22と、制御部80の指令により光源部22からの光のうち所定の波長(例えば波長λ1、λ2、λ3等)の光を選択しその強度を調節する調光部23と、調光部23で選択され強度が調節された光を所定の射出点から照明側凹面鏡25へ射出する導光ファイバ24とを有する。一例として、波長λ1は248nm、λ2は265nm、λ3は313nmである。この場合、導光ファイバ24の射出部が照明側凹面鏡25の焦点面に配置されているため、照明側凹面鏡25で反射される照明光ILIは平行光束となってウェハ面に照射される。ウェハ10に対する照明光の入射角θ1は、制御部80の指令によりステージ5のチルト角φ2を制御することにより調整可能である。
また、導光ファイバ24と照明側凹面鏡25との間には、制御部80の指令に基づき不図示の駆動部により照明側偏光フィルタ26が光路上へ挿抜可能に設けられている。図1(a)に示すように、照明側偏光フィルタ26を光路上から抜去した状態では、ウェハ10からの回折光ILDを利用した検査(以下、便宜的に回折検査という。)が行われる。一方、図2(a)に示すように、照明側偏光フィルタ26を光路上に挿入した状態では、偏光(構造性複屈折による偏光状態の変化)を利用した検査(以下、便宜的にPER検査という)が行われる。照明側偏光フィルタ26は、例えば回転角が制御可能な直線偏光板である。なお、回折検査時においても、照明光ILIがウェハ10の表面に対してS偏光(入射面に対して垂直な方向の直線偏光)となるように照明側偏光フィルタ26を光路上に配置することも可能である。S偏光を用いた回折検査ではウェハ10の下地層の影響を受けにくく最上層の状態を検出できる。
受光系30は、ステージ5(ウェハ10)に対向して配置された受光側凹面鏡31を有し、撮像装置35の入射部は受光側凹面鏡31の焦点面に配置されている。このため、ウェハ面から射出する平行光は受光側凹面鏡31により撮像装置35に集光され、撮像装置35の撮像素子35bの撮像面にウェハ10の像が結像される。
また、受光側凹面鏡31と撮像装置35との間には、制御部80の指令に基づき不図示の駆動部により受光側偏光フィルタ32が光路へ挿脱可能に設けられている。図1(a)に示すように、受光側偏光フィルタ32を光路から取り出した状態で回折検査が行われる。一方、図2(a)に示すように、受光側偏光フィルタ32を光路に挿入した状態でPER検査が行われる。受光側偏光フィルタ32も、照明側偏光フィルタ26と同様に、例えば回転角が制御可能な直線偏光板である。PER検査において通常、受光側偏光フィルタ32の偏光方向は、照明側偏光フィルタ26の偏光方向に対して直交したクロスニコル状態に設定される。
制御部80の指令により検査部60は、最も基本的な動作として、画像処理部40から供給されるウェハ10のデジタル画像と、記憶部85に記憶されている良品ウェハの画像データとを比較して、ウェハ面における欠陥(異常)の有無を検査する。そして、検査部60による検査結果及びそのときのウェハ面の画像が図示しない画像表示装置で出力表示される。本実施形態では、検査部60は、後述のようにウェハ面の画像を処理して、ウェハ10を露光した露光装置100のドーズ量(露光量又は露光エネルギー)、フォーカス位置(露光面の投影光学系の光軸方向の位置)、露光波長(中心波長及び/又は半値幅)、及び液浸法で露光する場合の投影光学系とウェハとの間の液体の温度等の複数の露光条件のうちの所定の露光条件を評価する。その露光条件の評価結果は露光装置100内の制御部(不図示)に供給され、その評価結果に応じて露光装置100はその露光条件の補正(例えばオフセット又はばらつき等の補正)を行うことができる。
また、ウェハ10は、露光装置100により最上層のレジストに対して所定のパターンが投影露光され、コータ・デベロッパ200による現像後、搬送系500により、評価装置1のステージ5上に搬送される。このとき、ウェハ10は、搬送途中で不図示のアライメント機構によりウェハ10のショット内のパターン、ウェハ面のマーク(例えばサーチアライメントマーク)、又は外縁部(ノッチやオリエンテーションフラット等)を基準としてアライメントが行われた状態で、ステージ5上に搬送される。ウェハ面には、図2(b)に示すように、複数のショット(ショット領域)11が直交する2つの方向(X方向及びY方向とする。)にそれぞれ所定間隔で配列され、各ショット11中には、半導体デバイスの回路パターンとしてラインパターン又はホールパターン等の凹凸の繰り返しパターン12が形成されている。なお、XY面に垂直な軸をZ軸とする。繰り返しパターン12は例えばレジストパターンでもよい。なお、一つのショット11中には複数のチップ領域が含まれていることが多いが、図2(b)では分かりやすく一つのショット中に一つのチップ領域があるものとしている。
以上のように構成される評価装置1を用いて、ウェハ面の回折検査(ウェハ10からの回折光ILDを検出して行う検査)を行うには、制御部80が記憶部85に記憶されたレシピ情報(検査条件や手順等)を読み込み、以下の処理を行う。まず、図1(a)に示すように照明側偏光フィルタ26及び受光側偏光フィルタ32を光路から取り出し、搬送系500により、ウェハ10をステージ5上に搬送する。なお、搬送途中で不図示のアライメント機構により得られたウェハ10の位置情報に基づいて、ウェハ10はステージ5上の所定の位置に所定の方向で載置される。
次に、ウェハ面における照明光ILIの入射面の方向(照明方向)と、各ショット11内の繰り返しパターン12の周期方向(又は繰り返し方向)とが一致するように(ラインパターンの場合、ラインに対して直交するように)ステージ5の角度φ1を調整する。また、繰り返しパターン12のピッチをP、ウェハ10に入射する照明光ILIの波長をλ、照明光ILIの入射角をθ1、ウェハ面から射出する検出対象のn次(nは0以外の整数)の回折光ILDの回折角をθ2としたとき、次の数式(数1)を満足するようにステージ5のチルト角φ2を調整する。
Figure 0006004008
次に、照明ユニット21からの所定の選択された波長の照明光ILIの射出を開始する。これにより、導光ファイバ24から射出される照明光ILIが照明側凹面鏡25で反射され、平行光となってウェハ面に照射される。ウェハ面で回折した回折光ILDは、受光側凹面鏡31により撮像装置35に集光され、撮像装置35の撮像面にウェハ10の全面の像(回折像)が結像される。撮像装置35はその像の画像信号を画像処理部40に出力し、画像処理部40はウェハ面のデジタル画像を生成し、その画像の情報を検査部60に出力する。この場合、上記数式(数1)の条件を満たすことによって、その撮像面に回折光ILDによるウェハ面の像が形成される。
そして、そのウェハ面の像から得られるデジタル画像の個々の画像信号のレベル(対応する部分の画像の輝度)が平均的にある強度(輝度)以上となるときの、照明光ILIの波長λ及びステージ5のチルト角φ2(入射角θ1又は回折角θ2)の組み合わせを一つの回折条件と呼ぶ。そして、複数の回折条件が上記のレシピ情報に含まれている。なお、実際には、得られるデジタル画像の対応する部分の画像の輝度が平均的にある輝度以上となるように、ステージ5のチルト角φ2を調整してもよい。このようなチルト角φ2の調整方法は回折条件サーチとも呼ぶことができる。
次に、評価装置1によるウェハ面のPER検査(反射光の偏光状態の変化に基づく検査)につき説明する。この場合、図2(b)のウェハ面の繰り返しパターン12は、図3(a)に示すように、複数のライン部2Aがその短手方向である配列方向(ここではX方向)に沿って、スペース部2Bを挟んで一定のピッチ(周期)Pで配列されたレジストパターン(ラインパターン)であるものとする。ライン部2Aの配列方向(X方向)を、繰り返しパターン12の周期方向(又は繰り返し方向)とも呼ぶ。
ここで、繰り返しパターン12におけるライン部2Aの線幅DAの設計値をピッチPの1/2とする。設計値通りに繰り返しパターン12が形成された場合、ライン部2Aの線幅DAとスペース部2Bの線幅DBは等しくなり、ライン部2Aとスペース部2Bとの体積比は略1:1になる。これに対して、繰り返しパターン12を形成する際の露光装置100におけるフォーカス位置がベストフォーカス位置(適正値)から外れると、ピッチPは変わらないが、ライン部2A及びスペース部2Bの線幅DA,DBが設計値と異なってしまい、ライン部2Aとスペース部2Bとの体積比が略1:1から外れる。
PER検査は、上記のような繰り返しパターン12におけるライン部2Aとスペース部2Bとの体積比の変化に伴う反射光の偏光状態の変化を利用して、繰り返しパターン12の状態(良否等)の検査を行うものである。なお、説明を簡単にするため、理想的な体積比(設計値)を1:1とする。体積比の変化は、フォーカス位置の適正値からのずれ等に起因し、ウェハ10のショット11ごとに、さらにはショット11内の複数の領域ごとに現れる。なお、体積比を断面形状の面積比と言い換えることもできる。
本実施形態の評価装置1を用いて、ウェハ面のPER検査を行うには、制御部80が記憶部85に記憶されたレシピ情報(検査条件や手順等)を読み込み、以下の処理を行う。まず、図2(a)に示すように、照明側偏光フィルタ26及び受光側偏光フィルタ32が光路上に挿入される。そして、図1(b)の搬送系500により、ウェハ10をステージ5上に搬送する。なお、搬送途中で不図示のアライメント機構により得られたウェハ10の位置情報に基づいて、ウェハ10はステージ5上の所定の位置に所定の方向で載置される。また、PER検査を行うとき、ステージ5のチルト角は、受光系30でウェハ10からの正反射光ILRを受光できるように、すなわち入射する照明光ILIの入射角(図2(a)では角度θ3)に対して受光系30で受光する光のウェハ面に対する反射角が等しくなるように設定される。さらに、ステージ5の回転角は、ウェハ面における繰り返しパターン12の周期方向が、図3(b)に示すように、ウェハ面における照明光(図3(b)ではP偏光の直線偏光の光Lとしている)の振動方向に対して、45度で傾斜するように設定される。繰り返しパターン12からの反射光の信号強度を最も高くするためである。また、周期方向とその振動方向との角度を22.5度や67.5度とすることによって検出感度(露光条件の変化に対する検出信号の変化の比率)が高くなる場合には、その角度を変更してもよい。なお、その角度はこれらに限らず、任意角度に設定可能である。
照明側偏光フィルタ26は、導光ファイバ24と照明側凹面鏡25との間に配設されるとともに、その透過軸が所定の方位(方向)に設定され、透過軸に応じて照明ユニット21からの光から偏光成分(直線偏光)を抽出する(透過させる)。本実施形態では、一例として、導光ファイバ24から射出された光は、照明側偏光フィルタ26及び照明側凹面鏡25を介しP偏光の直線偏光L(図3(b)参照)となってウェハ面に照射される。
このとき、ウェハ面に入射する照明光ILI(ここでは直線偏光の光L)がP偏光であるため、図3(b)に示すように、繰り返しパターン12の周期方向が光Lの入射面(ウェハ面における光Lの進行方向)に対して45度の角度に設定された場合、ウェハ面における光Lの振動方向と繰り返しパターン12の周期方向とのなす角度も、45度に設定される。言い換えると、直線偏光の光Lは、ウェハ面における光Lの振動方向が繰り返しパターン12の周期方向に対して45度傾いた状態で、繰り返しパターン12を斜めに横切るようにして入射する。
ウェハ面で反射した平行光の正反射光ILRは、受光系30の受光側凹面鏡31により集光されて受光側偏光フィルタ32を介して撮像装置35の撮像面に達する。このとき、繰り返しパターン12での構造性複屈折により正反射光ILR(ここでは直線偏光の光L)の偏光状態が例えば楕円偏光に変化する。受光側偏光フィルタ32の透過軸の方位は、上述した照明側偏光フィルタ26の透過軸に対して直交するように(クロスニコルの状態に)設定されている。従って、受光側偏光フィルタ32により、ウェハ10(繰り返しパターン12)からの正反射光のうち光Lと振動方向が略直角な偏光成分が抽出されて、撮像装置35に導かれる。その結果、撮像装置35の撮像面には、ウェハ10からの正反射光のうち光Lに対して振動方向が略直角な偏光成分(光LがP偏光であればS偏光成分)によるウェハ面の像が形成される。なお、楕円偏光の短軸方向が光Lの偏光方向と直交していない場合は、受光側偏光フィルタ32の透過軸をその楕円偏光の短軸方向に合わせるようにしてもよい。これによって、検出感度(露光条件の変化に対する検出信号の変化の比率)が向上する場合がある。
そして、撮像装置35はそのウェハ面の像の画像信号を画像処理部40に出力し、画像処理部40はウェハ面のデジタル画像を生成し、その画像の情報を検査部60に出力する。検査部60はその画像の情報を用いてウェハ10の繰り返しパターン12を形成する際に使用された露光装置における露光条件等を評価する。なお、照明側偏光フィルタ26を回転してウェハ面に入射する照明光ILIの偏光方向をP偏光からずらすことも可能である。ただし、この場合でも、受光側偏光フィルタ32の偏光方向は照明側偏光フィルタ26に対してクロスニコル状態に設定される。そのようにデジタル画像を生成したときに、照明光ILIの波長λ及び照明側偏光フィルタ26の角度の組み合わせを一つの偏光条件と呼ぶ。なお、例えば照明光ILIの入射角θ3(すなわち反射角θ3)を変更する機構を設けることも可能であり、このように入射角を変更する場合には、入射角も一つの偏光条件に含まれる。そして、複数の偏光条件が上記のレシピ情報に含まれている。
次に、本実施形態において、評価装置1を用いてウェハ面のパターンからの光を検出して、そのパターンを形成する際に使用した露光装置100の露光条件を評価する方法の一例につき図5のフローチャートを参照して説明する。また、その評価に際して予め評価条件を求める必要があるため、その評価条件を求める方法(以下、条件出しとも呼ぶ。)の一例につき図4のフローチャートを参照して説明する。ここでは、一例として評価装置1を用いてウェハ面の回折検査(ウェハ10からの回折光ILDを検出して行う検査)を行うものとする。このため、図1(a)に示すように、評価装置1の光路から照明側偏光フィルタ26及び受光側偏光フィルタ32が取り出される。さらに、露光装置100のドーズ量及びフォーカス位置を含む複数の露光条件のうち、ドーズ量の評価を行うものとする。
まず、条件出しのために、図4のステップ102(条件振りウェハの作成)において、図6(a)に示すように、一例としてスクライブライン領域SLを挟んでN個(Nは例えば数10〜100程度の整数)のショットSAn(n=1〜N)が配列されるウェハ10aが用意される。そして、レジストを塗布したウェハ10aを図1(b)の露光装置100に搬送し、露光装置100によって、ウェハ10aの例えば走査露光時の走査方向(ショットの長手方向)に配列されたショット間ではフォーカス位置が次第に変化し、走査方向に直交する非走査方向(ショットの短辺方向)に配列されたショット間ではドーズ量が次第に変化するように、露光条件を変化させながら各ショットSAnに同じ実デバイス用のレチクル(不図示)のパターンを露光する。この際に、フォーカス位置及びドーズ量の制御精度を高めるために、例えば走査露光時の走査速度を遅くしてもよい。その後、露光済みのウェハ10aを現像することによって、各ショットSAnに異なる露光条件のもとで繰り返しパターン12が形成されたウェハ(以下、条件振りウェハという。)10aが作成される。
なお、通常、実デバイス用のレチクルには複数のピッチで周期方向が同一又は直交する複数のパターンが形成されており、各ショットSAnにもピッチPの繰り返しパターン12の外に異なるピッチのパターンも形成される。さらに、例えばピッチPの繰り返しパターンをそれよりも大きいピッチP1(>P)で配列したパターンブロックがある場合、このパターンブロックからはピッチP1のパターンから発生する回折光と同じ回折光が発生するため、実質的にピッチP1のパターンがあるとみなして回折検査を行うことも可能である。
以下では、フォーカス位置として、ベストフォーカス位置(ベストフォーカス位置は、±にフォーカスを振った時に線幅の変動が最も小さくなる位置を言う。ただし、本明細書内では、露光装置100に設定されているベストフォーカス位置を指す。)に対するデフォーカス量(ここではフォーカス値と呼ぶ。)を用いるものとする。フォーカス位置に関しては、一例としてフォーカス値が30nm刻みで−60nm,−30nm,0nm,+30nm,+60nmの5段階に設定される。後述の図8(a)の横軸のフォーカス値の番号1〜5は、その5段階のフォーカス値(−60〜+60nm)に対応している。なお、フォーカス値を例えば50nm刻みで複数段階に設定することも可能であり、フォーカス値を例えば25nm刻みで−200nm〜+200nmの17段階等に設定することも可能である。
そして、ドーズ量は、一例として、1.5mJ刻みで9段階(10.0mJ,11.5mJ,13.0mJ,14.5mJ,16.0mJ,17.5mJ,19.0mJ,20.5mJ,22.0mJ)に設定される。後述の図8(b)の横軸のドーズ量の番号1〜9は、その9段階のドーズ量(10.0〜22.0mJ)に対応している。なお、実際の半導体デバイス用のパターンの露光に要する最適な露光量(ベストドーズ)は、パターンによって5mJ〜40mJ程度であり、ドーズ量はそのパターンのベストドーズを中心として0.5mJ〜2.0mJ程度の間隔で変化させることが望ましい。
本実施形態の条件振りウェハ10aは、ドーズ量(露光量又は露光エネルギー)とフォーカス位置とをマトリックス状に振って露光し現像したいわゆるFEMウェハ( Focus Exposure Matrixウェハ)である。なお、フォーカス値の段階数にドーズ量の段階数を掛けて得られる露光条件の組み合わせの異なるショットの個数が、条件振りウェハ10aの全面のショット数よりも多い場合には、条件振りウェハ10aを複数枚作成してもよい。
逆に、例えばショットSAnの走査方向の配列数がフォーカス値の変化の段階数よりも大きい場合、及び/又は非走査方向の配列数がドーズ量の変化の段階数よりも大きい場合には、走査方向及び/又は非走査方向に配列されたショットの一部のショットのみを露光してもよい。ただし、この場合、フォーカス値及びドーズ量を変化させて露光した複数のショットを、走査方向又は非走査方向に複数組設け、フォーカス値及びドーズ量が同じショットに関して得られる計測値を平均化してもよい。また、例えばウェハの中心部と周辺部とのレジストの塗布むらの影響、及び走査露光時のウェハの走査方向(図2(b)の+Y方向又は−Y方向)の相違の影響等を軽減するために、フォーカス値及びドーズ量が異なる複数のショットをランダムに配列してもよい。
条件振りウェハ10aを作成すると、条件振りウェハ10aを図1(a)の評価装置1のステージ5上に搬送する。そして、制御部80は記憶部85のレシピ情報から複数の回折条件を読み出す。複数の回折条件としては、一例として照明光ILIの波長λが上記のλ1、λ2、λ3のいずれかとなり、ステージ5のチルト角φ2が上記数式(数1)を満たす5つの角度D1〜D5のいずれかになる15(=3×5)個の条件を想定する。ここでは、波長λがλn(n=1〜3)で、チルト角φ2がDm(m=1〜5)になる回折条件を図8(a)及び(b)の(n−Dm)で表す。
そして、回折条件をその15個の条件のうちのn=1でm=1〜5、n=2でm=1〜5、n=3でm=1〜5の条件に順次設定し、各回折条件のもとで、照明光ILIを条件振りウェハ10aの表面に照射し、撮像装置35が条件振りウェハ10aの回折光の像を撮像して画像信号を画像処理部40に出力する(ステップ104)。なお、このとき、回折条件サーチを利用して回折条件を求めてもよい。図7は、その15個の回折条件(n−Dm)で撮像された条件振りウェハ10aの像A1〜A15の輝度分布の一例を示す。
次に、画像処理部40は、撮像装置35から入力された条件振りウェハ10aの画像信号に基づいて、複数(ここでは15個)の回折条件のそれぞれに関して条件振りウェハ10aの全面のデジタル画像を生成する。そして、その複数の回折条件に関して、それぞれ対応するデジタル画像を用いて、条件振りウェハ10aのスクライブライン領域SLを除いた全部のショットSAn(図6(b)参照)内の全部の画素の信号強度を平均化した平均信号強度を算出し、算出結果を検査部60に出力する(ステップ106)。なお、その平均信号強度をショット平均輝度(又はショット内平均輝度)とも呼ぶ。このようにショット平均輝度を算出するのは、露光装置100の投影光学系の収差の影響等を抑制するためである。なお、その収差の影響等をさらに抑制するために、例えば図6(b)のショットSAnの中央部の部分領域CAn内の全部の画素の信号強度を平均化した平均信号強度(平均輝度)を算出してもよい。
ただし、予め投影光学系の収差の影響(デジタル画像に与える誤差分布)を求めておき、デジタル画像の段階でその収差の影響を補正することも可能である。この場合には、ショット平均輝度の代わりに、ショットSAn内のI個(Iは例えば数10の整数)の長方形等の設定領域16(図6(c)参照)毎に平均信号強度(平均輝度)を算出し、例えばショットSAn内で同じ位置にある設定領域16の平均輝度を用いてこれ以降の処理を行うようにしてもよい。設定領域16の配列は、例えば走査方向に6行で非走査方向に5列であるが、その大きさ及び配列は任意である。
そして、検査部60内の第1演算部60aは、その複数の回折条件(n−Dm)のそれぞれに関して得られる条件振りウェハ10aの全部のショット平均輝度から、露光条件中のドーズ量が同じでフォーカス値が5段階に変化するときの平均輝度の変化特性をフォーカス変化曲線として抽出し、記憶部85に記憶する(ステップ108)。図8(a)は、そのうちでドーズ量がベストドーズであるときに回折条件(n−Dm)で得られる複数(ここでは15個)のフォーカス変化曲線を示す。図8(a)、(b)の縦軸はショット平均輝度の相対値、図8(a)の横軸は第1段階〜第5段階のフォーカス値(−100〜+100nm)である。
また、その第1演算部60aは、その複数の回折条件(n−Dm)のそれぞれに関して得られる全部のショット平均輝度から、露光条件中のフォーカス値が同じでドーズ量が9段階に変化するときの平均輝度の変化特性をドーズ変化曲線として抽出し、記憶部85に記憶する(ステップ110)。図8(b)は、そのうちでフォーカス値が0(ベストフォーカス位置)であるときに回折条件(n−Dm)で得られる複数のドーズ変化曲線を示す。図8(b)の横軸は第1段階〜第9段階のドーズ量(10.0〜22.0mJ)である。
その後、その第1演算部60aは、上記の複数の回折条件から、フォーカス変化曲線が同じ傾向(例えばフォーカス値が増加するときに両方のショット平均輝度がほぼ同じように増減する特性)を持ち、ドーズ変化曲線が逆の傾向(例えばドーズ量が増加するときに一方のショット平均輝度がほぼ増加して他方のショット平均輝度がほぼ減少する特性)を持つ第1及び第2の回折条件を選択し、選択された2つの回折条件を記憶部85に記憶する(ステップ112)。本実施形態では、そのような第1及び第2の回折条件として(n=1,m=2)の(1−D2)及び(n=3,m=3)の(3−D3)を選択する。図9(a)は、図8(a)の15個のフォーカス変化曲線のうち、回折条件(1−D2)及び(3−D3)のもとで得られた2つのフォーカス変化曲線B2及びB13を示し、図9(b)は、図8(b)の15個の変化曲線のうち、回折条件(1−D2)及び(3−D3)のもとで得られた2つのドーズ変化曲線C2及びC13を示す。フォーカス変化曲線B2及びB13は同じ傾向で変化しており、ドーズ変化曲線C2及びC13は逆の傾向で変化していることが分かる。
そして、第1演算部60aは、第1の回折条件(1−D2)で得られたフォーカス変化曲線B2をゲインa(任意の倍率又は比例係数)及びオフセットbで補正した曲線B2A(図10(a)参照)と、第2の回折条件(3−D3)で得られたフォーカス変化曲線B13とが一致するように、すなわち補正後の曲線B2Aとフォーカス変化曲線B13との差分(以下、フォーカス残差という。)ΔBが最小になるようにゲインa及びオフセットbを決定し、これらのゲインa及びオフセットbを記憶部85に記憶する(ステップ114)。なお、図10(a)の右側の縦軸がフォーカス残差ΔBの値である。この場合、一例として、フォーカス変化曲線B2,B13のフォーカス値がFi(i=1〜5)のときの値をLB2(Fi),LB13(Fi)として、次の差分の自乗和である誤差が最小になるようにゲインa及びオフセットbを決定してもよい。図9(a)の場合、曲線B2の値は曲線B13よりも大きいため、ゲインaは1より小さい値になる。下記数式(数2)中の積算はフォーカス値Fi(i=1〜5)に関して実行される。
Figure 0006004008
なお、ゲインa及びオフセットbは、露光対象のレチクルのパターン毎にそれらの値を決定して記憶してもよい。
また、第2の回折条件(3−D3)で得られたフォーカス変化曲線B12をゲインa’(比例係数又は倍率)及びオフセットb’で補正した曲線と、第1の回折条件(1−D2)で得られたフォーカス変化曲線B2とが一致するようにゲインa’及びオフセットb’を決定してもよい。さらに、曲線B2A及びフォーカス変化曲線B13をフォーカス値Fiに関する高次多項式(例えば4次の多項式)で近似し、これらの差分の自乗和が最小になるようにa,bの値を決定してもよい。また、ゲインa又はオフセットbのみを使用して、一方のフォーカス変化曲線を補正し、この補正後の曲線が他方のフォーカス変化曲線とできるだけ一致するようにa又はbの値を決定してもよい。さらに、例えばフォーカス値Fiごとに、補正後の差分が0になるように一方のフォーカス変化曲線に掛ける係数cfiを独立に決定してもよい。
なお、2つのフォーカス変化曲線の特性が相反する傾向(例えばフォーカス値Fxの変化に対して、一方の曲線FA1が凸状に変化して他方の曲線FB1が凹状に変化すること)を持ち、ドーズ変化曲線の特性が同じ傾向(例えばドーズ量の変化に対して、2つの曲線DA1,DA2がほぼ単調に増加又は減少すること)を持つ2つの回折条件を用いることも可能である。この場合、一方の曲線FA1を関数(fa(Fx)+fb1)(fbは定数)とすると、他方の曲線FB1はほぼ関数(−fb1・fa(Fx)+fb2)(fb1,fb2は定数で、fb1は正)となり、曲線FB1を曲線FA1に合わせるためのゲインa1は−1/fb1という負の値になる。このため、上記数式(数2)の右辺の括弧内の演算は、ゲインa1に関しては、曲線FA1と、曲線FB1に定数(1/fb1)を掛けた値との和になる。
次に、第1演算部60aは、図9(b)の第1の回折条件(1−D2)で得られたドーズ変化曲線C2をステップ114で算出されたゲインa及びオフセットbで補正した曲線C2A(図10(b)参照)と、第2の回折条件(3−D3)で得られたドーズ変化曲線C13との差分(ドーズ差分)をドーズ量の関数で表した曲線(以下、基準ドーズ曲線という。)SD1を算出し、算出された図10(b)の基準ドーズ曲線SD1を記憶部85に記憶する(ステップ116)。なお、図10(b)の右側の縦軸がドーズ差分の値である。また、基準ドーズ曲線SD1もドーズ量に関する1次式又は高次多項式で近似してもよい。以上の動作によって、露光装置100の露光条件を評価する際に使用する評価条件である第1及び第2の回折条件を求める条件出しが終了したことになる。
次に、実際のデバイス製造工程において露光装置100による露光によってパターンが形成されたウェハに対して、評価装置1によって上記の条件出しで求められた2つの回折条件(1−D2)及び(3−D3)を用いる回折検査を行うことによって、露光装置100の露光条件中のドーズ量を以下のように評価する。この評価動作はドーズモニターと呼ぶこともできる。まず、図5のステップ120において、図6(a)と同じショット配列を持ち、レジストを塗布した実露光用のウェハ10を図1(b)の露光装置100に搬送し、露光装置100によって、ウェハ10の各ショットSAn(n=1〜N)に実デバイス用のレチクル(不図示)のパターンを露光し、露光後のウェハ10を現像する。この際の露光条件は、全部のショットにおいて、ドーズ量に関してはそのレチクルに応じて定められているベストドーズであり、フォーカス位置に関してはベストフォーカス位置である。
しかしながら、実際には露光装置100における走査露光時のスリット状の照明領域内の例えば非走査方向における僅かな照度むら等の影響によって、ウェハ10のショットSAn毎に、さらに各ショットSAn内の複数の設定領域16毎にドーズ量にばらつき等が生じる可能性があるため、そのドーズ量の評価を行う。さらに、露光装置100における振動等の影響によって、ショットSAn毎に、さらに各ショットSAn内の複数の設定領域16毎にフォーカス位置にもばらつき等が生じる可能性がある。この場合、単に回折検査を行うとその検査結果にはドーズ量の外にフォーカス位置に起因する部分も含まれているため、そのフォーカス位置の影響を以下のようにして排除する。
露光及び現像後のウェハ10は、不図示のアライメント機構を介して図1(a)の評価装置1のステージ5上にロードされる(ステップ122)。そして、制御部80は記憶部85のレシピ情報から上記の条件出しで決定された第1及び第2の回折条件(1−D2)及び(3−D3)を読み出す。そして、回折条件を順次その第1及び第2の回折条件に設定し、各回折条件のもとで、それぞれ照明光ILIをウェハ10の表面に照射し、撮像装置35がウェハ10の回折光の像を撮像して画像信号を画像処理部40に出力する(ステップ124)。
なお、上述の図4の条件出し工程中のステップ104において、複数の回折条件のもとで得られた図7に示す条件振りウェハの像A1〜A13のうち、その第1の回折条件(1−D2)のもとで得られた像が像A2であり、その第2の回折条件(3−D3)のもとで得られた像が像A13である。このため、その第1及び第2の回折条件のもとで撮像されたウェハ10の各部分の像の輝度は、それぞれ像A2及びA13中で、ウェハ10の当該部分のドーズ量及びフォーカス値が条件振りウェハ中でほぼ同じになる部分の像の輝度とほぼ同じになる。
次に、画像処理部40は、撮像装置35から入力されたウェハ10の画像信号に基づいて、第1及び第2の回折条件のそれぞれに関してウェハ10の全面のデジタル画像を生成する。そして、その第1及び第2の回折条件に関して、それぞれ対応するデジタル画像を用いて、ウェハ10の全部のショットSAn内のI個の設定領域16(図6(c)参照)毎に平均信号強度(平均輝度)を算出し、算出結果を検査部60に出力する(ステップ126)。なお、その設定領域16の代わりに撮像装置35の撮像素子の各画素に対応する領域を使用してもよい。ここで、第1及び第2の回折条件のもとでn番目のショット内のi番目の設定領域16で得られる平均輝度をそれぞれL1ni及びL2niとする(n=1〜N,i=1〜I)。これらの平均輝度にはそれぞれフォーカス変化曲線及びドーズ変化曲線の2つの値が含まれている。
そして、検査部60内の第3演算部60cは、ウェハ10の全部の設定領域16毎に、第1の回折条件(1−D2)で得られた平均輝度L1niを上記のステップ114で算出されたゲインa及びオフセットbで補正した輝度L1ni’から、第2の回折条件(3−D3)で得られた平均輝度L2niを減算して平均輝度の差分Δniを算出し、算出結果を記憶部85に記憶する(ステップ128)。この差分Δniからは、図10(a)の補正後のフォーカス変化曲線B2A,B13に対応する成分がほぼ除去されており、図10(b)の補正後のドーズ変化曲線C2A,C13の差分に対応する成分のみがほぼ残されている。
そこで、第3演算部60cは、ウェハ10の全部の設定領域16毎に、上記のステップ116で記憶した図10(b)の基準ドーズ曲線SD1に上記の平均輝度の差分Δniを当てはめて対応するドーズ量Dniを算出又は推定し、算出結果又は推定結果を記憶部85に記憶する(ステップ130)。このように算出又は推定されるドーズ量Dniからはフォーカス位置に起因する成分が除去されている。その後、制御部80がドーズ量Dniを例えば明るさ(又は色を変化させてもよい)に換算してウェハ10の全面のドーズ分布(例えば図11(a)の画像で表される分布)を表示装置(不図示)に表示する(ステップ132)。さらに、制御部80の制御のもとで信号出力部90からホスト・コンピュータ600を介して露光装置100に、ウェハ10の全面のドーズ分布の情報が提供される(ステップ134)。これに応じて露光装置100の制御部(不図示)では、例えばそのドーズ分布とベストドーズとの差分の分布を求め、この差分の分布が所定の許容範囲を超えている場合に、例えば走査露光時の照明領域の走査方向の幅の分布の補正等を行う。これによって、その後の露光時にドーズ分布の誤差が低減される。
この実施形態によれば、実デバイス用のパターンが形成されたウェハ10を用いて2つの回折条件のもとで回折検査を行うことによって、そのパターンの形成時に使用された露光装置100の露光条件中のドーズ量をフォーカス位置の影響を除去して高精度に推定又は評価できる。
上述のように、本実施形態の評価装置1は、ドーズ量及びフォーカス位置(第1及び第2露光条件)を含む複数の露光条件のもとでの露光により設けられた凹凸の繰り返しパターン12(構造体)を有するウェハ10を照明光で照明する照明系20と、その照明光によりウェハ10の表面(露光面)から発生する光を検出する受光系30及び撮像部35(検出部)と、その照明系20の照明条件(波長λ等)とその受光系30及び撮像部35の検出条件(ステージ5のチルト角φ2等)との少なくとも一方が異なる第1及び第2の回折条件(評価条件)のもとで撮像部35により得られた検出結果に、そのフォーカスの変化に対する変化量を抑制する演算を施して得られる演算結果から、ウェハ10の露光時のドーズ量を算出又は推定する演算部50と、を備えている。
また、評価装置1を用いる評価方法は、ウェハ10を照明光で照明し、その照明光によりウェハ10の繰り返しパターン12が形成された表面から発生する光を検出するステップ124と、その照明光の照明条件とウェハ10の表面から発生する光の検出条件との少なくとも一方が異なる第1及び第2の回折条件のもとでその表面から発生する光を検出して得られた検出結果に、フォーカス位置の変化に対する変化量を抑制する演算を施して得られる演算結果から、ウェハ10の露光時のドーズ量を算出又は推定するステップ128,130と、を有する。
この実施形態によれば、複数の加工条件としての複数の露光条件のもとでの露光により設けられた凹凸の繰り返しパターン12を有するウェハ10を用いて、その複数の露光条件のうちのドーズ量をフォーカス位置の影響を抑制した状態で高精度に推定又は評価できる。また、別途計測用のパターンを使用する必要がなく、実デバイスのパターンが形成されたウェハからの光を検出することによって露光条件が評価できるため、実際に露光するパターンに関する露光条件を効率的に、かつ高精度に評価できる。
また、その評価方法は、ドーズ量及びフォーカス位置の少なくとも一方を変えながら評価用のウェハを露光し、このウェハの表面の複数のショットに繰り返しパターン12を設けて条件振りウェハ10a(評価用基板)を作成するステップ102と、ウェハ10aの繰り返しパターン12が設けられた表面を照明光で照明し、その照明光によりその表面から発生する光を検出するステップ104.106と、その照明光の照明条件とウェハ10aの表面から発生する光の検出条件との少なくとも一方が異なる第1及び第2の回折条件のもとで、条件振りウェハ10aに関してその表面から発生する光を検出して得られた複数の検出結果を用いて、フォーカス位置の変化に対する変化量を抑制可能な検出結果を生じるその第1及び第2の回折条件を予め求めて記憶するステップ108〜112と、その第1及び第2の回折条件のもとで得られた2つの検出結果に施す演算式の係数(ゲインa及びオフセットb)を求めて記憶するステップ114と、を有する。
従って、予めその第1及び第2の回折条件を求めておくことにより、この後は2回の計測を行うだけで効率的に実デバイスのパターンが形成されたウェハに関して露光条件を効率的に評価できる。
また、本実施形態のデバイス製造システムDMS(露光システム)は、ウェハの表面にパターンを露光する投影光学系を有する露光装置100(露光部)と、本実施形態の評価装置1と、を備え、評価装置1の演算部50によって推定される第1の露光条件(第1の加工条件)に応じて露光装置100における露光条件(加工条件)を補正している。
また、本実施形態の露光方法(加工方法)は、ウェハの表面に露光によりパターンを設け(ステップ120)、本実施形態の評価方法を用いてウェハの第1の露光条件を推定し(ステップ122〜130)、その評価方法によって推定される第1の露光条件に応じてウェハの露光時の露光条件を補正している(ステップ134)。
このように、評価装置1又はこれを用いる評価方法によって推定される第1の露光条件に応じて露光装置100による露光条件を補正することによって、実際にデバイス製造のために使用されるウェハを用いて、効率的に、かつ高精度に露光装置100における露光条件を目標とする状態に設定できる。
なお、上記の実施形態では、フォーカス位置の影響を抑制してドーズ量を評価しているが、図12(a)、(b)の変形例の要部のフローチャートで示すように、ドーズ量の影響を抑制してフォーカス位置を評価することも可能である。この評価動作はフォーカスモニターと呼ぶこともできる。この変形例では、図4のステップ110に続いて図12(a)のステップ112Aにおいて、図1(a)の検査部60の第2演算部60bが、上記の複数の回折条件から、ドーズ変化曲線が同じ傾向を持ち、フォーカス変化曲線が逆の傾向を持つ第1及び第2の回折条件を選択し、選択された2つの回折条件を記憶部85に記憶する。そのような第1及び第2の回折条件として、(n=1,m=3)の(1−D3)及び(n=1,m=4)の(1−D4)を選択する。
なお、上述の図4の条件出し工程中のステップ104において、複数の回折条件のもとで得られた図7に示す条件振りウェハの像A1〜A13のうち、その第1の回折条件(1−D3)のもとで得られた像が像A3であり、その第2の回折条件(1−D4)のもとで得られた像が像A4である。このため、その第1及び第2の回折条件のもとで撮像されたウェハ10の各部分の像の輝度は、それぞれ像A3及びA4中で、ウェハ10の当該部分のドーズ量及びフォーカス値が条件振りウェハ中でほぼ同じになる部分の像の輝度とほぼ同じになる。
図13(a)は、図8(b)の15個のドーズ変化曲線のうち、回折条件(1−D3)及び(1−D4)のもとで得られた2つのドーズ変化曲線C2及びC4を示し、図13(b)は、図8(a)の15個の変化曲線のうち、回折条件(1−D3)及び(1−D4)のもとで得られた2つのフォーカス変化曲線B3及びB4を示す。ドーズ変化曲線C2及びC4は同じ傾向で変化しており、フォーカス変化曲線B3及びB4は逆の傾向で変化していることが分かる。なお、フォーカス値が小さい範囲ではフォーカス変化曲線B3の負の傾きの絶対値がフォーカス変化曲線B4の負の傾きの絶対値よりも大きいため、フォーカス値の全部の範囲内で、曲線B3の傾きは曲線B4の傾きよりも小さくなり、曲線B3,B4は逆の傾向で変化しているとみなすことができる。
そして、第2演算部60bは、第1の回折条件(1−D3)で得られたドーズ変化曲線C3をゲインa及びオフセットbで補正した曲線(不図示)と、第2の回折条件(1−D4)で得られたドーズ変化曲線C4とが一致するように、すなわち補正後の曲線とドーズ変化曲線C4との残差ΔCの自乗和が最小になるようにゲインa及びオフセットbを決定し、これらのゲインa及びオフセットbを記憶部85に記憶する(ステップ114A)。なお、図13(a)の右側の縦軸が残差ΔCの値である。
次に、第2演算部60bは、図13(b)の第1の回折条件(1−D3)で得られたフォーカス変化曲線B3をステップ114Aで算出されたゲインa及びオフセットbで補正した曲線(不図示)と、第2の回折条件(1−D4)で得られたフォーカス変化曲線B4との差分(フォーカス差分)をフォーカス値の関数で表した曲線(以下、基準フォーカス曲線という。)SF1を算出し、算出された基準フォーカス曲線SF1を記憶部85に記憶する(ステップ116A)。なお、図10(b)の右側の縦軸がフォーカス差分の値である。また、基準フォーカス曲線SF1もフォーカス値に関する1次式又は高次多項式で近似してもよい。
そして、露光装置100の露光及び現像後のウェハの回折検査によってそのウェハの露光条件であるフォーカス位置を評価する場合には、図5のステップ124では、ステップ112Aで選択された第1及び第2の回折条件(1−D3)及び(1−D4)のもとでウェハ10の像が撮像され、図5のステップ128では、ステップ114Aで記憶されたゲインa及びオフセットbを用いて、ウェハ10の設定領域毎に、その第1及び第2の回折条件のもとで得られた2つの平均輝度の差分Δniが算出される。そして、ステップ128に続いて、図12(b)のステップ130Aにおいて、検査部60の第3演算部60cは、ウェハ10の全部の設定領域16毎に、上記のステップ116Aで記憶した図13(b)の基準フォーカス曲線SF1に上記の平均輝度の差分Δniを当てはめて対応するフォーカス値Fniを算出又は推定する。算出結果又は推定結果を記憶部85に記憶する。このように算出又は推定されるフォーカス値Fniからはドーズ量に起因する成分が除去されている。
その後、制御部80がフォーカス値Fniを例えば明るさ(又は色を変化させてもよい)に換算してウェハ10の全面のフォーカス分布(例えば図11(b)の画像で表される分布)を表示装置(不図示)に表示する(ステップ136)。さらに、制御部80の制御のもとで信号出力部90から露光装置100に、ウェハ10の全面のフォーカス分布の情報が提供される(ステップ134A)。これに応じて露光装置100の制御部(不図示)では、例えばそのフォーカス分布とベストフォーカス位置との差分の分布を求め、この差分の分布が所定の許容範囲を超えている場合に、例えばオートフォーカス機構(不図示)の調整等(補正)を行う。これによって、その後の露光時にフォーカス分布の誤差が低減される。
なお、上記の実施形態では、2つの回折条件のもとで得られたウェハの画像から得られる平均輝度に一方の露光条件の影響を抑制するための演算を施している。この外に、例えば3個以上の回折条件のもとで得られたウェハの画像から得られる3個以上の輝度に、一方の露光条件の影響を抑制するための演算を施し、この演算結果から他方の露光条件を求めるようにしてもよい。
さらに、上記の実施形態では、評価装置1によるウェハ面の回折検査を用いて露光条件を検査しているが、評価装置1によるウェハ面のPER検査(反射光の偏光状態の変化に基づく検査)を用いて露光条件を検査してもよい。
また、上記の実施形態では、複数の回折条件(又は偏光条件)から、例えばフォーカス変化曲線が同じ傾向を持ち、ドーズ変化曲線が逆の傾向を持つ第1及び第2の回折条件(又は偏光条件)を選択しているため、第1及び第2の回折条件(又は偏光条件)の選択が容易である。これ以外に、複数の回折条件(又は偏光条件)から、これらの条件のもとでの検出結果の例えばフォーカス値の変化に対する差分(又は差分の自乗和)よりもドーズ量の変化に対する差分(又は差分の自乗和)が大きくなるように、第1及び第2回折条件(又は偏光条件)を選択するようにしてもよい。
さらに、上記の実施形態では、露光条件としてドーズ量及びフォーカス位置を評価しているが、露光条件として、露光装置100における露光光の波長、照明条件(例えばコヒーレンスファクタ(σ値)、投影光学系PLの開口数、又は液浸露光時の液体の温度等を評価するために上記の実施形態の回折検査又はPER検査を使用してもよい。
[第2の実施形態]
第2の実施形態につき図14(a)〜図15(b)を参照して説明する。本実施形態においても、図1(b)のデバイス製造システムDMSを使用し、加工条件を評価するために図1(a)の評価装置1を使用する。また、本実施形態では、いわゆるスペーサ・ダブルパターニング法(又はサイドウォール・ダブルパターニング法)で微細なピッチの繰り返しパターンが形成されたウェハの加工条件を評価する。
スペーサ・ダブルパターニング法では、まず、図14(a)に示すように、ウェハ10dの例えばハードマスク層17の表面に、レジストの塗布、露光装置100によるパターンの露光、及び現像によって、複数のレジストパターンのライン部2AをピッチPで配列した繰り返しパターン12が形成される。本実施形態では、ピッチPが露光装置100の解像限界に近いとする。この後、図14(b)に示すように、ライン部2Aをスリミングによって線幅が1/2のライン部12Aにし、不図示の薄膜形成装置でライン部12Aを覆うようにスペーサ層18を堆積する。その後、エッチング装置300でウェハ10dのスペーサ層18だけをエッチングした後、エッチング装置300でライン部12Aのみを除去することで、図14(c)に示すように、ハードマスク層17上に線幅がほぼP/4の複数のスペーサ部18AをピッチP/2で配列した繰り返しパターンが形成される。その後、複数のスペーサ部18Aをマスクとしてハードマスク層17をエッチングすることによって、図14(d)に示すように、線幅がほぼP/4のハードマスク部17AをピッチP/2で配列した繰り返しパターン17Bが形成される。この後、一例として、繰り返しパターン17Bをマスクとして、ウェハ10dのデバイス層10daのエッチングを行うことで、露光装置100の解像限界のほぼ1/2のピッチの繰り返しパターンが形成できる。さらに、上記の工程を繰り返すことによって、ピッチがP/4の繰り返しパターンを形成することも可能である。
また、評価装置1を用いて回折検査を行う場合、回折が起こるためには繰り返しパターンのピッチが評価装置1の照明光ILIの波長λの1/2以上でなければならない。そのため、照明光として波長が248nmの光を用いた場合、ピッチPが124nm以下の繰り返しパターン12では回折光ILDが発生しなくなる。このため、図14(a)の場合のように、ピッチPが露光装置100の解像限界に近いと、回折検査は次第に困難になる。さらに、図14(d)の場合のように、ピッチがP/2(さらにはP/4)の繰り返しパターン17Bに関しては、正反射光ILRのみが発生するため、回折検査は困難である。ただし、繰り返しパターン17Bがより大きいピッチで配列されたパターンブロックが存在する場合には、このパターンブロックからの回折光を検出することにより、回折検査も可能である。
本実施形態では、図14(d)のように、回折光が発生しない繰り返しパターン17Bが各ショットに形成されたウェハ10dからの光を検出して、繰り返しパターン17Bの加工条件を評価するために、評価装置1によるウェハ面のPER検査(反射光の偏光状態の変化に基づく検査)を行う。以下、図15(a)のフローチャートを参照して、PER検査を行うときに使用する複数の偏光条件を選択する条件出しにつき説明し、図15(b)のフローチャートを参照して、その選択された偏光条件を用いてPER検査を行って、デバイス製造システムDMSの加工条件を評価する方法につき説明する。なお、図15(a)、(b)において、図4及び図5に対応するステップには同一又は類似の符号を付して、その説明を省略又は簡略化する。
ここでは、評価装置1を用いてウェハ10dのピッチP/2の繰り返しパターン17Bが形成された表面のPER検査を行うため、図2(a)に示すように、評価装置1の光路に照明側偏光フィルタ26及び受光側偏光フィルタ32が挿入され、ウェハ10dが載置されるステージ5のチルト角は、照明系20からの照明光ILIが照射されたウェハ10dからの正反射光ILRを受光系30で受光できるように設定される。また、ステージ5の回転角は、繰り返しパターン17Bの周期方向と、照明光ILIの入射方向とが例えば45度で交差するように設定される。そして、複数の偏光条件としては、一例として、照明光ILIの波長λa(上記のλ1〜λ3のいずれか)と、照明側偏光フィルタ26の角度θb(例えば繰り返しパターンの周期方向に対する偏光軸の回転角度、回転角35度+5度×b(b=0〜4))との組み合わせである15の条件(λa,θb)(a=1〜3,b=0〜4)を想定する。ただし、照明側偏光フィルタ26の角度が切り換えられたときには、受光側偏光フィルタ32の角度も、照明側偏光フィルタ26に対してクロスニコル状態を維持するように切り換えられる。さらに、本実施形態では、デバイス製造システムDMSによる繰り返しパターン17Bの加工条件として、図14(b)のスペーサ層18の堆積時間ts(薄膜堆積量)及びスペーサ層18のエッチング時間te(エッチング量)を想定し、このうちのエッチング時間teを堆積時間tsの影響を抑制しながら評価するものとする。
まず、条件出しのために、図15のステップ102Aにおいて、図14(a)〜(d)のスペーサ・ダブルパターニング・プロセスを、5種類の堆積時間ts(ts3〜ts7)及び5種類のエッチング時間te(te3〜te7)を組み合わせた25(=5×5)回のプロセスで実行して、25枚の条件振りウェハ(不図示)の各ショットにそれぞれ繰り返しパターン17Bを形成する。なお、堆積時間ts5がベスト堆積時間(適正量)であり、エッチング時間te5がベストエッチング時間(適正エッチング量)であるとする。この場合、エッチング時間te3,te4はエッチング不足であり、エッチング時間te6,te7はエッチング過剰である。
作成された複数(ここでは25枚)の条件振りウェハは順次、図2(a)の評価装置1のステージ5上に搬送される。そして、複数の条件振りウェハのそれぞれにおいて、上記の複数(ここでは15個)の偏光条件(λa,θb)のもとで照明光ILIを条件振りウェハの表面に照射し、撮像装置35が条件振りウェハからの正反射光ILRによる像を撮像して画像信号を画像処理部40に出力する(ステップ104A)。ここでは25枚の条件振りウェハに関してそれぞれ15個の像が撮像されるため、画像処理部40において、全部で375(=25×15)個のデジタル画像が得られる。
さらに、画像処理部40は、その複数の偏光条件に関して、それぞれ対応するデジタル画像を用いて、条件振りウェハの全部のショット(又はショットの中央部の領域)内の全部の画素の信号強度を平均化した平均信号強度(平均輝度)を算出し、算出結果を検査部60に出力する(ステップ106A)。
そして、検査部60内の第1演算部60aは、その複数の偏光条件(λa,θb)のそれぞれに関して得られる全部の条件振りウェハの平均輝度から、加工条件中のエッチング量(エッチング時間te)が同じで堆積量(堆積時間ts)が5段階に変化するときの平均輝度の変化特性をスペーサ変化曲線(不図示)として抽出し、記憶部85に記憶する(ステップ108A)。また、その第1演算部60aは、その複数の偏光条件(λa,θb)のそれぞれに関して得られる全部の平均輝度から、加工条件中の堆積量が同じでエッチング量が5段階に変化するときの平均輝度の変化特性をエッチング変化曲線(不図示)として抽出し、記憶部85に記憶する(ステップ110A)。
その後、その第1演算部60aは、上記の複数の偏光条件(λa,θb)から、スペーサ変化曲線が同じ傾向(例えば堆積時間tsが増加するときに両方の平均輝度がほぼ同じように増減する特性)を持ち、エッチング変化曲線が逆の傾向(例えばエッチング時間teが増加するときに一方の平均輝度がほぼ増加して他方の平均輝度がほぼ減少する特性)を持つ第1及び第2の偏光条件を選択し、選択された2つの偏光条件を記憶部85に記憶する(ステップ112B)。図14(e)は、15個のスペーサ変化曲線のうち、第1及び第2の偏光条件のもとで得られた2つの変化曲線Bk1及びBk2を示し、図14(f)は、15個のエッチング変化曲線のうち、第1及び第2の偏光条件のもとで得られた2つの変化曲線Ck1及びCk2を示す。変化曲線Bk1及びBk2は同じ傾向で変化しており、変化曲線Ck1及びCk2は逆の傾向で変化している。
そして、第1演算部60aは、第1の偏光条件で得られたスペーサ変化曲線Bk1をゲインa及びオフセットbで補正した変化曲線(不図示)と、第2の偏光条件で得られたスペーサ変化曲線Bk2とが一致するように、すなわち補正後の曲線と曲線Bk2との差分ΔBkが最小自乗法で最小になるようにゲインa及びオフセットbを決定し、これらのゲインa及びオフセットbを記憶部85に記憶する(ステップ114B)。なお、図14(e)の右側の縦軸が差分ΔBkの値である。なお、部分的に差分△Bkの値が比較的大きくなってしまう場合は、その部分だけ異なるゲインa’及びオフセットb’とすることも出来る。
次に、第1演算部60aは、図14(f)の第1の偏光条件で得られたエッチング変化曲線Ck1をステップ114Bで算出されたゲインa及びオフセットbで補正した曲線(不図示)と、第2の偏光条件で得られたエッチング変化曲線Ck2との差分をエッチング時間te(エッチング量)の関数で表した曲線(以下、基準エッチング曲線という。)SE1を算出し、算出された基準エッチング曲線SE1を記憶部85に記憶する(ステップ116B)。なお、図14(f)の右側の縦軸が基準エッチング曲線SE1の値である。また、基準エッチング曲線SE1もエッチング時間teに関する1次式又は高次多項式で近似してもよい。以上の動作によって、加工条件を評価する際に使用する評価条件である第1及び第2の偏光条件を求める条件出しが終了したことになる。
次に、実際のデバイス製造工程においてデバイス製造システムDMSによって繰り返しパターン17Bが形成されたウェハ10dに対して、評価装置1によって偏光検査を行うことによって、加工条件中のエッチング量を以下のように評価する。この評価動作はエッチングモニターと呼ぶこともできる。まず、図15(b)のステップ138において、デバイス製造システムDMSにおいて、図14(a)〜(d)を参照して説明したスペーサ・ダブルパターニング・プロセスを実行することによって、各ショットに繰り返しパターン17Bが形成されたウェハ10dを製造する。この際の加工条件は、全部のショットにおいて、スペーサの堆積量(堆積時間ts)に関してはベスト堆積時間(適正量)であり、エッチング量(エッチング時間te)に関してはベストエッチング量(適正量)である。しかしながら、実際には薄膜形成装置(不図示)における膜厚むらによりスペーサの堆積量のばらつきが生じる恐れがあり、エッチング装置300におけるエッチングむらによってエッチング量のばらつきが生じる恐れがある。この場合、単に偏光検査を行うと、その検査結果にはエッチング量の外にスペーサの堆積量に起因する部分も含まれているため、そのスペーサの堆積量の影響を以下のようにして排除する。
製造されたウェハ10dは、不図示のアライメント機構を介して図2(a)の評価装置1のステージ5上にロードされる(ステップ122A)。そして、評価装置1において、上記の条件出しで決定された第1及び第2の偏光条件のもとで、ウェハ10dの像を撮像して画像信号を画像処理部40に出力する(ステップ124A)。
次に、画像処理部40は、第1及び第2の偏光条件のそれぞれに関してウェハ10dの全面のデジタル画像を生成する。そして、その第1及び第2の偏光条件に関して、それぞれ対応するデジタル画像を用いて、ウェハ10dの全部のショット内の複数の設定領域16(図6(c)参照)毎に平均信号強度(平均輝度)を算出し、算出結果を検査部60に出力する(ステップ126)。そして、検査部60内の第3演算部60cは、ウェハ10dの全部の設定領域16毎に、第1の偏光条件で得られた平均輝度を上記のステップ114Bで算出されたゲインa及びオフセットbで補正した輝度から、第2の偏光条件で得られた平均輝度を減算して平均輝度の差分Δniを算出し、算出結果を記憶部85に記憶する(ステップ128)。この差分Δniからは、図14(e)のスペーサ変化曲線Bk1,Bk2に対応する成分がほぼ除去されており、図14(f)のエッチング変化曲線Ck1,Ck2の補正後の差分に対応する成分のみがほぼ残されている。
そこで、第3演算部60cは、ウェハ10dの全部の設定領域16毎に、上記のステップ116Bで記憶した図14(f)の基準エッチング曲線SE1に上記の平均輝度の差分Δniを当てはめて対応するエッチング量(エッチング時間)teniを算出又は推定し、算出結果又は推定結果を記憶部85に記憶する(ステップ140)。このように算出又は推定されるエッチング量teniからはスペーサの堆積時間に起因する成分が除去されている。その後、制御部80がエッチング量teniを例えば明るさ(又は色を変化させてもよい)に換算してウェハ10dの全面のエッチングむらを表示装置(不図示)に表示する(ステップ142)。さらに、制御部80の制御のもとで信号出力部90からホスト・コンピュータ600を介してエッチング装置300に、ウェハ10の全面のエッチングむらの情報が提供される(ステップ144)。これに応じてエッチング装置300の制御部(不図示)では、例えばそのエッチングむらと適正エッチング量との差分の分布を求め、この差分の分布が所定の許容範囲を超えている場合に、例えばエッチング部の調整等の補正を行う。これによって、その後のステップ138(スペーサ・ダブルパターニング・プロセス)の実行時にエッチングむらが減少し、ピッチP/2の繰り返しパターン17Bを高精度に製造できる。
この実施形態によれば、実デバイス用の繰り返しパターン17Bが形成されたウェハ10dを用いて2つの偏光条件のもとでPER検査を行うことによって、そのパターンの形成時に使用されたエッチング装置300におけるエッチング量をスペーサの堆積量の影響を除去して高精度に推定又は評価できる。
なお、同様にして、2つの偏光条件のもとでPER検査を行うことによって、スペーサの堆積量をエッチング量の影響を除去して高精度に推定又は評価することもできる。
また、ダブルパターニング・プロセスでの加工条件としては、エッチング量及びスペーサの堆積量の外に、例えば露光装置100における露光時のドーズ量及びフォーカス位置等を考慮することもできる。
また、上述の実施形態において、露光装置100は液浸露光法を用いるスキャニングステッパーとしたが、露光装置100としてドライ型のスキャニングステッパー又はステッパー等の露光装置を使用する場合にも上述の実施形態を適用して同様の効果が得られる。さらに、露光装置100として、露光光として波長が100nm以下のEUV光(Extreme Ultraviolet Light)を使用するEUV露光装置、又は露光ビームとして電子ビームを用いる電子ビーム露光装置を使用する場合にも上述の実施形態が適用できる。
また、図16に示すように、半導体デバイス(図示せず)は、デバイスの機能・性能設計を行う設計工程(ステップ221)、この設計工程に基づいたマスク(レチクル)を製作するマスク製作工程(ステップ222)、シリコン材料等からウェハ用の基板を製造する基板製造工程(ステップ223)、デバイス製造システムDMS又はこれを用いたパターン形成方法によりウェハにパターンを形成する基板処理工程(ステップ224)、デバイスの組み立てを行うダイシング工程、ボンディング工程、及びパッケージ工程等を含む組立工程(ステップ225)、並びにデバイスの検査を行う検査工程(ステップ226)等を経て製造される。その基板処理工程(ステップ224)では、デバイス製造システムDMSによりウェハにレジストを塗布する工程、デバイス製造システムDMS内の露光装置100によりレチクルのパターンをウェハに露光する露光工程、及びウェハを現像する現像工程を含むリソグラフィー工程、並びに評価装置1によりウェハからの光を用いて露光条件等を評価する評価工程が実行される。
このような半導体デバイス製造方法において、前述の評価装置1を用いて露光条件等を評価し、例えばこの評価結果に基づいてその露光条件等を補正することによって、製造工程が良好な状態となり、最終的に製造される半導体の歩留まりを向上できる。
なお、本実施形態のデバイス製造方法では、特に半導体デバイスの製造方法について説明したが、本実施形態のデバイス製造方法は、半導体材料を使用したデバイスの他、例えば液晶パネルや磁気ディスクなどの半導体材料以外の材料を使用したデバイスの製造にも適用することができる。
なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
1…評価装置、5…ステージ、10…ウェハ、10a…条件振りウェハ、20…照明系、30…受光系、35…撮像部、40…画像処理部、50…演算部、60…検査部、85…記憶部、100…露光装置、DMS…デバイス製造システム

Claims (14)

  1. 第1及び第2加工条件を含む複数の加工条件のもとでの加工により設けられた構造体を有する基板を照明光で照明する照明部と、
    前記照明光により前記基板の被加工面から発生する光を検出する検出部と、
    複数の回折条件のもとで前記検出部により得られた検出結果を演算し、前記基板の加工時の前記第1加工条件または前記第2の加工条件を推定するための算出結果を出力する演算部と、
    前記照明部の照明条件と前記検出部の検出条件との少なくとも一方が異なる複数の評価条件のもとで前記検出部により得られた検出結果に基づいて前記基板の加工時の前記第1加工条件と前記第2加工条件との少なくとも一方を推定する推定部と、
    を備え
    前記検出部は、前記基板の前記被加工面からの反射または回折光を検出し、
    前記複数の評価条件は、回折条件が異なる評価装置。
  2. 前記複数の評価条件は第1及び第2評価条件を含み、
    前記推定部は、前記第1評価条件で得られた前記検出結果と第2評価条件で得られた前記検出結果の差分から前記第1加工条件と前記第2加工条件との少なくとも一方を推定する請求項1に記載の評価装置。
  3. 前記第1評価条件で得られた前記検出結果と前記第2の評価条件で得られた前記検出結果との少なくとも一方の検出値に、オフセットを加える処理と任意の倍率を与える処理との少なくとも一方を行った後の差分である請求項2に記載の評価装置。
  4. 前記基板の加工は投影光学系を介して前記基板を露光することを含み、
    前記第1及び第2加工条件の一方は、前記基板の露光時の露光量であり、
    前記第1及び第2加工条件の他方は、前記基板の露光時の前記投影光学系に対する合焦状態である請求項1から3のいずれか一項に記載の評価装置。
  5. 基板の表面にパターンを露光する投影光学系を有する露光部と、
    請求項1から4のいずれか一項に記載の評価装置と、を備え、
    前記評価装置の前記推定部によって推定される前記第1加工条件に応じて前記露光部における加工条件を補正する露光システム。
  6. 第1及び第2加工条件を含む複数の加工条件のもとでの加工により設けられた構造体を有する基板を照明光で照明し、
    前記照明光により前記基板の被加工面から発生する光を検出し、
    複数の回折条件のもとで前記検出部により得られた検出結果を演算して、前記基板の加工時の前記第1加工条件または前記第2の加工条件を推定するための算出結果を演算し、
    前記照明光の照明条件と前記被加工面から発生する光の検出条件との少なくとも一方が異なる複数の評価条件のもとで前記被加工面から発生する光を検出して得られた検出結果に基づいて前記基板の加工時の前記第1加工条件と前記第2加工条件との少なくとも一方を推定することを含み、
    前記基板の被加工面から発生する光を検出するときに、前記被加工面からの反射または回折光を検出し、
    前記複数の評価条件は、回折条件が異なる評価方法。
  7. 前記複数の評価条件は第1及び第2評価条件を含み、
    前記推定をするときに、前記第1評価条件で得られた前記検出結果と前記第2評価条件で得られた前記検出結果の差分から前記第1加工条件と前記第2加工条件との少なくとも一方を推定する請求項6に記載の評価方法。
  8. 前記第1評価条件で得られた前記検出結果と第2の評価条件で得られた前記検出結果との少なくとも一方の検出値に、オフセットを加える処理と任意の倍率を与える処理との少なくとも一方を行った後の差分である請求項7に記載の評価方法。
  9. 前記基板の加工は投影光学系を介して前記基板を露光することを含み、
    前記第1及び第2加工条件の一方は、前記基板の露光時の露光量であり、
    前記第1及び第2加工条件の他方は、前記基板の露光時の前記投影光学系に対する合焦状態である請求項6から8のいずれか一項に記載の評価方法。
  10. 前記第1及び第2加工条件の少なくとも一方を変えながら評価用基板を加工して、前記評価用基板の被加工面の複数の領域に前記構造体を設け、
    前記評価用基板の前記被加工面を前記照明光で照明し、
    前記照明光により前記評価用基板の前記被加工面から発生する光を検出し、
    前記照明光の照明条件と前記評価用基板の前記被加工面から発生する光の検出条件との少なくとも一方が異なる複数の条件のもとで、前記評価用基板に関して前記被加工面から発生する光を検出して得られた複数の検出結果を用いて、前記第2加工条件の変化に対する変化量を抑制可能な検出結果を生じる前記複数の評価条件を予め求めて記憶する請求項6から9のいずれか一項に記載の評価方法。
  11. 前記複数の評価条件を予め求めて記憶するときに、前記複数の評価条件のもとで前記基板の前記被加工面から発生する光を検出して得られる検出結果に、前記第2加工条件の変化に対する変化量を抑制するために施す演算式を求めて記憶する請求項10に記載の評価方法。
  12. 基板の表面に加工によりパターンを設け、
    請求項6から11のいずれか一項に記載の評価方法を用いて前記基板の前記第1加工条件を推定し、
    前記評価方法によって推定される前記第1加工条件に応じて前記基板の露光時の加工条件を補正する加工方法。
  13. 基板の表面にパターンを設ける加工工程を有するデバイス製造方法であって、
    前記加工工程で請求項12に記載の加工方法を用いるデバイス製造方法。
  14. 基板の表面にパターンを設ける加工工程を有するデバイス製造方法であって、
    前記加工工程で請求項12に記載の加工方法を用い、
    製造対象のデバイスに応じて前記第2加工条件の変化に対する変化量を抑制するために施す演算式を記憶するデバイス製造方法。
JP2014553218A 2012-12-20 2013-12-20 評価方法及び装置、加工方法、並びに露光システム Active JP6004008B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012278753 2012-12-20
JP2012278753 2012-12-20
PCT/JP2013/084258 WO2014098220A1 (ja) 2012-12-20 2013-12-20 評価方法及び装置、加工方法、並びに露光システム

Publications (2)

Publication Number Publication Date
JP6004008B2 true JP6004008B2 (ja) 2016-10-05
JPWO2014098220A1 JPWO2014098220A1 (ja) 2017-01-12

Family

ID=50978534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014553218A Active JP6004008B2 (ja) 2012-12-20 2013-12-20 評価方法及び装置、加工方法、並びに露光システム

Country Status (5)

Country Link
US (1) US10274835B2 (ja)
JP (1) JP6004008B2 (ja)
KR (1) KR101742411B1 (ja)
TW (2) TWI663485B (ja)
WO (1) WO2014098220A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437517B2 (en) 2010-11-03 2013-05-07 Lockheed Martin Corporation Latent fingerprint detectors and fingerprint scanners therefrom
WO2013032867A1 (en) 2011-08-26 2013-03-07 Lockheed Martin Corporation Latent fingerprint detection
US9804096B1 (en) 2015-01-14 2017-10-31 Leidos Innovations Technology, Inc. System and method for detecting latent images on a thermal dye printer film
JP2019049667A (ja) * 2017-09-12 2019-03-28 東芝メモリ株式会社 露光方法、露光システムおよび半導体装置の製造方法
JP6969439B2 (ja) * 2018-02-23 2021-11-24 オムロン株式会社 外観検査装置、及び外観検査装置の照明条件設定方法
JP7105135B2 (ja) * 2018-08-17 2022-07-22 東京エレクトロン株式会社 処理条件補正方法及び基板処理システム
EP3657257A1 (en) * 2018-11-26 2020-05-27 ASML Netherlands B.V. Method for of measuring a focus parameter relating to a structure formed using a lithographic process
US20230237762A1 (en) * 2022-01-10 2023-07-27 Applied Materials, Inc. Template-based image processing for target segmentation and metrology
CN114496827B (zh) * 2022-01-13 2024-09-13 长鑫存储技术有限公司 工艺配方及其生成方法以及生成系统、半导体制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022205A (ja) * 1996-07-05 1998-01-23 Canon Inc パターン形成状態検出装置、及びこれを用いた投影露光装置
JP2007335610A (ja) * 2006-06-14 2007-12-27 Canon Inc 露光装置及び露光方法、並びにデバイス製造方法
JP2008147258A (ja) * 2006-12-06 2008-06-26 Canon Inc 計測装置及びこれを備える投影露光装置並びにデバイス製造方法
WO2011001678A1 (ja) * 2009-07-01 2011-01-06 株式会社ニコン 露光条件設定方法および表面検査装置
WO2012056601A1 (ja) * 2010-10-26 2012-05-03 株式会社ニコン 検査装置、検査方法、露光方法、および半導体デバイスの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594012B2 (en) 1996-07-05 2003-07-15 Canon Kabushiki Kaisha Exposure apparatus
US6134011A (en) * 1997-09-22 2000-10-17 Hdi Instrumentation Optical measurement system using polarized light
JP4110653B2 (ja) * 1999-01-13 2008-07-02 株式会社ニコン 表面検査方法及び装置
KR100455684B1 (ko) 2001-01-24 2004-11-06 가부시끼가이샤 도시바 포커스 모니터 방법, 노광 장치 및 노광용 마스크
EP1450153B1 (en) * 2001-11-30 2011-06-29 International Business Machines Corporation Inspection device and inspection method for pattern profiles
US7352453B2 (en) * 2003-01-17 2008-04-01 Kla-Tencor Technologies Corporation Method for process optimization and control by comparison between 2 or more measured scatterometry signals
KR101747662B1 (ko) 2004-06-09 2017-06-15 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
WO2008007614A1 (fr) * 2006-07-14 2008-01-17 Nikon Corporation Appareil d'inspection de surface
CN102203589B (zh) * 2008-11-10 2013-06-19 株式会社尼康 评估装置及评估方法
WO2012081587A1 (ja) 2010-12-14 2012-06-21 株式会社ニコン 検査方法、検査装置、露光管理方法、露光システムおよび半導体デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022205A (ja) * 1996-07-05 1998-01-23 Canon Inc パターン形成状態検出装置、及びこれを用いた投影露光装置
JP2007335610A (ja) * 2006-06-14 2007-12-27 Canon Inc 露光装置及び露光方法、並びにデバイス製造方法
JP2008147258A (ja) * 2006-12-06 2008-06-26 Canon Inc 計測装置及びこれを備える投影露光装置並びにデバイス製造方法
WO2011001678A1 (ja) * 2009-07-01 2011-01-06 株式会社ニコン 露光条件設定方法および表面検査装置
WO2012056601A1 (ja) * 2010-10-26 2012-05-03 株式会社ニコン 検査装置、検査方法、露光方法、および半導体デバイスの製造方法

Also Published As

Publication number Publication date
TWI663485B (zh) 2019-06-21
TWI614586B (zh) 2018-02-11
KR20150100780A (ko) 2015-09-02
KR101742411B1 (ko) 2017-06-15
US20150338745A1 (en) 2015-11-26
US10274835B2 (en) 2019-04-30
TW201812484A (zh) 2018-04-01
JPWO2014098220A1 (ja) 2017-01-12
WO2014098220A1 (ja) 2014-06-26
TW201426203A (zh) 2014-07-01

Similar Documents

Publication Publication Date Title
JP6004008B2 (ja) 評価方法及び装置、加工方法、並びに露光システム
JP7227988B2 (ja) 基板上の1つ又は複数の構造の特性を算出するメトロロジ装置及び方法
TWI572993B (zh) 用於判定一微影製程之製程窗之方法、相關設備及一電腦程式
JP4912241B2 (ja) インスペクション方法およびインスペクション装置、リソグラフィ装置、リソグラフィ処理セルならびにデバイス製造方法
TWI470374B (zh) 判定對焦校正之方法、微影處理製造單元及元件製造方法
JP6567095B2 (ja) 計測方法、検査装置、リソグラフィシステムおよびデバイス製造方法
US20200050114A1 (en) Method of Measuring a Structure, Inspection Apparatus, Lithographic System and Device Manufacturing Method
TWI609245B (zh) 檢測方法及裝置、微影系統及元件製造方法
TW201312294A (zh) 用於判定疊對誤差之方法及裝置
US20150356726A1 (en) Inspection apparatus, inspection method, exposure system, exposure method, and device manufacturing method
US10705430B2 (en) Method of measuring a parameter of interest, inspection apparatus, lithographic system and device manufacturing method
EP3435162A1 (en) Metrology method and apparatus and computer program
TW202209006A (zh) 度量衡方法及設備以及電腦程式
JP2011040433A (ja) 表面検査装置
JP2012059853A (ja) 検出条件最適化方法、プログラム作成方法、並びに露光装置及びマーク検出装置
JP2006269669A (ja) 計測装置及び計測方法、露光装置並びにデバイス製造方法
TWI769625B (zh) 用於判定量測配方之方法及相關裝置
US20220276180A1 (en) Illumination and detection apparatus for a metrology apparatus
JP7299406B2 (ja) メトロロジにおける補正不能誤差
JP6406492B2 (ja) 評価方法、評価装置、及び露光システム
JP2014220290A (ja) デバイス製造方法、評価方法、及び評価装置
KR20240016967A (ko) 메트롤로지 방법 및 연관된 메트롤로지 툴
TW202424645A (zh) 度量衡方法及相關度量衡裝置
JP2015099898A (ja) 評価装置、評価方法、露光システム、及び半導体デバイス製造方法
JP2019012137A (ja) 評価方法、評価装置、露光システム、及びデバイス製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 6004008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250