JP6003557B2 - Deceleration mechanism and motor rotational force transmission device having the same - Google Patents

Deceleration mechanism and motor rotational force transmission device having the same Download PDF

Info

Publication number
JP6003557B2
JP6003557B2 JP2012250087A JP2012250087A JP6003557B2 JP 6003557 B2 JP6003557 B2 JP 6003557B2 JP 2012250087 A JP2012250087 A JP 2012250087A JP 2012250087 A JP2012250087 A JP 2012250087A JP 6003557 B2 JP6003557 B2 JP 6003557B2
Authority
JP
Japan
Prior art keywords
axis
input member
convex portion
peripheral surface
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012250087A
Other languages
Japanese (ja)
Other versions
JP2013213575A (en
Inventor
宅野 博
博 宅野
鈴木 邦彦
邦彦 鈴木
啓太 野村
啓太 野村
恒 小林
恒 小林
徹 小野崎
徹 小野崎
将治 田上
将治 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2012250087A priority Critical patent/JP6003557B2/en
Priority to CN201210579818.4A priority patent/CN103206517B/en
Priority to CN201210580343.0A priority patent/CN103206494B/en
Priority to US13/732,534 priority patent/US8734283B2/en
Priority to US13/732,523 priority patent/US9005067B2/en
Priority to EP13150486.2A priority patent/EP2615330B1/en
Priority to EP13150466.4A priority patent/EP2615329B1/en
Publication of JP2013213575A publication Critical patent/JP2013213575A/en
Application granted granted Critical
Publication of JP6003557B2 publication Critical patent/JP6003557B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

本発明は、例えば駆動源として電動モータを有する電気自動車に用いて好適な減速機構及びこれを備えたモータ回転力伝達装置に関する。   The present invention relates to a speed reduction mechanism suitable for use in, for example, an electric vehicle having an electric motor as a drive source, and a motor rotational force transmission device including the speed reduction mechanism.

従来のモータ回転力伝達装置には、モータ回転力を発生させる電動モータ、及びこの電動モータのモータ回転力を減速して駆動力を差動機構に伝達する減速伝達機構を備え、自動車に搭載されたものがある(例えば特許文献1参照)。   A conventional motor rotational force transmission device includes an electric motor that generates a motor rotational force, and a deceleration transmission mechanism that decelerates the motor rotational force of the electric motor and transmits a driving force to a differential mechanism. (See, for example, Patent Document 1).

この種のモータ回転力伝達装置の減速伝達機構は、電動モータの偏心部付きモータ軸の回転によって公転運動を行う外歯歯車機構の一例である外周部にエピトロコイド等のトロコイド系曲線で構成される複数の波形を有する円板状の曲線板からなる一対の公転部材、これら公転部材に自転力を付与する内歯歯車機構の一例である複数の外ピン、及びこれら外ピンの内側で公転部材の自転力を差動機構に回転力として出力する複数の内ピンを有している。   The deceleration transmission mechanism of this type of motor torque transmission device is composed of a trochoidal curve such as epitrochoid on the outer periphery that is an example of an external gear mechanism that revolves by the rotation of a motor shaft with an eccentric portion of an electric motor. A pair of revolution members made of a disk-shaped curved plate having a plurality of corrugations, a plurality of outer pins that are examples of an internal gear mechanism that imparts a rotation force to these revolution members, and a revolution member inside these outer pins A plurality of inner pins for outputting the rotation force of the motor as a rotational force to the differential mechanism.

一対の公転部材は、偏心部付きモータ軸の偏心部の軸線と異なる軸線を中心軸線とする中心孔、及びこの中心孔の中心軸線の回りに等間隔をもって並列する複数のピン挿通孔を有し、偏心部付きモータ軸の偏心部に軸受(カム側の軸受)を介して回転可能に支持されている。   The pair of revolution members have a center hole whose central axis is an axis different from the axis of the eccentric part of the motor shaft with the eccentric part, and a plurality of pin insertion holes arranged in parallel at equal intervals around the central axis of the central hole. The motor shaft with the eccentric portion is rotatably supported by the eccentric portion via a bearing (cam-side bearing).

複数の外ピンは、偏心部付きモータ軸の軸線回りに等間隔をもって配置され、かつ減速伝達機構のハウジングに取り付けられている。   The plurality of outer pins are arranged at equal intervals around the axis of the motor shaft with the eccentric portion, and are attached to the housing of the speed reduction transmission mechanism.

複数の内ピンは、公転部材における複数のピン挿通孔を挿通して配置され、かつデフケースに取り付けられている。複数の内ピンには、一対の公転部材における複数のピン挿通孔の内周面との間の接触抵抗を低減するための軸受(ピン側の軸受)が取り付けられている。   The plurality of inner pins are disposed through the plurality of pin insertion holes in the revolution member, and are attached to the differential case. A bearing (pin side bearing) for reducing contact resistance between the inner peripheral surfaces of the plurality of pin insertion holes in the pair of revolution members is attached to the plurality of inner pins.

特開2007−218407号公報JP 2007-218407 A

特許文献1に示すモータ回転力伝達装置においては、複数の外ピンを用意する必要があるばかりか、公転部材の外周部を複雑な形状にする必要があり、不経済である。   In the motor rotational force transmission device shown in Patent Document 1, it is not only necessary to prepare a plurality of outer pins, but the outer peripheral portion of the revolving member needs to have a complicated shape, which is uneconomical.

そこで、公転部材を外歯歯車機構の一例である歯車である外歯歯車とするとともに、公転部材に自転力を付与するための自転力付与部材を内歯歯車機構の一例である歯車である内歯歯車とし、この内歯歯車の歯数を外歯歯車の歯数よりも大きい歯数として上記した不経済を解消することが考えられる。   Therefore, the revolution member is an external gear that is a gear that is an example of an external gear mechanism, and the rotation force applying member that is used to apply a rotation force to the revolution member is a gear that is an example of an internal gear mechanism. It is conceivable to eliminate the above-described inefficiency by setting the number of teeth of the internal gear to be larger than the number of teeth of the external gear.

しかし、特許文献1に示す外周部にエピトロコイド等のトロコイド系曲線で構成される複数の波形を有する円板状の曲線板と複数の外ピンとによる減速伝達機構や、歯車である外歯歯車と歯車である内歯歯車とによる減速伝達機構などの外歯歯車機構と内歯歯車機構とによる減速伝達機構を自動車のモータ回転力伝達装置に用いると、公転部材である外歯歯車機構の公転速度が比較的高くなるため、出力時に公転部材からカム側の軸受に遠心力による荷重が加わる。この結果、カム側の軸受として耐久性の高い軸受を用いる必要が生じ、コストが嵩んでしまう。また、カム側の軸受に遠心力による荷重が加わることは、カム側の軸受の寿命が低下するという問題も生じてしまう。   However, a reduction transmission mechanism including a disc-shaped curved plate having a plurality of waveforms formed of a trochoid system curve such as epitrochoid and a plurality of external pins on the outer peripheral portion shown in Patent Document 1, and an external gear as a gear When a reduction transmission mechanism using an external gear mechanism such as a reduction transmission mechanism using an internal gear that is a gear and an internal gear mechanism is used in a motor torque transmission device of an automobile, the revolution speed of the external gear mechanism that is a revolution member Is relatively high, a load due to centrifugal force is applied from the revolving member to the cam-side bearing during output. As a result, it is necessary to use a highly durable bearing as the cam-side bearing, which increases costs. Further, when a load due to centrifugal force is applied to the cam-side bearing, there is a problem that the life of the cam-side bearing is reduced.

従って、本発明の目的は、軸受の高寿命化を図ることができる減速機構及びこれを備えたモータ回転力伝達装置を提供することにある。   Accordingly, an object of the present invention is to provide a speed reduction mechanism capable of extending the life of a bearing and a motor rotational force transmission device including the speed reduction mechanism.

本発明は、上記目的を達成するために、(1)〜(8)の減速機構及びこれを備えたモータ回転力伝達装置を提供する。   In order to achieve the above object, the present invention provides a speed reduction mechanism (1) to (8) and a motor torque transmission device including the speed reduction mechanism.

(1)第1の軸線の回りに回転し、前記第1の軸線から偏心する第2の軸線を中心軸線とする偏心部を有する回転軸と、前記回転軸の外周囲に配置され、第3の軸線を中心軸線とする中心孔、及び前記第3の軸線の回りに等間隔をもって並列する複数の貫通孔を有するとともに、前記中心孔の内周面と前記偏心部の外周面との間に軸受を介在させ、かつ前記第3の軸線を中心軸線とするピッチ円をもつ外歯歯車機構からなる入力部材と、前記入力部材にその径方向に嵌合して配置され、前記外歯歯車機構の歯数よりも大きい歯数をもって前記入力部材に噛合するとともに、第4の軸線を中心軸線とするピッチ円をもつ内歯歯車機構からなる自転力付与部材を有する円筒状のハウジングと、前記ハウジングの前記自転力付与部材によって前記入力部材に付与された自転力を受けて出力し、前記複数の貫通孔を挿通する出力部材とを備え、前記軸受が外輪及び内輪を有するとともに、前記外輪が前記中心孔に、また前記内輪が前記偏心部にそれぞれ前記回転軸の径方向に隙間をもって嵌合する場合に、前記第2の軸線と前記第3の軸線との間の寸法は、前記第2の軸線及び前記第4の軸線に直交する線上で前記入力部材が移動して前記ハウジングに当接する状態において、前記軸受の外径と前記中心孔の内径との間の直径差、前記軸受の内径と前記偏心部の外径との間の直径差、及び前記軸受のラジアル内部すきまの運転すきまを加算した寸法の半分以下の寸法に設定されている減速機構。 (1) A rotary shaft that rotates around the first axis and has an eccentric portion having a second axis that is eccentric from the first axis as a central axis, and an outer periphery of the rotary shaft; And a plurality of through holes arranged in parallel at equal intervals around the third axis, and between the inner peripheral surface of the central hole and the outer peripheral surface of the eccentric part. An input member comprising an external gear mechanism having a pitch circle having a center axis as the third axis with a bearing interposed therebetween, and the external gear mechanism being disposed by being fitted to the input member in the radial direction thereof. A cylindrical housing having a rotation force application member comprising an internal gear mechanism having a pitch circle having a fourth axis as a central axis and meshing with the input member with a number of teeth larger than the number of teeth The rotation force applying member of the An output member that receives and outputs the rotation force applied to the member, and has the outer ring and the inner ring, the outer ring in the center hole, and the inner ring in the center hole. When the eccentric portion is fitted with a gap in the radial direction of the rotary shaft, the dimension between the second axis and the third axis is orthogonal to the second axis and the fourth axis. In the state where the input member moves on the line to be in contact with the housing, the difference in diameter between the outer diameter of the bearing and the inner diameter of the center hole, and between the inner diameter of the bearing and the outer diameter of the eccentric portion The speed reduction mechanism is set to a dimension that is less than half of the dimension obtained by adding the diameter difference of the bearing and the operating clearance of the radial internal clearance of the bearing.

(2)上記(1)に記載の減速機構において、前記入力部材は、前記第3の軸線を中心軸線とする円環状の第1の凸部を有し、前記ハウジングは、前記第1の凸部に嵌合し、かつ前記第4の軸線を中心軸線とする円環状の第2の凸部を有する。 (2) In the speed reduction mechanism described in (1) above, the input member has an annular first convex portion having the third axis as a central axis, and the housing has the first convex And an annular second convex portion having the fourth axis as a central axis.

(3)上記(2)に記載の減速機構において、前記入力部材は、前記第1の凸部の嵌合面が外周面で形成され、前記ハウジングは、前記第2の凸部の嵌合面が内周面で形成されている。 (3) In the speed reduction mechanism according to (2), the input member has a fitting surface of the first convex portion formed on an outer peripheral surface, and the housing has a fitting surface of the second convex portion. Is formed on the inner peripheral surface.

(4)上記(2)に記載の減速機構において、前記入力部材は、前記第1の凸部の嵌合面が内周面で形成され、前記ハウジングは、前記第2の凸部の嵌合面が外周面で形成されている。 (4) In the speed reduction mechanism according to (2), the input member has a fitting surface of the first convex portion formed on an inner peripheral surface, and the housing is fitted with the second convex portion. The surface is formed by the outer peripheral surface.

(5)上記(3)又は(4)に記載の減速機構において、前記入力部材は、前記第3の軸線方向に突出して前記第1の凸部が形成され、前記ハウジングは、前記第4の軸線方向に突出して前記第2の凸部が形成されている。 (5) In the speed reduction mechanism according to (3) or (4), the input member protrudes in the third axial direction to form the first convex portion, and the housing includes the fourth protrusion. The second protrusion is formed so as to protrude in the axial direction.

(6)上記(3)に記載の減速機構において、前記入力部材は、前記第3の軸線と直交する方向に突出して前記第1の凸部が形成され、前記ハウジングは、前記第4の軸線と直交する方向に突出して前記第2の凸部が形成されている。 (6) In the reduction mechanism according to (3), the input member protrudes in a direction orthogonal to the third axis to form the first convex portion, and the housing has the fourth axis. The second convex portion is formed so as to protrude in a direction orthogonal to the first convex portion.

(7)モータ回転力を発生させる電動モータと、前記電動モータの前記モータ回転力を減速して駆動力を駆動力伝達対象に伝達する減速伝達機構とを備えたモータ回転力伝達装置において、前記減速伝達機構は、上記(1)乃至(6)のいずれかに記載の減速機構であるモータ回転力伝達装置。 (7) In a motor rotational force transmission device comprising: an electric motor that generates a motor rotational force; and a deceleration transmission mechanism that decelerates the motor rotational force of the electric motor and transmits a driving force to a driving force transmission target. The reduction transmission mechanism is a motor rotational force transmission device that is the reduction mechanism according to any one of (1) to (6) above.

(8)上記(7)に記載のモータ回転力伝達装置において、前記減速伝達機構は、前記駆動力伝達対象としての差動機構に前記駆動力を伝達する。 (8) In the motor rotational force transmission device according to (7), the deceleration transmission mechanism transmits the driving force to a differential mechanism serving as the driving force transmission target.

本発明によると、コストの低廉化及び軸受の高寿命化を図ることができる。   According to the present invention, the cost can be reduced and the life of the bearing can be extended.

本発明の第1の実施の形態に係るモータ回転力伝達装置が搭載された車両の概略を説明するために示す平面図。The top view shown in order to demonstrate the outline of the vehicle carrying the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るモータ回転力伝達装置を説明するために示す断面図。Sectional drawing shown in order to demonstrate the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るモータ回転力伝達装置の減速伝達機構を説明するために模式化して示す断面図。FIG. 3 is a cross-sectional view schematically showing the deceleration transmission mechanism of the motor torque transmission device according to the first embodiment of the present invention. 本発明の第1の実施の形態に係るモータ回転力伝達装置における減速伝達機構の要部を模式化して示す断面図。Sectional drawing which shows typically the principal part of the deceleration transmission mechanism in the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention. (a)及び(b)は、本発明の第1の実施の形態に係るモータ回転力伝達装置における減速伝達機構の自転力付与部材に対する入力部材の当接状態を示す正面図と断面図。(a)は正面図を、また(b)は断面図をそれぞれ示す。(A) And (b) is the front view and sectional drawing which show the contact state of the input member with respect to the autorotation force provision member of the deceleration transmission mechanism in the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention. (A) is a front view, and (b) is a cross-sectional view. 本発明の第1の実施の形態に係るモータ回転力伝達装置における減速機構の入力部材の支持状態を簡略化して示す断面図。Sectional drawing which simplifies and shows the support state of the input member of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るモータ回転力伝達装置における減速機構の要部を模式化してその変形例(1)を示す断面図。Sectional drawing which models the principal part of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention, and shows the modification (1). 本発明の第1の実施の形態に係るモータ回転力伝達装置における減速機構の要部を模式化してその変形例(2)を示す断面図。Sectional drawing which models the principal part of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention, and shows the modification (2). 本発明の第2の実施の形態に係るモータ回転力伝達装置における減速機構の入力部材の支持状態を簡略化して示す断面図。Sectional drawing which simplifies and shows the support state of the input member of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係るモータ回転力伝達装置における減速機構の入力部材の支持状態を簡略化して示す断面図。Sectional drawing which simplifies and shows the support state of the input member of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係るモータ回転力伝達装置における減速機構の入力部材の支持状態を簡略化して示す断面図。Sectional drawing which simplifies and shows the support state of the input member of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 4th Embodiment of this invention. 本発明の第1の実施の形態に係るモータ回転力伝達装置における減速機構の入力部材の支持状態を簡略化してその変形例(3)を示す断面図。Sectional drawing which simplifies the support state of the input member of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention, and shows the modification (3). 本発明の第2の実施の形態に係るモータ回転力伝達装置における減速機構の入力部材の支持状態を簡略化してその変形例(4)を示す断面図。Sectional drawing which simplifies the support state of the input member of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 2nd Embodiment of this invention, and shows the modification (4). 本発明の第3の実施の形態に係るモータ回転力伝達装置における減速機構の入力部材の支持状態を簡略化してその変形例(5)を示す断面図。Sectional drawing which simplifies the support state of the input member of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 3rd Embodiment of this invention, and shows the modification (5). 本発明の第4の実施の形態に係るモータ回転力伝達装置における減速機構の入力部材の支持状態を簡略化してその変形例(6)を示す断面図。Sectional drawing which simplifies the support state of the input member of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 4th Embodiment of this invention, and shows the modification (6).

[第1の実施の形態]
以下、本発明の第1の実施の形態に係るモータ回転力伝達装置につき、図面を参照して詳細に説明する。
[First embodiment]
Hereinafter, a motor torque transmission device according to a first embodiment of the present invention will be described in detail with reference to the drawings.

図1は四輪駆動車の概略を示す。図1に示すように、四輪駆動車101は、駆動源をエンジンとする前輪側の動力系、及び駆動源を電動モータとする後輪側の動力系が用いられ、モータ回転力伝達装置1,エンジン102,トランスアクスル103,一対の前輪104及び一対の後輪105を備えている。   FIG. 1 schematically shows a four-wheel drive vehicle. As shown in FIG. 1, a four-wheel drive vehicle 101 uses a front-wheel-side power system that uses a drive source as an engine, and a rear-wheel-side power system that uses a drive source as an electric motor. , An engine 102, a transaxle 103, a pair of front wheels 104, and a pair of rear wheels 105.

モータ回転力伝達装置1は、四輪駆動車101における後輪側の動力系に配置され、かつ四輪駆動車101の車体(図示せず)に支持されている。   The motor rotational force transmission device 1 is disposed in a power system on the rear wheel side of the four-wheel drive vehicle 101 and is supported by a vehicle body (not shown) of the four-wheel drive vehicle 101.

そして、モータ回転力伝達装置1は、電動モータ4(図2に示す)のモータ回転力に基づく駆動力を一対の後輪105に伝達する。これにより、電動モータ4のモータ回転力が減速伝達機構5及びリヤディファレンシャル3(共に図2に示す)を介してリヤアクスルシャフト106に出力され、一対の後輪105が駆動される。モータ回転力伝達装置1等の詳細については後述する。   The motor rotational force transmission device 1 transmits a driving force based on the motor rotational force of the electric motor 4 (shown in FIG. 2) to the pair of rear wheels 105. As a result, the motor rotational force of the electric motor 4 is output to the rear axle shaft 106 via the deceleration transmission mechanism 5 and the rear differential 3 (both shown in FIG. 2), and the pair of rear wheels 105 are driven. Details of the motor rotational force transmission device 1 and the like will be described later.

エンジン102は、四輪駆動車101における前輪側の動力系に配置されている。これにより、エンジン102の駆動力がトランスアクスル103を介してフロントアクスルシャフト107に出力され、一対の前輪104が駆動される。   The engine 102 is disposed in the power system on the front wheel side of the four-wheel drive vehicle 101. As a result, the driving force of the engine 102 is output to the front axle shaft 107 via the transaxle 103, and the pair of front wheels 104 are driven.

(モータ回転力伝達装置1の全体構成)
図2はモータ回転力伝達装置の全体を示す。図2に示すように、モータ回転力伝達装置1は、リヤアクスルシャフト106(図1に示す)の軸線(第1の軸線としての回転軸線O)を中心軸線とするハウジング2と、一対の後輪105(図1に示す)に駆動力を配分する駆動力伝達対象としてのリヤディファレンシャル3と、リヤディファレンシャル3を作動させるためのモータ回転力を発生させる電動モータ4と、電動モータ4のモータ回転力を減速して駆動力をリヤディファレンシャル3に伝達する減速伝達機構5とから大略構成されている。
(Whole structure of the motor rotational force transmission device 1)
FIG. 2 shows the entire motor torque transmission device. As shown in FIG. 2, the motor rotational force transmission device 1 includes a housing 2 having a center axis that is an axis (rotation axis O as a first axis) of a rear axle shaft 106 (shown in FIG. 1), and a pair of rear wheels. 105 (shown in FIG. 1), a rear differential 3 as a driving force transmission target that distributes the driving force, an electric motor 4 that generates a motor rotational force for operating the rear differential 3, and a motor rotational force of the electric motor 4 And a deceleration transmission mechanism 5 that transmits the driving force to the rear differential 3 by decelerating the motor.

(ハウジング2の構成)
ハウジング2は、後述する自転力付与部材52の他、リヤディファレンシャル3を収容する第1のハウジングエレメント20、電動モータ4を収容する第2のハウジングエレメント21、及び第2のハウジングエレメント21の片側開口部(第1のハウジングエレメント20側の開口部とは反対側の開口部)を閉塞する第3のハウジングエレメント22を有し、車体に配置されている。
(Configuration of housing 2)
The housing 2 includes a rotation force applying member 52 to be described later, a first housing element 20 that houses the rear differential 3, a second housing element 21 that houses the electric motor 4, and a one-side opening of the second housing element 21. And a third housing element 22 that closes a portion (an opening on the side opposite to the opening on the first housing element 20 side).

第1のハウジングエレメント20は、ハウジング2の一方側(図2の左側)に配置され、全体が第2のハウジングエレメント21側に開口する段状の有底円筒部材によって形成されている。第1のハウジングエレメント20の底部には、リヤアクスルシャフト106(図1に示す)を挿通させるシャフト挿通孔20aが設けられている。第1のハウジングエレメント20の開口端面には、第4の軸線(本実施の形態では回転軸線O)方向に沿って第2のハウジングエレメント21側に突出する円環状の凸部(第2の凸部)23が一体に設けられている。凸部23の内周面(一方の入力部材50に対する嵌合面)23aは、第1のハウジングエレメント20の最大内径よりも大きい内径をもち、回転軸線Oを中心軸線とする円周面で形成されている。凸部23の外周面23bは、第1のハウジングエレメント20の最大外径よりも小さい外径をもち、回転軸線Oを中心軸線とする円周面で形成されている。第1のハウジングエレメント20の内周面は、リヤアクスルシャフト106の外周面との間にシャフト挿通孔20aを封止するシール部材24が介在して配置されている。   The first housing element 20 is disposed on one side of the housing 2 (left side in FIG. 2), and is entirely formed of a stepped bottomed cylindrical member that opens to the second housing element 21 side. A shaft insertion hole 20 a through which the rear axle shaft 106 (shown in FIG. 1) is inserted is provided at the bottom of the first housing element 20. On the opening end surface of the first housing element 20, an annular convex portion (second convexity) that protrudes toward the second housing element 21 along the direction of the fourth axis (rotation axis O in the present embodiment). Part) 23 is provided integrally. An inner peripheral surface (a fitting surface for one input member 50) 23a of the convex portion 23 has an inner diameter larger than the maximum inner diameter of the first housing element 20, and is formed by a circumferential surface having the rotation axis O as a central axis. Has been. The outer peripheral surface 23 b of the convex portion 23 has an outer diameter smaller than the maximum outer diameter of the first housing element 20 and is formed by a circumferential surface having the rotation axis O as the central axis. The inner peripheral surface of the first housing element 20 is disposed between the outer peripheral surface of the rear axle shaft 106 and a seal member 24 that seals the shaft insertion hole 20a.

第2のハウジングエレメント21は、ハウジング2の軸線方向中間部に配置され、全体が第4の軸線(回転軸線O)の両方向に開口する無底円筒部材によって形成されている。第2のハウジングエレメント21の片側開口部(第1のハウジングエレメント20側の開口部)には、電動モータ4と減速伝達機構5との間に介在する段状の内フランジ21aが一体に設けられている。内フランジ21aの内周面には、レース取付用の円環部材25が取り付けられている。第2のハウジングエレメント21の片側開口端面(第1のハウジングエレメント20側の開口端面)には、回転軸線O方向に沿って第1のハウジングエレメント20側に突出する円環状の凸部(第2の凸部)27が一体に設けられている。凸部27の内周面(他方の入力部材51に対する嵌合面)27aは、第2のハウジングエレメント21の最大内径と略同一の内径をもち、回転軸線Oを中心軸線とする円周面で形成されている。凸部27の外周面27bは、第2のハウジングエレメント21の外径よりも小さく、かつ凸部23の外径と略同一の外径をもち、回転軸線Oを中心軸線とする円周面で形成されている。   The second housing element 21 is disposed at an intermediate portion in the axial direction of the housing 2, and is entirely formed by a bottomless cylindrical member that opens in both directions of the fourth axis (rotation axis O). A stepped inner flange 21 a interposed between the electric motor 4 and the speed reduction transmission mechanism 5 is integrally provided at one side opening of the second housing element 21 (opening on the first housing element 20 side). ing. An annular member 25 for attaching a race is attached to the inner peripheral surface of the inner flange 21a. An annular projecting portion (second projection) projecting toward the first housing element 20 along the rotation axis O direction is formed on one side opening end surface of the second housing element 21 (opening end surface on the first housing element 20 side). (Convex portion) 27 is integrally provided. An inner peripheral surface (a fitting surface with respect to the other input member 51) 27a of the convex portion 27 is a circumferential surface having an inner diameter substantially the same as the maximum inner diameter of the second housing element 21 and having the rotation axis O as a central axis. Is formed. The outer peripheral surface 27b of the convex portion 27 is a circumferential surface having an outer diameter that is smaller than the outer diameter of the second housing element 21 and substantially the same as the outer diameter of the convex portion 23 and that has the rotation axis O as the central axis. Is formed.

第3のハウジングエレメント22は、ハウジング2の他方側(図2の右側)に配置され、全体が第2のハウジングエレメント21側に開口する段状の有底円筒部材によって形成されている。第3のハウジングエレメント22の底部には、リヤアクスルシャフト106を挿通させるシャフト挿通孔22aが設けられている。シャフト挿通孔22aの内側開口周縁には、電動モータ4側に突出するステータ取付用の円筒部22bが一体に設けられている。第3のハウジングエレメント22の内周面は、リヤアクスルシャフト106の外周面との間にシャフト挿通孔22aを封止するシール部材24が介在して配置されている。   The third housing element 22 is disposed on the other side of the housing 2 (the right side in FIG. 2), and is entirely formed by a stepped bottomed cylindrical member that opens to the second housing element 21 side. A shaft insertion hole 22 a through which the rear axle shaft 106 is inserted is provided at the bottom of the third housing element 22. A cylindrical portion 22b for attaching a stator that protrudes toward the electric motor 4 is integrally provided on the inner opening periphery of the shaft insertion hole 22a. The inner peripheral surface of the third housing element 22 is disposed between the outer peripheral surface of the rear axle shaft 106 and a seal member 24 that seals the shaft insertion hole 22a.

(リヤディファレンシャル3の構成)
リヤディファレンシャル3は、デフケース30,ピニオンギヤシャフト31,一対のピニオンギヤ32及び一対のサイドギヤ33を有するベベルギヤ式の差動機構からなり、モータ回転力伝達装置1の一方側に配置されている。
(Configuration of rear differential 3)
The rear differential 3 includes a bevel gear type differential mechanism having a differential case 30, a pinion gear shaft 31, a pair of pinion gears 32, and a pair of side gears 33, and is disposed on one side of the motor rotational force transmission device 1.

これにより、デフケース30の回転力がピニオンギヤシャフト31からピニオンギヤ32を介してサイドギヤ33に配分され、さらにサイドギヤ33からリヤアクスルシャフト106(図1に示す)を介して左右の後輪105(図1に示す)に伝達される。   As a result, the rotational force of the differential case 30 is distributed from the pinion gear shaft 31 to the side gear 33 via the pinion gear 32, and further from the side gear 33 to the left and right rear wheels 105 (shown in FIG. 1) via the rear axle shaft 106 (shown in FIG. 1). ).

一方、左右の後輪105間に駆動抵抗差が発生すると、デフケース30の回転力がピニオンギヤ32の自転によって左右の後輪105に差動配分される。   On the other hand, when a driving resistance difference occurs between the left and right rear wheels 105, the rotational force of the differential case 30 is differentially distributed to the left and right rear wheels 105 by the rotation of the pinion gear 32.

デフケース30は、回転軸線Oと異なる軸線上に配置され、かつ第1のハウジングエレメント20に玉軸受34を介して、また電動モータ4のモータ軸(回転軸)42に玉軸受35を介して回転可能に支持されている。そして、デフケース30は、電動モータ4のモータ回転力に基づく駆動力を減速伝達機構5から受けて回転する。   The differential case 30 is disposed on an axis different from the rotation axis O, and rotates via the ball bearing 34 on the first housing element 20 and via the ball bearing 35 on the motor shaft (rotation shaft) 42 of the electric motor 4. Supported as possible. The differential case 30 rotates by receiving a driving force based on the motor rotational force of the electric motor 4 from the deceleration transmission mechanism 5.

デフケース30には、差動機構部(ピニオンギヤシャフト31,ピニオンギヤ32及びサイドギヤ33)を収容する収容空間30a、及び収容空間30aに連通して左右のリヤアクスルシャフト106をそれぞれ挿通させる一対のシャフト挿通孔30bが設けられている。   The differential case 30 includes a housing space 30a that houses the differential mechanism (pinion gear shaft 31, pinion gear 32, and side gear 33), and a pair of shaft insertion holes 30b that communicate with the housing space 30a and through which the left and right rear axle shafts 106 are respectively inserted. Is provided.

また、デフケース30には、減速伝達機構5に対向する円環状のフランジ30cが一体に設けられている。フランジ30cには、デフケース30の軸線回りに等間隔をもって並列する複数(本実施の形態では6個)のピン取付孔300cが設けられている。   The differential case 30 is integrally provided with an annular flange 30 c that faces the speed reduction transmission mechanism 5. The flange 30c is provided with a plurality (six in this embodiment) of pin attachment holes 300c arranged in parallel at equal intervals around the axis of the differential case 30.

ピニオンギヤシャフト31は、デフケース30の収容空間30aでその軸線に直交する軸線L上に配置され、かつ軸線L回りの回転及び軸線L方向の移動がピン36によって規制されている。   The pinion gear shaft 31 is disposed on the axis L perpendicular to the axis in the accommodation space 30 a of the differential case 30, and the rotation around the axis L and the movement in the direction of the axis L are restricted by the pin 36.

一対のピニオンギヤ32は、ピニオンギヤシャフト31に回転可能に支持され、かつデフケース30の収容空間30aに収容されている。   The pair of pinion gears 32 is rotatably supported by the pinion gear shaft 31 and is accommodated in the accommodating space 30 a of the differential case 30.

一対のサイドギヤ33は、左右のリヤアクスルシャフト106(図1に示す)をスプライン嵌合によってそれぞれ連結するシャフト連結孔33aを有し、デフケース30の収容空間30aに収容されている。そして、一対のサイドギヤ33は、そのギヤ軸を一対のピニオンギヤ32のギヤ軸に直交させ、一対のピニオンギヤ32に噛合する。   The pair of side gears 33 have shaft connecting holes 33a for connecting the left and right rear axle shafts 106 (shown in FIG. 1) by spline fitting, and are accommodated in the accommodating space 30a of the differential case 30. The pair of side gears 33 mesh with the pair of pinion gears 32 with their gear shafts orthogonal to the gear shafts of the pair of pinion gears 32.

(電動モータ4の構成)
電動モータ4は、ステータ40,ロータ41及びモータ軸42を有し、回転軸線O上でリヤディファレンシャル3に減速伝達機構5を介して連結され、かつステータ40がECU(Electronic Control Unit:図示せず)に接続されている。そして、電動モータ4は、ステータ40がECUから制御信号を入力してリヤディファレンシャル3を作動させるためのモータ回転力をロータ41との間で発生させ、ロータ41をモータ軸42と共に回転させる。
(Configuration of electric motor 4)
The electric motor 4 includes a stator 40, a rotor 41, and a motor shaft 42. The electric motor 4 is connected to the rear differential 3 via a reduction transmission mechanism 5 on the rotation axis O, and the stator 40 is an ECU (Electronic Control Unit: not shown). )It is connected to the. In the electric motor 4, the stator 40 receives a control signal from the ECU, generates a motor rotational force for operating the rear differential 3, and rotates the rotor 41 together with the motor shaft 42.

ステータ40は、電動モータ4の外周側に配置され、かつ第2のハウジングエレメント21における内フランジ21aに取付ボルト43によって取り付けられている。   The stator 40 is disposed on the outer peripheral side of the electric motor 4 and is attached to the inner flange 21 a of the second housing element 21 by mounting bolts 43.

ロータ41は、電動モータ4の内周側に配置され、かつモータ軸42の外周面に取り付けられている。   The rotor 41 is disposed on the inner peripheral side of the electric motor 4 and is attached to the outer peripheral surface of the motor shaft 42.

モータ軸42は、回転軸線O上に配置され、かつ一方側端部が円環部材25の内周面に玉軸受44及びスリーブ45を介して、また他方側端部が第3のハウジングエレメント22の内周面に玉軸受46を介してそれぞれ回転可能に支持され、全体がリヤアクスルシャフト106(図1に示す)を挿通させる円筒状の軸部材によって形成されている。   The motor shaft 42 is disposed on the rotation axis O, and has one end on the inner peripheral surface of the annular member 25 via a ball bearing 44 and a sleeve 45 and the other end on the third housing element 22. These are respectively rotatably supported by ball bearings 46 and formed entirely by a cylindrical shaft member through which a rear axle shaft 106 (shown in FIG. 1) is inserted.

モータ軸42の一方側端部には、その回転軸線(第1の軸線)Oから偏心量δをもって偏心する軸線(第2の軸線)Oを中心軸線とする平面円形状の偏心部42a、及び回転軸線Oから偏心量δ(δ=δ=δ)をもって偏心する軸線(第2の軸線)Oを中心軸線とする平面円形状の偏心部42bが一体に設けられている。そして、一方の偏心部42aと他方の偏心部42bとは、回転軸線Oの回りに等間隔(180°)をもって並列する位置に配置されている。すなわち、一方の偏心部42aと他方の偏心部42bとは、軸線Oから回転軸線Oまでの距離と軸線Oから回転軸線Oまでの距離とを等しく、かつ軸線Oと軸線Oとの間の回転軸線O回りの距離を等しくするようにモータ軸42の外周囲に配置されている。また、偏心部42aと偏心部42bとは、回転軸線Oの方向に沿って並列する位置に配置されている。 The one side end portion of the motor shaft 42, flat circular eccentric portion 42a to the rotational axis (first axis) axis eccentric with a eccentricity [delta] 1 from O (second axis) center axis line O 1 and eccentricity from the axis of rotation O δ 2 (δ 1 = δ 2 = δ) plane circular eccentric portion 42b of the axis (second axis) O 2 as the center axis of the eccentric with a is integrally provided . The one eccentric portion 42a and the other eccentric portion 42b are arranged at a position where they are arranged in parallel around the rotation axis O with an equal interval (180 °). That is, the one eccentric portion 42a and the other of the eccentric portion 42b is equal to the distance from the distance and the axis O 2 from the axis O 1 to the rotational axis O to the rotation axis O, and the axis O 1 and the axis O 2 Are arranged around the outer periphery of the motor shaft 42 so that the distances around the rotation axis O are equal. Further, the eccentric part 42 a and the eccentric part 42 b are arranged in parallel with each other along the direction of the rotation axis O.

モータ軸42の他方側端部には、その外周面と円筒部22bの内周面との間に介在する回転角度検出器としてのレゾルバ47が配置されている。レゾルバ47は、ステータ470及びロータ471を有し、第3のハウジングエレメント22内に収容されている。ステータ470は円筒部22bの内周面に、ロータ471はモータ軸42の外周面にそれぞれ取り付けられている。   At the other end of the motor shaft 42, a resolver 47 is disposed as a rotation angle detector interposed between the outer peripheral surface and the inner peripheral surface of the cylindrical portion 22b. The resolver 47 has a stator 470 and a rotor 471 and is accommodated in the third housing element 22. The stator 470 is attached to the inner peripheral surface of the cylindrical portion 22b, and the rotor 471 is attached to the outer peripheral surface of the motor shaft 42.

(減速伝達機構5の構成)
図3は減速伝達機構を示す。図4は入力部材と第1の軸受との間の空隙を示す。図5(a)及び(b)はハウジングに対する入力部材の当接状態を示す。図6は入力部材の支持状態を示す。図3及び4に示すように、減速伝達機構5は、一対の入力部材50・51,自転力付与部材52及び出力部材53を有し、リヤディファレンシャル3と電動モータ4(共に図2に示す)との間に介在して配置されている。そして、減速伝達機構5は、前述したように、電動モータ4のモータ回転力を減速して駆動力をリヤディファレンシャル3に伝達する。
(Configuration of deceleration transmission mechanism 5)
FIG. 3 shows a deceleration transmission mechanism. FIG. 4 shows the air gap between the input member and the first bearing. 5A and 5B show the contact state of the input member with respect to the housing. FIG. 6 shows the support state of the input member. 3 and 4, the speed reduction transmission mechanism 5 has a pair of input members 50 and 51, a rotation force applying member 52, and an output member 53, and the rear differential 3 and the electric motor 4 (both shown in FIG. 2). Between the two. As described above, the deceleration transmission mechanism 5 decelerates the motor rotational force of the electric motor 4 and transmits the driving force to the rear differential 3.

一方の入力部材50は、図4及び図6に示すように、軸線(第3の軸線)O´を中心軸線とする中心孔50aを有する歯車である外歯歯車からなり、他方の入力部材51のリヤディファレンシャル3側に配置され、かつ中心孔50aの内周面と偏心部42aとの間に第1の軸受としての玉軸受54を介在させてモータ軸42に回転可能に支持されている。歯車である外歯歯車は、外歯歯車機構の一例である。そして、一方の入力部材50は、電動モータ4からモータ回転力を受けて偏心量δをもつ矢印m,m(図3に示す)方向の円運動(回転軸線O回りの公転運動)を行う。玉軸受54は、その内外に配置された2つのレースとしての内輪540,外輪541、及び内輪540と外輪541との間で転動する転動体542を有する。内輪540は偏心部42aに、また外輪541は中心孔50aにそれぞれモータ軸42の径方向に空隙(隙間)をもって取り付けられている。すなわち、内輪540は偏心部42aの外周面に、また外輪541は中心孔50aの内周面にそれぞれすきまばめによって取り付けられている。なお、図4及び図6においては、一方の入力部材50,内輪540,外輪541及び転動体542に遠心力Pが作用した状態を示す。 As shown in FIGS. 4 and 6, one input member 50 is an external gear that is a gear having a center hole 50 a having an axis (third axis) O 1 ′ as a center axis, and the other input member 51 is disposed on the side of the rear differential 3 and is rotatably supported by the motor shaft 42 with a ball bearing 54 serving as a first bearing interposed between the inner peripheral surface of the center hole 50a and the eccentric portion 42a. . An external gear that is a gear is an example of an external gear mechanism. One input member 50 receives a motor rotational force from the electric motor 4 and performs a circular motion (revolving motion around the rotation axis O) in the directions of arrows m 1 and m 2 (shown in FIG. 3) having an eccentricity δ. Do. The ball bearing 54 includes an inner ring 540 and an outer ring 541 as two races arranged inside and outside thereof, and a rolling element 542 that rolls between the inner ring 540 and the outer ring 541. The inner ring 540 is attached to the eccentric portion 42a, and the outer ring 541 is attached to the center hole 50a with a gap (gap) in the radial direction of the motor shaft 42, respectively. That is, the inner ring 540 is attached to the outer peripheral surface of the eccentric portion 42a, and the outer ring 541 is attached to the inner peripheral surface of the center hole 50a by clearance fitting. In FIG. 4 and FIG. 6 shows a state where the centrifugal force P 1 is applied to one input member 50, an inner ring 540, outer ring 541 and the rolling elements 542.

一方の入力部材50には、軸線O´回りに等間隔をもって並列する複数(本実施の形態では6個)のピン挿通孔(貫通孔)50bが設けられている。ピン挿通孔50bの孔径は、出力部材53の外径に第2の軸受としての針状ころ軸受55の外径を加えた寸法よりも大きい寸法に設定されている。針状ころ軸受55の外径は、玉軸受54の外径よりも小さい寸法に設定されている。一方の入力部材50の外周面には、インボリュート歯形をもつ外歯50cが設けられている。 One input member 50 is provided with a plurality (six in this embodiment) of pin insertion holes (through holes) 50b arranged in parallel at equal intervals around the axis O 1 ′. The hole diameter of the pin insertion hole 50b is set to be larger than the dimension obtained by adding the outer diameter of the needle roller bearing 55 as the second bearing to the outer diameter of the output member 53. The outer diameter of the needle roller bearing 55 is set to be smaller than the outer diameter of the ball bearing 54. On the outer peripheral surface of one input member 50, external teeth 50c having an involute tooth profile are provided.

外歯50cは、その両歯面(外歯50cの円周方向両側のトルク授受面)のうち円周方向一方側のトルク授受面が内歯(自転力付与部材52において互いに隣り合う2つの内歯のうち一方の内歯)52cのトルク授受面に対する公転力付与面及び自転力受面として、また円周方向他方側のトルク授受面が内歯(自転力付与部材52において互いに隣り合う2つの内歯のうち他方の内歯)52cのトルク授受面に対する公転力付与面及び自転力受面として機能する。外歯50cの歯数Zは例えばZ=195に設定されている。 The outer teeth 50c have two tooth surfaces (torque transmission / reception surfaces on both sides in the circumferential direction of the outer teeth 50c), and the torque transmission surfaces on one side in the circumferential direction are inner teeth (the two inner teeth adjacent to each other in the rotation force applying member 52). As the revolving force applying surface and the rotating force receiving surface for the torque transmitting / receiving surface of one of the teeth 52c, the torque receiving surface on the other side in the circumferential direction has two adjacent teeth on the inner tooth (the rotating force applying member 52). It functions as a revolving force application surface and a rotation force receiving surface with respect to the torque receiving surface of the other inner tooth) 52c. Number of teeth Z 1 of the external teeth 50c is set to, for example, Z 1 = 195.

一方の入力部材50の片側端面(リヤディファレンシャル3側端面)には、第3の軸線O´方向に沿ってリヤディファレンシャル3側に突出する円環状の凸部(第1の凸部)50dが一体に設けられている。 On one end face (end face on the rear differential 3 side) of one input member 50, an annular convex part (first convex part) 50d protruding toward the rear differential 3 along the third axis O 1 ′ direction is provided. It is provided integrally.

凸部50dは、一方の入力部材50において剛性の高い部位(例えば外歯50cの内周側)に配置されている。凸部50dの外周面(第1のハウジングエレメント20に対する嵌合面)500dは、第1のハウジングエレメント20の凸部23の内周面23aに対向し、かつ軸線O´を中心軸線とする円周面で形成されている。 The convex portion 50d is disposed at a portion having high rigidity in the one input member 50 (for example, the inner peripheral side of the external tooth 50c). An outer peripheral surface (a fitting surface with respect to the first housing element 20) 500d of the convex portion 50d faces the inner peripheral surface 23a of the convex portion 23 of the first housing element 20, and the axis O 1 ′ is the central axis. It is formed with a circumferential surface.

ここで、図4〜図6に示すように、軸線Oと軸線O´との間の寸法Lは、回転軸線O及び軸線Oに直交する線上で一方の入力部材50の移動によって凸部50dの外周面500dが第1のハウジングエレメント20の凸部23の内周面23aに当接する状態において、外輪541が中心孔50aに、また内輪540が偏心部42aにそれぞれモータ軸42の径方向に隙間をもって嵌合されているため、玉軸受54の外径Dと中心孔50aの内径dとの間の直径差d−D、玉軸受54の内径Dと偏心部42aの外径dとの間の直径差D−d、及び玉軸受54のラジアル内部すきまの運転すきまGを加算した寸法{(d−D)+(D−d)+G}の半分以下の寸法{(d−D)+(D−d)+G}/2≧Lに設定されている。 Here, as shown in FIGS. 4 to 6, the dimension L 1 between the axis O 1 and the axis O 1 ′ is determined by the movement of one input member 50 on the rotation axis O and the line orthogonal to the axis O 1 . In a state where the outer peripheral surface 500d of the convex portion 50d is in contact with the inner peripheral surface 23a of the convex portion 23 of the first housing element 20, the outer ring 541 is in the center hole 50a and the inner ring 540 is in the eccentric portion 42a. Since it is fitted with a gap in the radial direction, the diameter difference d 1 -D 1 between the outer diameter D 1 of the ball bearing 54 and the inner diameter d 1 of the center hole 50a, the inner diameter D 2 of the ball bearing 54 and the eccentric portion The dimension {(d 1 −D 1 ) + (D 2 −d 2 ) is obtained by adding the diameter difference D 2 −d 2 between the outer diameter d 2 of 42 a and the operating clearance G 1 of the radial internal clearance of the ball bearing 54. ) + G 1 } less than half the dimension {(d 1 −D 1 ) + (D 2− d 2 ) + G 1 } / 2 ≧ L 1 is set.

すなわち、寸法Lとしては、玉軸受54の外径Dと中心孔50aの内径dとの間の直径差(d−D)、玉軸受54の内径Dと偏心部42aの外径dとの間の直径差(D−d)、及び玉軸受54におけるラジアル内部すきまの運転すきまGを加算した寸法の半分以下の寸法を一方の入力部材50がその初期状態から移動する前に、図5(a)及び(b)に示すように凸部50dの外周面500dが凸部23の内周面23aに当接する寸法に設定されている。 That is, the dimension L 1, the diameter difference between the inner diameter d 1 of the outer diameter D 1 and the center hole 50a of the ball bearing 54 (d 1 -D 1), the inner diameter D 2 and the eccentric portion 42a of the ball bearing 54 One input member 50 is in an initial state in which the diameter difference between the outer diameter d 2 (D 2 -d 2 ) and the radial inner clearance of the ball bearing 54 is less than half of the dimension obtained by adding the operating clearance G 1. 5A and 5B, the outer peripheral surface 500d of the convex portion 50d is set to a size that comes into contact with the inner peripheral surface 23a of the convex portion 23, as shown in FIGS.

このため、一方の入力部材50がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、凸部50dの外周面500dが凸部23の内周面23aに当接し、この当接位置で一方の入力部材50から第1のハウジングエレメント20が径方向の荷重を受ける。これにより、一方の入力部材50からの遠心力Pによる荷重を第1のハウジングエレメント20における凸部23の内周面23aが集中して受けることになり、この遠心力Pによる荷重が玉軸受54(外輪541と転動体542と及び転動体542と内輪540と)に作用することが抑制される。 For this reason, when one input member 50 receives a load due to the centrifugal force P 1 generated based on the circular motion and moves in that direction, the outer peripheral surface 500d of the convex portion 50d abuts on the inner peripheral surface 23a of the convex portion 23. In this contact position, the first housing element 20 receives a radial load from one input member 50. This makes it possible to load due to centrifugal force P 1 from one of the input member 50 the inner circumferential surface 23a of the protrusion 23 of the first housing element 20 receives concentrated to the load applied by the centrifugal force P 1 is the ball Acting on the bearing 54 (the outer ring 541 and the rolling element 542 and the rolling element 542 and the inner ring 540) is suppressed.

他方の入力部材51は、図4及び図6に示すように、軸線(第3の軸線)O´を中心軸線とする中心孔51aを有する歯車である外歯歯車からなり、一方の入力部材50の電動モータ4側に配置され、かつ中心孔51aの内周面と偏心部42bとの間に第1の軸受としての玉軸受56を介在させてモータ軸42に回転可能に支持されている。歯車である外歯歯車は、外歯歯車機構の一例である。そして、他方の入力部材51は、電動モータ4からモータ回転力を受けて偏心量δをもつ矢印m,m(図3に示す)方向の円運動(回転軸線O回りの公転運動)を行う。玉軸受56は、その内外に配置された2つのレースとしての内輪560,外輪561、及び内輪560と外輪561との間で転動する転動体562を有する。内輪560は偏心部42bに、また外輪561は中心孔51aにそれぞれモータ軸42の径方向に空隙(隙間)をもって取り付けられている。すなわち、内輪560は偏心部42bの外周面に、また外輪561は中心孔51aの内周面にそれぞれすきまばめによって取り付けられている。なお、図4及び図6においては、他方の入力部材51,内輪560,外輪561及び転動体562に遠心力Pが作用した状態を示す。 As shown in FIGS. 4 and 6, the other input member 51 includes an external gear that is a gear having a center hole 51 a having an axis (third axis) O 2 ′ as a center axis, and one input member 50 is disposed on the side of the electric motor 4 and is rotatably supported by the motor shaft 42 with a ball bearing 56 serving as a first bearing interposed between the inner peripheral surface of the center hole 51a and the eccentric portion 42b. . An external gear that is a gear is an example of an external gear mechanism. The other input member 51 receives a motor rotational force from the electric motor 4 and performs a circular motion (revolving motion around the rotation axis O) in the directions of arrows m 1 and m 2 (shown in FIG. 3) having an eccentricity δ. Do. The ball bearing 56 includes an inner ring 560 and an outer ring 561 as two races arranged inside and outside thereof, and a rolling element 562 that rolls between the inner ring 560 and the outer ring 561. The inner ring 560 is attached to the eccentric portion 42b, and the outer ring 561 is attached to the center hole 51a with a gap (gap) in the radial direction of the motor shaft 42, respectively. That is, the inner ring 560 is attached to the outer peripheral surface of the eccentric portion 42b, and the outer ring 561 is attached to the inner peripheral surface of the center hole 51a by clearance fitting. In FIG. 4 and FIG. 6 illustrates another input member 51, an inner ring 560, a state where the centrifugal force P 2 is applied to the outer ring 561 and the rolling elements 562.

他方の入力部材51には、軸線O´回りに等間隔をもって並列する複数(本実施の形態では6個)のピン挿通孔(貫通孔)51bが設けられている。ピン挿通孔51bの孔径は、出力部材53の外径に第2の軸受としての針状ころ軸受57の外径を加えた寸法よりも大きい寸法に設定されている。針状ころ軸受57の外径は、玉軸受56の外径よりも小さい寸法に設定されている。他方の入力部材51の外周面には、インボリュート歯形をもつ外歯51cが設けられている。 The other input member 51 is provided with a plurality (six in this embodiment) of pin insertion holes (through holes) 51b arranged in parallel at equal intervals around the axis O 2 ′. The hole diameter of the pin insertion hole 51b is set to be larger than the dimension obtained by adding the outer diameter of the needle roller bearing 57 as the second bearing to the outer diameter of the output member 53. The outer diameter of the needle roller bearing 57 is set to be smaller than the outer diameter of the ball bearing 56. An outer tooth 51 c having an involute tooth profile is provided on the outer peripheral surface of the other input member 51.

外歯51cは、その両歯面(外歯51cの円周方向両側のトルク授受面)のうち円周方向一方側のトルク授受面が内歯(自転力付与部材52において互いに隣り合う2つの内歯のうち一方の内歯)52cのトルク授受面に対する公転力付与面及び自転力受面として、また円周方向他方側のトルク授受面が内歯(自転力付与部材52において互いに隣り合う2つの内歯のうち他方の内歯)52cのトルク授受面に対する公転力付与面及び自転力受面としてそれぞれ機能する。外歯51cの歯数Zは例えばZ=195に設定されている。 The outer teeth 51c have two inner surfaces (torque transmission / reception surfaces on both sides in the circumferential direction of the outer teeth 51c), and the torque transmission surfaces on one side in the circumferential direction are inner teeth (two inner teeth adjacent to each other in the rotation force applying member 52). As the revolving force applying surface and the rotating force receiving surface for the torque transmitting / receiving surface of one of the teeth 52c, the torque receiving surface on the other side in the circumferential direction has two adjacent teeth on the inner tooth (the rotating force applying member 52). It functions as a revolving force application surface and a rotation force receiving surface with respect to the torque transmitting / receiving surface of the other inner tooth) 52c. Number of teeth Z 2 of the external teeth 51c is set to, for example, Z 2 = 195.

他方の入力部材51の片側端面(電動モータ4側端面)には、第3の軸線O´方向に沿って電動モータ4側に突出する円環状の凸部(第1の凸部)51dが一体に設けられている。 On one end face (end face of the electric motor 4) of the other input member 51, an annular convex portion (first convex portion) 51d that protrudes toward the electric motor 4 along the third axis O 2 ′ direction is provided. It is provided integrally.

凸部51dは、他方の入力部材51において剛性の高い部位(例えば外歯50cの内周側)に配置されている。凸部51dの外周面(第2のハウジングエレメント21に対する嵌合面)510dは、第2のハウジングエレメント21の凸部27の内周面27aに対向し、かつ軸線O´とする中心軸線とする円周面で形成されている。 The convex portion 51d is disposed at a portion having high rigidity in the other input member 51 (for example, the inner peripheral side of the external tooth 50c). An outer peripheral surface (a fitting surface with respect to the second housing element 21) 510d of the convex portion 51d is opposed to the inner peripheral surface 27a of the convex portion 27 of the second housing element 21, and has a central axis line as an axis O 2 ′. It is formed with a circumferential surface.

ここで、図4〜図6に示すように、軸線Oと軸線O´との間の寸法Lは、回転軸線O及び軸線Oに直交する線上で他方の入力部材51の移動によって凸部51dの外周面510dが第2のハウジングエレメント21の凸部27の内周面27aに当接する状態において、外輪561が中心孔51aに、また内輪560が偏心部42bにそれぞれモータ軸42の径方向に隙間をもって嵌合されているため、玉軸受56の外径Dと中心孔51aの内径dとの間の直径差d−D、玉軸受56の内径Dと偏心部42bの外径dとの間の直径差D−d、及び玉軸受56のラジアル内部すきまの運転すきまGを加算した寸法{(d−D)+(D−d)+G}の半分以下の寸法{(d−D)+(D−d)+G}/2≧Lに設定されている。 Here, as shown in FIGS. 4 to 6, the dimension L 2 between the axis O 2 and the axis O 2 ′ is determined by the movement of the other input member 51 on the rotation axis O and the line orthogonal to the axis O 2 . In a state where the outer peripheral surface 510d of the convex portion 51d is in contact with the inner peripheral surface 27a of the convex portion 27 of the second housing element 21, the outer ring 561 is in the center hole 51a and the inner ring 560 is in the eccentric portion 42b. Since it is fitted with a gap in the radial direction, the diameter difference d 3 -D 3 between the outer diameter D 3 of the ball bearing 56 and the inner diameter d 3 of the center hole 51a, the inner diameter D 4 of the ball bearing 56 and the eccentric portion the diameter difference D 4 -d 4, and the sum of the running clearance G 2 of the radial internal clearance of the ball bearing 56 dimension between the outer diameter d 4 of 42b {(d 3 -D 3) + (D 4 -d 4 ) + less than half the size of G 2} {(d 3 -D 3) + (D 4 −d 4 ) + G 2 } / 2 ≧ L 2 .

すなわち、寸法Lとしては、玉軸受56の外径Dと中心孔51aの内径dとの間の直径差(d−D)、玉軸受56の内径Dと偏心部42bの外径dとの間の直径差(D−d)、及び玉軸受56におけるラジアル内部すきまの運転すきまGを加算した寸法の半分以下の寸法を他方の入力部材51がその初期状態から移動する前に、図5(a)及び(b)に示すように凸部51dの外周面510dが凸部27の内周面27aに当接する寸法に設定されている。 That is, the dimension L 2, the diameter difference between the outer diameter D 3 and the inner diameter d 3 of the central hole 51a of the ball bearing 56 (d 3 -D 3), the inner diameter D 4 of the ball bearing 56 and the eccentric portion 42b In the initial state, the other input member 51 has a dimension that is less than half the dimension obtained by adding the diameter difference from the outer diameter d 4 (D 4 -d 4 ) and the operating clearance G 2 of the radial internal clearance in the ball bearing 56. 5A and 5B, the outer peripheral surface 510d of the convex portion 51d is set to a size that abuts on the inner peripheral surface 27a of the convex portion 27, as shown in FIGS.

このため、他方の入力部材51がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、凸部51dの外周面510dが凸部27の内周面27aに当接し、この当接位置で他方の入力部材51から第2のハウジングエレメント21が径方向の荷重を受ける。これにより、他方の入力部材51からの遠心力Pによる荷重を第2のハウジングエレメント21における凸部27の内周面27aが集中して受けることになり、この遠心力Pによる荷重が玉軸受56(外輪561と転動体562と及び転動体562と内輪560と)に作用することが抑制される。 Therefore, when you move in that direction under a load and the other of the input member 51 due to the centrifugal force P 2 generated on the basis of the circular motion, the outer circumferential surface 510d of the protrusion 51d comes into contact with the inner peripheral surface 27a of the protrusion 27 In this contact position, the second housing element 21 receives a radial load from the other input member 51. This makes it possible to receive the load caused by the centrifugal force P 2 from the other input member 51 the inner circumferential surface 27a is concentrated in the convex portion 27 in the second housing element 21, a load due to the centrifugal force P 2 is the ball Acting on the bearing 56 (the outer ring 561 and the rolling element 562 and the rolling element 562 and the inner ring 560) is suppressed.

自転力付与部材52は、図4に示すように、第4の軸線(本実施の形態では第4の軸線が回転軸線Oに一致する)を中心軸線とする歯車である内歯歯車からなり、第1のハウジングエレメント20と第2のハウジングエレメント21との間に介在して配置され、全体が回転軸線Oの両方向に開口してハウジング2の一部を構成する無底円筒部材によって形成されている。歯車である内歯歯車は、内歯歯車機構の一例である。そして、自転力付与部材52は、一対の入力部材50,51に噛合し、電動モータ4のモータ回転力を受けて公転する一方の入力部材50に矢印n,n方向の自転力を、また他方の入力部材51に矢印l,l方向の自転力をそれぞれ付与する。 As shown in FIG. 4, the rotation force imparting member 52 includes an internal gear that is a gear having a fourth axis (in the present embodiment, the fourth axis coincides with the rotation axis O) as a central axis. The first housing element 20 and the second housing element 21 are disposed between the first housing element 20 and the second housing element 21. The whole is formed by a bottomless cylindrical member that opens in both directions of the rotation axis O and forms a part of the housing 2. Yes. An internal gear that is a gear is an example of an internal gear mechanism. The rotation force applying member 52 meshes with the pair of input members 50 and 51, and receives the rotation force in the directions of the arrows n 1 and n 2 on one input member 50 that revolves by receiving the motor rotation force of the electric motor 4. Further, rotational forces in the directions of the arrows l 1 and l 2 are applied to the other input member 51, respectively.

自転力付与部材52の内周面には、凸部23の外周面23bに嵌合する第1の嵌合部52a、及び凸部27の外周面27bに嵌合する第2の嵌合部52bが回転軸線Oの方向に所定の間隔をもって設けられている。また、自転力付与部材52の内周面には、第1の嵌合部52aと第2の嵌合部52bとの間に介在して一方の入力部材50の外歯50c及び他方の入力部材51の外歯51cに噛合するインボリュート歯形の内歯52cが設けられている。   A first fitting portion 52 a that fits to the outer peripheral surface 23 b of the convex portion 23 and a second fitting portion 52 b that fits to the outer peripheral surface 27 b of the convex portion 27 are formed on the inner peripheral surface of the rotation force applying member 52. Are provided in the direction of the rotation axis O with a predetermined interval. Further, the external teeth 50c of one input member 50 and the other input member are interposed on the inner peripheral surface of the rotation force applying member 52 between the first fitting portion 52a and the second fitting portion 52b. An involute tooth-shaped inner tooth 52 c that meshes with the outer tooth 51 c of 51 is provided.

内歯52cは、その両歯面(内歯52cの円周方向両側のトルク授受面)のうち円周方向一方側のトルク授受面が外歯(入力部材50において互いに隣り合う2つの外歯のうち一方の外歯)50cのトルク授受面及び外歯(入力部材51において互いに隣り合う2つの外歯のうち一方の外歯)51cのトルク授受面に対する自転力付与面及び公転力受面として、また円周方向他方側のトルク授受面が外歯(入力部材50において互いに隣り合う2つの外歯のうち他方の外歯)50cのトルク授受面及び外歯(入力部材51において互いに隣り合う2つの外歯のうち他方の外歯)51cのトルク授受面に対する自転力付与面及び公転力付与面として機能する。内歯52cの歯数Zは例えばZ=208に設定されている。これにより、減速伝達機構5の減速比αがα=Z/(Z−Z)から算出される。 The inner tooth 52c has a torque transfer surface on one side in the circumferential direction among the both tooth surfaces (the torque transfer surfaces on both sides in the circumferential direction of the inner tooth 52c), and the external teeth (the two external teeth adjacent to each other in the input member 50). As one of the external teeth) 50c torque transfer surface and external teeth (one of the two external teeth adjacent to each other in the input member 51) 51c as a rotational force application surface and a revolving force application surface. Further, the torque transmitting / receiving surface on the other side in the circumferential direction has two external teeth (the other external tooth of two external teeth adjacent to each other in the input member 50) 50c and the external teeth (two adjacent to each other in the input member 51). It functions as a rotation force application surface and a revolving force application surface with respect to the torque transmission / reception surface of the other external tooth) 51c. Number of teeth Z 3 of the internal teeth 52c is set to, for example, Z 3 = 208. Accordingly, the reduction ratio α of the deceleration transmission mechanism 5 is calculated from α = Z 2 / (Z 3 −Z 2 ).

出力部材53は、図4に示すように、一方側端部にねじ部53aを有するとともに、他方側端部に頭部53bを有する複数(本実施の形態では6個)のボルトからなり、一方の入力部材50のピン挿通孔50b及び他方の入力部材51のピン挿通孔51bを挿通してデフケース30のピン取付孔300cにねじ部53aが取り付けられている。また、出力部材53は、頭部53bと他方の入力部材51との間に介在する円環状のスペーサ58を挿通して配置されている。そして、出力部材53は、自転力付与部材52によって付与された自転力を一対の入力部材50,51から受けてデフケース30にその回転力として出力する。   As shown in FIG. 4, the output member 53 includes a plurality of (six in this embodiment) bolts having a threaded portion 53a at one end and a head 53b at the other end. The threaded portion 53 a is attached to the pin attachment hole 300 c of the differential case 30 through the pin insertion hole 50 b of the input member 50 and the pin insertion hole 51 b of the other input member 51. Further, the output member 53 is disposed by inserting an annular spacer 58 interposed between the head 53b and the other input member 51. The output member 53 receives the rotation force applied by the rotation force applying member 52 from the pair of input members 50 and 51 and outputs the rotation force to the differential case 30 as its rotational force.

出力部材53の外周面であって、ねじ部53aと頭部53bとの間に介在する部位には、一方の入力部材50におけるピン挿通孔50bの内周面との間の接触抵抗を低減するための針状ころ軸受55が、また他方の入力部材51におけるピン挿通孔51bの内周面との間の接触抵抗を低減するための針状ころ軸受57がそれぞれ取り付けられている。   The contact resistance between the outer peripheral surface of the output member 53 and the inner peripheral surface of the pin insertion hole 50b in one input member 50 is reduced at a portion interposed between the screw portion 53a and the head portion 53b. Needle roller bearings 55 for reducing contact resistance with the inner peripheral surface of the pin insertion hole 51b of the other input member 51 are attached.

針状ころ軸受55は、一方の入力部材50における複数のピン挿通孔50bの内周面に接触可能なレース550、及びこのレース550と出力部材53の外周面との間で転動する針状ころ551を有する。針状ころ軸受57は、他方の入力部材51における複数のピン挿通孔51bの内周面に接触可能なレース570、及びこのレース570と出力部材53の外周面との間で転動する針状ころ571を有する。   The needle roller bearing 55 is a race 550 that can contact the inner peripheral surface of the plurality of pin insertion holes 50 b in one input member 50, and a needle shape that rolls between the race 550 and the outer peripheral surface of the output member 53. There are rollers 551. The needle roller bearing 57 has a race 570 that can contact the inner peripheral surface of the plurality of pin insertion holes 51 b in the other input member 51, and a needle shape that rolls between the race 570 and the outer peripheral surface of the output member 53. It has rollers 571.

(モータ回転力伝達装置1の動作)
次に、本実施の形態に示すモータ回転力伝達装置の動作につき、図1〜図6を用いて説明する。
(Operation of the motor rotational force transmission device 1)
Next, the operation of the motor torque transmission device shown in the present embodiment will be described with reference to FIGS.

図2において、モータ回転力伝達装置1の電動モータ4に電力を供給して電動モータ4を駆動すると、このモータ回転力がモータ軸42を介して減速伝達機構5に付与され、減速伝達機構5が作動する。   In FIG. 2, when electric power is supplied to the electric motor 4 of the motor rotational force transmission device 1 to drive the electric motor 4, this motor rotational force is applied to the deceleration transmission mechanism 5 via the motor shaft 42, and the deceleration transmission mechanism 5. Operates.

このため、減速伝達機構5において、入力部材50,51が例えば図3に示す矢印m方向に偏心量δをもって円運動を行う。 Therefore, the speed reduction transmission mechanism 5 performs circular motion with a eccentricity δ is the input member 50, 51 in the arrow m 1 direction shown in FIG. 3, for example.

これに伴い、入力部材50が外歯50cを自転力付与部材52の内歯52cに噛合させながら軸線Oの回り(図3に示す矢印n方向)に、また入力部材51が外歯51cを自転力付与部材52の内歯52cに噛合させながら軸線Oの回り(図3に示す矢印l方向)にそれぞれ自転する。この場合、入力部材50,51の自転によってピン挿通孔50bの内周面が針状ころ軸受55のレース550に、またピン挿通孔51bの内周面が針状ころ軸受57のレース570にそれぞれ当接する。 Accordingly, the input member 50 is the axis O 1 while meshing with the internal teeth 52c of the outer teeth 50c rotation force applying member 52 counterclockwise (the arrow n 1 direction shown in FIG. 3), also the input member 51 outer teeth 51c the rotates respectively with the internal teeth 52c on around the axis O 2 while meshing rotation force applying member 52 (arrow l 1 direction shown in FIG. 3). In this case, due to the rotation of the input members 50 and 51, the inner peripheral surface of the pin insertion hole 50b is in the race 550 of the needle roller bearing 55, and the inner peripheral surface of the pin insertion hole 51b is in the race 570 of the needle roller bearing 57, respectively. Abut.

このため、出力部材53には入力部材50,51の公転運動が伝達されず、入力部材50,51の自転運動のみが伝達され、入力部材50,51の自転力が出力部材53からデフケース30にその回転力として出力される。   For this reason, the revolution movement of the input members 50 and 51 is not transmitted to the output member 53, but only the rotation movement of the input members 50 and 51 is transmitted, and the rotation force of the input members 50 and 51 is transmitted from the output member 53 to the differential case 30. It is output as the rotational force.

これにより、リヤディファレンシャル3が作動し、電動モータ4のモータ回転力に基づく駆動力が図1におけるリヤアクスルシャフト106に配分され、左右の後輪105に伝達される。   As a result, the rear differential 3 is operated, and the driving force based on the motor rotational force of the electric motor 4 is distributed to the rear axle shaft 106 in FIG. 1 and transmitted to the left and right rear wheels 105.

ここで、モータ回転力伝達装置1においては、動作に伴い入力部材50にその円運動に基づいて遠心力Pが、また入力部材51にその円運動に基づいて遠心力Pがそれぞれ作用する。 Here, in the motor rotational force transmission device 1, the centrifugal force P 1 is applied to the input member 50 based on the circular motion and the centrifugal force P 2 is applied to the input member 51 based on the circular motion. .

これに伴い、入力部材50が遠心力Pの作用方向(例えば図6の下方)に、また入力部材51が遠心力Pの作用方向(例えば図6の上方)にそれぞれ移動する。 Accordingly, the input member 50 in the direction of action of the centrifugal force P 1 (e.g., the lower part of FIG. 6), also the input member 51 respectively move in the direction of action of the centrifugal force P 2 (e.g., upward in FIG. 6).

この場合、図4〜図6に示すように、一方の入力部材50がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、玉軸受54の外径Dと中心孔50aの内径dとの間の直径差(d−D)、玉軸受54の内径Dと偏心部42aの外径dとの間の直径差(D−d)、及び玉軸受54におけるラジアル内部すきまの運転すきまGを加算した寸法の半分以下の寸法を移動する前に、図5(a)及び(b)に示すように凸部50dの外周面500dが凸部23の内周面23aに当接する。 In this case, as shown in FIGS. 4 to 6, when one input member 50 receives a load due to the centrifugal force P 1 generated based on the circular motion and moves in that direction, the outer diameter D 1 of the ball bearing 54 and Diameter difference (d 1 -D 1 ) between the inner diameter d 1 of the center hole 50 a and diameter difference (D 2 -d 2 ) between the inner diameter D 2 of the ball bearing 54 and the outer diameter d 2 of the eccentric portion 42 a. and before moving half following dimensions dimensions obtained by adding the running clearance G 1 of the radial internal clearance in the ball bearing 54, the outer peripheral surface 500d of the protrusion 50d as shown in FIG. 5 (a) and (b) It abuts on the inner peripheral surface 23 a of the convex portion 23.

このため、一方の入力部材50からの遠心力Pによる荷重を凸部23の内周面23aが集中して受けることになり、この遠心力Pによる荷重が玉軸受54に作用することが抑制される。 For this reason, the inner peripheral surface 23 a of the convex portion 23 receives the load caused by the centrifugal force P 1 from one input member 50 in a concentrated manner, and the load caused by the centrifugal force P 1 acts on the ball bearing 54. It is suppressed.

同様に、他方の入力部材51がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、玉軸受56の外径Dと中心孔51aの内径dとの間の直径差(d−D)、玉軸受56の内径Dと偏心部42bの外径dとの間の直径差(D−d)、玉軸受56におけるラジアル内部すきまの運転すきまGを加算した寸法の半分以下の寸法を移動する前に、図5(a)及び(b)に示すように凸部51dの外周面510dが凸部27の内周面27aに当接する。 Similarly, during the movement in that direction under load by centrifugal force P 2 which is the other of the input member 51 occurring on the basis of the circular motion, the outer diameter D 3 and the inner diameter d 3 of the central hole 51a of the ball bearing 56 Diameter difference (d 3 -D 3 ), the diameter difference (D 4 -d 4 ) between the inner diameter D 4 of the ball bearing 56 and the outer diameter d 4 of the eccentric portion 42 b, and the operation of the radial internal clearance in the ball bearing 56 before moving half following dimensions of obtained by adding the gap G 2, the outer circumferential surface 510d of the protrusion 51d as shown in FIG. 5 (a) and (b) abuts against the inner peripheral surface 27a of the protrusion 27 .

このため、他方の入力部材51からの遠心力Pによる荷重を凸部27の内周面27aが集中して受けることになり、この遠心力Pによる荷重が玉軸受56に作用することが抑制される。 For this reason, the inner peripheral surface 27 a of the convex portion 27 receives the load caused by the centrifugal force P 2 from the other input member 51 in a concentrated manner, and the load caused by the centrifugal force P 2 acts on the ball bearing 56. It is suppressed.

従って、本実施の形態においては、玉軸受54,56に耐久性の高い軸受を用いることが不要になる。   Therefore, in the present embodiment, it is not necessary to use highly durable bearings for the ball bearings 54 and 56.

なお、上記実施の形態においては、入力部材50,51を矢印m方向に円運動させてモータ回転力伝達装置1を作動させる場合について説明したが、入力部材50,51を図3に示すように矢印m方向に円運動させてもモータ回転力伝達装置1を上記実施の形態と同様に作動させることができる。この場合、入力部材50の自転運動は矢印n方向に、また入力部材51の自転運動は矢印l方向にそれぞれ行われる。 In the above embodiment has described the case where the input member 50, 51 by circular motion of the arrow m 1 direction to actuate the motor torque transmission device 1, to indicate the input member 50, 51 in FIG. 3 the motor torque transmission device 1 also by circular motion in the arrow m 2 direction can be operated as in the above embodiment to. In this case, the rotation of the input member 50 is performed in the direction of the arrow n 2 , and the rotation of the input member 51 is performed in the direction of the arrow l 2 .

[第1の実施の形態の効果]
以上説明した第1の実施の形態によれば、次に示す効果が得られる。
[Effect of the first embodiment]
According to the first embodiment described above, the following effects can be obtained.

(1)入力部材50からの遠心力Pによる荷重が玉軸受54に、また入力部材51からの遠心力Pによる荷重が玉軸受56にそれぞれ作用することが抑制されるため、玉軸受54,56に耐久性の高い軸受を用いることが不要になり、コストの低廉化を図ることができる。 (1) Since the load due to the centrifugal force P 1 from the input member 50 is suppressed from acting on the ball bearing 54 and the load due to the centrifugal force P 2 from the input member 51 is suppressed from acting on the ball bearing 56, respectively. , 56 is not required to use a highly durable bearing, and the cost can be reduced.

(2)玉軸受54に対する遠心力Pによる荷重の作用、及び玉軸受56に対する遠心力Pによる荷重の作用が抑制されることは、玉軸受54,56の高寿命化を図ることもできる。 (2) The suppression of the action of the load by the centrifugal force P 1 on the ball bearing 54 and the action of the load by the centrifugal force P 2 on the ball bearing 56 can also increase the life of the ball bearings 54 and 56. .

なお、本実施の形態においては、一方の入力部材50に軸線O´方向に沿ってリヤディファレンシャル3側に突出する円環状の凸部50dが、また他方の入力部材51に軸線O´方向に沿って電動モータ4側に突出する円環状の凸部51dがそれぞれ一体に設けられている場合について説明したが、本発明はこれに限定されず、図7(変形例1)に示すような構造としてもよい。 In the present embodiment, one input member 50 has an annular convex portion 50d protruding toward the rear differential 3 along the axis O 1 ′ direction, and the other input member 51 has an axis O 2 ′ direction. However, the present invention is not limited to this, as shown in FIG. 7 (Modification 1). It is good also as a structure.

(変形例1)
図7において、一方の入力部材50のリヤディファレンシャル3側端部には軸線O´と直交する方向に突出する円環状の凸部(第1の凸部)50eが、また他方の入力部材51の電動モータ4側端部には軸線O´と直交する方向に突出する円環状の凸部(第1の凸部)51eがそれぞれ設けられている。
(Modification 1)
In FIG. 7, an annular convex portion (first convex portion) 50 e protruding in a direction orthogonal to the axis O 1 ′ is provided at the end portion of one input member 50 on the rear differential 3 side, and the other input member 51 is provided. Each of the electric motor 4 side end portions is provided with an annular convex portion (first convex portion) 51e protruding in a direction orthogonal to the axis O 2 ′.

自転力付与部材52の一方側(図7では左側)端部には、回転軸線Oと直交する方向に突出し、かつ一方の入力部材50がその円運動に基づいて生じる遠心力Pによる荷重を受けた状態において凸部(第2の凸部)50eの外周面500eに当接する内周面520dを有する円環状の凸部52dが設けられている。自転力付与部材52の他方側(図7では右側)端部には、回転軸線Oと直交する方向に突出し、かつ他方の入力部材51がその円運動に基づいて生じる遠心力Pによる荷重を受けた状態において凸部51eの外周面510eに当接する内周面520eを有する円環状の凸部(第2の凸部)52eが設けられている。 One end (left side in FIG. 7) of the rotation force applying member 52 projects in a direction orthogonal to the rotation axis O, and the load caused by the centrifugal force P 1 generated by the one input member 50 based on the circular motion is applied. An annular convex portion 52d having an inner peripheral surface 520d that contacts the outer peripheral surface 500e of the convex portion (second convex portion) 50e in the received state is provided. On the other side (in FIG. 7 right) end of the rotation force applying member 52, a load due to the centrifugal force P 2 arising under protrudes in a direction perpendicular to the rotation axis O, and the other input member 51 to the circular motion An annular convex portion (second convex portion) 52e having an inner peripheral surface 520e that contacts the outer peripheral surface 510e of the convex portion 51e in the received state is provided.

本実施の形態においては、第1のハウジングエレメント20凸部23の内周面23aに嵌合する外周面500dを有する円環状の凸部50dが一方の入力部材50に、また第2のハウジングエレメント21の凸部27の内周面27aに嵌合する外周面510dを有する円環状の凸部51dを他方の入力部材51にそれぞれ設けられている場合について説明したが、本発明はこれに限定されず、図8(変形例2)に示すような構造としてもよい。   In the present embodiment, an annular convex portion 50d having an outer peripheral surface 500d fitted to the inner peripheral surface 23a of the first housing element 20 convex portion 23 is provided on one input member 50, and the second housing element. Although the case where each of the input members 51 is provided with an annular convex portion 51d having an outer peripheral surface 510d fitted to the inner peripheral surface 27a of the twenty-first convex portion 27, the present invention is limited to this. Instead, a structure as shown in FIG. 8 (Modification 2) may be used.

(変形例2)
図8において、第1のハウジングエレメント20の電動モータ4側端部には回転軸線O方向に沿って電動モータ4側に突出する円環状の凸部(第2の凸部)28が、また第2のハウジングエレメント21のリヤディファレンシャル3側端部には回転軸線O方向に沿ってリヤディファレンシャル3側に突出する円環状の凸部(第2の凸部)29がそれぞれ一体に設けられている。
(Modification 2)
In FIG. 8, an annular convex portion (second convex portion) 28 protruding toward the electric motor 4 along the rotation axis O direction is provided at the end portion of the first housing element 20 on the electric motor 4 side. An annular convex portion (second convex portion) 29 protruding toward the rear differential 3 side along the rotation axis O direction is integrally provided at the end portion of the second housing element 21 on the rear differential 3 side.

一方の入力部材50のリヤディファレンシャル3側端部には第1のハウジングエレメント20の凸部28の外周面28aに嵌合する内周面500fを有する凸部(第1の凸部)50fが、また他方の入力部材51の電動モータ4側端部には第2のハウジングエレメント21の凸部29の外周面29aに嵌合する内周面510fを有する凸部(第1の凸部)51fがそれぞれ一体に設けられている。   A convex portion (first convex portion) 50f having an inner peripheral surface 500f fitted to the outer peripheral surface 28a of the convex portion 28 of the first housing element 20 is provided at the end portion on the rear differential 3 side of one input member 50. Further, a convex portion (first convex portion) 51f having an inner peripheral surface 510f fitted to the outer peripheral surface 29a of the convex portion 29 of the second housing element 21 is provided at the end of the other input member 51 on the electric motor 4 side. Each is provided integrally.

[第2の実施の形態]
次に、本発明の第2の実施の形態に係るモータ回転力伝達装置における減速機構につき、図4,図5(a)・(b)及び図9を用いて説明する。図9は入力部材の支持状態を示す。図9において、図6と同一又は同等の部材については同一の符号を付し、詳細な説明は省略する。
[Second Embodiment]
Next, a speed reduction mechanism in a motor torque transmission device according to a second embodiment of the present invention will be described with reference to FIGS. 4, 5A, 5B, and 9. FIG. FIG. 9 shows the support state of the input member. 9, the same or equivalent members as those in FIG. 6 are denoted by the same reference numerals, and detailed description thereof is omitted.

図4及び図9に示すように、本発明の第2の実施の形態に係る減速伝達機構100(一部を示す)は、玉軸受54,56の内輪540,560が偏心部42a,42bの外周面にしまりばめによって、また外輪541,561が中心孔50a,51aの内周面にすきまばめによってそれぞれ取り付けられている点に特徴がある。   As shown in FIGS. 4 and 9, in the speed reduction transmission mechanism 100 (partially shown) according to the second embodiment of the present invention, the inner rings 540 and 560 of the ball bearings 54 and 56 are formed of the eccentric portions 42a and 42b. It is characterized in that the outer ring 541 and 561 are attached to the outer peripheral surface by interference fit and the inner ring 50a, 51a is attached to the inner peripheral surface by clearance fit.

軸線Oと軸線O´との間の寸法Lは、回転軸線O及び軸線Oに直交する線上で一方の入力部材50の移動によって凸部50dの外周面500dが第1のハウジングエレメント20の凸部23の内周面23aに当接する状態において、外輪541が中心孔50aにモータ軸42の径方向に隙間をもって嵌合されているため、玉軸受54の外径Dと中心孔50aの内径dとの間の直径差d−D、及び玉軸受54のラジアル内部すきまの運転すきまGを加算した寸法{(d−D)+G}の半分以下の寸法{(d−D)+G}/2≧Lに設定されている。 The dimension L 1 between the axis O 1 and the axis O 1 ′ is such that the outer peripheral surface 500d of the convex portion 50d is moved to the first housing element by the movement of one input member 50 on the rotation axis O and the line orthogonal to the axis O 1. in contact with the state on the inner peripheral surface 23a of the protrusion 23 of the 20, because it is fitted with a gap in the radial direction of the motor shaft 42 the outer ring 541 to the center hole 50a, the outer diameter D 1 and the center hole of the ball bearing 54 the diameter difference d 1 -D 1, and dimensions obtained by adding the running clearance G 1 of the radial internal clearance of the ball bearing 54 is less than half the size of the {(d 1 -D 1) + G 1} between the inner diameter d 1 of 50a {(D 1 −D 1 ) + G 1 } / 2 ≧ L 1 is set.

すなわち、寸法Lとしては、玉軸受54の外径Dと中心孔50aの内径dとの間の直径差(d−D)、及び玉軸受54におけるラジアル内部すきまの運転すきまGを加算した寸法半分以下の寸法を一方の入力部材50がその初期状態から移動する前に、図5(a)及び(b)に示すように凸部50dの外周面500dが凸部23の内周面23aに当接する寸法に設定されている。 That is, as the dimension L 1 , the diameter difference (d 1 -D 1 ) between the outer diameter D 1 of the ball bearing 54 and the inner diameter d 1 of the center hole 50 a and the operating clearance G of the radial internal clearance in the ball bearing 54. Before one input member 50 moves from its initial state to a dimension that is less than half the dimension obtained by adding 1 , the outer peripheral surface 500d of the convex portion 50d is formed of the convex portion 23 as shown in FIGS. The dimension is set to abut against the inner peripheral surface 23a.

このため、一方の入力部材50がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、凸部50dの外周面500dが凸部23の内周面23aに当接し、この当接位置で一方の入力部材50から第1のハウジングエレメント20が径方向の荷重を受ける。これにより、一方の入力部材50からの遠心力Pによる荷重を第1のハウジングエレメント20における凸部23の内周面23aが集中して受けることになり、この遠心力Pによる荷重が玉軸受54(外輪541と転動体542と及び転動体542と内輪540と)に作用することが抑制される。 For this reason, when one input member 50 receives a load due to the centrifugal force P 1 generated based on the circular motion and moves in that direction, the outer peripheral surface 500d of the convex portion 50d abuts on the inner peripheral surface 23a of the convex portion 23. In this contact position, the first housing element 20 receives a radial load from one input member 50. This makes it possible to load due to centrifugal force P 1 from one of the input member 50 the inner circumferential surface 23a of the protrusion 23 of the first housing element 20 receives concentrated to the load applied by the centrifugal force P 1 is the ball Acting on the bearing 54 (the outer ring 541 and the rolling element 542 and the rolling element 542 and the inner ring 540) is suppressed.

軸線Oと軸線O´との間の寸法Lは、回転軸線O及び軸線Oに直交する線上で他方の入力部材51の移動によって凸部51dの外周面510dが第2のハウジングエレメント21の凸部27の内周面27aに当接する状態において、外輪561が中心孔51aにモータ軸42の径方向に隙間をもって嵌合されているため、玉軸受56の外径Dと中心孔50aの内径dとの間の直径差d−D、及び玉軸受54の内部すきまの運転すきまGを加算した寸法{(d−D)+G}の半分以下の寸法{(d−D)+G}/2≧Lに設定されている。 The dimension L 2 between the axis O 2 and the axis O 2 ′ is such that the outer peripheral surface 510 d of the convex portion 51 d is moved to the second housing element by the movement of the other input member 51 on the rotation axis O and the line orthogonal to the axis O 2. in 21 abuts state with the inner peripheral surface 27a of the protrusion 27 of, because it is fitted with a gap in the radial direction of the motor shaft 42 the outer ring 561 to the center hole 51a, the outer diameter D 3 of the ball bearing 56 and the center hole A dimension {less than half the dimension {(d 3 -D 3 ) + G 2 } of the diameter difference d 3 -D 3 between the inner diameter d 3 of 50a and the operating clearance G 2 of the internal clearance of the ball bearing 54 { (D 3 −D 3 ) + G 2 } / 2 ≧ L 2 is set.

すなわち、寸法Lとしては、玉軸受56の外径Dと中心孔51aの内径dとの間の直径差(d−D)、及び玉軸受56におけるラジアル内部すきまの運転すきまGを加算した寸法半分以下の寸法を他方の入力部材51がその初期状態から移動する前に、図5(a)及び(b)に示すように凸部51dの外周面510dが凸部27の内周面27aに当接する寸法に設定されている。 That is, as the dimension L 2 , the diameter difference (d 3 −D 3 ) between the outer diameter D 3 of the ball bearing 56 and the inner diameter d 3 of the center hole 51 a and the operating clearance G of the radial internal clearance in the ball bearing 56. Before the other input member 51 moves from its initial state to a dimension that is less than or equal to half the dimension obtained by adding 2 to the outer peripheral surface 510d of the convex portion 27 as shown in FIGS. 5 (a) and 5 (b). The dimension is set so as to contact the inner peripheral surface 27a.

このため、他方の入力部材51がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、凸部51dの外周面510dが凸部27の内周面27aに当接し、この当接位置で他方の入力部材51から第2のハウジングエレメント21が径方向の荷重を受ける。これにより、他方の入力部材51からの遠心力Pによる荷重を第2のハウジングエレメント21における凸部27の内周面27aが集中して受けることになり、この遠心力Pによる荷重が玉軸受56(外輪561と転動体562と及び転動体562と内輪560と)に作用することが抑制される。 Therefore, when you move in that direction under a load and the other of the input member 51 due to the centrifugal force P 2 generated on the basis of the circular motion, the outer circumferential surface 510d of the protrusion 51d comes into contact with the inner peripheral surface 27a of the protrusion 27 In this contact position, the second housing element 21 receives a radial load from the other input member 51. This makes it possible to receive the load caused by the centrifugal force P 2 from the other input member 51 the inner circumferential surface 27a is concentrated in the convex portion 27 in the second housing element 21, a load due to the centrifugal force P 2 is the ball Acting on the bearing 56 (the outer ring 561 and the rolling element 562 and the rolling element 562 and the inner ring 560) is suppressed.

[第2の実施の形態の効果]
以上説明した第2の実施の形態によれば、第1の実施の形態に示す効果と同様の効果が得られる。
[Effect of the second embodiment]
According to the second embodiment described above, the same effects as those shown in the first embodiment can be obtained.

[第3の実施の形態]
次に、本発明の第3の実施の形態に係るモータ回転力伝達装置における減速機構につき、図4,図5(a)・(b)及び図10を用いて説明する。図10は入力部材の支持状態を示す。図10において、図6と同一又は同等の部材については同一の符号を付し、詳細な説明は省略する。
[Third embodiment]
Next, a speed reduction mechanism in a motor torque transmission device according to a third embodiment of the present invention will be described with reference to FIGS. 4, 5A, 5B, and 10. FIG. FIG. 10 shows the support state of the input member. 10, the same or equivalent members as those in FIG. 6 are denoted by the same reference numerals, and detailed description thereof is omitted.

図4及び図10に示すように、本発明の第3の実施の形態に係る減速伝達機構200(一部を示す)は、玉軸受54,56の内輪540,560が偏心部42a,42bの外周面にすきまばめによって、また外輪541,561が中心孔50a,51aの内周面にしまりばめによってそれぞれ取り付けられている点に特徴がある。   As shown in FIGS. 4 and 10, in the speed reduction transmission mechanism 200 (partially shown) according to the third embodiment of the present invention, the inner rings 540, 560 of the ball bearings 54, 56 are eccentric parts 42 a, 42 b. It is characterized in that the outer rings 541 and 561 are attached to the outer peripheral surface by clearance fit and the inner peripheral surfaces of the center holes 50a and 51a by interference fit.

軸線Oと軸線O´との間の寸法Lは、回転軸線O及び軸線Oに直交する線上で一方の入力部材50の移動によって凸部50dの外周面500dが第1のハウジングエレメント20の凸部23の内周面23aに当接する状態において、内輪540が偏心部42aにモータ軸42の径方向に隙間をもって嵌合されているため、玉軸受54の内径Dと偏心部42aの外径dとの間の直径差D−d、及び玉軸受54のラジアル内部すきまの運転すきまGを加算した寸法{(D−d)+G}の半分以下の寸法{(D−d)+G}/2≧Lに設定されている。 The dimension L 1 between the axis O 1 and the axis O 1 ′ is such that the outer peripheral surface 500d of the convex portion 50d is moved to the first housing element by the movement of one input member 50 on the rotation axis O and the line orthogonal to the axis O 1. in contact with the state on the inner peripheral surface 23a of the protrusion 23 of the 20, because the inner ring 540 is fitted with a gap in the radial direction of the motor shaft 42 to the eccentric portion 42a, the eccentric portion 42a and the inner diameter D 2 of the ball bearing 54 Less than half of the dimension {(D 2 -d 2 ) + G 1 } obtained by adding the diameter difference D 2 -d 2 from the outer diameter d 2 and the radial internal clearance of the ball bearing 54 to the operating clearance G 1 {(D 2 −d 2 ) + G 1 } / 2 ≧ L 1 is set.

すなわち、寸法Lとしては、玉軸受54の内径Dと偏心部42aの外径dとの間の直径差(D−d)、及び玉軸受54におけるラジアル内部すきまの運転すきまGを加算した寸法の半分以下の寸法を一方の入力部材50がその初期状態から移動する前に、図5(a)及び(b)に示すように凸部50dの外周面500dが凸部23の内周面23aに当接する寸法に設定されている。 That is, as the dimension L 1 , the diameter difference (D 2 −d 2 ) between the inner diameter D 2 of the ball bearing 54 and the outer diameter d 2 of the eccentric portion 42 a and the operating clearance G of the radial internal clearance in the ball bearing 54. Before one input member 50 moves from its initial state to a dimension that is less than or equal to half of the dimension obtained by adding 1 , the outer peripheral surface 500d of the convex portion 50d is the convex portion 23 as shown in FIGS. 5 (a) and 5 (b). The dimension is set so as to abut against the inner peripheral surface 23a.

このため、一方の入力部材50がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、凸部50dの外周面500dが凸部23の内周面23aに当接し、この当接位置で一方の入力部材50から第1のハウジングエレメント20が径方向の荷重を受ける。これにより、一方の入力部材50からの遠心力Pによる荷重を第1のハウジングエレメント20における凸部23の内周面23aが集中して受けることになり、この遠心力Pによる荷重が玉軸受54(外輪541と転動体542と及び転動体542と内輪540と)に作用することが抑制される。 For this reason, when one input member 50 receives a load due to the centrifugal force P 1 generated based on the circular motion and moves in that direction, the outer peripheral surface 500d of the convex portion 50d abuts on the inner peripheral surface 23a of the convex portion 23. In this contact position, the first housing element 20 receives a radial load from one input member 50. This makes it possible to load due to centrifugal force P 1 from one of the input member 50 the inner circumferential surface 23a of the protrusion 23 of the first housing element 20 receives concentrated to the load applied by the centrifugal force P 1 is the ball Acting on the bearing 54 (the outer ring 541 and the rolling element 542 and the rolling element 542 and the inner ring 540) is suppressed.

軸線Oと軸線O´との間の寸法Lは、回転軸線O及び軸線Oに直交する線上で他方の入力部材51の移動によって凸部51dの外周面510dが第2のハウジングエレメント21の凸部27の内周面27aに当接する状態において、内輪560が偏心部42bにモータ軸42の径方向に隙間をもって嵌合されているため、玉軸受56の内径Dと偏心部42bの外径dとの間の直径差D−d、及び玉軸受56のラジアル内部すきまの運転すきまGを加算した寸法{(D−d)+G}の半分以下の寸法{(D−d)+G}/2≧Lに設定されている。 The dimension L 2 between the axis O 2 and the axis O 2 ′ is such that the outer peripheral surface 510 d of the convex portion 51 d is moved to the second housing element by the movement of the other input member 51 on the rotation axis O and the line orthogonal to the axis O 2. in 21 abuts state with the inner peripheral surface 27a of the protrusion 27 of, for inner ring 560 is fitted with a gap in the radial direction of the motor shaft 42 to the eccentric portion 42b, the eccentric portion 42b and the inner diameter D 4 of the ball bearing 56 Less than half of the dimension {(D 4 -d 4 ) + G 2 } obtained by adding the difference D 4 -d 4 between the outer diameter d 4 and the operating clearance G 2 of the radial internal clearance of the ball bearing 56. {(D 4 −d 4 ) + G 2 } / 2 ≧ L 2 is set.

すなわち、寸法Lとしては、玉軸受56の内径Dと偏心部42bの外径dとの間の直径差(D−d)、及び玉軸受56におけるラジアル内部すきまの運転すきまGを加算した寸法の半分以下の寸法を他方の入力部材51がその初期状態から移動する前に、図5(a)及び(b)に示すように凸部51dの外周面510dが凸部27の内周面27aに当接する寸法に設定されている。 That is, as the dimension L 2 , the diameter difference (D 4 −d 4 ) between the inner diameter D 4 of the ball bearing 56 and the outer diameter d 4 of the eccentric portion 42 b and the operating clearance G of the radial internal clearance in the ball bearing 56. less than half the size of the dimension plus 2 before the other input member 51 to move from its initial state, FIG. 5 (a) and the outer peripheral surface of the projection 51d, as shown in (b) 510 d convex portion 27 The dimension is set so as to be in contact with the inner peripheral surface 27a.

このため、他方の入力部材51がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、凸部51dの外周面510dが凸部27の内周面27aに当接し、この当接位置で他方の入力部材51から第2のハウジングエレメント21が径方向の荷重を受ける。これにより、他方の入力部材51からの遠心力Pによる荷重を第2のハウジングエレメント21における凸部27の内周面27aが集中して受けることになり、この遠心力Pによる荷重が玉軸受56(外輪561と転動体562と及び転動体562と内輪560と)に作用することが抑制される。 Therefore, when you move in that direction under a load and the other of the input member 51 due to the centrifugal force P 2 generated on the basis of the circular motion, the outer circumferential surface 510d of the protrusion 51d comes into contact with the inner peripheral surface 27a of the protrusion 27 In this contact position, the second housing element 21 receives a radial load from the other input member 51. This makes it possible to receive the load caused by the centrifugal force P 2 from the other input member 51 the inner circumferential surface 27a is concentrated in the convex portion 27 in the second housing element 21, a load due to the centrifugal force P 2 is the ball Acting on the bearing 56 (the outer ring 561 and the rolling element 562 and the rolling element 562 and the inner ring 560) is suppressed.

[第3の実施の形態の効果]
以上説明した第3の実施の形態によれば、第1の実施の形態に示す効果と同様の効果が得られる。
[Effect of the third embodiment]
According to the third embodiment described above, the same effects as those shown in the first embodiment can be obtained.

[第4の実施の形態]
次に、本発明の第4の実施の形態に係るモータ回転力伝達装置における減速機構につき、図4,図5(a)・(b)及び図11を用いて説明する。図11は入力部材の支持状態を示す。図11において、図6と同一又は同等の部材については同一の符号を付し、詳細な説明は省略する。
[Fourth embodiment]
Next, a speed reduction mechanism in a motor torque transmission device according to a fourth embodiment of the present invention will be described with reference to FIGS. 4, 5 </ b> A, 5 </ b> B, and 11. FIG. 11 shows the support state of the input member. 11, the same or equivalent members as in FIG. 6 are given the same reference numerals, and detailed descriptions thereof are omitted.

図4及び図11に示すように、本発明の第4の実施の形態に係る減速伝達機構300(一部を示す)は、玉軸受54,56の内輪540,560が偏心部42a,42bの外周面に、また外輪541,561が中心孔50a,51aの内周面にそれぞれしまりばめによって取り付けられている点に特徴がある。   As shown in FIGS. 4 and 11, the speed reduction transmission mechanism 300 (partially shown) according to the fourth embodiment of the present invention has inner rings 540 and 560 of ball bearings 54 and 56 of eccentric portions 42 a and 42 b. It is characterized in that the outer rings 541 and 561 are attached to the outer peripheral surface and the inner peripheral surfaces of the center holes 50a and 51a by an interference fit.

軸線Oと軸線O´との間の寸法Lは、回転軸線O及び軸線Oに直交する線上で一方の入力部材50の移動によって凸部50dの外周面500dが第1のハウジングエレメント20の凸部23の内周面23aに当接する状態において、玉軸受54の内部すきまの運転すきまGの半分以下の寸法G/2≧Lに設定されている。 The dimension L 1 between the axis O 1 and the axis O 1 ′ is such that the outer peripheral surface 500d of the convex portion 50d is moved to the first housing element by the movement of one input member 50 on the rotation axis O and the line orthogonal to the axis O 1. in contact with the state on the inner peripheral surface 23a of the protrusion 23 of the 20 it is set to a dimension G 1/2 ≧ L 1 less than half the operating clearance G 1 of the internal clearance of the ball bearing 54.

すなわち、寸法Lとしては、玉軸受54におけるラジアル内部すきまの運転すきまGの半分以下の寸法を一方の入力部材50がその初期状態から移動する前に、図5(a)及び(b)に示すように凸部50dの外周面500dが凸部23の内周面23aに当接する寸法に設定されている。 That is, the dimension L 1, before radial clearance one input member 50 to less than half the size of the operating clearance G 1 of the ball bearing 54 is moved from its initial state, FIG. 5 (a) and (b) As shown in FIG. 5, the outer peripheral surface 500d of the convex portion 50d is set to a size that comes into contact with the inner peripheral surface 23a of the convex portion 23.

このため、一方の入力部材50がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、凸部50dの外周面500dが凸部23の内周面23aに当接し、この当接位置で一方の入力部材50から第1のハウジングエレメント20が径方向の荷重を受ける。これにより、一方の入力部材50からの遠心力Pによる荷重を第1のハウジングエレメント20における凸部23の内周面23aが集中して受けることになり、この遠心力Pによる荷重が玉軸受54(外輪541と転動体542と及び転動体542と内輪540と)に作用することが抑制される。 For this reason, when one input member 50 receives a load due to the centrifugal force P 1 generated based on the circular motion and moves in that direction, the outer peripheral surface 500d of the convex portion 50d abuts on the inner peripheral surface 23a of the convex portion 23. In this contact position, the first housing element 20 receives a radial load from one input member 50. This makes it possible to load due to centrifugal force P 1 from one of the input member 50 the inner circumferential surface 23a of the protrusion 23 of the first housing element 20 receives concentrated to the load applied by the centrifugal force P 1 is the ball Acting on the bearing 54 (the outer ring 541 and the rolling element 542 and the rolling element 542 and the inner ring 540) is suppressed.

軸線Oと軸線O´との間の寸法Lは、回転軸線O及び軸線Oに直交する線上で他方の入力部材51の移動によって凸部51dの外周面510dが第2のハウジングエレメント21の凸部27の内周面27aに当接する状態において、玉軸受56の内部すきまの運転すきまGの半分以下の寸法G/2≧Lに設定されている。 The dimension L 2 between the axis O 2 and the axis O 2 ′ is such that the outer peripheral surface 510 d of the convex portion 51 d is moved to the second housing element by the movement of the other input member 51 on the rotation axis O and the line orthogonal to the axis O 2. in 21 abuts state with the inner peripheral surface 27a of the protrusion 27 of, and is set to a dimension G 2/2 ≧ L 2 less than half the operating clearance G 2 of internal clearance of the ball bearing 56.

すなわち、寸法Lとしては、玉軸受56におけるラジアル内部すきまの運転すきまGの半分以下の寸法を他方の入力部材51がその初期状態から移動する前に、図5(a)及び(b)に示すように凸部51dの外周面510dが凸部27の内周面27aに当接する寸法に設定されている。 That is, as the dimension L 2 , before the other input member 51 moves from its initial state, the dimension less than half of the radial internal clearance operating clearance G 2 in the ball bearing 56 is shown in FIGS. As shown in FIG. 5, the outer peripheral surface 510d of the convex portion 51d is set to a size that comes into contact with the inner peripheral surface 27a of the convex portion 27.

このため、他方の入力部材51がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、凸部51dの外周面510dが凸部27の内周面27aに当接し、この当接位置で他方の入力部材51から第2のハウジングエレメント21が径方向の荷重を受ける。これにより、他方の入力部材51からの遠心力Pによる荷重を第2のハウジングエレメント21における凸部27の内周面27aが集中して受けることになり、この遠心力Pによる荷重が玉軸受56(外輪561と転動体562と及び転動体562と内輪560と)に作用することが抑制される。 Therefore, when you move in that direction under a load and the other of the input member 51 due to the centrifugal force P 2 generated on the basis of the circular motion, the outer circumferential surface 510d of the protrusion 51d comes into contact with the inner peripheral surface 27a of the protrusion 27 In this contact position, the second housing element 21 receives a radial load from the other input member 51. This makes it possible to receive the load caused by the centrifugal force P 2 from the other input member 51 the inner circumferential surface 27a is concentrated in the convex portion 27 in the second housing element 21, a load due to the centrifugal force P 2 is the ball Acting on the bearing 56 (the outer ring 561 and the rolling element 562 and the rolling element 562 and the inner ring 560) is suppressed.

[第4の実施の形態の効果]
以上説明した第4の実施の形態によれば、第1の実施の形態に示す効果と同様の効果が得られる。
[Effect of the fourth embodiment]
According to the fourth embodiment described above, the same effects as those shown in the first embodiment can be obtained.

以上、本発明の減速機構及びこれを備えたモータ回転力伝達装置を上記の実施の形態に基づいて説明したが、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能であり、例えば次に示すような変形も可能である。   As mentioned above, although the deceleration mechanism of this invention and the motor rotational force transmission apparatus provided with this were demonstrated based on said embodiment, this invention is not limited to said embodiment, It deviates from the summary. The present invention can be carried out in various modes as long as it is not, for example, the following modifications are possible.

(1)上記実施の形態では、軸線Oから回転軸線Oまでの距離と軸線Oから回転軸線Oまでの距離とを等しく、かつ軸線Oと軸線Oとの間の回転軸線O回りの距離を等しくするように一方の偏心部42aと他方の偏心部42bとがモータ軸42の外周面に設けられているとともに、電動モータ4のモータ軸42にその軸線(回転軸線O)回りに互いに等間隔(180°)をもって離間する部位で一対の入力部材50,51が配置されている場合について説明したが、本発明はこれに限定されず、入力部材の個数は適宜変更することができる。 (1) In the above embodiment, the distance from the axis O 1 to the rotation axis O is equal to the distance from the axis O 2 to the rotation axis O, and around the rotation axis O between the axis O 1 and the axis O 2. One eccentric portion 42a and the other eccentric portion 42b are provided on the outer peripheral surface of the motor shaft 42 so as to equalize the distance between the motor shaft 42 and the motor shaft 42 of the electric motor 4 about its axis (rotation axis O). Although the case where the pair of input members 50 and 51 are arranged at portions spaced apart from each other at equal intervals (180 °) has been described, the present invention is not limited to this, and the number of input members can be changed as appropriate. .

すなわち、入力部材がn(n≧3)個の場合には、電動モータ(モータ軸)の軸線に直交する仮想面において、第1の偏心部の軸線,第2の偏心部の軸線,…,第nの偏心部の軸線がモータ軸の軸線回りの一方向に順次配置されているものとすると、各偏心部の軸線からモータ軸の軸線までの距離を等しく、かつ第1の偏心部,第2の偏心部,…,第nの偏心部のうち互いに隣り合う2つの偏心部の軸線とモータ軸の軸線とを結ぶ線分でつくる挟角を360°/nとするように各偏心部がモータ軸の外周囲に配置されるとともに、n個の入力部材がモータ軸にその軸線回りに360°/nの間隔をもって離間する部位で配置される。   That is, when there are n (n ≧ 3) input members, in the virtual plane orthogonal to the axis of the electric motor (motor shaft), the axis of the first eccentric part, the axis of the second eccentric part,. Assuming that the axis of the nth eccentric part is sequentially arranged in one direction around the axis of the motor shaft, the distance from the axis of each eccentric part to the axis of the motor shaft is equal, and the first eccentric part, Each of the eccentric portions is formed so that the included angle formed by a line segment connecting the axes of the two eccentric portions adjacent to each other among the two eccentric portions,..., The n-th eccentric portion and the axis of the motor shaft is 360 ° / n. Arranged on the outer periphery of the motor shaft, n input members are arranged on the motor shaft at portions spaced apart by 360 ° / n around the axis.

例えば、入力部材が3個の場合には、モータ軸の軸線に直交する仮想面において、第1の偏心部の軸線,第2の偏心部の軸線,第3の偏心部の軸線がモータ軸の軸線回りの一方向に順次配置されているものとすると、各偏心部の軸線からモータ軸の軸線までの距離を等しく、かつ第1の偏心部,第2の偏心部,第3の偏心部のうち互いに隣り合う2つの偏心部の軸線とモータ軸の軸線とを結ぶ線分でつくる挟角を120°とするように各偏心部がモータ軸の外周囲に配置されるとともに、3個の入力部材がモータ軸にその軸線回りに120°の間隔をもって離間する部位で配置される。   For example, when there are three input members, the axis of the first eccentric part, the axis of the second eccentric part, and the axis of the third eccentric part are on the motor axis on a virtual plane orthogonal to the axis of the motor shaft. If it is sequentially arranged in one direction around the axis, the distance from the axis of each eccentric part to the axis of the motor shaft is equal, and the first eccentric part, the second eccentric part, and the third eccentric part Each eccentric part is arranged on the outer periphery of the motor shaft so that the included angle formed by the line connecting the axis of two eccentric parts adjacent to each other and the axis of the motor shaft is 120 °, and three inputs The members are arranged on the motor shaft at portions spaced apart by 120 ° around the axis.

(2)上記実施の形態では、駆動源としてエンジン102及び電動モータ4を併用した四輪駆動車101に適用する場合について説明したが、本発明はこれに限定されず、電動モータのみを駆動源とした四輪駆動車又は二輪駆動車である電気自動車にも適用することができる。また、本発明は、エンジン,電動モータによる第1の駆動軸と電動モータによる第2の駆動軸とを有する四輪駆動車にも上記実施の形態と同様に適用可能である。 (2) In the above embodiment, the case where the present invention is applied to the four-wheel drive vehicle 101 using both the engine 102 and the electric motor 4 as the drive source has been described. However, the present invention is not limited to this, and only the electric motor is used as the drive source. The present invention can also be applied to an electric vehicle that is a four-wheel drive vehicle or a two-wheel drive vehicle. The present invention can also be applied to a four-wheel drive vehicle having an engine, a first drive shaft by an electric motor, and a second drive shaft by an electric motor, as in the above embodiment.

(3)上記実施の形態では、入力部材50,51の中心孔50a,51aの内周面と偏心部42a,42bの外周面との間にそれぞれ深溝玉軸受である玉軸受54,56を第1の軸受として用い、偏心部42a,42bに対して入力部材50,51が回転可能に支持されている場合について説明したが、本発明はこれに限定されず、深溝玉軸受に代えて深溝玉軸受以外の玉軸受やころ軸受を第1の軸受として用いてもよい。このような玉軸受やころ軸受は、例えばアンギュラ玉軸受,針状ころ軸受,棒状ころ軸受,円筒ころ軸受,円すいころ軸受,自動調心ころ軸受などが挙げられる。また、本発明の第1の軸受としては、転がり軸受に代えて滑り軸受を用いてもよい。 (3) In the above embodiment, the ball bearings 54 and 56, which are deep groove ball bearings, are provided between the inner peripheral surfaces of the center holes 50a and 51a of the input members 50 and 51 and the outer peripheral surfaces of the eccentric portions 42a and 42b, respectively. Although the case where the input members 50 and 51 are rotatably supported with respect to the eccentric portions 42a and 42b has been described, the present invention is not limited to this, and the deep groove ball bearing is used instead of the deep groove ball bearing. A ball bearing or a roller bearing other than the bearing may be used as the first bearing. Examples of such ball bearings and roller bearings include angular contact ball bearings, needle roller bearings, rod roller bearings, cylindrical roller bearings, tapered roller bearings, and self-aligning roller bearings. Moreover, as a 1st bearing of this invention, it may replace with a rolling bearing and may use a sliding bearing.

例えば、図12〜図15に示すように、第1の軸受として円筒ころ軸受500(内輪501,外輪502,転動体503)及び円筒ころ軸受600(内輪601,外輪602,転動体603)を用いた場合、一方の入力部材50が偏心部42aに円筒ころ軸受500を介して、また他方の入力部材51が偏心部42bに円筒ころ軸受600を介してそれぞれ回転可能に支持される。この場合、図12は図6に、図13は図9に、図14は図10に、また図15は図11にそれぞれ対応する。図12〜図15においては、上記実施の形態に示す玉軸受54に代えて円筒ころ軸受500が一方の入力部材50の中心孔50aの内周面と偏心部42aの外周面との間に、また上記実施の形態に示す玉軸受56に代えて円筒ころ軸受600が他方の入力部材51の中心孔51aの内周面と偏心部42bの外周面との間にそれぞれ介在して配置される。   For example, as shown in FIGS. 12 to 15, a cylindrical roller bearing 500 (inner ring 501, outer ring 502, rolling element 503) and a cylindrical roller bearing 600 (inner ring 601, outer ring 602, rolling element 603) are used as the first bearing. In this case, one input member 50 is rotatably supported by the eccentric portion 42a via the cylindrical roller bearing 500, and the other input member 51 is rotatably supported by the eccentric portion 42b via the cylindrical roller bearing 600. In this case, FIG. 12 corresponds to FIG. 6, FIG. 13 corresponds to FIG. 9, FIG. 14 corresponds to FIG. 10, and FIG. 12-15, instead of the ball bearing 54 shown in the above embodiment, a cylindrical roller bearing 500 is provided between the inner peripheral surface of the center hole 50a of one input member 50 and the outer peripheral surface of the eccentric portion 42a. Further, instead of the ball bearing 56 shown in the above embodiment, a cylindrical roller bearing 600 is disposed between the inner peripheral surface of the center hole 51a of the other input member 51 and the outer peripheral surface of the eccentric portion 42b.

(4)上記実施の形態では、出力部材53の外周面であって、ねじ部53aと頭部53bとの間に介在する部位に、入力部材50のピン挿通孔50bの内周面に接触可能な第2の軸受としての針状ころ軸受55が、また入力部材51のピン挿通孔51bの内周面に接触可能な第2の軸受としての針状ころ軸受57がそれぞれ取り付けられている場合について説明したが、本発明はこれに限定されず、針状ころ軸受に代えて針状ころ軸受以外のころ軸受や玉軸受を用いてもよい。このような玉軸受やころ軸受は、例えば深溝玉軸受,アンギュラ玉軸受,円筒ころ軸受,棒状ころ軸受,円すいころ軸受,自動調心ころ軸受などが挙げられる。また、本発明の第2の軸受としては、転がり軸受に代えて滑り軸受を用いてもよい。 (4) In the above-described embodiment, the outer peripheral surface of the output member 53 can be brought into contact with the inner peripheral surface of the pin insertion hole 50b of the input member 50 at a portion interposed between the screw portion 53a and the head portion 53b. When the needle roller bearing 55 as the second bearing and the needle roller bearing 57 as the second bearing that can contact the inner peripheral surface of the pin insertion hole 51b of the input member 51 are respectively attached. Although demonstrated, this invention is not limited to this, It may replace with a needle roller bearing and may use roller bearings and ball bearings other than a needle roller bearing. Examples of such ball bearings and roller bearings include deep groove ball bearings, angular ball bearings, cylindrical roller bearings, rod roller bearings, tapered roller bearings, and self-aligning roller bearings. Further, as the second bearing of the present invention, a sliding bearing may be used instead of the rolling bearing.

(5)上記実施の形態では、一対の入力部材50,51がモータ軸42の外周囲にその回転軸線Oの回りに等間隔をもって配置されている場合、すなわちモータ軸42の回転軸線(第1の軸線)Oと自転力付与部材52の軸線(第4の軸線)とが一致する場合に第2の軸線Oと第3の軸線O´との間の寸法を、また第2の軸線Oと第3の軸線O´との間の寸法をそれぞれ所定の寸法に設定して実施される例について説明したが、本発明はこれに限定されず、単一の入力部材がモータ軸の外周囲に配置されている場合、又は複数の入力部材がモータ軸の外周囲にその回転軸線の回りに不等間隔をもって配置されている場合、すなわち第1の軸線と第4の軸線とが一致しない場合でも、第2の軸線と第3の軸線との間の寸法を所定の寸法(軸受の外径と中心孔の内径との間の直径差、軸受の内径と偏心部の外径との間の直径差、及び軸受のラジアル内部すきまの運転すきまを加算した寸法の半分以下の寸法)に設定して上記実施の形態と同様に実施することが可能である。 (5) In the above embodiment, when the pair of input members 50 and 51 are arranged around the rotation axis O at equal intervals around the outer periphery of the motor shaft 42, that is, the rotation axis of the motor shaft 42 (first The axis between the second axis O 1 and the third axis O 1 ′ when the axis O and the axis (fourth axis) of the rotation force applying member 52 coincide with each other, and the second axis Although an example has been described in which the dimension between O 2 and the third axis O 2 ′ is set to a predetermined dimension, the present invention is not limited to this, and a single input member is a motor shaft. Are arranged around the outer periphery of the motor shaft, or when a plurality of input members are arranged around the rotational axis of the motor shaft at unequal intervals, that is, the first axis and the fourth axis are Even if they do not match, the dimension between the second axis and the third axis is the predetermined dimension. Method (less than half of the dimension including the difference in diameter between the outer diameter of the bearing and the inner diameter of the center hole, the difference in diameter between the inner diameter of the bearing and the outer diameter of the eccentric part, and the operating clearance of the radial internal clearance of the bearing) It is possible to carry out similarly to the above-described embodiment.

(6)上記実施の形態では、外歯歯車機構として歯車である外歯歯車を用い、内歯歯車機構として歯車である内歯歯車を用いた減速機構及びこれを備えたモータ回転力伝達装置についての実施例について説明したが、本発明はこれに限定されず、例えば、外歯歯車機構として外周部にエピトロコイド等のトロコイド系曲線で構成される複数の波形を有する円板状の曲線板を用い、内歯歯車機構として複数の外ピンを用いてもよい。この場合、外歯歯車機構の歯数とは曲線板の波形の数であり、内歯歯車機構の歯数とは外ピンの数であることは言うまでもない。このような曲線板を用い、外ピンを用いた減速機構としてはサイクロイド減速機が含まれることは言うまでもない。 (6) In the above embodiment, a reduction mechanism using an external gear that is a gear as the external gear mechanism, and an internal gear that is a gear as the internal gear mechanism, and a motor torque transmission device including the reduction mechanism However, the present invention is not limited to this. For example, a disk-shaped curved plate having a plurality of waveforms composed of trochoidal curves such as epitrochoid on the outer peripheral portion as an external gear mechanism. A plurality of external pins may be used as the internal gear mechanism. In this case, it goes without saying that the number of teeth of the external gear mechanism is the number of waveforms of the curved plate, and the number of teeth of the internal gear mechanism is the number of external pins. It goes without saying that a cycloid speed reducer is included as a speed reduction mechanism using such a curved plate and using an outer pin.

1…モータ回転力伝達装置、2…ハウジング、20…第1のハウジングエレメント、20a…シャフト挿通孔、21…第2のハウジングエレメント、21a…内フランジ、22…第3のハウジングエレメント、22a…シャフト挿通孔、22b…円筒部、23…凸部、23a…内周面、23b…外周面、24…シール部材、25…円環部材、27…凸部、27a…内周面、27b…外周面、28…凸部、28a…外周面、29…凸部、29a…外周面、3…リヤディファレンシャル、30…デフケース、30a…収容空間、30b…シャフト挿通孔、30c…フランジ、300c…ピン取付孔、31…ピニオンギヤシャフト、32…ピニオンギヤ、33…サイドギヤ、33a…シャフト連結孔、34,35…玉軸受、36…ピン、4…電動モータ、40…ステータ、41…ロータ、42…モータ軸、42a,42b…偏心部、43…ボルト、44…玉軸受、45…スリーブ、46…玉軸受、47…レゾルバ、470…ステータ、471…ロータ、5…減速伝達機構、50,51…入力部材、50a,51a…中心孔、50b,51b…ピン挿通孔、50c,51c…外歯、50d…凸部、500d…外周面、51d…凸部、510d…外周面、50e,51e…凸部、500e,510e…外周面、50f,51f…凸部、500f,510f…内周面、52…自転力付与部材、52a…第1の嵌合部、52b…第2の嵌合部、52c…内歯、52d,52e…凸部、520d,520e…内周面、53…出力部材、53a…ねじ部、53b…頭部、54…玉軸受、540…内輪、541…外輪、542…転動体、55…針状ころ軸受、550…レース、551…針状ころ、56…玉軸受、560…内輪、561…外輪、562…転動体、57…針状ころ軸受、570…レース、571…針状ころ、58…スペーサ、100…減速伝達機構、101…四輪駆動車、102…エンジン、103…トランスアクスル、104…前輪、105…後輪、106…リヤアクスルシャフト、107…フロントアクスルシャフト、200,300…減速伝達機構、500…円筒ころ軸受、501…内輪、502…外輪、503…転動体、600…円筒ころ軸受、601…内輪、602…外輪、603…転動体、O…回転軸線、L,O,O´,O,O´…軸線、δ,δ,δ…偏心量、G,G…運転すきま、P,P…遠心力 DESCRIPTION OF SYMBOLS 1 ... Motor rotational force transmission apparatus, 2 ... Housing, 20 ... 1st housing element, 20a ... Shaft penetration hole, 21 ... 2nd housing element, 21a ... Inner flange, 22 ... 3rd housing element, 22a ... Shaft Insertion hole, 22b ... cylindrical portion, 23 ... convex portion, 23a ... inner peripheral surface, 23b ... outer peripheral surface, 24 ... sealing member, 25 ... annular member, 27 ... convex portion, 27a ... inner peripheral surface, 27b ... outer peripheral surface 28 ... convex portion, 28a ... outer peripheral surface, 29 ... convex portion, 29a ... outer peripheral surface, 3 ... rear differential, 30 ... differential case, 30a ... accommodation space, 30b ... shaft insertion hole, 30c ... flange, 300c ... pin mounting hole 31 ... Pinion gear shaft, 32 ... Pinion gear, 33 ... Side gear, 33a ... Shaft coupling hole, 34, 35 ... Ball bearing, 36 ... Pin, 4 ... Electric motor , 40 ... stator, 41 ... rotor, 42 ... motor shaft, 42a, 42b ... eccentric part, 43 ... bolt, 44 ... ball bearing, 45 ... sleeve, 46 ... ball bearing, 47 ... resolver, 470 ... stator, 471 ... Rotor, 5 ... Deceleration transmission mechanism, 50, 51 ... Input member, 50a, 51a ... Center hole, 50b, 51b ... Pin insertion hole, 50c, 51c ... External teeth, 50d ... Convex part, 500d ... Outer peripheral surface, 51d ... Convex Part, 510d ... outer peripheral surface, 50e, 51e ... convex part, 500e, 510e ... outer peripheral surface, 50f, 51f ... convex part, 500f, 510f ... inner peripheral surface, 52 ... autorotation force imparting member, 52a ... first fitting Part, 52b ... second fitting part, 52c ... inner teeth, 52d, 52e ... convex part, 520d, 520e ... inner peripheral surface, 53 ... output member, 53a ... screw part, 53b ... head, 54 ... ball bearing 540 ... inner ring, 41 ... outer ring, 542 ... rolling element, 55 ... needle roller bearing, 550 ... race, 551 ... needle roller, 56 ... ball bearing, 560 ... inner ring, 561 ... outer ring, 562 ... rolling element, 57 ... needle roller bearing 570 ... Race, 571 ... Needle roller, 58 ... Spacer, 100 ... Deceleration transmission mechanism, 101 ... 4-wheel drive vehicle, 102 ... Engine, 103 ... Transaxle, 104 ... Front wheel, 105 ... Rear wheel, 106 ... Rear axle shaft , 107: Front axle shaft, 200, 300 ... Reduction transmission mechanism, 500 ... Cylindrical roller bearing, 501 ... Inner ring, 502 ... Outer ring, 503 ... Rolling element, 600 ... Cylindrical roller bearing, 601 ... Inner ring, 602 ... Outer ring, 603 ... rolling elements, O ... rotation axis, L, O 1, O 1 ', O 2, O 2' ... axis, δ 1, δ 2, δ ... eccentricity, G 1, G 2 ... operating clearance, P 1, 2 ... centrifugal force

Claims (8)

第1の軸線の回りに回転し、前記第1の軸線から偏心する第2の軸線を中心軸線とする偏心部を有する回転軸と、
前記回転軸の外周囲に配置され、第3の軸線を中心軸線とする中心孔、及び前記第3の軸線の回りに等間隔をもって並列する複数の貫通孔を有するとともに、前記中心孔の内周面と前記偏心部の外周面との間に軸受を介在させ、かつ前記第3の軸線を中心軸線とするピッチ円をもつ外歯歯車機構からなる入力部材と、
前記入力部材にその径方向に嵌合して配置され、前記外歯歯車機構の歯数よりも大きい歯数をもって前記入力部材に噛合するとともに、第4の軸線を中心軸線とするピッチ円をもつ内歯歯車機構からなる自転力付与部材を有する円筒状のハウジングと、
前記ハウジングの前記自転力付与部材によって前記入力部材に付与された自転力を受けて出力し、前記複数の貫通孔を挿通する出力部材とを備え、
前記軸受が外輪及び内輪を有するとともに、前記外輪が前記中心孔に、また前記内輪が前記偏心部にそれぞれ前記回転軸の径方向に隙間をもって嵌合する場合に、前記第2の軸線と前記第3の軸線との間の寸法は、前記第2の軸線及び前記第4の軸線に直交する線上で前記入力部材が移動して前記ハウジングに当接する状態において、前記軸受の外径と前記中心孔の内径との間の直径差、前記軸受の内径と前記偏心部の外径との間の直径差、及び前記軸受のラジアル内部すきまの運転すきまを加算した寸法の半分以下の寸法に設定されている
減速機構。
A rotating shaft having an eccentric portion that rotates around a first axis and has a second axis that is eccentric from the first axis as a central axis;
A central hole disposed around the rotation axis and having a third axis as a central axis; and a plurality of through holes arranged in parallel at equal intervals around the third axis; and an inner periphery of the central hole An input member comprising an external gear mechanism having a pitch circle with a third axis serving as a central axis, with a bearing interposed between a surface and an outer peripheral surface of the eccentric portion;
The input member is disposed so as to be fitted in the radial direction thereof, meshes with the input member with a number of teeth larger than the number of teeth of the external gear mechanism, and has a pitch circle having a fourth axis as a central axis. A cylindrical housing having a rotation force imparting member made of an internal gear mechanism;
An output member that receives and outputs the rotation force applied to the input member by the rotation force application member of the housing, and includes an output member that is inserted through the plurality of through holes;
When the bearing has an outer ring and an inner ring, and the outer ring is fitted into the center hole and the inner ring is fitted into the eccentric portion with a gap in the radial direction of the rotating shaft, the second axis and the second ring 3 between the outer diameter of the bearing and the center hole in a state where the input member moves on the line orthogonal to the second axis and the fourth axis and abuts against the housing. The diameter difference between the inner diameter of the bearing, the difference in diameter between the inner diameter of the bearing and the outer diameter of the eccentric part, and the radial internal clearance of the bearing is set to be less than half the dimension. There is a deceleration mechanism.
前記入力部材は、前記第3の軸線を中心軸線とする円環状の第1の凸部を有し、
前記ハウジングは、前記第1の凸部に嵌合し、かつ前記第4の軸線を中心軸線とする円環状の第2の凸部を有する請求項1に記載の減速機構。
The input member has an annular first convex portion having the third axis as a central axis,
2. The speed reduction mechanism according to claim 1, wherein the housing has an annular second convex portion that fits into the first convex portion and has the fourth axis as a central axis.
前記入力部材は、前記第1の凸部の嵌合面が外周面で形成され、
前記ハウジングは、前記第2の凸部の嵌合面が内周面で形成されている請求項2に記載の減速機構。
In the input member, a fitting surface of the first convex portion is formed on an outer peripheral surface,
The speed reduction mechanism according to claim 2, wherein the housing has a fitting surface of the second convex portion formed on an inner peripheral surface.
前記入力部材は、前記第1の凸部の嵌合面が内周面で形成され、
前記ハウジングは、前記第2の凸部の嵌合面が外周面で形成されている請求項2に記載の減速機構。
In the input member, a fitting surface of the first convex portion is formed on an inner peripheral surface,
The speed reduction mechanism according to claim 2, wherein the housing has a fitting surface of the second convex portion formed on an outer peripheral surface.
前記入力部材は、前記第3の軸線方向に突出して前記第1の凸部が形成され、
前記ハウジングは、前記第4の軸線方向に突出して前記第2の凸部が形成されている請求項3又は4に記載の減速機構。
The input member protrudes in the third axial direction to form the first convex portion,
5. The speed reduction mechanism according to claim 3, wherein the housing protrudes in the fourth axial direction to form the second convex portion.
前記入力部材は、前記第3の軸線と直交する方向に突出して前記第1の凸部が形成され、
前記ハウジングは、前記第4の軸線と直交する方向に突出して前記第2の凸部が形成されている請求項3に記載の減速機構。
The input member protrudes in a direction perpendicular to the third axis to form the first convex portion,
The speed reduction mechanism according to claim 3, wherein the housing protrudes in a direction perpendicular to the fourth axis and the second convex portion is formed.
モータ回転力を発生させる電動モータと、
前記電動モータの前記モータ回転力を減速して駆動力を駆動力伝達対象に伝達する減速伝達機構とを備えたモータ回転力伝達装置において、
前記減速伝達機構は、請求項1乃至6のいずれか1項に記載の減速機構である
モータ回転力伝達装置。
An electric motor for generating motor rotational force;
A motor rotational force transmission device comprising a deceleration transmission mechanism that decelerates the motor rotational force of the electric motor and transmits the driving force to a driving force transmission target;
The speed reduction transmission mechanism is the speed reduction mechanism according to any one of claims 1 to 6. A motor rotational force transmission device.
前記減速伝達機構は、前記駆動力伝達対象としての差動機構に前記駆動力を伝達する請求項7に記載のモータ回転力伝達装置。   The motor rotation force transmission device according to claim 7, wherein the deceleration transmission mechanism transmits the driving force to a differential mechanism as the driving force transmission target.
JP2012250087A 2012-01-11 2012-11-14 Deceleration mechanism and motor rotational force transmission device having the same Expired - Fee Related JP6003557B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012250087A JP6003557B2 (en) 2012-03-06 2012-11-14 Deceleration mechanism and motor rotational force transmission device having the same
CN201210580343.0A CN103206494B (en) 2012-01-11 2012-12-27 Reducing gear and possess the motor torque transmission device of this reducing gear
CN201210579818.4A CN103206517B (en) 2012-01-11 2012-12-27 Speed Reduction Mechanism, And Motor Torque Transmission Device Including The Same
US13/732,523 US9005067B2 (en) 2012-01-11 2013-01-02 Speed reduction mechanism, and motor torque transmission device including the same
US13/732,534 US8734283B2 (en) 2012-01-11 2013-01-02 Speed reduction mechanism, and motor torque transmission device including the same
EP13150486.2A EP2615330B1 (en) 2012-01-11 2013-01-08 Speed reduction mechanism, and motor torque transmission device including the same
EP13150466.4A EP2615329B1 (en) 2012-01-11 2013-01-08 Speed reduction mechanism, and motor torque transmission device including the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012049239 2012-03-06
JP2012049239 2012-03-06
JP2012250087A JP6003557B2 (en) 2012-03-06 2012-11-14 Deceleration mechanism and motor rotational force transmission device having the same

Publications (2)

Publication Number Publication Date
JP2013213575A JP2013213575A (en) 2013-10-17
JP6003557B2 true JP6003557B2 (en) 2016-10-05

Family

ID=49587028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012250087A Expired - Fee Related JP6003557B2 (en) 2012-01-11 2012-11-14 Deceleration mechanism and motor rotational force transmission device having the same

Country Status (1)

Country Link
JP (1) JP6003557B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101923977B1 (en) * 2012-01-09 2018-11-30 한국전자통신연구원 Target for Generating Ion and Treatment Apparatus Using the Same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087607A (en) * 2016-11-29 2018-06-07 武蔵精密工業株式会社 Transmission device for vehicle
DE102018202950A1 (en) * 2017-03-06 2018-10-25 Nabtesco Corporation SPEED REDUCERS, DRIVE WHEEL AND TROLLEY

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1051999A (en) * 1996-08-06 1998-02-20 Sumitomo Heavy Ind Ltd Geared motor adopting inner-gearing planetary gear structure
JP2007218407A (en) * 2006-02-20 2007-08-30 Ntn Corp Vehicle driving unit
JP5069975B2 (en) * 2007-08-24 2012-11-07 Ntn株式会社 In-wheel motor drive device
JP5374215B2 (en) * 2008-07-02 2013-12-25 Ntn株式会社 Cycloid reducer, in-wheel motor drive device, and vehicle motor drive device
JP2011240772A (en) * 2010-05-17 2011-12-01 Ntn Corp In-wheel motor drive device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101923977B1 (en) * 2012-01-09 2018-11-30 한국전자통신연구원 Target for Generating Ion and Treatment Apparatus Using the Same

Also Published As

Publication number Publication date
JP2013213575A (en) 2013-10-17

Similar Documents

Publication Publication Date Title
EP2615330B1 (en) Speed reduction mechanism, and motor torque transmission device including the same
JP5910378B2 (en) Deceleration mechanism and motor rotational force transmission device having the same
JP6152680B2 (en) Deceleration mechanism and motor rotational force transmission device having the same
JP5817247B2 (en) Motor rotational force transmission device
US20140128192A1 (en) Motor driving force transmission system
US8721484B2 (en) Speed reduction mechanism, and motor torque transmission device including the same
JP2013007443A (en) Speed reduction mechanism and motor rotation force transmission device equipped with the same
JP5811335B2 (en) Bearing device, reduction mechanism provided with the same, and motor torque transmission device
JP6003557B2 (en) Deceleration mechanism and motor rotational force transmission device having the same
JP2013117284A (en) Speed reduction mechanism, and motor torque transmission device including the same
JP2013142447A (en) Speed reduction mechanism, and motor torque transmission device including the same
JP2014052063A (en) Speed reducer, and motor rotating force transmission device equipped therewith
JP5849783B2 (en) Deceleration mechanism and motor rotational force transmission device having the same
JP6028386B2 (en) Deceleration mechanism and motor rotational force transmission device having the same
JP2013108538A (en) Speed reduction mechanism and motor drive force transmission device having the same
JP2014001813A (en) Speed reduction mechanism and motor rotational force transmission device including the same
JP2014016017A (en) Speed reduction mechanism and motor rotational force transmission device including the same
JP2014005891A (en) Deceleration mechanism and motor torque transmission device including the same
JP2014001814A (en) Speed reduction mechanism and motor rotational force transmission device including the same
JP2014005892A (en) Deceleration mechanism and motor torque transmission device including the same
JP2014016019A (en) Speed reduction mechanism and motor rotational force transmission device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151021

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 6003557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees