JP2014016017A - Speed reduction mechanism and motor rotational force transmission device including the same - Google Patents

Speed reduction mechanism and motor rotational force transmission device including the same Download PDF

Info

Publication number
JP2014016017A
JP2014016017A JP2012155817A JP2012155817A JP2014016017A JP 2014016017 A JP2014016017 A JP 2014016017A JP 2012155817 A JP2012155817 A JP 2012155817A JP 2012155817 A JP2012155817 A JP 2012155817A JP 2014016017 A JP2014016017 A JP 2014016017A
Authority
JP
Japan
Prior art keywords
input member
axis
rolling contact
rotational force
speed reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012155817A
Other languages
Japanese (ja)
Inventor
Keita Nomura
啓太 野村
Kunihiko Suzuki
邦彦 鈴木
Hiroshi Takuno
博 宅野
Yasushi Kadota
康 門田
Ken Yamamoto
健 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2012155817A priority Critical patent/JP2014016017A/en
Publication of JP2014016017A publication Critical patent/JP2014016017A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

PROBLEM TO BE SOLVED: To provide a speed reduction mechanism capable of achieving extension of the service life of a bearing, and a motor rotational force transmission device including the same.SOLUTION: A speed reduction transmission mechanism 5 comprises: a motor shaft 42 having an eccentric part 42a; an input member 50 rotatably supported by the outer peripheral surface of the eccentric part 42a via a ball bearing 54 and comprising an external gear having a plurality of pin insertion holes 50b arranged around the axis at equal intervals; a rotational force application member 52 engaged with the input member 50 and comprising an internal gear in which the number of teeth thereof is larger than that of the external gear; and a plurality of output members 53 receiving the rotational force applied to the input member 50 by the rotational force application member 52, outputting the rotational force to a differential case 30 as the rotational force for the same, and inserted into the plurality of pin insertion holes 50b. The input member 50 has annular projections 50e, 50f projecting in the axial direction. The circumferential surfaces of the projections 50e, 50f are formed as rolling-contact surfaces 500e, 500f which are in rolling-contact with the differential case 30.

Description

本発明は、例えば駆動源として電動モータを有する電気自動車に用いて好適な減速機構及びこれを備えたモータ回転力伝達装置に関する。   The present invention relates to a speed reduction mechanism suitable for use in, for example, an electric vehicle having an electric motor as a drive source, and a motor rotational force transmission device including the same.

従来のモータ回転力伝達装置には、モータ回転力を発生させる電動モータ、及びこの電動モータのモータ回転力に基づく駆動力を差動機構に伝達する減速伝達機構を備え、自動車に搭載されたものがある(例えば特許文献1参照)。   A conventional motor rotational force transmission device includes an electric motor that generates a motor rotational force, and a deceleration transmission mechanism that transmits a driving force based on the motor rotational force of the electric motor to a differential mechanism. (See, for example, Patent Document 1).

電動モータは、車載バッテリの電力によって回転するモータ軸を有し、減速伝達機構の軸線上に配置されている。   The electric motor has a motor shaft that is rotated by the electric power of the in-vehicle battery, and is disposed on the axis of the deceleration transmission mechanism.

減速伝達機構は、電動モータのモータ軸にスプライン嵌合する軸部(偏心部付き回転軸)、及びこの偏心部付き回転軸の周囲に位置する一対の減速伝達部を有し、電動モータと差動機構(デフケース)との間に介在して配置され、かつモータ軸及びデフケースに連結されている。そして、減速伝達機構は、電動モータ及び差動機構と共にハウジング内に収容されている。   The deceleration transmission mechanism has a shaft portion (rotating shaft with an eccentric portion) that is spline-fitted to the motor shaft of the electric motor, and a pair of deceleration transmission portions that are positioned around the rotating shaft with the eccentric portion. It is disposed between the moving mechanism (difference case) and connected to the motor shaft and the difference case. The deceleration transmission mechanism is accommodated in the housing together with the electric motor and the differential mechanism.

以上の構成により、電動モータのモータ軸が車載バッテリの電力によって回転し、これに伴いモータ回転力が電動モータから減速伝達機構を介して差動機構に伝達され、この差動機構から左右の車輪に配分される。   With the above configuration, the motor shaft of the electric motor is rotated by the electric power of the in-vehicle battery, and accordingly, the motor rotational force is transmitted from the electric motor to the differential mechanism via the speed reduction transmission mechanism, and the left and right wheels are transmitted from this differential mechanism. To be distributed.

ところで、この種のモータ回転力伝達装置の減速伝達部は、電動モータのモータ軸の回転(偏心部付き回転軸の回転)によって公転運動を行う円板状の一対の公転部材、これら公転部材に自転力を付与する複数の外ピン、及びこれら外ピンの内側で公転部材の自転力を差動機構に回転力として出力する複数の内ピンを有している。   By the way, the deceleration transmission part of this type of motor torque transmission device is a pair of disk-shaped revolving members that revolve by rotation of the motor shaft of the electric motor (rotation of the rotating shaft with an eccentric part). There are a plurality of outer pins for applying a rotation force, and a plurality of inner pins for outputting the rotation force of the revolution member as a rotational force to the differential mechanism inside the outer pins.

一対の公転部材は、その中心軸線方向に開口する中心孔、及びこの中心孔の中心軸線の回りに等間隔をもって並列する複数のピン挿通孔を有し、偏心部付き回転軸の偏心部に軸受(カム側の軸受)を介して回転可能に支持されている。   The pair of revolving members have a center hole that opens in the direction of the center axis, and a plurality of pin insertion holes that are arranged at equal intervals around the center axis of the center hole, and are supported by the eccentric part of the rotary shaft with the eccentric part. It is rotatably supported via a (cam-side bearing).

複数の外ピンは、モータ軸の軸線回りに等間隔をもって配置され、かつ減速伝達機構のハウジングに取り付けられている。   The plurality of outer pins are arranged at equal intervals around the axis of the motor shaft and are attached to the housing of the speed reduction transmission mechanism.

複数の内ピンは、公転部材における複数のピン挿通孔を挿通し、モータ軸の軸線回りに等間隔をもって配置され、かつデフケースに取り付けられている。複数の内ピンには、一対の公転部材における複数のピン挿通孔の内周面との間の接触抵抗を低減するための軸受(ピン側の軸受)が取り付けられている。   The plurality of inner pins are inserted through a plurality of pin insertion holes in the revolving member, arranged at equal intervals around the axis of the motor shaft, and attached to the differential case. A bearing (pin side bearing) for reducing contact resistance between the inner peripheral surfaces of the plurality of pin insertion holes in the pair of revolution members is attached to the plurality of inner pins.

特開2007−218407号公報JP 2007-218407 A

特許文献1に示すモータ回転力伝達装置においては、複数の外ピンを用意する必要があるばかりか、公転部材の外周部を複雑な形状にする必要があり、不経済である。   In the motor rotational force transmission device shown in Patent Document 1, it is not only necessary to prepare a plurality of outer pins, but the outer peripheral portion of the revolving member needs to have a complicated shape, which is uneconomical.

そこで、公転部材を外歯歯車とするとともに、公転部材に自転力を付与するための自転力付与部材を内歯歯車とし、この内歯歯車の歯数を外歯歯車の歯数よりも大きい歯数として上記した不経済を解消することが考えられる。   Therefore, the revolution member is an external gear, and the rotation force imparting member for imparting a rotation force to the revolution member is an internal gear, and the number of teeth of the internal gear is larger than the number of teeth of the external gear. It is conceivable to eliminate the above-mentioned uneconomical as a number.

しかし、このような外歯歯車と内歯歯車とによる減速伝達機構を自動車のモータ回転力伝達装置に用いると、公転部材である外歯歯車の公転速度が比較的高くなるため、出力時に公転部材からカム側の軸受に遠心力による荷重が加わり、カム側の軸受の寿命が低下するという問題が生じる。   However, if such a reduction gear transmission mechanism using external gears and internal gears is used in a motor torque transmission device of an automobile, the revolution speed of the external gear, which is a revolution member, becomes relatively high. Therefore, a load due to centrifugal force is applied to the cam-side bearing, resulting in a problem that the life of the cam-side bearing is reduced.

従って、本発明の目的は、軸受の高寿命化を図ることができる減速機構及びこれを備えたモータ回転力伝達装置を提供することにある。   Accordingly, an object of the present invention is to provide a speed reduction mechanism capable of extending the life of a bearing and a motor rotational force transmission device including the speed reduction mechanism.

本発明は、上記目的を達成するために、(1)〜(8)の減速機構及びこれを備えたモータ回転力伝達装置を提供する。   In order to achieve the above object, the present invention provides a speed reduction mechanism (1) to (8) and a motor torque transmission device including the speed reduction mechanism.

(1)偏心部を有する回転軸と、前記回転軸の前記偏心部の外周面に軸受を介して回転可能に支持され、軸線回りに等間隔をもって並列する複数の貫通孔を有する外歯歯車からなる入力部材と、前記入力部材に噛合し、前記外歯歯車の歯数よりも大きい歯数をもつ内歯歯車からなる自転力付与部材と、前記自転力付与部材によって前記入力部材に付与された自転力を受けて出力対象にその回転力として出力し、前記複数の貫通孔をそれぞれ挿通する複数の出力部材とを備え、前記入力部材は、軸線方向に突出する円環状の凸部を有し、前記凸部の周面が前記出力対象又は前記自転力付与部材を接触対象として前記接触対象側との間で転がり接触する転がり接触面で形成されている減速機構。 (1) From a rotating shaft having an eccentric portion, and an external gear having a plurality of through-holes supported rotatably on the outer peripheral surface of the eccentric portion of the rotating shaft via a bearing and arranged in parallel at equal intervals around the axis An input member that is engaged with the input member, and a rotation force applying member that is an internal gear having a number of teeth larger than the number of teeth of the external gear, and the rotation force applying member is applied to the input member. A plurality of output members that receive a rotation force and output to the output object as rotational force, and are inserted through the plurality of through holes, respectively, and the input member has an annular protrusion protruding in the axial direction. The reduction mechanism in which the peripheral surface of the convex part is formed of a rolling contact surface that makes rolling contact with the output target or the rotation force applying member as a contact target and the contact target side.

(2)上記(1)に記載の減速機構において、前記入力部材は、前記転がり接触面が前記接触対象側からアキシアル荷重を受けて前記軸受に予圧として付与するための曲面からなる。 (2) In the reduction mechanism according to (1), the input member includes a curved surface on which the rolling contact surface receives an axial load from the contact target side and is applied to the bearing as a preload.

(3)上記(1)又は(2)に記載の減速機構において、前記入力部材は、前記転がり接触面と前記接触対象との間に円環状の可動部材を介在させ、前記可動部材側から軸線方向に弾性部材による弾性力を受ける位置に配置されている。 (3) In the speed reduction mechanism according to (1) or (2), the input member includes an annular movable member interposed between the rolling contact surface and the contact target, and an axis line from the movable member side. It arrange | positions in the position which receives the elastic force by an elastic member in the direction.

(4)上記(3)に記載の減速機構において、前記入力部材は、前記転がり接触面を凸面とし、前記可動部材に設けられたテーパ面又は凹面に前記転がり接触面を転がり接触させる。 (4) In the speed reduction mechanism according to (3), the input member has the rolling contact surface as a convex surface, and the rolling contact surface is brought into rolling contact with a tapered surface or a concave surface provided on the movable member.

(5)上記(1)乃至(4)のいずれかに記載の減速機構において、前記入力部材は、前記転がり接触面が前記複数の出力部材の径方向外側に前記凸部の内周面として配置されている。 (5) In the speed reduction mechanism according to any one of (1) to (4), the input member has the rolling contact surface disposed as an inner peripheral surface of the convex portion on a radially outer side of the plurality of output members. Has been.

(6)上記(1)乃至(5)のいずれかに記載の減速機構において、前記入力部材は、前記転がり接触面が前記複数の出力部材の径方向内側に前記凸部の外周面として配置されている。 (6) In the speed reduction mechanism according to any one of (1) to (5), in the input member, the rolling contact surface is disposed as an outer peripheral surface of the convex portion on a radially inner side of the plurality of output members. ing.

(7)上記(1)乃至(6)のいずれかに記載の減速機構において、前記複数の出力部材は、それぞれが前記入力部材を介して対向する前記出力対象の構成要素としての一対の鍔部を挿通し、かつ前記一対の鍔部を連結する連結部材によって形成されている。 (7) In the speed reduction mechanism according to any one of (1) to (6), the plurality of output members are a pair of flanges as components of the output target that are opposed to each other via the input member. And a connecting member that connects the pair of collars.

(8)モータ回転力を発生させる電動モータと、前記電動モータの前記モータ回転力を減速して駆動力を出力する減速機構とを備えたモータ回転力伝達装置において、前記減速機構は、上記(1)乃至(7)のいずれかに記載の減速機構であるモータ回転力伝達装置。 (8) In a motor rotational force transmission device comprising: an electric motor that generates a motor rotational force; and a speed reduction mechanism that decelerates the motor rotational force of the electric motor and outputs a driving force. 1) A motor rotational force transmission device that is a reduction mechanism according to any one of (7).

本発明によると、軸受の高寿命化を図ることができる。   According to the present invention, the life of the bearing can be increased.

本発明の第1の実施の形態に係るモータ回転力伝達装置が搭載された車両の概略を説明するために示す平面図。The top view shown in order to demonstrate the outline of the vehicle carrying the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るモータ回転力伝達装置の全体を説明するために示す断面図。Sectional drawing shown in order to demonstrate the whole motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るモータ回転力伝達装置の減速伝達機構を説明するために模式化して示す断面図。FIG. 3 is a cross-sectional view schematically showing the deceleration transmission mechanism of the motor torque transmission device according to the first embodiment of the present invention. 本発明の第1の実施の形態に係るモータ回転力伝達装置の要部(図2のM部分)を拡大して示す断面図。Sectional drawing which expands and shows the principal part (M part of FIG. 2) of the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention. (a)及び(b)は、本発明の第1の実施の形態に係るモータ回転力伝達装置の入力部材と接触対象との間の転がり接触点の軌跡を説明するために示す断面図。(a)は一方の入力部材の転がり接触点の軌跡を、また(b)は他方の入力部材の転がり接触点の軌跡をそれぞれ示す。(A) And (b) is sectional drawing shown in order to demonstrate the locus | trajectory of the rolling contact point between the input member and contact object of the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention. (A) shows the locus of the rolling contact point of one input member, and (b) shows the locus of the rolling contact point of the other input member. 本発明の第2の実施の形態に係るモータ回転力伝達装置の要部を拡大して示す断面図。Sectional drawing which expands and shows the principal part of the motor rotational force transmission apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第1の実施の形態及び第2の実施の形態に係るモータ回転力伝達装置の要部を変形例として示す断面図。Sectional drawing which shows the principal part of the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention and 2nd Embodiment as a modification.

[第1の実施の形態]
以下、本発明の第1の実施の形態に係る減速機構及びこれを備えたモータ回転力伝達装置につき、図面を参照して詳細に説明する。
[First embodiment]
Hereinafter, a speed reduction mechanism according to a first embodiment of the present invention and a motor torque transmission device including the speed reduction mechanism will be described in detail with reference to the drawings.

図1は四輪駆動車の概略を示す。図1に示すように、四輪駆動車101は、駆動源をエンジンとする前輪側の動力系、及び駆動源を電動モータとする後輪側の動力系が用いられ、モータ回転力伝達装置1,エンジン102,トランスアクスル103,一対の前輪104及び一対の後輪105を備えている。   FIG. 1 schematically shows a four-wheel drive vehicle. As shown in FIG. 1, a four-wheel drive vehicle 101 uses a front-wheel-side power system that uses a drive source as an engine, and a rear-wheel-side power system that uses a drive source as an electric motor. , An engine 102, a transaxle 103, a pair of front wheels 104, and a pair of rear wheels 105.

モータ回転力伝達装置1は、四輪駆動車101における後輪側の動力系に配置され、かつ四輪駆動車101の車体(図示せず)に支持されている。   The motor rotational force transmission device 1 is disposed in a power system on the rear wheel side of the four-wheel drive vehicle 101 and is supported by a vehicle body (not shown) of the four-wheel drive vehicle 101.

そして、モータ回転力伝達装置1は、電動モータ4(後述)のモータ回転力に基づく駆動力を一対の後輪105に伝達する。これにより、電動モータ4のモータ回転力が減速伝達機構5及びリヤディファレンシャル3(共に後述)を介してリヤアクスルシャフト106(一対の後輪105)に出力され、一対の後輪105が駆動される。モータ回転力伝達装置1等の詳細については後述する。   The motor rotational force transmission device 1 transmits a driving force based on the motor rotational force of the electric motor 4 (described later) to the pair of rear wheels 105. As a result, the motor rotational force of the electric motor 4 is output to the rear axle shaft 106 (a pair of rear wheels 105) via the deceleration transmission mechanism 5 and the rear differential 3 (both described later), and the pair of rear wheels 105 are driven. Details of the motor rotational force transmission device 1 and the like will be described later.

エンジン102は、四輪駆動車101における前輪側の動力系に配置されている。これにより、エンジン102の駆動力がトランスアクスル103を介してフロントアクスルシャフト107(一対の前輪104)に出力され、一対の前輪104が駆動される。   The engine 102 is disposed in the power system on the front wheel side of the four-wheel drive vehicle 101. As a result, the driving force of the engine 102 is output to the front axle shaft 107 (a pair of front wheels 104) via the transaxle 103, and the pair of front wheels 104 are driven.

(モータ回転力伝達装置1の全体構成)
図2はモータ回転力伝達装置の全体を示す。図2に示すように、モータ回転力伝達装置1は、リヤアクスルシャフト106(図1に示す)の軸線を軸線O(第1の軸線)とするハウジング2と、モータ回転力に基づく駆動力を後輪105(図1に示す)に配分するリヤディファレンシャル3と、リヤディファレンシャル3を作動させるためのモータ回転力を発生させる電動モータ4と、電動モータ4のモータ回転力を減速して駆動力をリヤディファレンシャル3に伝達する減速伝達機構5とから大略構成されている。
(Whole structure of the motor torque transmission device 1)
FIG. 2 shows the entire motor torque transmission device. As shown in FIG. 2, the motor rotational force transmission device 1 includes a housing 2 having an axis O 1 ( first axis) as an axis of a rear axle shaft 106 (shown in FIG. 1), and a driving force based on the motor rotational force. The rear differential 3 distributed to the rear wheels 105 (shown in FIG. 1), the electric motor 4 that generates a motor rotational force for operating the rear differential 3, and the motor rotational force of the electric motor 4 is decelerated to reduce the driving force. It is mainly composed of a deceleration transmission mechanism 5 that transmits to the rear differential 3.

(ハウジング2の構成)
ハウジング2は、後述する自転力付与部材52の他、リヤディファレンシャル3を収容する第1のハウジングエレメント20、電動モータ4を収容する第2のハウジングエレメント21、及び第2のハウジングエレメント21の片側開口部(第1のハウジングエレメント20側の開口部とは反対側の開口部)を閉塞する第3のハウジングエレメント22を有し、車体に配置されている。
(Configuration of housing 2)
The housing 2 includes a rotation force applying member 52 to be described later, a first housing element 20 that houses the rear differential 3, a second housing element 21 that houses the electric motor 4, and a one-side opening of the second housing element 21. And a third housing element 22 that closes a portion (an opening on the side opposite to the opening on the first housing element 20 side).

第1のハウジングエレメント20は、ハウジング2の軸線方向一方側(図2では左側)に配置され、全体が第2のハウジングエレメント21側に開口する段状の有底円筒部材によって形成されている。第1のハウジングエレメント20の底部には、リヤアクスルシャフト106(図1に示す)を挿通させるシャフト挿通孔20a、及びシャフト挿通孔20aの内周面でその径方向に突出する内フランジ20bが設けられている。内フランジ20bには、両フランジ端面のうち第2のハウジングエレメント21側のフランジ端面及びシャフト挿通孔20aの内周面に開口する円環状の切り欠き20cが設けられている。第1のハウジングエレメント20の開口端面には、第2のハウジングエレメント21側に突出する円環状の凸部23が一体に設けられている。凸部23の外周面は、第1のハウジングエレメント20の最大外径よりも小さい外径をもち、かつ軸線O(第4の軸線)を中心軸線とする円周面で形成されている。第1のハウジングエレメント20の内周面は、リヤアクスルシャフト106の外周面との間にシャフト挿通孔20aを封止するシール部材24が介在して配置されている。図2において、軸線Oは軸線Oに一致して描かれている。 The first housing element 20 is disposed on one side in the axial direction of the housing 2 (left side in FIG. 2), and is entirely formed by a stepped bottomed cylindrical member that opens to the second housing element 21 side. The bottom of the first housing element 20 is provided with a shaft insertion hole 20a through which the rear axle shaft 106 (shown in FIG. 1) is inserted, and an inner flange 20b protruding in the radial direction on the inner peripheral surface of the shaft insertion hole 20a. ing. The inner flange 20b is provided with an annular notch 20c that opens on the flange end surface on the second housing element 21 side of both flange end surfaces and the inner peripheral surface of the shaft insertion hole 20a. On the opening end surface of the first housing element 20, an annular convex portion 23 that protrudes toward the second housing element 21 is integrally provided. The outer peripheral surface of the convex portion 23 is formed by a circumferential surface having an outer diameter smaller than the maximum outer diameter of the first housing element 20 and having the axis O 4 (fourth axis) as the central axis. The inner peripheral surface of the first housing element 20 is disposed between the outer peripheral surface of the rear axle shaft 106 and a seal member 24 that seals the shaft insertion hole 20a. In FIG. 2, the axis O 4 is drawn to coincide with the axis O 1 .

第2のハウジングエレメント21は、ハウジング2の軸線方向中間部に配置され、全体が軸線Oの両方向に開口する無底円筒部材によって形成されている。第2のハウジングエレメント21の片側開口部(第1のハウジングエレメント20側の開口部)には、電動モータ4と減速伝達機構5との間に介在する段状の内フランジ21aが一体に設けられている。内フランジ21aの内周面にはレース取付用の円環部材25が取り付けられている。第2のハウジングエレメント21の片側開口端面(第1のハウジングエレメント20側の開口端面)には、第1のハウジングエレメント20側に突出する円環状の凸部27が一体に設けられている。凸部27の外周面は、第2のハウジングエレメント21の最大外径よりも小さく、かつ凸部23の外径と略同一の外径をもち、軸線Oを中心軸線とする円周面で形成されている。 The second housing element 21 is disposed at an intermediate portion in the axial direction of the housing 2, and is entirely formed of a bottomless cylindrical member that opens in both directions of the axial line O 4 . A stepped inner flange 21 a interposed between the electric motor 4 and the speed reduction transmission mechanism 5 is integrally provided at one side opening of the second housing element 21 (opening on the first housing element 20 side). ing. An annular member 25 for attaching a race is attached to the inner peripheral surface of the inner flange 21a. An annular convex portion 27 that protrudes toward the first housing element 20 is integrally provided on one side opening end surface of the second housing element 21 (opening end surface on the first housing element 20 side). The outer peripheral surface of the convex portion 27 is a circumferential surface having an outer diameter that is smaller than the maximum outer diameter of the second housing element 21 and substantially the same as the outer diameter of the convex portion 23 and that has the axis O 4 as the central axis. Is formed.

第3のハウジングエレメント22は、ハウジング2の軸線方向他方側(図2では右側)に配置され、全体が第2のハウジングエレメント21側に開口する段状の有底円筒部材によって形成されている。第3のハウジングエレメント22の底部には、リヤアクスルシャフト106を挿通させるシャフト挿通孔22aが設けられている。シャフト挿通孔22aの内側開口周縁には、電動モータ4側に突出するステータ取付用の円筒部22bが一体に設けられている。第3のハウジングエレメント22の内周面は、リヤアクスルシャフト106の外周面との間にシャフト挿通孔22aを封止するシール部材28が介在して配置されている。第3のハウジングエレメント22には、玉軸受46(外輪461)の減速伝達機構5と反対側への移動を規制する円環状の段差面22cが設けられている。   The third housing element 22 is disposed on the other side in the axial direction of the housing 2 (right side in FIG. 2), and is entirely formed of a stepped bottomed cylindrical member that opens to the second housing element 21 side. A shaft insertion hole 22 a through which the rear axle shaft 106 is inserted is provided at the bottom of the third housing element 22. A cylindrical portion 22b for attaching a stator that protrudes toward the electric motor 4 is integrally provided on the inner opening periphery of the shaft insertion hole 22a. The inner peripheral surface of the third housing element 22 is disposed between the outer peripheral surface of the rear axle shaft 106 and a seal member 28 that seals the shaft insertion hole 22a. The third housing element 22 is provided with an annular step surface 22 c that restricts the movement of the ball bearing 46 (outer ring 461) to the side opposite to the speed reduction transmission mechanism 5.

(リヤディファレンシャル3の構成)
リヤディファレンシャル3は、デフケース(接触対象)30,ピニオンギヤシャフト31,一対のピニオンギヤ32及び一対のサイドギヤ33を有するベベルギヤ式の差動機構からなり、モータ回転力伝達装置1の一方側(図2では左側)に配置されている。
(Configuration of rear differential 3)
The rear differential 3 includes a differential mechanism of a bevel gear type having a differential case (contact object) 30, a pinion gear shaft 31, a pair of pinion gears 32, and a pair of side gears 33, and one side (left side in FIG. 2) of the motor rotational force transmission device 1. ).

これにより、デフケース30の回転力がピニオンギヤシャフト31からピニオンギヤ32を介してサイドギヤ33に配分され、さらにサイドギヤ33からリヤアクスルシャフト106(図1に示す)を介して左右の後輪105(図1に示す)に伝達される。   As a result, the rotational force of the differential case 30 is distributed from the pinion gear shaft 31 to the side gear 33 via the pinion gear 32, and from the side gear 33 to the left and right rear wheels 105 (shown in FIG. 1) via the rear axle shaft 106 (shown in FIG. 1). ).

一方、左右の後輪105間に駆動抵抗差が発生すると、デフケース30の回転力がピニオンギヤ32の自転によって左右の後輪105に差動配分される。   On the other hand, when a driving resistance difference occurs between the left and right rear wheels 105, the rotational force of the differential case 30 is differentially distributed to the left and right rear wheels 105 by the rotation of the pinion gear 32.

デフケース30は、軸線O(第5の軸線)上に配置され、かつ第1のハウジングエレメント20に玉軸受34を介して、また電動モータ4のモータ軸42に玉軸受35を介して回転可能に支持されている。そして、デフケース30は、電動モータ4のモータ回転力に基づく駆動力を減速伝達機構5から受けて軸線Oの回りに回転する。図2において、軸線Oは軸線Oに一致して描かれている。 The differential case 30 is disposed on the axis O 5 (fifth axis), and is rotatable via the ball bearing 34 on the first housing element 20 and via the ball bearing 35 on the motor shaft 42 of the electric motor 4. It is supported by. The differential case 30 receives the driving force based on the motor rotational force of the electric motor 4 from the deceleration transmission mechanism 5 and rotates around the axis O 5 . In FIG. 2, the axis O 5 is drawn to coincide with the axis O 1 .

デフケース30には、差動機構部(ピニオンギヤシャフト31,ピニオンギヤ32及びサイドギヤ33)を収容する収容空間30a、及び収容空間30aに連通して左右のリヤアクスルシャフト106をそれぞれ連結する一対のシャフト挿通孔30bが設けられている。   The differential case 30 includes a housing space 30a that houses the differential mechanism (pinion gear shaft 31, pinion gear 32, and side gear 33), and a pair of shaft insertion holes 30b that communicate with the housing space 30a and connect the left and right rear axle shafts 106 respectively. Is provided.

また、デフケース30には、減速伝達機構5に対向する第1の鍔部としての円環状のフランジ30cが一体に設けられている。デフケース30の軸線方向一方側端部には玉軸受34(内輪340)のモータ軸42側への移動を規制する円環状の段差面30dが、また軸線方向他方側端部には減速伝達機構5側に開口する円環状の凹孔30eがそれぞれ設けられている。凹孔30e内には、玉軸受35(外輪351)のデフケース30側への移動を規制する円環状の段差面300eが設けられている。   In addition, the differential case 30 is integrally provided with an annular flange 30 c as a first flange portion facing the speed reduction transmission mechanism 5. An annular step surface 30d that restricts the movement of the ball bearing 34 (inner ring 340) toward the motor shaft 42 is provided at one end in the axial direction of the differential case 30, and the speed reduction transmission mechanism 5 is provided at the other end in the axial direction. An annular concave hole 30e that opens to the side is provided. An annular step surface 300e that restricts the movement of the ball bearing 35 (outer ring 351) toward the differential case 30 is provided in the recessed hole 30e.

フランジ30cには、軸線Oの回りに等間隔をもって並列する複数(本実施の形態では6個)のピン挿通孔300cが設けられている。フランジ30cのモータ側端面部には、複数の出力部材53(後述)の径方向外側で電動モータ4側に軸線O(O)に沿って開口する円環状の凹溝301cが設けられている。また、フランジ30cのモータ側端面部には、複数の出力部材53の径方向内側で電動モータ4側に軸線Oに沿って開口する円環状の凹溝302cが設けられている。フランジ30cの電動モータ4側には、そのフランジ端面に対向する第2の鍔部としてのフランジ30fが配置されている。 The flange 30c, the pin insertion hole 300c of a plurality (six in this embodiment) in parallel at equal intervals about the axis O 1 is provided. An annular concave groove 301c that opens along the axis O 5 (O 1 ) is provided on the motor-side end surface of the flange 30c on the electric motor 4 side outside the plurality of output members 53 (described later). Yes. Further, the motor side end surface of the flange 30c, the concave groove 302c of the annular opening along the axis O 1 at the radially inner side of the plurality of output members 53 to the electric motor 4 side. On the electric motor 4 side of the flange 30c, a flange 30f is disposed as a second flange portion facing the flange end surface.

一方の凹溝301cには、フランジ30cと一方の入力部材50(後述)との間に介在する円環状の可動部材70が先端部を露出させて進退可能に配置されている。可動部材70の露出端部には、その外周面及び先端面一部に跨る部位を切り欠くことにより、所定の曲率半径R=R(図4に示す)をもつ円環状の凹面70aが設けられている。可動部材70の背面と一方の凹溝301cの溝底との間には、軸線Oに沿う電動モータ4側へのばね力(弾性力)f=f(図4に示す)をもつ円環状の弾性部材71が介在して配置されている。弾性部材71は、ばね力f=fを一方の入力部材50に付与する。弾性部材71としては、例えば断面波形状の板ばねが用いられる。断面波形状の板ばねに代えてウェーブワッシャを用いてもよい。 In one concave groove 301c, an annular movable member 70 interposed between the flange 30c and one input member 50 (described later) is disposed so as to be able to advance and retract with the tip portion exposed. The exposed end portion of the movable member 70 is provided with an annular concave surface 70a having a predetermined radius of curvature R = R 1 (shown in FIG. 4) by cutting out a portion extending over the outer peripheral surface and a part of the front end surface. It has been. A circle having a spring force (elastic force) f = f 1 (shown in FIG. 4) toward the electric motor 4 along the axis O 1 between the back surface of the movable member 70 and the groove bottom of the one concave groove 301c. An annular elastic member 71 is interposed. The elastic member 71 applies a spring force f = f 1 to one input member 50. As the elastic member 71, for example, a leaf spring having a corrugated cross section is used. A wave washer may be used instead of the leaf spring having a corrugated cross section.

他方の凹溝302cには、フランジ30cと一方の入力部材50との間に介在する円環状の可動部材72が先端部を露出させて進退可能に配置されている。可動部材72の露出端部には、その内周周面及び先端面一部に跨る部位を切り欠くことにより、所定の曲率半径R=R(R=R:図4に示す)をもつ円環状の凹面72aが設けられている。可動部材72の背面と一方の凹溝302cの溝底との間には、弾性部材71と同様に、軸線Oに沿う電動モータ4側へのばね力(弾性力)f=f(図4に示す)をもつ円環状の弾性部材73が介在して配置されている。弾性部材73は、ばね力f=fを一方の入力部材50に付与する。弾性部材73としては、例えば断面波形状の板ばねが用いられる。断面波形状の板ばねに代えてウェーブワッシャを用いてもよい。 In the other concave groove 302c, an annular movable member 72 interposed between the flange 30c and the one input member 50 is disposed so as to be able to advance and retreat with the tip portion exposed. A predetermined radius of curvature R = R 2 (R 2 = R 1 : shown in FIG. 4) is formed in the exposed end portion of the movable member 72 by notching a portion extending over a part of the inner peripheral surface and the tip surface. An annular concave surface 72a is provided. Between the rear and the groove bottom of one groove 302c of the movable member 72, similarly to the elastic member 71, the spring force of the electric motor 4 side along the axis O 1 (the elastic force) f = f 1 (Fig. 4), an annular elastic member 73 having an interposition is interposed. The elastic member 73 applies a spring force f = f 2 to one input member 50. As the elastic member 73, for example, a leaf spring having a cross-sectional wave shape is used. A wave washer may be used instead of the leaf spring having a corrugated cross section.

フランジ30fは、モータ軸42の軸線上でフランジ30cに複数の出力部材53によって連結され、かつモータ軸42の外周面に円環状のスペーサ37及び玉軸受38を介して回転可能に支持され、全体が段状の円環部材によって形成されている。フランジ30fには、モータ軸42を挿通させ、かつスペーサ37及び玉軸受38を収容する収容孔300fが設けられている。また、フランジ30fには、軸線Oの回りに等間隔をもって並列する複数(本実施の形態では6個)のピン挿通孔301f、及び玉軸受38(外輪381)の電動モータ4側への移動を収容孔300f内で規制する円環状の凸部302fが設けられている。フランジ30fのディファレンシャル側端面部には、複数の出力部材53(後述)の径方向外側でリヤディファレンシャル3側に軸線O(O)に沿って開口する円環状の凹溝303fが設けられている。また、フランジ30fのディファレンシャル側端面部には、複数の出力部材53の径方向内側でリヤディファレンシャル3側に軸線Oに沿って開口する円環状の凹溝304fが設けられている。 The flange 30f is connected to the flange 30c by a plurality of output members 53 on the axis of the motor shaft 42, and is rotatably supported on the outer peripheral surface of the motor shaft 42 via an annular spacer 37 and a ball bearing 38. Is formed by a stepped annular member. The flange 30f is provided with an accommodation hole 300f through which the motor shaft 42 is inserted and the spacer 37 and the ball bearing 38 are accommodated. Furthermore, the flange 30f movement of the pin insertion hole 301f of the plurality (six in this embodiment) in parallel at equal intervals about the axis O 1, and the electric motor 4 side of the ball bearing 38 (outer ring 381) An annular convex portion 302f that restricts the inside of the housing hole 300f is provided. An annular concave groove 303f that opens along the axis O 5 (O 1 ) on the rear differential 3 side on the radially outer side of a plurality of output members 53 (described later) is provided on the differential-side end surface portion of the flange 30f. Yes. In addition, an annular concave groove 304 f that opens along the axis O 1 is provided on the rear differential 3 side on the radial inner side of the plurality of output members 53 on the differential side end surface portion of the flange 30 f.

一方の凹溝303fには、フランジ30fと他方の入力部材51(後述)との間に介在する円環状の可動部材74が先端部を露出させて進退可能に配置されている。可動部材74の露出端部には、その外周面及び先端面一部に跨る部位を切り欠くことにより、所定の曲率半径R=R(図4に示す)をもつ円環状の凹面74aが設けられている。可動部材74の背面と一方の凹溝303fの溝底との間には、軸線Oに沿うリヤディファレンシャル3側へのばね力(弾性力)f=f(図4に示す)をもつ円環状の弾性部材75が介在して配置されている。弾性部材75は、ばね力f=fを他方の入力部材51に付与する。弾性部材75としては、例えば断面波形状の板ばねが用いられる。断面波形状の板ばねに代えてウェーブワッシャを用いてもよい。 An annular movable member 74 interposed between the flange 30f and the other input member 51 (described later) is disposed in one concave groove 303f so as to be able to advance and retreat with its tip portion exposed. The exposed end of the movable member 74 is provided with an annular concave surface 74a having a predetermined radius of curvature R = R 3 (shown in FIG. 4) by cutting out a portion extending over a part of the outer peripheral surface and the tip surface. It has been. A circle having a spring force (elastic force) f = f 3 (shown in FIG. 4) toward the rear differential 3 along the axis O 1 between the back surface of the movable member 74 and the groove bottom of the one concave groove 303f. An annular elastic member 75 is interposed. The elastic member 75 applies a spring force f = f 3 to the other input member 51. As the elastic member 75, for example, a plate spring having a cross-sectional wave shape is used. A wave washer may be used instead of the leaf spring having a corrugated cross section.

他方の凹溝304fには、フランジ30fと他方の入力部材51との間に介在する円環状の可動部材76が先端部を露出させて進退可能に配置されている。可動部材76の露出端部には、その内周周面及び先端面一部に跨る部位を切り欠くことにより、所定の曲率半径R=R(R=R:図4に示す)をもつ円環状の凹面76aが設けられている。可動部材76の背面と一方の凹溝304fの溝底との間には、弾性部材75と同様に、軸線Oに沿うリヤディファレンシャル3側へのばね力(弾性力)f=f(図4に示す)をもつ円環状の弾性部材77が介在して配置されている。弾性部材77は、ばね力f=fを他方の入力部材51に付与する。弾性部材77としては、例えば断面波形状の板ばねが用いられる。断面波形状の板ばねに代えてウェーブワッシャを用いてもよい。 An annular movable member 76 interposed between the flange 30f and the other input member 51 is disposed in the other recessed groove 304f so as to be able to advance and retreat with the tip portion exposed. A predetermined radius of curvature R = R 4 (R 4 = R 3 : shown in FIG. 4) is formed in the exposed end portion of the movable member 76 by notching a portion extending over a part of the inner peripheral surface and the tip surface. An annular concave surface 76a is provided. Like the elastic member 75, between the back surface of the movable member 76 and the groove bottom of one of the concave grooves 304f, a spring force (elastic force) f = f 4 toward the rear differential 3 along the axis O 1 (FIG. 4), an annular elastic member 77 is interposed. The elastic member 77 applies a spring force f = f 4 to the other input member 51. As the elastic member 77, for example, a plate spring having a corrugated cross section is used. A wave washer may be used instead of the leaf spring having a corrugated cross section.

ピニオンギヤシャフト31は、デフケース30の収容空間30aで軸線Oに直交する軸線L上に配置され、かつ軸線L回りの回転及び軸線L方向の移動がピン(図示せず)によって規制されている。 The pinion gear shaft 31 is disposed on the axis L perpendicular to the axis O 1 in the accommodation space 30a of the differential case 30, and the rotation around the axis L and the movement in the axis L direction are restricted by pins (not shown).

一対のピニオンギヤ32は、ピニオンギヤシャフト31に回転可能に支持され、かつデフケース30の収容空間30aに収容されている。   The pair of pinion gears 32 is rotatably supported by the pinion gear shaft 31 and is accommodated in the accommodating space 30 a of the differential case 30.

一対のサイドギヤ33は、デフケース30の収容空間30aに収容され、かつシャフト挿通孔30bを挿通するリヤアクスルシャフト106(図1に示す)にスプライン嵌合によって連結されている。そして、一対のサイドギヤ33は、そのギヤ軸を一対のピニオンギヤ32のギヤ軸に直交させ、一対のピニオンギヤ32に噛合する。   The pair of side gears 33 are housed in the housing space 30a of the differential case 30 and are connected by spline fitting to a rear axle shaft 106 (shown in FIG. 1) that passes through the shaft insertion hole 30b. The pair of side gears 33 mesh with the pair of pinion gears 32 with their gear shafts orthogonal to the gear shafts of the pair of pinion gears 32.

(電動モータ4の構成)
電動モータ4は、ステータ40,ロータ41及びモータ軸42(偏心部付きのモータ軸)を有し、モータ回転力伝達装置1の他方側(図2では右側)に配置され、軸線O上でリヤディファレンシャル3に減速伝達機構5を介して連結されている。また、電動モータ4は、ステータ40がECU(Electronic Control Unit:図示せず)に接続されている。そして、電動モータ4は、ステータ40がECUから制御信号を入力してリヤディファレンシャル3を作動させるためのモータ回転力をロータ41との間で発生させ、ロータ41をモータ軸42と共に回転させる。
(Configuration of electric motor 4)
The electric motor 4 includes a stator 40, a rotor 41, and a motor shaft 42 (a motor shaft with an eccentric portion), and is disposed on the other side (right side in FIG. 2) of the motor rotational force transmission device 1 on the axis O1. The rear differential 3 is connected via a speed reduction transmission mechanism 5. The electric motor 4 has a stator 40 connected to an ECU (Electronic Control Unit: not shown). In the electric motor 4, the stator 40 receives a control signal from the ECU, generates a motor rotational force for operating the rear differential 3, and rotates the rotor 41 together with the motor shaft 42.

ステータ40は、電動モータ4の外周側に配置され、かつ第2のハウジングエレメント21における内フランジ21aに取付ボルト43によって取り付けられている。   The stator 40 is disposed on the outer peripheral side of the electric motor 4 and is attached to the inner flange 21 a of the second housing element 21 by mounting bolts 43.

ロータ41は、電動モータ4の内周側に配置され、かつモータ軸42の外周面に取り付けられている。   The rotor 41 is disposed on the inner peripheral side of the electric motor 4 and is attached to the outer peripheral surface of the motor shaft 42.

モータ軸42は、一方側端部が円環部材25の内周面に玉軸受44及びスリーブ45を介して、また他方側端部が第3のハウジングエレメント22の内周面に玉軸受46を介してそれぞれ回転可能に支持されている。また、モータ軸42は、軸線O上に配置され、全体がリヤアクスルシャフト106(図1に示す)を挿通させる円筒状の軸部材によって形成されている。 The motor shaft 42 has one end on the inner peripheral surface of the annular member 25 via a ball bearing 44 and a sleeve 45, and the other end on the inner peripheral surface of the third housing element 22. And are supported rotatably. The motor shaft 42 is disposed on the axis O 1, the whole is formed by a cylindrical shaft member for inserting the rear axle shaft 106 (shown in Figure 1).

モータ軸42の軸線方向一方側端部には、玉軸受35(内輪350)の減速伝達機構5側への移動を規制する円環状の段差面42cが設けられている。また、モータ軸42の軸線方向一方側端部には、その軸線(軸線O)に偏心量δをもって平行に偏心する軸線O(第2の軸線)をもつ平面円形状の偏心部42a、及び軸線Oに偏心量δ(δ=δ=δ)をもって平行に偏心する軸線O´(第2の軸線)をもつ平面円形状の偏心部42bが一体に設けられている。そして、一方の偏心部42aと他方の偏心部42bとは、軸線Oの回りに等間隔(180°)をもって並列する位置に配置されている。すなわち、一方の偏心部42aと他方の偏心部42bとは、軸線Oから軸線Oまでの距離と軸線O´から軸線Oまでの距離とを等しく、かつ軸線Oと軸線O´との間の軸線O回りの距離を等しくするようにモータ軸42の外周面に配置されている。また、偏心部42aと偏心部42bとは、軸線Oの方向に沿って並列する位置に配置されている。 An annular step surface 42 c that restricts the movement of the ball bearing 35 (inner ring 350) toward the speed reduction transmission mechanism 5 is provided at one end in the axial direction of the motor shaft 42. In addition, at one end portion in the axial direction of the motor shaft 42, an eccentric portion 42a having a planar circular shape having an axis O 2 (second axis) eccentrically parallel to the axis (axis O 1 ) with an eccentric amount δ 1. , And a plane circular eccentric portion 42b having an axis O ′ 2 (second axis) eccentrically parallel to the axis O 1 with an eccentric amount δ 21 = δ 2 = δ). . Then, the one of the eccentric portion 42a and the other of the eccentric portion 42b, is disposed in a position parallel with a regular intervals (180 °) about the axis O 1. That is, the one eccentric portion 42a and the other eccentric portion 42b have the same distance from the axis O 2 to the axis O 1 and the distance from the axis O ′ 2 to the axis O 1 , and the axis O 2 and the axis O ′. 2 is arranged on the outer peripheral surface of the motor shaft 42 so as to make the distance around the axis O 1 equal to 2. Further, the eccentric portion 42a and the eccentric portion 42b is disposed in a position parallel along the direction of the axis O 1.

偏心部42aには、玉軸受54の内輪540の電動モータ4側への移動を規制する段差面42eが設けられている。   The eccentric portion 42a is provided with a step surface 42e that restricts the movement of the inner ring 540 of the ball bearing 54 toward the electric motor 4 side.

同様に、偏心部42bには、玉軸受56の内輪560のリヤディファレンシャル3側への移動を規制する段差面42gが設けられている。   Similarly, the eccentric portion 42b is provided with a step surface 42g that restricts movement of the inner ring 560 of the ball bearing 56 toward the rear differential 3 side.

モータ軸42の軸線方向他方側端部には、その外周面と円筒部22bの内周面との間に介在する回転角度検出器としてのレゾルバ47が配置されている。また、モータ軸42の軸線方向他方側端部には、電動モータ4のロータ41と玉軸受46(内輪460)との間に内輪460の減速伝達機構5側への移動を規制するスリーブ63が介在して配置されている。レゾルバ47は、ステータ470及びロータ471を有し、第3のハウジングエレメント22内に収容されている。ステータ470は円筒部22bの内周面に、ロータ471はモータ軸42の外周面にそれぞれ取り付けられている。   A resolver 47 serving as a rotation angle detector interposed between the outer peripheral surface of the motor shaft 42 and the inner peripheral surface of the cylindrical portion 22b is disposed at the other end portion in the axial direction of the motor shaft 42. A sleeve 63 that restricts the movement of the inner ring 460 toward the speed reduction transmission mechanism 5 between the rotor 41 of the electric motor 4 and the ball bearing 46 (inner ring 460) is disposed at the other axial end of the motor shaft 42. It is arranged intervening. The resolver 47 has a stator 470 and a rotor 471 and is accommodated in the third housing element 22. The stator 470 is attached to the inner peripheral surface of the cylindrical portion 22b, and the rotor 471 is attached to the outer peripheral surface of the motor shaft 42.

(減速伝達機構5の構成)
図3は減速伝達機構の全体を示す。図4はモータ回転力伝達装置の要部(軸受機構)を示す。図5(a)及び(b)は入力部材と出力対象側との転がり接触点の軌跡を示す。本実施の形態において、減速伝達機構は、偏心揺動減速機構であり、偏心揺動減速機構のうちでも少歯数差インボリュート減速機構である。本偏心揺動減速機構を用いることにより大きな減速比を得ることができる。図2〜図4に示すように、減速伝達機構5は、一対の入力部材50・51,自転力付与部材52及び出力機構53A(複数の出力部材53)を有し、リヤディファレンシャル3と電動モータ4との間に介在して配置されている。そして、減速伝達機構5は、前述したように、電動モータ4のモータ回転力を減速して駆動力をリヤディファレンシャル3に伝達する。
(Configuration of deceleration transmission mechanism 5)
FIG. 3 shows the entire deceleration transmission mechanism. FIG. 4 shows a main part (bearing mechanism) of the motor torque transmission device. 5A and 5B show the locus of the rolling contact point between the input member and the output target side. In the present embodiment, the deceleration transmission mechanism is an eccentric oscillating speed reducing mechanism, and is an involute speed reducing mechanism with a small number of teeth among the eccentric oscillating speed reducing mechanisms. A large reduction ratio can be obtained by using this eccentric oscillating speed reduction mechanism. As shown in FIGS. 2 to 4, the speed reduction transmission mechanism 5 includes a pair of input members 50, 51, a rotation force applying member 52, and an output mechanism 53 </ b> A (a plurality of output members 53), and the rear differential 3 and the electric motor. 4 is interposed between the two. As described above, the deceleration transmission mechanism 5 decelerates the motor rotational force of the electric motor 4 and transmits the driving force to the rear differential 3.

一方の入力部材50は、軸線O(第3の軸線)を中心軸線とする中心孔50aを有する外歯歯車からなり、他方の入力部材51のリヤディファレンシャル3側に配置され、かつ中心孔50aの内周囲で偏心部42aの外周面に玉軸受54を介して回転可能に支持されている。玉軸受54は、その内外に配置された2つのレース540,541(内輪540,外輪541)、及び内輪540と外輪541との間で転動する転動体542を有する。内輪540は偏心部42aの外周面に例えばしまりばめによって、また外輪541は中心孔50aの内周面に例えばすきまばめによってそれぞれ取り付けられている。また、一方の入力部材50は、可動部材70から弾性部材71による弾性力を、可動部材72から弾性部材73による弾性力をそれぞれ電動モータ4側に受ける位置に配置されている。そして、一方の入力部材50は、電動モータ4からモータ回転力を受けて偏心量δをもつ矢印m,m方向の円運動(軸線O回りの公転運動)を行う。図2及び図3において、軸線Oは軸線Oに一致して描かれている。図4においては、一方の入力部材50及び玉軸受54に遠心力F=Fが作用した状態を示す。 One input member 50 is an external gear having a center hole 50a with the axis O 3 (third axis) as the center axis, is disposed on the rear differential 3 side of the other input member 51, and is center hole 50a. Is supported rotatably on the outer peripheral surface of the eccentric portion 42 a via a ball bearing 54. The ball bearing 54 has two races 540 and 541 (inner ring 540 and outer ring 541) arranged inside and outside thereof, and rolling elements 542 that roll between the inner ring 540 and the outer ring 541. The inner ring 540 is attached to the outer peripheral surface of the eccentric portion 42a by, for example, an interference fit, and the outer ring 541 is attached to the inner peripheral surface of the center hole 50a, for example, by a clearance fit. The one input member 50 is disposed at a position where the elastic force from the movable member 70 to the elastic member 71 and the elastic force from the movable member 72 to the elastic member 73 are received on the electric motor 4 side. Then, the one input member 50 receives a motor rotational force from the electric motor 4 and performs a circular motion (revolution motion around the axis O 1 ) in the directions of arrows m 1 and m 2 having an eccentricity δ. 2 and 3, the axis O 3 is drawn to coincide with the axis O 2 . FIG. 4 shows a state where centrifugal force F = F 1 is applied to one input member 50 and ball bearing 54.

一方の入力部材50には、軸線O(軸線O)回りに等間隔をもって並列する複数(本実施の形態では6個)のピン挿通孔(貫通孔)50bが設けられている。ピン挿通孔50bの孔径は、出力部材53の外径に針状ころ軸受55の外径を加えた寸法よりも大きい寸法に設定されている。 One input member 50 is provided with a plurality (six in this embodiment) of pin insertion holes (through holes) 50b arranged in parallel at equal intervals around the axis O 3 (axis O 2 ). The hole diameter of the pin insertion hole 50 b is set to be larger than the dimension obtained by adding the outer diameter of the needle roller bearing 55 to the outer diameter of the output member 53.

一方の入力部材50の外周面には、軸線Oを中心軸線とするピッチ円のインボリュート歯形をもつ外歯50cが設けられている。外歯50cの歯数Zは例えばZ=195に設定されている。 The outer peripheral surface of one of the input member 50, the external teeth 50c is provided with an involute tooth profile of the pitch circle having a center axis corresponding to the axis O 2. Number of teeth Z 1 of the external teeth 50c is set to, for example, Z 1 = 195.

一方の入力部材50のリヤディファレンシャル側端部には、中心孔50aの内周面から突出して玉軸受54(外輪541)のリヤディファレンシャル3側への移動を規制する円環状の内フランジ50dが設けられている。また、一方の入力部材50のリヤディファレンシャル側端には、軸線Oに沿ってリヤディファレンシャル3側に突出する凸部50e,50fが設けられている。 An annular inner flange 50d that protrudes from the inner peripheral surface of the center hole 50a and restricts the movement of the ball bearing 54 (outer ring 541) toward the rear differential 3 is provided at the end portion on the rear differential side of one input member 50. It has been. In addition, the rear differential side end of one of the input member 50, the convex portions 50e, 50f are provided to protrude along the axis O 2 to the rear differential 3 side.

一方の凸部50eは、複数の出力部材53の径方向外側に配置され、全体が円環部材によって形成されている。一方の凸部50eの内周面は、曲率半径R=Rをもち、可動部材70の凹面70aとの間で転がり接触する凸状の曲面からなる転がり接触面500eで形成されている。そして、一方の凸部50eは、転がり接触面500eが可動部材70の凹面70aにラジアル方向に支持されている。これにより、一方の入力部材50にその円運動に基づいて生じる遠心力F=Fによる荷重が作用すると、この荷重の一部を一方の凸部50eの転がり接触面500eから可動部材70の凹面70aが転がり接触点a(図5(a)に示す)で受ける。図5(a)において、一点鎖線Aは一方の凸部50eの転がり接触面500eと可動部材70の凹面70a(図4に示す)との間の転がり接触点aの軌跡(軸線O上の点を中心とする円)を示す。また、一方の凸部50eは、転がり接触面500eが可動部材70の凹面70aからアキシアル荷重(一方の入力部材50の可動部材70への転がり接触による反力P=P及び弾性部材71によるばね力f=f)を受け、一方の入力部材50の内フランジ50dから反力P=P及びばね力f=fが玉軸受54に予圧として付与される。転がり接触面500eの曲率半径R=Rは、可動部材70の凹面70aの曲率半径R=R(R>R)よりも小さい寸法に設定されている。 One convex part 50e is arrange | positioned at the radial direction outer side of the several output member 53, and the whole is formed of the annular member. The inner peripheral surface of one of the convex portion 50e has a curvature radius R = R 5, are formed at the contact surface 500e rolling consisting convex curved surface in rolling contact with the concave surface 70a of the movable member 70. In addition, the rolling contact surface 500e of the one convex portion 50e is supported on the concave surface 70a of the movable member 70 in the radial direction. Accordingly, when a load due to the centrifugal force F = F 1 generated based on the circular motion is applied to one input member 50, a part of the load is transferred from the rolling contact surface 500e of the one convex portion 50e to the concave surface of the movable member 70. 70a is received at a rolling contact point a (shown in FIG. 5A). Figure in 5 (a), the upper track (the axis O 1 of the rolling contact point a between the concave 70a of the rolling contact surface 500e and the movable member 70 of the one-dot chain line A 1 is one of the convex portion 50e (FIG. 4) A circle centered on the point). Also, one of the convex portion 50e is rolling contact surface 500e has a spring due to the reaction force P = P 1 and the elastic member 71 by rolling contact of the movable member 70 of the axial load (one input member 50 from the concave 70a of the movable member 70 Force f = f 1 ), a reaction force P = P 1 and a spring force f = f 1 are applied as preload to the ball bearing 54 from the inner flange 50d of one input member 50. The radius of curvature R = R 5 of the rolling contact surface 500e is set to be smaller than the radius of curvature R = R 1 (R 1 > R 5 ) of the concave surface 70a of the movable member 70.

他方の凸部50fは、複数の出力部材53の径方向内側に配置され、全体が円環部材によって形成されている。他方の凸部50fの外周面は、曲率半径R=Rをもち、可動部材72の凹面72aとの間で転がり接触する凸状の曲面からなる転がり接触面500fで形成されている。そして、他方の凸部50fは、転がり接触面500fが可動部材72の凹面72aにラジアル方向に支持されている。これにより、一方の入力部材50にその円運動に基づいて生じる遠心力F=Fによる荷重が作用すると、この荷重の一部を他方の凸部50fの転がり接触面500fから可動部材72の凹面72aが転がり接触点b(図5(a)に示す)で受ける。図5(a)において、一点鎖線Aは他方の凸部50fの転がり接触面500fと可動部材72の凹面72a(図4に示す)との間の転がり接触点bの軌跡(軸線O上の点を中心とする円)を示す。また、他方の凸部50fは、転がり接触面500fが可動部材72の凹面72aからアキシアル荷重(一方の入力部材50の可動部材72への転がり接触による反力P=P及び弾性部材73によるばね力f=f)を受け、一方の入力部材50の内フランジ50dから反力P=P及びばね力f=fが玉軸受54に予圧として付与される。転がり接触面500fの曲率半径R=Rは、可動部材72の凹面72aの曲率半径R=R(R>R)よりも小さい寸法に設定されている。 The other convex part 50f is arrange | positioned at the radial inside of the several output member 53, and the whole is formed of the annular member. The outer peripheral surface of the other convex portion 50f has a radius of curvature R = R 6, it is formed at the contact surface 500f rolling consisting convex curved surface in rolling contact with the concave surface 72a of the movable member 72. In the other convex portion 50 f, the rolling contact surface 500 f is supported by the concave surface 72 a of the movable member 72 in the radial direction. As a result, when a load due to the centrifugal force F = F 1 generated based on the circular motion is applied to one input member 50, a part of this load is transferred from the rolling contact surface 500f of the other convex portion 50f to the concave surface of the movable member 72. 72a receives at the rolling contact point b (shown in FIG. 5 (a)). Figure 5 (a), the dashed line A 2 and the other of the projections (4) concave 72a of the rolling contact surface 500f and the movable member 72 of the 50f rolling contact point b of the trajectory between the (upper axis O 1 A circle centered on the point). The spring by the other of the convex portion 50f is rolling contact surface 500f reaction force P = P 2 and the elastic member 73 from the concave 72a by rolling contact of the movable member 72 of the axial load (one of the input member 50 of the movable member 72 Force f = f 2 ), a reaction force P = P 2 and a spring force f = f 2 are applied as preload to the ball bearing 54 from the inner flange 50d of one input member 50. The radius of curvature R = R 6 of the rolling contact surface 500f is set to be smaller than the radius of curvature R = R 2 (R 2 > R 6 ) of the concave surface 72a of the movable member 72.

他方の入力部材51は、軸線O´(第3の軸線)を中心軸線とする中心孔51aを有する外歯歯車からなり、一方の入力部材50の電動モータ4側に配置され、かつ中心孔51aの内周囲で偏心部42bの外周面に玉軸受56を介して回転可能に支持されている。玉軸受56は、その内外に配置された2つのレース560,561(内輪560,外輪561)、及び内輪560と外輪561との間で転動する転動体562を有する。内輪540は偏心部42aの外周面に例えばしまりばめによって、また外輪541は中心孔50aの内周面に例えばすきまばめによってそれぞれ取り付けられている。また、他方の入力部材51は、可動部材74から弾性部材75による弾性力を、可動部材76から弾性部材77による弾性力をそれぞれリヤディファレンシャル3側に受ける位置に配置されている。そして、他方の入力部材51は、電動モータ4からモータ回転力を受けて偏心量δをもつ矢印m,m方向の円運動(軸線O回りの公転運動)を行う。図2及び図3において、軸線O´は軸線O´に一致して描かれている。図4においては、他方の入力部材51及び玉軸受56に遠心力F=Fが作用した状態を示す。 The other input member 51 is composed of an external gear having a center hole 51a having the axis O ′ 3 (third axis) as a center axis, is disposed on the electric motor 4 side of the one input member 50, and has a center hole. 51a is rotatably supported on the outer peripheral surface of the eccentric portion 42b via a ball bearing 56. The ball bearing 56 includes two races 560 and 561 (an inner ring 560 and an outer ring 561) arranged inside and outside thereof, and rolling elements 562 that roll between the inner ring 560 and the outer ring 561. The inner ring 540 is attached to the outer peripheral surface of the eccentric portion 42a by, for example, an interference fit, and the outer ring 541 is attached to the inner peripheral surface of the center hole 50a, for example, by a clearance fit. The other input member 51 is disposed at a position where the elastic force from the movable member 74 to the elastic member 75 and the elastic force from the movable member 76 to the elastic member 77 are received on the rear differential 3 side. The other input member 51 receives a motor rotational force from the electric motor 4 and performs a circular motion (revolution motion around the axis O 1 ) in the directions of arrows m 1 and m 2 having an eccentricity δ. 2 and 3, the axis O ′ 3 is drawn to coincide with the axis O ′ 2 . In FIG. 4, the centrifugal force F = F 2 is applied to the other input member 51 and the ball bearing 56.

他方の入力部材51には、軸線O´(軸線O´)回りに等間隔をもって並列する複数(本実施の形態では6個)のピン挿通孔(貫通孔)51bが設けられている。ピン挿通孔51bの孔径は、出力部材53の外径に針状ころ軸受57の外径を加えた寸法よりも大きい寸法に設定されている。 The other input member 51 is provided with a plurality (six in this embodiment) of pin insertion holes (through holes) 51b arranged in parallel at equal intervals around the axis O ′ 3 (axis O ′ 2 ). The hole diameter of the pin insertion hole 51 b is set to be larger than the dimension obtained by adding the outer diameter of the needle roller bearing 57 to the outer diameter of the output member 53.

他方の入力部材51の外周面には、軸線O´を中心軸線とするピッチ円のインボリュート歯形をもつ外歯51cが設けられている。外歯51cの歯数Zは例えばZ=195に設定されている。 The outer peripheral surface of the other of the input member 51, the outer teeth 51c is provided with an involute tooth profile of the pitch circle having a center axis corresponding to the axis O'2. Number of teeth Z 2 of the external teeth 51c is set to, for example, Z 2 = 195.

他方の入力部材51のモータ側端部には、中心孔51aの内周面から突出して玉軸受56(外輪561)の電動モータ4側への移動を規制する円環状の内フランジ51dが設けられている。また、一方の入力部材50のリヤディファレンシャル側端には、軸線Oに沿ってリヤディファレンシャル3側に突出する凸部51e,51fが設けられている。 An annular inner flange 51 d that protrudes from the inner peripheral surface of the center hole 51 a and restricts the movement of the ball bearing 56 (outer ring 561) toward the electric motor 4 is provided at the motor side end of the other input member 51. ing. In addition, the rear differential side end of one of the input member 50, the convex portions 51e, 51f are provided to protrude to the rear differential 3 side along the axis O 2.

一方の凸部51eは、複数の出力部材53の径方向外側に配置され、全体が円環部材によって形成されている。一方の凸部51eの内周面は、曲率半径R=Rをもち、可動部材74の凹面74aとの間で転がり接触する凸状の曲面からなる転がり接触面510eで形成されている。そして、一方の凸部51eは、転がり接触面510eが可動部材74の凹面74aにラジアル方向に支持されている。これにより、他方の入力部材51にその円運動に基づいて生じる遠心力F=Fによる荷重が作用すると、この荷重の一部を一方の凸部51eの転がり接触面510eから可動部材74の凹面74aが転がり接触点c(図5(b)に示す)で受ける。図5(b)において、一点鎖線Aは一方の凸部51eの転がり接触面510eと可動部材74の凹面74a(図4に示す)との間の転がり接触点cの軌跡(軸線O上の点を中心とする円)を示す。また、一方の凸部51eは、転がり接触面510eが可動部材74の凹面74aからアキシアル荷重(他方の入力部材51の可動部材74への転がり接触による反力P=P及び弾性部材75によるばね力f=f)を受け、他方の入力部材51の内フランジ51dから反力P=P及びばね力f=fが玉軸受56に予圧として付与される。転がり接触面510eの曲率半径R=Rは、可動部材75の凹面74aの曲率半径R=R(R>R)よりも小さい寸法に設定されている。 One convex part 51e is arrange | positioned at the radial direction outer side of the several output member 53, and the whole is formed of the annular member. The inner peripheral surface of one of the convex portion 51e has a curvature radius R = R 7, are formed at the contact surface 510e rolling consisting convex curved surface in rolling contact with the concave surface 74a of the movable member 74. Then, in the one convex portion 51 e, the rolling contact surface 510 e is supported in the radial direction by the concave surface 74 a of the movable member 74. Accordingly, when a load due to the centrifugal force F = F 2 generated based on the circular motion is applied to the other input member 51, a part of the load is transferred from the rolling contact surface 510e of the one convex portion 51e to the concave surface of the movable member 74. 74a is received at the rolling contact point c (shown in FIG. 5B). Figure in 5 (b), the upper track (the axis O 1 of the rolling contact point c between the concave 74a of the one-dot chain line A 3 is a rolling contact surface 510e of the one convex portion 51e movable member 74 (shown in FIG. 4) A circle centered on the point). Also, one of the convex portion 51e is rolling contact surface 510e has a spring due to the reaction force P = P 3 and the elastic member 75 from the concave 74a by rolling contact of the movable member 74 of the axial load (the other of the input member 51 of the movable member 74 Force f = f 3 ), a reaction force P = P 3 and a spring force f = f 3 are applied as preload to the ball bearing 56 from the inner flange 51d of the other input member 51. The radius of curvature R = R 7 of the rolling contact surface 510e is set to be smaller than the radius of curvature R = R 3 (R 3 > R 7 ) of the concave surface 74a of the movable member 75.

他方の凸部51fは、複数の出力部材53の径方向内側に配置され、全体が円環部材によって形成されている。他方の凸部51fの外周面は、曲率半径R=Rをもち、可動部材76の凹面76aとの間で転がり接触する凸状の曲面からなる転がり接触面510fで形成されている。そして、他方の凸部51fは、転がり接触面510fが可動部材76の凹面76aにラジアル方向に支持されている。これにより、他方の入力部材51にその円運動に基づいて生じる遠心力F=Fによる荷重が作用すると、この荷重の一部を他方の凸部51fの転がり接触面510fから可動部材76の凹面76aが転がり接触点d(図5(b)に示す)で受ける。図5(b)において、一点鎖線Aは他方の凸部51fの転がり接触面510fと可動部材76の凹面76a(図4に示す)との間の転がり接触点dの軌跡(軸線O上の点を中心とする円)を示す。また、他方の凸部51fは、転がり接触面510fが可動部材76の凹面76aからアキシアル荷重(他方の入力部材51の可動部材76への転がり接触による反力P=P及び弾性部材77によるばね力f=f)を受け、他方の入力部材51の内フランジ51dから反力P=P及びばね力f=fが玉軸受56に予圧として付与される。転がり接触面510fの曲率半径R=Rは、可動部材76の凹面76aの曲率半径R=R(R>R)よりも小さい寸法に設定されている。 The other convex part 51f is arrange | positioned at the radial inside of the several output member 53, and the whole is formed of the annular member. The outer peripheral surface of the other convex portion 51f has a radius of curvature R = R 8, it is formed at the contact surface 510f rolling consisting convex curved surface in rolling contact with the concave surface 76a of the movable member 76. In the other convex portion 51 f, the rolling contact surface 510 f is supported in the radial direction by the concave surface 76 a of the movable member 76. Accordingly, when a load due to the centrifugal force F = F 2 generated based on the circular motion is applied to the other input member 51, a part of the load is transferred from the rolling contact surface 510f of the other convex portion 51f to the concave surface of the movable member 76. 76a is received at the rolling contact point d (shown in FIG. 5B). Figure in 5 (b), the upper track (the axis O 1 of the rolling contact point d between the concave 76a of the one-dot chain line A 4 is a rolling contact surface 510f of the other convex portion 51f movable member 76 (shown in FIG. 4) A circle centered on the point). Also, the other convex portion 51f, the rolling contact surface 510f spring by the reaction force P = P 4 and the elastic member 77 from the concave 76a by rolling contact of the movable member 76 of the axial load (the other of the input member 51 of the movable member 76 Force f = f 4 ), and reaction force P = P 4 and spring force f = f 4 are applied to the ball bearing 56 as preload from the inner flange 51d of the other input member 51. The curvature of the rolling contact surface 510f radius R = R 8 is set to a dimension smaller than the curvature of the concave 76a radius R = R 4 of the movable member 76 (R 4> R 8) .

自転力付与部材52は、軸線O(第4の軸線)を中心軸線とする一対の内歯歯車からなり、第1のハウジングエレメント20と第2のハウジングエレメント21との間に介在して配置され、全体が軸線Oの両方向に開口してハウジング2の一部を構成する無底円筒部材によって形成されている。そして、自転力付与部材52は、一対の入力部材50,51に噛合し、電動モータ4のモータ回転力を受けて公転する一方の入力部材50に矢印n,n方向の自転力を、また他方の入力部材51に矢印l,l方向の自転力をそれぞれ付与する。図2及び図3において、軸線Oは軸線Oに一致して描かれている。 The rotation force imparting member 52 is composed of a pair of internal gears whose central axis is the axis O 4 (fourth axis), and is disposed between the first housing element 20 and the second housing element 21. The whole is formed by a bottomless cylindrical member that opens in both directions of the axis O 4 and constitutes a part of the housing 2. The rotation force applying member 52 meshes with the pair of input members 50 and 51, and receives the rotation force in the directions of the arrows n 1 and n 2 on one input member 50 that revolves by receiving the motor rotation force of the electric motor 4. Further, rotational forces in the directions of the arrows l 1 and l 2 are applied to the other input member 51, respectively. 2 and 3, the axis O 4 is drawn to coincide with the axis O 1 .

自転力付与部材52には、凸部23の外周面に嵌合する第1の嵌合部52a、及び凸部27の外周面に嵌合する第2の嵌合部52bが軸線Oの方向に所定の間隔をもって設けられている。 A rotation force applying member 52, the direction of the first fitting portion 52a, and the second fitting portion 52b is the axis O 4 fitted to the outer peripheral surface of the projection 27 to be fitted to the outer peripheral surface of the convex portion 23 Are provided at predetermined intervals.

自転力付与部材52の内周面には、一方の入力部材50の外歯50c及び他方の入力部材51の外歯51cに噛合し、かつ軸線O(軸線O)を中心軸線とするピッチ円のインボリュート歯形の内歯52cが設けられている。内歯52cの歯数Zは例えばZ=208に設定されている。内歯52cの歯数Zは例えばZ=208に設定されている。減速伝達機構5の減速比αはα=Z/(Z−Z)から算出される。 On the inner peripheral surface of the rotation force applying member 52, the pitch meshes with the external teeth 50 c of one input member 50 and the external teeth 51 c of the other input member 51, and the axis O 4 (axis O 1 ) is the central axis. Circular involute tooth-shaped inner teeth 52c are provided. Number of teeth Z 3 of the internal teeth 52c is set to, for example, Z 3 = 208. Number of teeth Z 3 of the internal teeth 52c is set to, for example, Z 3 = 208. The reduction ratio α of the deceleration transmission mechanism 5 is calculated from α = Z 2 / (Z 3 −Z 2 ).

出力機構53Aは、複数(本実施の形態では6個)の出力部材53からなり、リヤディファレンシャル3と電動モータ4との間に介在して配置され、かつハウジング2内に収容されている。   The output mechanism 53A includes a plurality (six in this embodiment) of output members 53, is disposed between the rear differential 3 and the electric motor 4, and is accommodated in the housing 2.

複数の出力部材53は、軸線Oの回りに等間隔をもって配置され、かつ一方の入力部材50のピン挿通孔50b及び他方の入力部材51のピン挿通孔51bを挿通しデフケース30のフランジ30c,30fに取り付けられている。そして、複数の出力部材53は、自転力付与部材52によって付与された自転力を一対の入力部材50,51から受けてデフケース30にその回転力として出力する。複数の出力部材53としては、ナット64を螺合させるねじ部53a、ナット65を螺合させるねじ部53b、これら両ねじ部53a,53bにそれぞれ隣接する軸部53c,53d、これら両軸部53c,53d間に介在する中間部53e、及び中間部を53eを軸線方向に二分する仕切部53fを有する段状の丸軸からなるねじ部材が用いられる。ナット64は軸線方向一方側(図2に示す電動モータ4側)に作用するアキシアル荷重を玉軸受35に、またナット65は軸線方向他方側(図2に示すリヤディファレンシャル3側)に作用するアキシアル荷重を玉軸受38にそれぞれ予圧として付与する。 The plurality of output members 53 are arranged at equal intervals around the axis O 1 , and are inserted through the pin insertion hole 50 b of one input member 50 and the pin insertion hole 51 b of the other input member 51, and the flange 30 c of the differential case 30. It is attached to 30f. The plurality of output members 53 receive the rotation force applied by the rotation force applying member 52 from the pair of input members 50 and 51 and output the rotation force to the differential case 30 as the rotation force. The plurality of output members 53 include a screw portion 53a for screwing the nut 64, a screw portion 53b for screwing the nut 65, shaft portions 53c and 53d adjacent to both the screw portions 53a and 53b, and both the shaft portions 53c. , 53d, and a screw member made of a stepped round shaft having a partition 53f that bisects the intermediate portion 53e in the axial direction. The nut 64 acts on the ball bearing 35 with an axial load acting on one axial side (the electric motor 4 side shown in FIG. 2), and the nut 65 acts on the other axial side (rear differential 3 side shown in FIG. 2). A load is applied to each of the ball bearings 38 as a preload.

複数の出力部材53には、一方側(リヤディファレンシャル3側)の軸部53cと中間部53eとの間に介在する段差面(第1の段差面)53g、及び他方側(電動モータ4側)の軸部53dと中間部53eとの間に介在する段差面(第2の段差面)53hが設けられている。   The plurality of output members 53 include a step surface (first step surface) 53g interposed between the shaft portion 53c on one side (rear differential 3 side) and the intermediate portion 53e, and the other side (electric motor 4 side). A step surface (second step surface) 53h is provided between the shaft portion 53d and the intermediate portion 53e.

複数の出力部材53における中間部53eの外周面であって、仕切部53fのリヤディファレンシャル3側に位置する部位には、一方の入力部材50におけるピン挿通孔50bの内周面との接触抵抗を低減するための針状ころ軸受55が取り付けられている。また、複数の出力部材53における中間部53eの外周面であって、仕切部53fの電動モータ4側に位置する部位には、他方の入力部材51におけるピン挿通孔51bとの接触抵抗を低減するための針状ころ軸受57が取り付けられている。   The contact resistance with the inner peripheral surface of the pin insertion hole 50b in one input member 50 is formed on the outer peripheral surface of the intermediate portion 53e in the plurality of output members 53 and located on the rear differential 3 side of the partition portion 53f. Needle roller bearings 55 for reduction are attached. Further, the contact resistance of the other input member 51 with the pin insertion hole 51b is reduced on the outer peripheral surface of the intermediate portion 53e in the plurality of output members 53 and located on the electric motor 4 side of the partition portion 53f. Needle roller bearings 57 are attached.

(モータ回転力伝達装置1の動作)
次に、本実施の形態に示すモータ回転力伝達装置の動作につき、図1〜図4を用いて説明する。
(Operation of the motor rotational force transmission device 1)
Next, the operation of the motor torque transmission device shown in the present embodiment will be described with reference to FIGS.

図2において、モータ回転力伝達装置1の電動モータ4に電力を供給して電動モータ4を駆動すると、この電動モータ4のモータ回転力がモータ軸42を介して減速伝達機構5に付与され、減速伝達機構5が作動する。   In FIG. 2, when electric power is supplied to the electric motor 4 of the motor rotational force transmission device 1 to drive the electric motor 4, the motor rotational force of the electric motor 4 is applied to the deceleration transmission mechanism 5 via the motor shaft 42. The deceleration transmission mechanism 5 operates.

このため、減速伝達機構5において、入力部材50,51が例えば図3に示す矢印m方向に偏心量δをもって円運動を行う。 Therefore, the speed reduction transmission mechanism 5 performs circular motion with a eccentricity δ is the input member 50, 51 in the arrow m 1 direction shown in FIG. 3, for example.

これに伴い、入力部材50が外歯50cを自転力付与部材52の内歯52cに噛合させながら軸線Oの回り(図3に示す矢印n方向)に、また入力部材51が外歯51cを自転力付与部材52の内歯52cに噛合させながら軸線O´の回り(図3に示す矢印l方向)にそれぞれ自転する。この場合、入力部材50,51の自転によって図2に示すようにピン挿通孔50bの内周面が針状ころ軸受55のレース550に、またピン挿通孔51bの内周面が針状ころ軸受57のレース570にそれぞれ当接する。 Accordingly, the input member 50 is the axis O 2 while meshing with the internal teeth 52c of the outer teeth 50c rotation force applying member 52 counterclockwise (the arrow n 1 direction shown in FIG. 3), also the input member 51 outer teeth 51c the rotates respectively with the internal teeth 52c while meshing with the axis O'2 around a rotation force applying member 52 (arrow l 1 direction shown in FIG. 3). In this case, the rotation of the input members 50 and 51 causes the inner peripheral surface of the pin insertion hole 50b to be the race 550 of the needle roller bearing 55 and the inner peripheral surface of the pin insertion hole 51b to be the needle roller bearing as shown in FIG. 57 races 570 are in contact with each other.

このため、出力部材53には入力部材50,51の公転運動が伝達されず、入力部材50,51の自転運動のみが伝達され、この自転運動による自転力が出力部材53からデフケース30にその回転力として出力される。   For this reason, the revolution movement of the input members 50 and 51 is not transmitted to the output member 53, but only the rotation movement of the input members 50 and 51 is transmitted, and the rotation force by this rotation movement is rotated from the output member 53 to the differential case 30. Output as power.

これにより、リヤディファレンシャル3が作動し、電動モータ4のモータ回転力に基づく駆動力が図1におけるリヤアクスルシャフト106に配分され、左右の後輪105に伝達される。   As a result, the rear differential 3 is operated, and the driving force based on the motor rotational force of the electric motor 4 is distributed to the rear axle shaft 106 in FIG. 1 and transmitted to the left and right rear wheels 105.

ここで、モータ回転力伝達装置1においては、動作に伴い一方の入力部材50にその円運動に基づいて遠心力Fが、また他方の入力部材51にその円運動に基づいて遠心力Fがそれぞれ作用する。 Here, in the motor torque transmission device 1, the centrifugal force F 1 on the basis of the circular motion to one of the input member 50 with the operation and the centrifugal force F 2 on the basis of the circular motion to the other of the input member 51 Each works.

これに伴い、一方の入力部材50が遠心力Fの作用方向(例えば図2の下方)に、また他方の入力部材51が遠心力Fの作用方向(例えば図2の上方)にそれぞれ移動する。 Accordingly, movement respectively to one of the input member 50 is the direction of action of the centrifugal force F 1 (e.g. downward in FIG. 2), also to the other input member 51 is the direction of action of the centrifugal force F 2 (e.g. upward in FIG. 2) To do.

この場合、図4に示すように、一方の入力部材50がその円運動に基づいて生じる遠心力Fによる荷重を受けてその方向に移動すると、この荷重の一部が一方の凸部50eの転がり接触面500eを介して可動部材70の凹面70aに、また他方の凸部50fの転がり接触面500fを介して可動部材72の凹面72aにそれぞれ作用する。 In this case, as shown in FIG. 4, when one of the input member 50 is under load due to the centrifugal force F 1 generated based on the circular movement to move in that direction, a portion of the load of one of the projecting portions 50e It acts on the concave surface 70a of the movable member 70 via the rolling contact surface 500e, and acts on the concave surface 72a of the movable member 72 via the rolling contact surface 500f of the other convex portion 50f.

このため、一方の入力部材50からの遠心力Fによる荷重の一部を可動部材70の凹面70a及び可動部材72の凹面72aが受けることになり、この遠心力Fによる荷重が玉軸受54に作用することが抑制される。 Therefore, will be a part of the load caused by the centrifugal force F 1 from one of the input member 50 is concave 72a of the concave 70a and the movable member 72 of the movable member 70 receives the load applied by the centrifugal force F 1 is the ball bearing 54 Acting on is suppressed.

同様に、他方の入力部材51がその円運動に基づいて生じる遠心力Fによる荷重を受けてその方向に移動すると、この荷重の一部が一方の凸部51eの転がり接触面510eを介して可動部材74の凹面74aに、また他方の凸部51fの転がり接触面510fを介して可動部材76の凹面76aにそれぞれ作用する。 Similarly, it is moving in that direction under load by the centrifugal force F 2 which is the other of the input member 51 occurring on the basis of the circular motion, a part of the load through the rolling contact surface 510e of the one convex portion 51e It acts on the concave surface 74a of the movable member 74 and the concave surface 76a of the movable member 76 via the rolling contact surface 510f of the other convex portion 51f.

このため、他方の入力部材51からの遠心力Fによる荷重の一部を可動部材74の凹面74a及び可動部材76の凹面76aが受けることになり、この遠心力Fによる荷重が玉軸受56に作用することが抑制される。 Therefore, a part of the load due to the centrifugal force F 2 from the other input member 51 is received by the concave surface 74 a of the movable member 74 and the concave surface 76 a of the movable member 76, and the load due to this centrifugal force F 2 is received by the ball bearing 56. Acting on is suppressed.

従って、本実施の形態においては、玉軸受54,56の耐久性の高い軸受を用いることが不要になる。   Therefore, in this embodiment, it is not necessary to use highly durable bearings 54 and 56.

一方、玉軸受54では、一方の入力部材50の可動部材70への転がり接触による反力P=P及び弾性部材71によるばね力f=fが可動部材70を介して、また一方の入力部材50の可動部材72への転がり接触による反力P=P及び弾性部材73によるばね力f=fが可動部材72を介してそれぞれ一方の入力部材50に伝達され、これら反力P=P,P及びばね力f=f,fが一方の入力部材50から予圧として付与される。 On the other hand, in the ball bearing 54, the reaction force P = P 1 due to the rolling contact of one input member 50 to the movable member 70 and the spring force f = f 1 due to the elastic member 71 are passed through the movable member 70 and the other input. The reaction force P = P 2 due to the rolling contact of the member 50 to the movable member 72 and the spring force f = f 2 due to the elastic member 73 are transmitted to the one input member 50 via the movable member 72, and these reaction forces P = P 1 and P 2 and spring forces f = f 1 and f 2 are applied as preload from one input member 50.

同様に、玉軸受56では、他方の入力部材51の可動部材74への転がり接触による反力P=P及び弾性部材75によるばね力f=fが可動部材74を介して、また他方の入力部材51の可動部材76への転がり接触による反力P=P及び弾性部材77によるばね力f=fが可動部材76を介してそれぞれ他方の入力部材51に伝達され、これら反力P=P,P及びばね力f=f,fが他方の入力部材51から予圧として付与される。 Similarly, the ball bearing 56, the reaction force P = P 3 and the spring force f = f 3 by the elastic member 75 due to the rolling contact with the movable member 74 of the other of the input member 51 through the movable member 74, and the other The reaction force P = P 4 due to the rolling contact of the input member 51 to the movable member 76 and the spring force f = f 4 due to the elastic member 77 are transmitted to the other input member 51 through the movable member 76, respectively. = P 1 , P 2 and spring force f = f 3 , f 4 are applied as preload from the other input member 51.

従って、本実施の形態においては、玉軸受54,56のアキシアル内部すきまが低減され、入力部材50,51におけるラジアル方向のがたつき発生を抑制することができる。   Therefore, in the present embodiment, the axial internal clearance of the ball bearings 54 and 56 is reduced, and the occurrence of rattling in the radial direction at the input members 50 and 51 can be suppressed.

なお、上記実施の形態においては、入力部材50,51を矢印m方向に円運動させてモータ回転力伝達装置1を作動させる場合について説明したが、入力部材50,51を矢印m方向に円運動させてもモータ回転力伝達装置1を上記実施の形態と同様に作動させることができる。この場合、入力部材50の自転運動は矢印n方向に、また入力部材51の自転運動は矢印l方向にそれぞれ行われる。 In the above embodiment has described the case where the input member 50, 51 by circular motion of the arrow m 1 direction to actuate the motor torque transmission device 1, the input member 50, 51 in the arrow m 2 Direction Even if it makes a circular motion, the motor rotational force transmission device 1 can be operated in the same manner as in the above embodiment. In this case, the rotation of the input member 50 is performed in the direction of the arrow n 2 , and the rotation of the input member 51 is performed in the direction of the arrow l 2 .

[第1の実施の形態の効果]
以上説明した第1の実施の形態によれば、次に示す効果が得られる。
[Effect of the first embodiment]
According to the first embodiment described above, the following effects can be obtained.

(1)入力部材50からの遠心力Fによる荷重が玉軸受54に、また入力部材51からの遠心力Fによる荷重が玉軸受56にそれぞれ作用することが抑制されるため、玉軸受54,56に耐久性の高い軸受を用いることが不要になり、コストの低廉化を図ることができる。 (1) Since the load due to the centrifugal force F 1 from the input member 50 is restrained from acting on the ball bearing 54 and the load due to the centrifugal force F 2 from the input member 51 is restrained from acting on the ball bearing 56, respectively. , 56 is not required to use a highly durable bearing, and the cost can be reduced.

(2)玉軸受54に対する遠心力Fによる荷重の作用、及び玉軸受56に対する遠心力Fによる荷重の作用が抑制されることは、玉軸受54,56の高寿命化を図ることもできる。 (2) The suppression of the action of the load by the centrifugal force F 1 on the ball bearing 54 and the action of the load by the centrifugal force F 2 on the ball bearing 56 can also increase the life of the ball bearings 54 and 56. .

(3)玉軸受54,56のアキシアル内部すきまが予圧によって低減されるため、入力部材50,51におけるラジアル方向のがたつき発生を抑制することができ、モータ軸42に対する入力部材50,51の軸心性を改善することができる。 (3) Since the axial internal clearance of the ball bearings 54 and 56 is reduced by the preload, it is possible to suppress the occurrence of rattling in the radial direction at the input members 50 and 51, and the input members 50 and 51 with respect to the motor shaft 42 can be suppressed. Axiality can be improved.

(4)自転力付与部材52がハウジング2の一部を構成する円筒部材によって形成されているため、自転力付与部材52をハウジング2内に収容する場合と比べて自転力付与部材52の外径を大きい寸法に設定することができ、自転力付与部材52の機械的強度を高めることができる。また、自転力付与部材52がハウジング2の一部を構成することは、装置全体の径方向寸法を短縮して小型化を図ることができる。 (4) Since the rotation force applying member 52 is formed of a cylindrical member that constitutes a part of the housing 2, the outer diameter of the rotation force applying member 52 is larger than that in the case where the rotation force applying member 52 is accommodated in the housing 2. Can be set to a large dimension, and the mechanical strength of the rotation force applying member 52 can be increased. In addition, the fact that the rotation force applying member 52 constitutes a part of the housing 2 can reduce the size in the radial direction of the entire apparatus and reduce the size.

(5)自転力付与部材52の第1の嵌合部52aを凸部23の外周面に、また第2の嵌合部52bを凸部27の外周面にそれぞれ嵌合させて芯合わせを行うことができ、自転力付与部材52の製造加工を簡単に行うことができる。 (5) The first fitting portion 52a of the rotation force imparting member 52 is fitted to the outer peripheral surface of the convex portion 23, and the second fitting portion 52b is fitted to the outer peripheral surface of the convex portion 27 to perform centering. Therefore, the manufacturing process of the rotation force applying member 52 can be easily performed.

[第2の実施の形態]
次に、本発明の第2実施の形態に係るモータ回転力伝達装置につき、図6を用いて説明する。図6はモータ回転力伝達装置の要部を示す。図6において、図2及び図4と同一又は同等の機能をもつ部材については同一の符号を付し、詳細な説明は省略する。
[Second Embodiment]
Next, a motor torque transmission device according to a second embodiment of the present invention will be described with reference to FIG. FIG. 6 shows a main part of the motor torque transmission device. 6, members having the same or equivalent functions as those in FIGS. 2 and 4 are denoted by the same reference numerals, and detailed description thereof is omitted.

図6に示すように、本発明の第2の実施の形態に係るモータ回転力伝達装置100は、凸部50e,50fの転がり接触面500e,500fがそれぞれ転がり接触する可動部材70,72の周面が凹面70a,72aに代えてテーパ面70b,72bで、また凸部51e,51fの転がり接触面510e,510fがそれぞれ転がり接触する可動部材74,76の周面が凹面74a,76aに代えてテーパ面74b,76bでそれぞれ形成されている点に特徴がある。   As shown in FIG. 6, in the motor torque transmission device 100 according to the second embodiment of the present invention, the rolling contact surfaces 500e and 500f of the convex portions 50e and 50f are in contact with each other around the movable members 70 and 72, respectively. Instead of the concave surfaces 70a and 72a, the surfaces are tapered surfaces 70b and 72b, and the rolling contact surfaces 510e and 510f of the convex portions 51e and 51f are in rolling contact with the peripheral surfaces of the movable members 74 and 76, instead of the concave surfaces 74a and 76a. It is characterized in that it is formed by tapered surfaces 74b and 76b, respectively.

このため、リヤディファレンシャル3(図2に示す)側の可動部材70のテーパ面70bは、その外周面及び先端面に跨る部位を切り欠くことにより、曲率半径RをR=∞(無限大)とする平面で形成されている。また、リヤディファレンシャル3側の可動部材72のテーパ面72bは、その内周面及び先端面に跨る部位を切り欠くことにより、曲率半径RをR=∞(無限大)とする平面で形成されている。   For this reason, the taper surface 70b of the movable member 70 on the side of the rear differential 3 (shown in FIG. 2) is cut out at a portion straddling the outer peripheral surface and the front end surface, so that the radius of curvature R is R = ∞ (infinity). It is formed with a flat surface. Further, the tapered surface 72b of the movable member 72 on the rear differential 3 side is formed by a plane having a radius of curvature R of R = ∞ (infinite) by notching a portion straddling the inner peripheral surface and the tip surface. Yes.

電動モータ4(図2に示す)側の可動部材74のテーパ面74bは、その外周面及び先端面に跨る部位を切り欠くことにより、曲率半径RをR=∞(無限大)とする平面で形成されている。また、電動モータ4側の可動部材76のテーパ面76bは、その内周面及び先端面に跨る部位を切り欠くことにより、曲率半径RをR=∞(無限大)とする平面で形成されている。   The tapered surface 74b of the movable member 74 on the side of the electric motor 4 (shown in FIG. 2) is a plane in which the radius of curvature R is R = ∞ (infinite) by notching a portion straddling the outer peripheral surface and the tip surface. Is formed. Further, the tapered surface 76b of the movable member 76 on the electric motor 4 side is formed by a plane having a curvature radius R of R = ∞ (infinite) by notching a portion straddling the inner peripheral surface and the tip surface. Yes.

このように構成されたモータ回転力伝達装置100においては、一方の入力部材50からの遠心力Fによる荷重の一部を可動部材70の凹面70b及び可動部材72の凹面72bが受けることになり、この遠心力F=Fによる荷重が玉軸受54に作用することが抑制される。 In such motor torque transmission apparatus 100 constructed as above, will be a part of the load caused by the centrifugal force F 1 from one of the input member 50 is concave 72b of the concave 70b and the movable member 72 of the movable member 70 receives The load due to the centrifugal force F = F 1 is suppressed from acting on the ball bearing 54.

同様に、他方の入力部材51からの遠心力F=Fによる荷重の一部を可動部材74の凹面74a及び可動部材76の凹面76aが受けることになり、この遠心力Fによる荷重が玉軸受56に作用することが抑制される。 Similarly, will receive a part of the load caused by the centrifugal force F = F 2 from the other input member 51 is concave 76a of the concave 74a and the movable member 76 of the movable member 74, the load due to the centrifugal force F 2 is the ball Acting on the bearing 56 is suppressed.

従って、本実施の形態においては、玉軸受54,56の耐久性の高い軸受を用いることが不要になる。   Therefore, in this embodiment, it is not necessary to use highly durable bearings 54 and 56.

一方、玉軸受54では、一方の入力部材50の可動部材70への転がり接触による反力P=P,P及び弾性部材71,73によるばね力f=f,fが一方の入力部材50から予圧として付与される。 On the other hand, in the ball bearing 54, reaction forces P = P 1 and P 2 due to rolling contact of one input member 50 to the movable member 70 and spring forces f = f 1 and f 2 due to the elastic members 71 and 73 are input to one side. The preload is applied from the member 50.

同様に、玉軸受56では、他方の入力部材51の可動部材74への転がり接触による反力P=P,f及び弾性部材75,77によるばね力f=f,fが他方の入力部材51から予圧として付与される。 Similarly, in the ball bearing 56, the reaction force P = P 3 , f 4 due to the rolling contact of the other input member 51 to the movable member 74 and the spring force f = f 3 , f 4 due to the elastic members 75, 77 are the other. It is given as a preload from the input member 51.

従って、本実施の形態においては、玉軸受54,56のアキシアル内部すきまが低減され、入力部材50,51におけるラジアル方向のがたつき発生を抑制することができる。   Therefore, in the present embodiment, the axial internal clearance of the ball bearings 54 and 56 is reduced, and the occurrence of rattling in the radial direction at the input members 50 and 51 can be suppressed.

[第2の実施の形態の効果]
以上説明した第2の実施の形態によれば、第1の実施の形態に示す効果に加え、次に示す効果が得られる。
[Effect of the second embodiment]
According to the second embodiment described above, the following effects are obtained in addition to the effects shown in the first embodiment.

可動部材70,72,74,76の各周面がテーパ面70b,72b,74b,76bで形成されているため、凹面70a,72a,74a,76aで形成されている場合と比べ、可動部材70,72,74,76の各周面に凸部50e,50f,51e,51fの転がり接触面500e,500f,510e,510fを転がり接触させ易くなり、モータ軸42に対する入力部材50,51の組付性を簡単に行うことができる。   Since each peripheral surface of the movable members 70, 72, 74, and 76 is formed by the tapered surfaces 70b, 72b, 74b, and 76b, the movable member 70 is compared with the case where the peripheral surfaces are formed by the concave surfaces 70a, 72a, 74a, and 76a. , 72, 74, and 76, the rolling contact surfaces 500e, 500f, 510e, and 510f of the convex portions 50e, 50f, 51e, and 51f are easily brought into rolling contact with each other, and the input members 50 and 51 are assembled to the motor shaft 42. Sex can be done easily.

以上、本発明の減速機構及びこれを備えたモータ回転力伝達装置を上記実施の形態に基づいて説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能であり、例えば次に示すような変形も可能である。   As mentioned above, although the deceleration mechanism of this invention and the motor rotational force transmission apparatus provided with this were demonstrated based on the said embodiment, this invention is not limited to the said embodiment, The range which does not deviate from the summary The present invention can be implemented in various modes, and for example, the following modifications are possible.

(1)上記実施の形態では、軸線Oから軸線Oまでの距離と軸線O´から軸線Oまでの距離とを等しく、かつ軸線Oと軸線O´との軸線O回りの距離を等しくするように一方の偏心部42aと他方の偏心部42bとがモータ軸42の外周囲に配置されているとともに、軸線O回りに互いに等間隔(180°)をもって離間する部位で一対の入力部材50,51が配置されている場合について説明したが、本発明はこれに限定されず、入力部材の個数は適宜変更することができる。 (1) In the above embodiment, equal to the distance from the distance and the axis O'2 from the axis O 2 to the axis O 1 to the axis O 1, and the axis O 1 around the axis O 2 and the axis O'2 with one to equal the distance of the eccentric portion 42a and the other of the eccentric portion 42b is disposed on the outer periphery of the motor shaft 42, at a site away with a regular intervals (180 °) from each other in the axial line O 1 around Although the case where the pair of input members 50 and 51 are disposed has been described, the present invention is not limited to this, and the number of input members can be changed as appropriate.

すなわち、入力部材がn(n≧3)個の場合には、電動モータ(モータ軸)の軸線に直交する仮想面において、第1の偏心部の軸線,第2の偏心部の軸線,…,第nの偏心部の軸線がモータ軸の軸線回りの一方向に順次配置されているものとすると、各偏心部の軸線からモータ軸の軸線までの距離を等しく、かつ第1の偏心部,第2の偏心部,…,第nの偏心部のうち互いに隣り合う2つの偏心部の軸線とモータ軸の軸線とを結ぶ線分でつくる挟角を360°/nとするように各偏心部がモータ軸の外周囲に配置されるとともに、軸線O回りに360°/nの間隔をもって離間する部位でn個の入力部材が配置される。 That is, when there are n (n ≧ 3) input members, in the virtual plane orthogonal to the axis of the electric motor (motor shaft), the axis of the first eccentric part, the axis of the second eccentric part,. Assuming that the axis of the nth eccentric part is sequentially arranged in one direction around the axis of the motor shaft, the distance from the axis of each eccentric part to the axis of the motor shaft is equal, and the first eccentric part, Each of the eccentric portions is formed so that the included angle formed by a line segment connecting the axes of the two eccentric portions adjacent to each other among the two eccentric portions,..., The n-th eccentric portion and the axis of the motor shaft is 360 ° / n. The n input members are disposed at the outer periphery of the motor shaft and at a part spaced about 360 ° / n around the axis O 1 .

例えば、入力部材が3個の場合には、モータ軸の軸線に直交する仮想面において、第1の偏心部の軸線,第2の偏心部の軸線,第3の偏心部の軸線がモータ軸の軸線回りの一方向に順次配置されているものとすると、各偏心部の軸線からモータ軸の軸線までの距離を等しく、かつ第1の偏心部,第2の偏心部,第3の偏心部のうち互いに隣り合う2つの偏心部の軸線とモータ軸の軸線とを結ぶ線分でつくる挟角を120°とするように各偏心部がモータ軸の外周囲に配置されるとともに、その軸線回りに120°の間隔をもって離間する部位で3個の入力部材が配置される。   For example, when there are three input members, the axis of the first eccentric part, the axis of the second eccentric part, and the axis of the third eccentric part are on the motor axis on a virtual plane orthogonal to the axis of the motor shaft. If it is sequentially arranged in one direction around the axis, the distance from the axis of each eccentric part to the axis of the motor shaft is equal, and the first eccentric part, the second eccentric part, and the third eccentric part Each eccentric part is arranged on the outer periphery of the motor shaft so that the included angle formed by the line connecting the axis line of two eccentric parts adjacent to each other and the axis line of the motor shaft is 120 °. Three input members are arranged at portions separated by an interval of 120 °.

(2)上記実施の形態では、デフケース30の構成要素としてのフランジ30c,30fのうち一方のフランジ30cの内周面とモータ軸42の外周面との間に玉軸受35を、他方のフランジ30fの内周面とモータ軸42の外周面との間に玉軸受38をそれぞれ介在させる場合について説明したが、本発明はこれに限定されず、図7に示すように一方のフランジ30cの内周面とモータ軸42の外周面との間にのみ玉軸受35を介在させてもよい。この場合、フランジ30fは、モータ軸42の軸線(軸線O)上でフランジ30cにフランジ端面を対向させ複数の出力部材53によって連結され、全体が円環部材によって形成されている。フランジ30fには、円環部材25の一部を収容する収容孔300fが設けられている。 (2) In the above embodiment, the ball bearing 35 is disposed between the inner peripheral surface of one flange 30c and the outer peripheral surface of the motor shaft 42 among the flanges 30c, 30f as the constituent elements of the differential case 30, and the other flange 30f. In the above description, the ball bearings 38 are interposed between the inner circumferential surface of the motor shaft 42 and the outer circumferential surface of the motor shaft 42. However, the present invention is not limited to this, and as shown in FIG. The ball bearing 35 may be interposed only between the surface and the outer peripheral surface of the motor shaft 42. In this case, the flange 30f is connected by a plurality of output members 53 with the flange end face opposed to the flange 30c on the axis (axis O 1 ) of the motor shaft 42, and is entirely formed of an annular member. The flange 30f is provided with an accommodation hole 300f for accommodating a part of the annular member 25.

(3)上記実施の形態では、接触対象がデフケース30である場合について説明したが、本発明はこれに限定されず、自転力付与部材を接触対象としてもよい。 (3) Although the case where the contact target is the differential case 30 has been described in the above embodiment, the present invention is not limited to this, and a rotation force applying member may be the contact target.

(4)上記実施の形態では、凸部50e,50f,51e,51fの転がり接触面500e,500f,510e,510fがそれぞれ接触する凹面70a,72a,74a,76aが可動部材70,72,74,76に設けられている場合について説明したが、本発明はこれに限定されず、接触対象としての出力対象又は自転力付与部材に直接に設けてもよい。 (4) In the above embodiment, the concave surfaces 70a, 72a, 74a, and 76a with which the rolling contact surfaces 500e, 500f, 510e, and 510f of the convex portions 50e, 50f, 51e, and 51f are in contact are movable members 70, 72, 74, However, the present invention is not limited to this, and may be provided directly on the output target or the rotation force applying member as the contact target.

(5)上記実施の形態では、可動部材70,72,74,76の周面が凹面70a,72,74a,76aで形成されている場合について説明したが、本発明はこれに限定されず、可動部材の周面を凸面で形成してもよい。この場合、可動部材の凸面が転がり接触する入力部材の各凸部の周面を凹面で形成する。 (5) In the above embodiment, the case where the peripheral surfaces of the movable members 70, 72, 74, and 76 are formed by the concave surfaces 70a, 72, 74a, and 76a has been described. However, the present invention is not limited to this, The peripheral surface of the movable member may be formed as a convex surface. In this case, the peripheral surface of each convex part of the input member with which the convex surface of the movable member comes into rolling contact is formed as a concave surface.

(6)上記実施の形態では、駆動源としてエンジン102及び電動モータ4を併用した四輪駆動車101に適用する場合について説明したが、本発明はこれに限定されず、電動モータのみを駆動源とした四輪駆動車又は二輪駆動車である電気自動車にも適用することができる。また、本発明は、エンジン,電動モータによる第1の駆動軸と電動モータによる第2の駆動軸とを有する四輪駆動車にも上記実施の形態と同様に適用可能である。 (6) In the above embodiment, the case where the present invention is applied to the four-wheel drive vehicle 101 using both the engine 102 and the electric motor 4 as the drive source has been described. However, the present invention is not limited to this, and only the electric motor is used as the drive source. The present invention can also be applied to an electric vehicle that is a four-wheel drive vehicle or a two-wheel drive vehicle. The present invention can also be applied to a four-wheel drive vehicle having an engine, a first drive shaft by an electric motor, and a second drive shaft by an electric motor, as in the above embodiment.

(7)上記実施の形態では、モータ軸42の偏心部42aの外周面と一方の入力部材50における中心孔50aの内周面との間に、またモータ軸42の偏心部42bの外周面と他方の入力部材51における中心孔51aの内周面との間にそれぞれ深溝玉軸受である玉軸受54,56を介在させる場合について説明したが、本発明はこれに限定されず、深溝玉軸受に換えて深溝玉軸受以外の玉軸受やころ軸受を用いてもよい。このような玉軸受やころ軸受は、例えばアンギュラ玉軸受,針状ころ軸受,棒状ころ軸受,円筒ころ軸受,円すいころ軸受,自動調心ころ軸受などが挙げられる。 (7) In the above embodiment, between the outer peripheral surface of the eccentric portion 42a of the motor shaft 42 and the inner peripheral surface of the center hole 50a in one input member 50, and the outer peripheral surface of the eccentric portion 42b of the motor shaft 42 Although the case where the ball bearings 54 and 56 which are deep groove ball bearings are respectively interposed between the inner peripheral surface of the center hole 51a in the other input member 51 has been described, the present invention is not limited thereto, and the deep groove ball bearing is not limited thereto. Alternatively, ball bearings or roller bearings other than deep groove ball bearings may be used. Examples of such ball bearings and roller bearings include angular contact ball bearings, needle roller bearings, rod roller bearings, cylindrical roller bearings, tapered roller bearings, and self-aligning roller bearings.

(8)上記の実施の形態では、玉軸受54,56の内輪540,560がそれぞれモータ軸42の偏心部42a,42bの外周面にしまりばめで取り付けられ、玉軸受54,56の外輪541,561がそれぞれ入力部材50,51における中心孔50a,51aのの内周面にすきまばめで取り付けられている場合について説明したが、本発明はこれに限定されず、いずれの内輪,外輪もこれらが取り付けられる周面に対してしまりばめであっても、すきまばめであっても、あるいはとまりばめであってもよい。 (8) In the above embodiment, the inner rings 540 and 560 of the ball bearings 54 and 56 are respectively attached to the outer peripheral surfaces of the eccentric parts 42a and 42b of the motor shaft 42 by interference fit, and the outer rings 541 and 541 of the ball bearings 54 and 56 are attached. Although the case where 561 is attached to the inner peripheral surfaces of the center holes 50a and 51a in the input members 50 and 51 by clearance fitting, respectively, the present invention is not limited to this, and any inner ring and outer ring It may be an interference fit, a clearance fit, or an interference fit with respect to the peripheral surface to be attached.

1…モータ回転力伝達装置、2…ハウジング、20…第1のハウジングエレメント、20a…シャフト挿通孔、20b…内フランジ、20c…切り欠き、21…第2のハウジングエレメント、21a…内フランジ、22…第3のハウジングエレメント、22a…シャフト挿通孔、22b…円筒部、22c…段差面、23…凸部、24…シール部材、25…円環部材、27…凸部、28…シール部材、3…リヤディファレンシャル、30…デフケース、30a…収容空間、30b…シャフト挿通孔、30c…フランジ、300c…ピン挿通孔、301c,302c…凹溝、30d…段差面、30e…凹孔、300e…段差面、30f…フランジ、300f…収容孔、301f…ピン挿通孔、302f…凸部、303f,304f…凹溝、31…ピニオンギヤシャフト、32…ピニオンギヤ、33…サイドギヤ、34…玉軸受、340…内輪、35…玉軸受、350…内輪、351…外輪、352…転動体、37…スペーサ、38…玉軸受、381…外輪、4…電動モータ、40…ステータ、41…ロータ、42…モータ軸、42a,42b…偏心部、42c…段差面、42e…段差面、42g…段差面、43…取付ボルト、44…玉軸受、45…スリーブ、46…玉軸受、460…内輪、461…外輪、47…レゾルバ、470…ステータ、471…ロータ、5…減速伝達機構、50,51…入力部材、50a,51a…中心孔、50b,51b…ピン挿通孔、50c,51c…外歯、50d、51d…内フランジ、50e,50f…凸部、500e,500f…転がり接触面、51e,51f…凸部、510e,510f…転がり接触面、52…自転力付与部材、52a…第1の嵌合部、52b…第2の嵌合部、53A…出力機構、53…出力部材、53a,53b…ねじ部、53c,53d…軸部、53e…中間部、53f…仕切部、53g,53h…段差面、54…玉軸受、540,541…レース(内輪540,外輪541)、55…針状ころ軸受、550…レース、56…玉軸受、560,561…レース(内輪560,外輪561)、57…針状ころ軸受、570レース、63…スリーブ、64,65…ナット、70…可動部材、70a…凹面、71…弾性部材、72…可動部材、72a…凹面、73…弾性部材、74…可動部材、74a…凹面、75…弾性部材、76…可動部材、76a…凹面、77…弾性部材、100…モータ回転力伝達装置、101…四輪駆動車、102…エンジン、103…トランスアクスル、104…前輪、105…後輪、106…リヤアクスルシャフト、107…フロントアクスルシャフト、a,b,c,d…転がり接触点、L,O,O,O´,O,O,O…軸線、A,A,A,A…軌跡、F…遠心力、P…反力、R…曲率半径、f…ばね力、δ…偏心量 DESCRIPTION OF SYMBOLS 1 ... Motor rotational force transmission apparatus, 2 ... Housing, 20 ... 1st housing element, 20a ... Shaft penetration hole, 20b ... Inner flange, 20c ... Notch, 21 ... 2nd housing element, 21a ... Inner flange, 22 3rd housing element, 22a ... Shaft insertion hole, 22b ... Cylindrical part, 22c ... Step surface, 23 ... Convex part, 24 ... Seal member, 25 ... Ring member, 27 ... Convex part, 28 ... Seal member, 3 ... rear differential, 30 ... differential case, 30a ... accommodation space, 30b ... shaft insertion hole, 30c ... flange, 300c ... pin insertion hole, 301c, 302c ... concave groove, 30d ... step surface, 30e ... concave hole, 300e ... step surface , 30f ... flange, 300f ... accommodation hole, 301f ... pin insertion hole, 302f ... convex part, 303f, 304f ... concave groove, 31 ... Nonion gear shaft, 32 ... pinion gear, 33 ... side gear, 34 ... ball bearing, 340 ... inner ring, 35 ... ball bearing, 350 ... inner ring, 351 ... outer ring, 352 ... rolling element, 37 ... spacer, 38 ... ball bearing, 381 ... Outer ring, 4 ... Electric motor, 40 ... Stator, 41 ... Rotor, 42 ... Motor shaft, 42a, 42b ... Eccentric part, 42c ... Stepped surface, 42e ... Stepped surface, 42g ... Stepped surface, 43 ... Mounting bolt, 44 ... Ball Bearing, 45 ... Sleeve, 46 ... Ball bearing, 460 ... Inner ring, 461 ... Outer ring, 47 ... Resolver, 470 ... Stator, 471 ... Rotor, 5 ... Deceleration transmission mechanism, 50, 51 ... Input member, 50a, 51a ... Center hole , 50b, 51b ... pin insertion hole, 50c, 51c ... external teeth, 50d, 51d ... inner flange, 50e, 50f ... convex, 500e, 500f ... rolling contact surface, 51 , 51f ... convex portion, 510e, 510f ... rolling contact surface, 52 ... autorotation force applying member, 52a ... first fitting portion, 52b ... second fitting portion, 53A ... output mechanism, 53 ... output member, 53a , 53b ... Screw part, 53c, 53d ... Shaft part, 53e ... Intermediate part, 53f ... Partition part, 53g, 53h ... Stepped surface, 54 ... Ball bearing, 540, 541 ... Race (inner ring 540, outer ring 541), 55 ... Needle roller bearing, 550 ... race, 56 ... ball bearing, 560, 561 ... race (inner ring 560, outer ring 561), 57 ... needle roller bearing, 570 race, 63 ... sleeve, 64, 65 ... nut, 70 ... movable 70a ... concave surface, 71 ... elastic member, 72 ... movable member, 72a ... concave surface, 73 ... elastic member, 74 ... movable member, 74a ... concave surface, 75 ... elastic member, 76 ... movable member, 76a ... concave surface, 77 ... Elastic part Material: 100 ... Motor rotational force transmission device, 101 ... Four-wheel drive vehicle, 102 ... Engine, 103 ... Transaxle, 104 ... Front wheel, 105 ... Rear wheel, 106 ... Rear axle shaft, 107 ... Front axle shaft, a, b, c, d ... rolling contact point, L, O 1 , O 2 , O ' 2 , O 3 , O 4 , O 5 ... axis, A 1 , A 2 , A 3 , A 4 ... locus, F ... centrifugal force, P: reaction force, R: radius of curvature, f: spring force, δ: eccentricity

Claims (8)

偏心部を有する回転軸と、
前記回転軸の前記偏心部の外周面に軸受を介して回転可能に支持され、軸線回りに等間隔をもって並列する複数の貫通孔を有する外歯歯車からなる入力部材と、
前記入力部材に噛合し、前記外歯歯車の歯数よりも大きい歯数をもつ内歯歯車からなる自転力付与部材と、
前記自転力付与部材によって前記入力部材に付与された自転力を受けて出力対象にその回転力として出力し、前記複数の貫通孔をそれぞれ挿通する複数の出力部材とを備え、
前記入力部材は、軸線方向に突出する円環状の凸部を有し、前記凸部の周面が前記出力対象又は前記自転力付与部材を接触対象として前記接触対象側との間で転がり接触する転がり接触面で形成されている
減速機構。
A rotating shaft having an eccentric portion;
An input member composed of an external gear having a plurality of through-holes that are rotatably supported via a bearing on the outer peripheral surface of the eccentric portion of the rotating shaft and are arranged in parallel at equal intervals around the axis;
A rotation force applying member that is engaged with the input member and includes an internal gear having a number of teeth larger than the number of teeth of the external gear;
Receiving a rotation force applied to the input member by the rotation force application member, outputting the output force as a rotational force, and a plurality of output members respectively inserted through the plurality of through holes,
The input member has an annular convex portion protruding in the axial direction, and the peripheral surface of the convex portion is in rolling contact with the contact target side with the output target or the rotation force applying member as a contact target. A speed reduction mechanism formed by rolling contact surfaces.
前記入力部材は、前記転がり接触面が前記接触対象側からアキシアル荷重を受けて前記軸受に予圧として付与するための曲面からなる請求項1に記載の減速機構。   2. The speed reduction mechanism according to claim 1, wherein the input member includes a curved surface on which the rolling contact surface receives an axial load from the contact target side and is applied as a preload to the bearing. 前記入力部材は、前記転がり接触面と前記接触対象との間に円環状の可動部材を介在させ、前記可動部材側から軸線方向に弾性部材による弾性力を受ける位置に配置されている請求項1又は2に記載の減速機構。   2. The input member is disposed at a position where an annular movable member is interposed between the rolling contact surface and the contact target and receives an elastic force from an elastic member in an axial direction from the movable member side. Or the deceleration mechanism of 2. 前記入力部材は、前記転がり接触面を凸面とし、前記可動部材に設けられたテーパ面又は凹面に前記転がり接触面を転がり接触させる請求項3に記載の減速機構。   The speed reduction mechanism according to claim 3, wherein the input member has the rolling contact surface as a convex surface, and the rolling contact surface is brought into rolling contact with a tapered surface or a concave surface provided on the movable member. 前記入力部材は、前記転がり接触面が前記複数の出力部材の径方向外側に前記凸部の内周面として配置されている請求項1乃至4のいずれか1項に記載の減速機構。   The speed reduction mechanism according to any one of claims 1 to 4, wherein the rolling contact surface of the input member is disposed as an inner peripheral surface of the convex portion on a radially outer side of the plurality of output members. 前記入力部材は、前記転がり接触面が前記複数の出力部材の径方向内側に前記凸部の外周面として配置されている請求項1乃至5のいずれか1項に記載の減速機構。   The speed reduction mechanism according to any one of claims 1 to 5, wherein the rolling contact surface of the input member is disposed as an outer peripheral surface of the convex portion on a radially inner side of the plurality of output members. 前記複数の出力部材は、それぞれが前記入力部材を介して対向する前記出力対象の構成要素としての一対の鍔部を挿通し、かつ前記一対の鍔部を連結する連結部材によって形成されている請求項1乃至6のいずれか1項に記載の減速機構。   The plurality of output members are each formed by a connecting member that inserts a pair of flanges as components of the output object that face each other via the input member and connects the pair of flanges. Item 7. The speed reduction mechanism according to any one of Items 1 to 6. モータ回転力を発生させる電動モータと、
前記電動モータの前記モータ回転力を減速して駆動力を出力する減速機構とを備えたモータ回転力伝達装置において、
前記減速機構は、請求項1乃至7のいずれか1項に記載の減速機構である
モータ回転力伝達装置。
An electric motor for generating motor rotational force;
A motor rotational force transmission device comprising a speed reduction mechanism that decelerates the motor rotational force of the electric motor and outputs a driving force;
The said reduction mechanism is a reduction mechanism of any one of Claim 1 thru | or 7. A motor rotational force transmission apparatus.
JP2012155817A 2012-07-11 2012-07-11 Speed reduction mechanism and motor rotational force transmission device including the same Pending JP2014016017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012155817A JP2014016017A (en) 2012-07-11 2012-07-11 Speed reduction mechanism and motor rotational force transmission device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012155817A JP2014016017A (en) 2012-07-11 2012-07-11 Speed reduction mechanism and motor rotational force transmission device including the same

Publications (1)

Publication Number Publication Date
JP2014016017A true JP2014016017A (en) 2014-01-30

Family

ID=50110887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155817A Pending JP2014016017A (en) 2012-07-11 2012-07-11 Speed reduction mechanism and motor rotational force transmission device including the same

Country Status (1)

Country Link
JP (1) JP2014016017A (en)

Similar Documents

Publication Publication Date Title
JP5910378B2 (en) Deceleration mechanism and motor rotational force transmission device having the same
EP2615330B1 (en) Speed reduction mechanism, and motor torque transmission device including the same
JP5817247B2 (en) Motor rotational force transmission device
EP2644425B1 (en) Speed reduction mechanism and motor torque transmission device including the speed reduction mechanism
US8721484B2 (en) Speed reduction mechanism, and motor torque transmission device including the same
EP2725259A1 (en) Motor drive force transmission device
JP5811335B2 (en) Bearing device, reduction mechanism provided with the same, and motor torque transmission device
JP2013007443A (en) Speed reduction mechanism and motor rotation force transmission device equipped with the same
JP2013117284A (en) Speed reduction mechanism, and motor torque transmission device including the same
JP6003557B2 (en) Deceleration mechanism and motor rotational force transmission device having the same
JP6089514B2 (en) Reducer, motor rotational force transmission device including the same, and four-wheel drive vehicle
JP2014005890A (en) Deceleration mechanism and motor torque transmission device including the same
JP2013142447A (en) Speed reduction mechanism, and motor torque transmission device including the same
JP2014016017A (en) Speed reduction mechanism and motor rotational force transmission device including the same
JP6028386B2 (en) Deceleration mechanism and motor rotational force transmission device having the same
JP5849783B2 (en) Deceleration mechanism and motor rotational force transmission device having the same
JP2014001813A (en) Speed reduction mechanism and motor rotational force transmission device including the same
JP2014125041A (en) Axle connection device and vehicular drive unit
JP2014025511A (en) Speed reduction mechanism and motor rotational force transmission device including the same
JP2014005891A (en) Deceleration mechanism and motor torque transmission device including the same
JP2014016019A (en) Speed reduction mechanism and motor rotational force transmission device including the same
JP2014005892A (en) Deceleration mechanism and motor torque transmission device including the same
JP2014001814A (en) Speed reduction mechanism and motor rotational force transmission device including the same