JP6003452B2 - Rare earth magnet manufacturing method - Google Patents

Rare earth magnet manufacturing method Download PDF

Info

Publication number
JP6003452B2
JP6003452B2 JP2012207503A JP2012207503A JP6003452B2 JP 6003452 B2 JP6003452 B2 JP 6003452B2 JP 2012207503 A JP2012207503 A JP 2012207503A JP 2012207503 A JP2012207503 A JP 2012207503A JP 6003452 B2 JP6003452 B2 JP 6003452B2
Authority
JP
Japan
Prior art keywords
alloy
rare earth
temperature
earth magnet
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012207503A
Other languages
Japanese (ja)
Other versions
JP2014063850A (en
Inventor
大祐 佐久間
大祐 佐久間
一昭 芳賀
一昭 芳賀
紀次 佐久間
紀次 佐久間
栄介 保科
栄介 保科
哲也 庄司
哲也 庄司
宮本 典孝
典孝 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012207503A priority Critical patent/JP6003452B2/en
Publication of JP2014063850A publication Critical patent/JP2014063850A/en
Application granted granted Critical
Publication of JP6003452B2 publication Critical patent/JP6003452B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、希土類磁石の製造方法に関するものである。   The present invention relates to a method for producing a rare earth magnet.

ランタノイド等の希土類元素を用いた希土類磁石は永久磁石とも称され、その用途は、ハードディスクやMRIを構成するモータのほか、ハイブリッド車や電気自動車等の駆動用モータなどに用いられている。   Rare earth magnets using rare earth elements such as lanthanoids are also called permanent magnets, and their uses are used in motors for driving hard disks and MRI, as well as drive motors for hybrid vehicles and electric vehicles.

この希土類磁石の磁石性能の指標として残留磁化(残留磁束密度)と保磁力を挙げることができるが、モータの小型化や高電流密度化による発熱量の増大に対し、使用される希土類磁石にも耐熱性に対する要求は一層高まっており、高温使用下で磁石の保磁力を如何に保持できるかが当該技術分野での重要な研究課題の一つとなっている。車両駆動用モータに多用される希土類磁石の一つであるNd-Fe-B系磁石を取り挙げると、結晶粒の微細化を図ることやNd量の多い組成合金を用いること、保磁力性能の高いDy、Tbといった重希土類元素を添加することなどによってその保磁力を増大させる試みがおこなわれている。   Residual magnetization (residual magnetic flux density) and coercive force can be cited as indicators of the magnet performance of this rare earth magnet. However, in response to increased heat generation due to miniaturization of motors and higher current density, rare earth magnets used also The demand for heat resistance is further increasing, and how to maintain the coercive force of a magnet under high temperature use is one of the important research subjects in the technical field. Taking Nd-Fe-B magnets, one of the rare-earth magnets frequently used in vehicle drive motors, to refine crystal grains, use a composition alloy with a large amount of Nd, Attempts have been made to increase the coercivity by adding heavy rare earth elements such as high Dy and Tb.

保磁力性能を高める重希土類元素の中でもその使用量の多いDyを取り上げると、Dyの埋蔵地域は中国に偏在していることに加えて、中国によるDyをはじめとするレアメタルの生産量や輸出量が規制されていることから、Dyの資源価格は2011年度に入って急激に上昇している。そのため、Dy量を減らしながら保磁力性能を保証するDyレス磁石や、Dyを一切使用せずに保磁力性能を保証するDyフリー磁石の開発が我が国において国家を挙げた重要な開発課題の一つとなっている。   Of the heavy rare earth elements that increase coercive force performance, Dy, which is used in large quantities, is taken up by the fact that Dy's reserves are unevenly distributed in China, as well as the production and export volume of rare metals such as Dy by China. The price of Dy's resources has risen sharply since the beginning of 2011. Therefore, the development of Dy-less magnets that guarantee coercive force performance while reducing the amount of Dy and Dy-free magnets that guarantee coercive force performance without using any Dy is one of the important development issues raised by the nation in Japan. It has become.

希土類磁石の製造方法の一例を概説すると、たとえばNd-Fe-B系の金属溶湯を急冷凝固して得られた微粉末を加圧成形しながら成形体とし、この成形体に磁気的異方性を付与するべく熱間塑性加工を施して希土類磁石前駆体(配向磁石)を製造し、この希土類磁石前駆体に対し、その保磁力を高める改質合金を拡散浸透させて希土類磁石を製造する方法が一般に適用されている。   An outline of an example of a method for producing a rare earth magnet is as follows. For example, a fine powder obtained by rapid solidification of a Nd-Fe-B metal melt is formed into a compact while being pressed, and the magnetic anisotropy is applied to the compact. Of rare earth magnet precursor (orientation magnet) by performing hot plastic working to impart a rare earth magnet, and a rare earth magnet is manufactured by diffusing and infiltrating a modified alloy that increases the coercive force of the rare earth magnet precursor. Is generally applied.

ここで、保磁力性能の高い重希土類元素を種々の方法で付与することでナノ結晶磁石からなる希土類磁石を製造する方法が特許文献1,2に開示されている。   Here, Patent Documents 1 and 2 disclose a method of manufacturing a rare earth magnet made of a nanocrystalline magnet by applying a heavy rare earth element having high coercive force performance by various methods.

特許文献1に開示の製造方法は、熱間塑性加工された成形体に対し、Dy、Tbの少なくとも一方を含む蒸発材料を蒸発させ、成形体の表面から粒界拡散させる製造方法である。   The manufacturing method disclosed in Patent Document 1 is a manufacturing method in which an evaporated material containing at least one of Dy and Tb is evaporated from a molded body that has been subjected to hot plastic working, and grain boundaries are diffused from the surface of the molded body.

この製造方法では、蒸発材料を蒸発させる工程において850〜1050℃程度の高温処理を要件としており、この温度範囲は、残留磁束密度の向上と結晶粒成長が速すぎるのを抑制することから規定されたものとしている。   This manufacturing method requires a high-temperature treatment of about 850 to 1050 ° C. in the process of evaporating the evaporation material, and this temperature range is specified from the improvement of the residual magnetic flux density and the suppression of crystal grain growth. It is assumed.

しかしながら、850〜1050℃程度もの温度範囲で熱処理をおこなうと結晶粒が粗大化してしまい、その結果として保磁力が低下する可能性が高くなる。すなわち、Dy、Tbを粒界拡散させていながらも、結果として保磁力を十分に高めることができないことになってしまう。   However, when heat treatment is performed in a temperature range of about 850 to 1050 ° C., the crystal grains become coarse, and as a result, the coercive force is likely to be reduced. That is, while Dy and Tb are diffused at the grain boundaries, the coercive force cannot be sufficiently increased as a result.

一方、特許文献2には、希土類磁石の表面に、Dy、Tb、Hoの少なくとも一種の元素、もしくは、これらとCu、Al、Ga、Ge、Sn、In、Si、P、Coの少なくとも一種の元素の合金を接触させ、結晶粒径が1μmを超えないように熱処理して粒界拡散させる製造方法が開示されている。   On the other hand, in Patent Document 2, at least one element of Dy, Tb, and Ho, or these and at least one of Cu, Al, Ga, Ge, Sn, In, Si, P, and Co is formed on the surface of the rare earth magnet. A manufacturing method is disclosed in which an alloy of elements is brought into contact and subjected to heat treatment so that the crystal grain size does not exceed 1 μm to diffuse grain boundaries.

ここで、特許文献2では、熱処理の際の温度が500〜800℃の範囲の場合にDy等の結晶粒界相への拡散効果と熱処理による結晶粒の粗大化抑制効果のバランスに優れ、高保磁力の希土類磁石が得やすくなるとしている。そして、その種々の実施例は、Dy-Cu合金を使用して500〜900℃で熱処理するものが開示されているが、種々の実施例の中でも代表的な85Dy-15Cu合金の融点は1100℃程度であることから、この金属溶湯を拡散浸透しようとすると1000℃程度以上の高温処理を要し、結果として結晶粒の粗大化を抑制できない。   Here, in patent document 2, when the temperature at the time of heat processing is the range of 500-800 degreeC, it is excellent in the balance of the diffusion effect to the grain boundary phase, such as Dy, and the coarsening suppression effect of the crystal grain by heat processing, and high maintenance. It is said that it will be easier to obtain magnetic rare earth magnets. The various examples disclosed are heat-treated at 500 to 900 ° C. using a Dy-Cu alloy. Among various examples, the melting point of a typical 85Dy-15Cu alloy is 1100 ° C. Therefore, when trying to diffuse and infiltrate this molten metal, high temperature treatment of about 1000 ° C. or higher is required, and as a result, coarsening of crystal grains cannot be suppressed.

このような種々の状況(Dy等の価格の高騰、高融点の重希土類元素を含む改質合金を粒界相へ拡散させる際の高温雰囲気下における結晶粒の粗大化など)に鑑み、Dy、Tbといった重希土類金属を使用しない改質合金(改質相)を使用して、比較的低温な条件下において改質合金の融液を拡散浸透させることにより、希土類磁石の保磁力、特に高温雰囲気下における保磁力が高い希土類磁石の製造方法の発案が望まれている。   In view of these various situations (Dy, etc., rising prices, coarsening of crystal grains in a high temperature atmosphere when a modified alloy containing a high melting point heavy rare earth element is diffused into the grain boundary phase, etc.) By using a modified alloy (modified phase) that does not use heavy rare earth metals such as Tb, the coercive force of rare earth magnets, particularly high-temperature atmospheres, is achieved by diffusing and infiltrating the melt of the modified alloy under relatively low temperature conditions. A proposal of a method for producing a rare earth magnet having a high coercivity below is desired.

そこで、特許文献3では、YやScなどの軽希土類元素とFeやCuなどの遷移元素からなる合金粉末を希土類磁石前駆体である焼結体の表面に存在させ、これを真空もしくは不活性ガス雰囲気中で焼結体の焼結温度以下の温度で加熱して合金粉末を焼結体の内部に拡散させる希土類磁石の製造方法が開示されている。   Therefore, in Patent Document 3, an alloy powder composed of a light rare earth element such as Y or Sc and a transition element such as Fe or Cu is present on the surface of a sintered body that is a rare earth magnet precursor, and this is vacuum or inert gas. A method for producing a rare earth magnet is disclosed in which an alloy powder is diffused into the sintered body by heating in an atmosphere at a temperature lower than the sintering temperature of the sintered body.

特許文献3で開示の製造方法によれば、焼結体の内部に拡散される合金粉末が重希土類元素を含んでいないことから、内部拡散時の温度を低くすることはできる。しかしながら、真空雰囲気下で合金粉末の内部拡散を実施する場合は、真空雰囲気を形成できる設備(真空炉)を必要とすることから設備費が高価になるといった問題がある。また、このような真空炉は一般に1000℃以上の熱処理をおこなうものであるため、700℃程度以下の比較的低温で成形体に改質合金を拡散浸透するにはオーバースペックとなる。一方、たとえば安価な窒素ガスを使用した不活性ガス雰囲気下で合金粉末の内部拡散を実施する場合は、合金粉末の拡散浸透が十分になされないことが分かっている。   According to the manufacturing method disclosed in Patent Document 3, since the alloy powder diffused into the sintered body does not contain heavy rare earth elements, the temperature during internal diffusion can be lowered. However, when the internal diffusion of the alloy powder is performed in a vacuum atmosphere, there is a problem that the equipment cost is high because an equipment (vacuum furnace) capable of forming a vacuum atmosphere is required. In addition, since such a vacuum furnace generally performs heat treatment at 1000 ° C. or higher, it becomes overspecial for diffusing and infiltrating the modified alloy into the compact at a relatively low temperature of about 700 ° C. or lower. On the other hand, for example, when the internal diffusion of the alloy powder is performed in an inert gas atmosphere using inexpensive nitrogen gas, it has been found that the diffusion and penetration of the alloy powder is not sufficiently performed.

特開2011−035001号公報JP 2011-035001 A 特開2010−114200号公報JP 2010-114200 A 特開2011−014668号公報JP 2011-014668 A

本発明は上記する問題に鑑みてなされたものであり、Dy、Tbといった重希土類金属を使用することなく、従来の希土類磁石の製造方法に比して低温で保磁力(特に高温雰囲気下における保磁力)を高める改質合金を拡散浸透させることができ、さらには、不活性ガス雰囲気下において改質合金の十分な拡散浸透を実施することができ、もって、材料コストの低減や安価な設備コストに基づく製造コストの削減を図りながら、保磁力の高い希土類磁石を製造することのできる製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and does not use heavy rare earth metals such as Dy and Tb, and has a lower coercive force (particularly, a coercive force in a high temperature atmosphere) than a conventional method for producing rare earth magnets. It is possible to diffuse and infiltrate the modified alloy that increases the magnetic force), and furthermore, it is possible to carry out sufficient diffusion and penetration of the modified alloy in an inert gas atmosphere, thereby reducing the material cost and reducing the equipment cost. An object of the present invention is to provide a manufacturing method capable of manufacturing a rare earth magnet having a high coercive force while reducing the manufacturing cost based on the above.

前記目的を達成すべく、本発明による希土類磁石の製造方法は、RE-Fe-B系の主相(RE:Nd、Prの少なくとも一種)と該主相の周りにあるRE-X合金(X:金属元素)の粒界相からなる金属組織の成形体にRE-Y合金(Y:金属元素であって重希土類元素を含まない)からなる改質合金を接触させ、熱処理して改質合金の融液を成形体に拡散浸透させて希土類磁石を製造する希土類磁石の製造方法において、前記熱処理は不活性ガス雰囲気下で400℃を超えるRE-Y合金の溶融温度以上に昇温しておこなうものであり、この昇温の過程において、260〜400℃の温度範囲を120秒未満に調整するものである。   In order to achieve the above object, a method for producing a rare earth magnet according to the present invention includes a RE-Fe-B main phase (at least one of RE: Nd and Pr) and a RE-X alloy (X : Metallic element) A reformed alloy made of RE-Y alloy (Y: metal element but not heavy rare earth element) is contacted with the compact of the metallographic structure composed of the grain boundary phase, and the heat-treated modified alloy In the method of manufacturing a rare earth magnet by diffusing and infiltrating a molten metal into a molded body, the heat treatment is performed at a temperature higher than the melting temperature of the RE-Y alloy exceeding 400 ° C. in an inert gas atmosphere. In this temperature rising process, the temperature range of 260 to 400 ° C. is adjusted to less than 120 seconds.

本発明の希土類磁石の製造方法は、Dy、Tbといった重希土類元素を含まない改質合金を成形体に拡散浸透させて希土類磁石を製造するに際し、この改質合金の拡散浸透を高価な装置を要する真空雰囲気ではなくて不活性ガス雰囲気にて実施しながら、改質合金の十分な拡散浸透を保証することのできる製造方法である。   The method for producing a rare earth magnet of the present invention uses an expensive apparatus for diffusion penetration of this modified alloy when a rare earth magnet is produced by diffusing and infiltrating a modified alloy containing no heavy rare earth elements such as Dy and Tb into the compact. It is a manufacturing method that can guarantee sufficient diffusion and penetration of the modified alloy while being carried out in an inert gas atmosphere instead of the required vacuum atmosphere.

本発明者等によれば、不活性ガス雰囲気にて改質合金の拡散浸透が十分にできない理由として、RE-Y合金(RE:Nd等、Y:金属元素であって重希土類元素を含まない)からなる改質合金が加熱された際にNd等が不活性ガス中の水分と反応して水酸化物となり、改質合金の拡散浸透が阻害されることが特定されている。   According to the present inventors, the reason why the modified alloy cannot sufficiently diffuse and penetrate in an inert gas atmosphere is as follows: RE-Y alloy (RE: Nd, etc., Y: a metal element and no heavy rare earth element) It has been specified that Nd or the like reacts with moisture in the inert gas to form a hydroxide when the modified alloy is heated to inhibit diffusion and penetration of the modified alloy.

そして、この水酸化反応が生じる温度範囲は、改質合金が拡散浸透する温度範囲よりも低い260〜400℃の温度範囲であることが特定されている。   And it is specified that the temperature range in which this hydroxylation reaction occurs is a temperature range of 260 to 400 ° C. which is lower than the temperature range in which the modified alloy diffuses and penetrates.

すなわち、不活性ガス雰囲気下にて成形体に改質合金を接触させた状態で400℃を超えるRE-Y合金の溶融温度まで昇温する過程において、水酸化反応が生じる260〜400℃の温度範囲を通過することになる。   That is, a temperature of 260 to 400 ° C. at which a hydroxylation reaction occurs in the process of raising the temperature to a melting temperature of the RE-Y alloy exceeding 400 ° C. in a state where the reformed alloy is in contact with the compact in an inert gas atmosphere. Will pass the range.

そこで、改質合金を加熱し、昇温している過程において水酸化反応が生じる上記温度範囲を速やかに通過するように昇温を制御することで、昇温過程でNd等が水酸化反応するのを抑止もしくは抑制することができ、改質合金の拡散浸透温度まで昇温した際に改質合金を成形体内に十分に拡散浸透させることが可能となる。   Therefore, by heating the reforming alloy and controlling the temperature rise so that it quickly passes through the above temperature range where a hydroxylation reaction occurs in the process of raising the temperature, Nd and the like undergo a hydroxylation reaction in the temperature raising process. Therefore, when the temperature is raised to the diffusion penetration temperature of the modified alloy, the modified alloy can be sufficiently diffused and penetrated into the molded body.

なお、改質合金が拡散浸透する温度、すなわち、改質合金の溶融温度は少なくとも400℃以上であり、したがってこの溶融温度に達した段階では改質合金の水酸化反応は生じない。   Note that the temperature at which the modified alloy diffuses and penetrates, that is, the melting temperature of the modified alloy is at least 400 ° C. or higher, and therefore the hydroxylation reaction of the modified alloy does not occur when the melting temperature is reached.

ここで、260〜400℃の温度範囲を速やかに通過するに当たり、この通過時間が120秒で水酸化反応が進み始めることから、この温度範囲を120秒未満に調整することにより、水酸化反応を生ぜしめることなく改質合金の拡散浸透温度まで昇温することが可能となる。   Here, when passing through the temperature range of 260 to 400 ° C. quickly, the hydroxylation reaction starts to progress in 120 seconds, so the hydroxylation reaction is adjusted by adjusting this temperature range to less than 120 seconds. It is possible to raise the temperature to the diffusion permeation temperature of the modified alloy without causing it.

ところで、本発明の製造方法が製造対象とする希土類磁石には、組織を構成する主相(結晶粒)の粒径が200nm以下程度のナノ結晶磁石は勿論のこと、粒径が300nm以上のもの、さらには粒径が1μm以上の焼結磁石や樹脂バインダーで結晶粒が結合されたボンド磁石などが包含されるが、中でも、700℃以下の比較的低い融点を有する改質合金にて粒界相の改質がおこなわれ、そのために結晶粒の粗大化が問題とならない点で、融点の高い重希土類金属を含む改質合金を使用する従来の製造方法の際に結晶粒の粗大化が問題となっていたナノ結晶磁石に対して好適なものである。   By the way, the rare earth magnets to be manufactured by the manufacturing method of the present invention include not only nanocrystalline magnets having a grain size of the main phase (crystal grains) constituting the structure of about 200 nm or less, but also those having a grain size of 300 nm or more. In addition, a sintered magnet having a grain size of 1 μm or more and a bonded magnet in which crystal grains are bonded with a resin binder are included. Among them, a grain boundary is formed by a modified alloy having a relatively low melting point of 700 ° C. or less. Phase reforming is performed, so that coarsening of crystal grains does not become a problem, and coarsening of crystal grains is a problem in conventional manufacturing methods using modified alloys containing heavy rare earth metals with a high melting point. It is suitable for the nanocrystalline magnet that has been formed.

まず、液体急冷にて微細な結晶粒である急冷薄帯(急冷リボン)を製作し、これを粗粉砕等して希土類磁石用の磁粉を製作し、この磁粉をたとえばダイス内に充填してパンチで加圧しながら焼結してバルク化を図り、ナノ結晶組織のRE-Fe-B系の主相(RE:Nd、Prの少なくとも一種で、より具体的にはNd、Pr、Nd-Prのいずれか一種もしくは二種以上)と、該主相の周りにあるRE-X合金(X:金属元素)の粒界相からなる、等方性の成形体を得る。   First, a quenching ribbon (quenching ribbon), which is a fine crystal grain, is manufactured by liquid quenching, and this is coarsely pulverized to produce magnetic powder for rare earth magnets. This magnetic powder is filled into, for example, a die and punched. Sintering while pressurizing at the same time, the bulk of the RE-Fe-B system of nanocrystal structure (RE: at least one of Nd, Pr, more specifically Nd, Pr, Nd-Pr Any isotropic or two or more types) and a grain boundary phase of the RE-X alloy (X: metal element) around the main phase are obtained.

この成形体において、その粒界相を構成するRE-X合金は、主相成分によっても相違するものの、REがNdの場合には、Ndと、Co、Fe、Ga等のうちの少なくとも一種以上の合金からなり、たとえば、Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe、Nd-Co-Fe-Gaのうちのいずれか一種、もしくはこれらの二種以上が混在したものであって、Ndリッチな状態となっている。なお、REがPrの場合には、Nd同様にPrリッチな状態となっている。   In this molded body, the RE-X alloy constituting the grain boundary phase differs depending on the main phase component, but when RE is Nd, at least one or more of Nd and Co, Fe, Ga, etc. For example, Nd-Co, Nd-Fe, Nd-Ga, Nd-Co-Fe, Nd-Co-Fe-Ga, or a mixture of two or more of these And it is Nd rich. When RE is Pr, the state is Pr-rich like Nd.

次に、RE-Y合金(Y:金属元素であって重希土類元素を含まない)からなる改質合金を成形体に接触させ、改質合金の融点以上の温度で熱処理してその融液を成形体の表面から拡散浸透させることにより、粒界相内にRE-Y合金の融液が吸込まれ、成形体内部が組織変化を起こしながら保磁力が高められた希土類磁石が製造される。なお、成形体に改質合金を接触させるに当たり、改質合金を所望形状および寸法のチップや塊に加工したものを成形体に接触させることができる。   Next, a reformed alloy made of a RE-Y alloy (Y: a metal element and not containing a heavy rare earth element) is brought into contact with the compact and heat-treated at a temperature equal to or higher than the melting point of the reformed alloy, and the melt By diffusing and penetrating from the surface of the molded body, the RE-Y alloy melt is sucked into the grain boundary phase, and a rare earth magnet having an increased coercive force while causing a structural change inside the molded body is manufactured. Note that when the modified alloy is brought into contact with the molded body, a chip or lump having a desired shape and size processed into the modified alloy can be brought into contact with the molded body.

この熱処理に関し、本発明の製造方法では不活性ガス雰囲気下で400℃を超えるRE-Y合金の溶融温度まで昇温しておこなうものであるが、この昇温の過程において260〜400℃の温度範囲を120秒未満に調整することにより、昇温過程で改質合金を構成するNd等の水酸化物生成を抑止することができる。   With respect to this heat treatment, the production method of the present invention is performed by raising the temperature to a melting temperature of the RE-Y alloy exceeding 400 ° C. in an inert gas atmosphere. By adjusting the range to less than 120 seconds, it is possible to suppress the formation of hydroxides such as Nd constituting the modified alloy during the temperature rising process.

なお、成形体に改質合金を拡散浸透させる前に異方性を与える熱間塑性加工を施して希土類磁石前駆体を製作し、この希土類磁石前駆体に対して改質合金を拡散浸透することより、より一層保磁力性能に優れた希土類磁石を製造することができる。   Before the modified alloy is diffused and infiltrated into the molded body, a rare earth magnet precursor is manufactured by applying anisotropy hot plastic working, and the modified alloy is diffused and infiltrated into the rare earth magnet precursor. Thus, it is possible to produce a rare earth magnet that is further excellent in coercive force performance.

ここで、改質合金としては、Nd-Cu合金、Nd-Al合金、Pr-Cu合金、Pr-Al合金のいずれか一種を使用するのが好ましい。   Here, as the modified alloy, it is preferable to use any one of Nd—Cu alloy, Nd—Al alloy, Pr—Cu alloy, and Pr—Al alloy.

Nd-Cu合金の融点は520℃程度、Pr-Cu合金の融点は480℃程度、Nd-Al合金の融点は640℃程度、Pr-Al合金の融点は650℃程度であり、いずれもナノ結晶磁石を構成する結晶粒の粗大化を齎す700℃〜1000℃を大きく下回っている。したがって、これらの改質合金を使用して希土類磁石を製造するには、改質合金の溶融金属が最小融点の480℃〜最高融点の650℃の範囲で改質合金の熱処理を実行すればよい。   Nd-Cu alloy has a melting point of about 520 ° C, Pr-Cu alloy has a melting point of about 480 ° C, Nd-Al alloy has a melting point of about 640 ° C, and Pr-Al alloy has a melting point of about 650 ° C. It is far below 700 ° C-1000 ° C, which indicates the coarsening of crystal grains constituting the magnet. Therefore, in order to produce rare earth magnets using these modified alloys, it is only necessary to perform heat treatment of the modified alloy in the range of the molten metal of the modified alloy from the minimum melting point of 480 ° C. to the maximum melting point of 650 ° C. .

そして、この熱処理を不活性ガス雰囲気下で実行するに当たり、不活性ガス雰囲気としてはN2やAr、Heなどが一般に用いられるものの、最も汎用性の高いN2ガスを使用するN2雰囲気炉を使用することにより、設備コストを廉価とすることができる。 When performing this heat treatment in an inert gas atmosphere, N 2 , Ar, He, etc. are generally used as the inert gas atmosphere, but an N 2 atmosphere furnace using the most versatile N 2 gas is used. By using it, the equipment cost can be reduced.

以上の説明から理解できるように、本発明の希土類磁石の製造方法によれば、DyやTbといった重希土類金属を含まない比較的融点が低くて材料コストの廉価な改質合金を使用し、不活性ガス雰囲気下で改質合金を熱処理して成形体に拡散浸透させて希土類磁石を製造するに当たり、昇温過程において260〜400℃の温度範囲を120秒未満に調製して改質合金の溶融温度(拡散浸透温度)まで昇温することにより、改質合金を水酸化反応させずに成形体内に拡散浸透させることができる。そのため、低い材料コストと設備コストのもとで改質合金を十分に成形体内に拡散浸透させることができ、保磁力性能に優れた希土類磁石を製造することができる。   As can be understood from the above explanation, according to the method for producing a rare earth magnet of the present invention, a modified alloy which does not contain heavy rare earth metals such as Dy and Tb and has a relatively low melting point and low material cost is used. When producing a rare earth magnet by heat-treating the modified alloy in an active gas atmosphere and diffusing and infiltrating the compact, the temperature range of 260 to 400 ° C is adjusted to less than 120 seconds during the temperature rise process, and the modified alloy is melted. By raising the temperature to the temperature (diffusion penetration temperature), the modified alloy can be diffused and penetrated into the molded body without causing a hydroxylation reaction. Therefore, the modified alloy can be sufficiently diffused and penetrated into the molded body under low material cost and equipment cost, and a rare earth magnet having excellent coercive force performance can be manufactured.

(a)、(b)の順で本発明の希土類磁石の製造方法において成形体を製造するまでを説明した模式図である。It is the schematic diagram explaining until it manufactures a molded object in the manufacturing method of the rare earth magnet of this invention in order of (a) and (b). 図1bで示す成形体のミクロ構造を説明した図である。It is the figure explaining the microstructure of the molded object shown in FIG. 1b. 図1に続いて本発明の製造方法において希土類磁石前駆体を製造するまでを説明した図である。FIG. 2 is a diagram illustrating a process up to manufacturing a rare earth magnet precursor in the manufacturing method of the present invention following FIG. 1. 図3の希土類磁石前駆体のミクロ構造を説明した図である。It is the figure explaining the microstructure of the rare earth magnet precursor of FIG. 図3に続いて本発明の製造方法において希土類磁石前駆体に熱処理を実施して希土類磁石を製造するまでを説明した図である。FIG. 4 is a diagram illustrating a process up to manufacturing a rare earth magnet by performing a heat treatment on a rare earth magnet precursor in the manufacturing method of the present invention following FIG. 3. 熱処理の際の炉内の昇温制御図である。It is a temperature rise control figure in the furnace in the case of heat processing. (a)はX線回折分析結果を示す図であり、(b)はN2ガス中の水分による改質合金の水酸化反応が生じる温度範囲を特定した示差走査熱量測定(DSC)結果を示す図である。(A) is a diagram showing an X-ray diffraction analysis shows the (b) differential scanning calorimetry to identify the temperature range in which hydroxylation reaction occurs in the reforming alloy due to moisture in N 2 gas (DSC) results FIG. 製造された希土類磁石のミクロ構造を説明した図である。It is a figure explaining the microstructure of the manufactured rare earth magnet. 改質合金を熱処理して拡散浸透させるに当たり、昇温過程である260〜400℃の温度範囲の通過時間を種々変化させて改質合金の拡散浸透の可否を検証した実験における、昇温時間と温度の関係(昇温速度)を示した図である。When the modified alloy is heat-treated and diffused and penetrated, the temperature rise time in an experiment that verified the possibility of diffusion and penetration of the modified alloy by variously changing the passing time in the temperature range of 260 to 400 ° C. It is the figure which showed the relationship (temperature increase rate) of temperature.

以下、図面を参照して本発明の希土類磁石の製造方法の実施の形態を説明する。なお、図示例はナノ結晶磁石である希土類磁石の製造方法を説明したものであるが、本発明の希土類磁石の製造方法はナノ結晶磁石の製造に限定されるものではなく、結晶粒の相対的に大きな焼結磁石等の製造に適用できることは勿論のことである。また、本発明は、成形体に対して熱間塑性加工を施すことなく、所望部位に部分的に改質合金の融液を拡散浸透させて保磁力分布を有する希土類磁石を製造する方法であってもよい。   Embodiments of a method for producing a rare earth magnet according to the present invention will be described below with reference to the drawings. The illustrated example describes a method for producing a rare-earth magnet, which is a nanocrystalline magnet. However, the method for producing a rare-earth magnet of the present invention is not limited to the production of a nanocrystalline magnet, and relative crystal grains Of course, it can be applied to the production of large sintered magnets. Further, the present invention is a method for producing a rare earth magnet having a coercive force distribution by partially diffusing and infiltrating a melt of a modified alloy into a desired portion without subjecting a formed body to hot plastic working. May be.

(希土類磁石の製造方法)
図1a、bはその順で本発明の希土類磁石の製造方法において成形体を製造するまでを説明した模式図であり、図2は図1bで示す成形体のミクロ構造を説明した図である。また、図3は図1に続いて本発明の製造方法において希土類磁石前駆体を製造するまでを説明した図であり、図4は図3で示す希土類磁石前駆体のミクロ構造を説明した図である。また、図5は図3に続いて本発明の製造方法において希土類磁石前駆体に熱処理を実施して希土類磁石を製造するまでを説明した図であり、図6は熱処理の際の炉内の昇温制御図であり、図8は製造された希土類磁石のミクロ構造を説明した図である。
(Rare earth magnet manufacturing method)
FIGS. 1a and 1b are schematic views illustrating in order the manufacturing process of the molded body in the rare earth magnet manufacturing method of the present invention, and FIG. 2 is a diagram illustrating the microstructure of the molded body shown in FIG. 1b. 3 is a diagram for explaining the steps up to production of the rare earth magnet precursor in the production method of the present invention subsequent to FIG. 1, and FIG. 4 is a diagram for explaining the microstructure of the rare earth magnet precursor shown in FIG. is there. FIG. 5 is a diagram for explaining the process up to manufacturing the rare earth magnet by performing the heat treatment on the rare earth magnet precursor in the manufacturing method of the present invention following FIG. 3, and FIG. FIG. 8 is a temperature control diagram, and FIG. 8 is a diagram illustrating the microstructure of the manufactured rare earth magnet.

図1aで示すように、たとえば50kPa以下に減圧したArガス雰囲気の不図示の炉中で、単ロールによるメルトスピニング法により、合金インゴットを高周波溶解し、希土類磁石を与える組成の溶湯を銅ロールRに噴射して急冷薄帯B(急冷リボン)を製作し、これを粗粉砕する。   As shown in FIG. 1a, for example, an alloy ingot is melted at a high frequency by a melt spinning method using a single roll in a furnace (not shown) in an Ar gas atmosphere whose pressure is reduced to 50 kPa or less. To produce a quenched ribbon B (quenched ribbon), which is coarsely pulverized.

粗粉砕された急冷薄帯Bを図1bで示すように超硬ダイスDとこの中空内を摺動する超硬パンチPで画成されたキャビティ内に充填し、超硬パンチPで加圧しながら(X方向)加圧方向に電流を流して通電加熱することにより、ナノ結晶組織のNd-Fe-B系の主相(50nm〜200nm程度の結晶粒径)と、主相の周りにあるNd-X合金(X:金属元素)の粒界相からなる成形体Sを製作する。   As shown in FIG. 1B, the coarsely pulverized quenched ribbon B is filled into a cavity defined by a carbide die D and a carbide punch P sliding in the hollow, and is pressed with the carbide punch P. (X direction) Nd-Fe-B main phase (crystal grain size of about 50 nm to 200 nm) of nanocrystalline structure and Nd around the main phase by flowing current in the pressurizing direction and conducting heating. A compact S composed of a grain boundary phase of -X alloy (X: metal element) is produced.

ここで、粒界相を構成するNd-X合金は、Ndと、Co、Fe、Ga等のうちの少なくとも一種以上の合金からなり、たとえば、Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe、Nd-Co-Fe-Gaのうちのいずれか一種、もしくはこれらの二種以上が混在したものであって、Ndリッチな状態となっている。   Here, the Nd—X alloy constituting the grain boundary phase is composed of Nd and at least one alloy of Co, Fe, Ga, etc., for example, Nd—Co, Nd—Fe, Nd—Ga, Nd Any one of -Co-Fe and Nd-Co-Fe-Ga, or a mixture of two or more of these, is in an Nd-rich state.

図2で示すように、成形体Sはナノ結晶粒MP(主相)間を粒界相BPが充満する等方性の結晶組織を呈している。   As shown in FIG. 2, the compact S exhibits an isotropic crystal structure in which the grain boundary phase BP is filled between the nanocrystal grains MP (main phase).

そこで、この成形体Sに異方性を与えるべく、図3で示すように成形体Sの長手方向(図1bでは水平方向が長手方向)の端面に超硬パンチPを当接させ、超硬パンチPで加圧しながら(X方向)熱間塑性加工を施すことにより、図4で示すように異方性のナノ結晶粒MPを有する結晶組織の希土類磁石前駆体Cが製作される。なお、熱間塑性加工による加工度(圧縮率)が大きい場合、たとえば圧縮率が10%程度以上の場合を、熱間強加工もしくは単に強加工と称することができる。   Therefore, in order to give anisotropy to the molded body S, as shown in FIG. 3, the carbide punch P is brought into contact with the end surface in the longitudinal direction of the molded body S (the horizontal direction is the longitudinal direction in FIG. 1b). By applying hot plastic working while pressing with the punch P (X direction), a rare-earth magnet precursor C having a crystalline structure having anisotropic nanocrystalline grains MP as shown in FIG. 4 is manufactured. When the degree of processing (compression rate) by hot plastic working is large, for example, the case where the compression rate is about 10% or more can be referred to as hot strong processing or simply strong processing.

図4で示す希土類磁石前駆体Cの結晶組織において、ナノ結晶粒MPは扁平形状をなし、異方軸とほぼ平行な界面は湾曲したり屈曲している。   In the crystal structure of the rare earth magnet precursor C shown in FIG. 4, the nanocrystal grains MP have a flat shape, and the interface substantially parallel to the anisotropic axis is curved or bent.

次に、図5で示すように、製作された希土類磁石前駆体Cをヒータ内蔵の高温炉H内に収容し、改質合金の塊Mを希土類磁石前駆体Cの上下に配して双方を接触させ、炉内をN2ガスによる不活性ガス雰囲気下としながら改質合金の拡散浸透温度である融点まで熱処理する。 Next, as shown in FIG. 5, the manufactured rare earth magnet precursor C is accommodated in a high-temperature furnace H with a built-in heater, and a mass M of the reformed alloy is arranged above and below the rare earth magnet precursor C. It is contacted and heat-treated to the melting point which is the diffusion permeation temperature of the modified alloy while the inside of the furnace is in an inert gas atmosphere with N 2 gas.

ここで、改質合金Mとしては、重希土類元素を含まないRE-Y合金(RE: Nd、Prの少なくとも一種、Y:遷移金属元素)使用する。遷移金属元素Yとしては、Cu、Alのうちのいずれか一種を適用し、したがって、RE-Y合金としては、Nd-Cu合金、Nd-Al合金、Pr-Cu合金、Pr-Al合金のいずれか一種を使用する。   Here, as the modified alloy M, an RE-Y alloy (RE: Nd, at least one of Pr, Y: transition metal element) containing no heavy rare earth element is used. As the transition metal element Y, any one of Cu and Al is applied. Therefore, as the RE-Y alloy, any of Nd-Cu alloy, Nd-Al alloy, Pr-Cu alloy and Pr-Al alloy can be used. Or use a kind.

RE-Y合金として上記例示の合金を使用した場合、Nd-Cu合金の共晶点は520℃、Pr-Cu合金の共晶点は480℃、Nd-Al合金の共晶点は640℃、Pr-Al合金の共晶点は650℃であり、いずれも700℃以下の低融点である。   When the above-exemplified alloy is used as the RE-Y alloy, the eutectic point of the Nd-Cu alloy is 520 ° C, the eutectic point of the Pr-Cu alloy is 480 ° C, the eutectic point of the Nd-Al alloy is 640 ° C, The eutectic point of the Pr—Al alloy is 650 ° C., both of which have a low melting point of 700 ° C. or less.

改質合金MとしてNd-Cu合金を使用する場合は、その共晶点が520℃であることから、したがって、高温炉H内を520℃程度かそれ以上の温度雰囲気下(たとえば600℃程度)とすることで改質合金であるNd-Cu合金が溶融する。   When an Nd-Cu alloy is used as the reforming alloy M, the eutectic point is 520 ° C. Therefore, the temperature inside the high temperature furnace H is about 520 ° C or higher (eg, about 600 ° C). As a result, the Nd—Cu alloy, which is a modified alloy, melts.

ところで、この熱処理時に高温炉を真空雰囲気とするには、高温炉に真空吸引装置を設けるなど、高温炉に関する設備コストが高価なものとなる。そこで、図示例では高温炉H内にN2ガスを提供し、高温炉Hから空気を排気する循環によって炉内をN2ガスによる不活性ガス雰囲気とする制御形態の炉を採用しており、このようなN2ガスを提供する高温炉Hは汎用的であり、比較的安価な設備である。 By the way, in order to make a high temperature furnace into a vacuum atmosphere at the time of this heat processing, the installation cost regarding a high temperature furnace becomes expensive, such as providing a vacuum suction device in a high temperature furnace. Therefore, in the illustrated example, a controlled furnace is used in which N 2 gas is provided in the high temperature furnace H, and the inside of the furnace is made an inert gas atmosphere by N 2 gas by circulation of exhausting air from the high temperature furnace H. The high temperature furnace H that provides such N 2 gas is general-purpose and relatively inexpensive.

しかしながら、N2ガス雰囲気下で希土類磁石前駆体Cとこれに接するNd-Cu合金等の改質合金を熱処理した場合に、Nd-Cu合金が白色化してNd(OH)3を形成し、Ndが拡散浸透せずに残ってしまうといった問題が生じ得ることが以下の実験にて確認されている。 However, when a rare earth magnet precursor C and a modified alloy such as an Nd—Cu alloy in contact with the rare earth magnet precursor C are heat-treated in an N 2 gas atmosphere, the Nd—Cu alloy is whitened to form Nd (OH) 3. It has been confirmed in the following experiment that a problem such that the material remains without being diffused and permeated may occur.

すなわち、本発明者等は、N2ガス雰囲気中で5.0mass%相当(厚さ0.1mm)のNd-Cu合金の板材と粉末スラリーを成形体の表面に塗布して熱処理をおこなう実験をおこなった。ここで、N2ガスは10リットル/分で露点は-45℃であり、使用磁石は据え込み加工品であり、拡散浸透温度は580℃で昇温は50℃/分、保持時間は165分とした。 That is, the present inventors conducted an experiment in which an Nd—Cu alloy plate material and a powder slurry equivalent to 5.0 mass% (thickness 0.1 mm) were applied to the surface of the molded body in a N 2 gas atmosphere and subjected to heat treatment. . Here, the N 2 gas is 10 liters / minute and the dew point is -45 ° C, the magnet used is an upsetting product, the diffusion penetration temperature is 580 ° C, the temperature rise is 50 ° C / minute, and the holding time is 165 minutes It was.

熱処理後に残ったNd-Cu合金スラリー粉末のNd-CuのX線回折による分析結果を図7aに示しており、この分析よりNd(OH)3を同定している。 FIG. 7a shows the result of X-ray diffraction analysis of Nd—Cu of the Nd—Cu alloy slurry powder remaining after the heat treatment, and Nd (OH) 3 is identified from this analysis.

これは、熱処理の際にNdがN2ガス雰囲気下で以下の水酸化反応を生じているためである。
Nd + 3H2O → 2Nd(OH) 3+ 3/2H2
This is because Nd undergoes the following hydroxylation reaction in an N 2 gas atmosphere during the heat treatment.
Nd + 3H 2 O → 2Nd (OH) 3 + 3 / 2H 2

そして、この反応が生じる温度範囲を示差走査熱量測定(DSC)で調査した結果を図7bに示している。同図より、N2ガス中の水分による水酸化反応は260〜400℃の温度範囲であることが特定されている。 And the result of having investigated the temperature range which this reaction produces by differential scanning calorimetry (DSC) is shown in FIG. From the figure, it is specified that the hydroxylation reaction by moisture in N 2 gas is in the temperature range of 260 to 400 ° C.

このことより、改質合金の拡散浸透の際の熱処理時には、改質合金の溶融温度までの昇温過程において、N2ガス中の水分によって水酸化反応しない程度の速さで260〜400℃の温度範囲を通過するような温度制御をおこなうことにより、改質合金が水酸化反応することが抑止され、成形体に対して改質合金を十分に拡散浸透させることが可能となる。 From this, at the time of heat treatment during diffusion penetration of the reformed alloy, in the process of raising the temperature to the melting temperature of the reformed alloy, the temperature of 260 to 400 ° C. is fast enough not to cause a hydroxylation reaction due to moisture in the N 2 gas. By controlling the temperature so as to pass through the temperature range, the reformed alloy is prevented from undergoing a hydroxylation reaction, and the reformed alloy can be sufficiently diffused and penetrated into the formed body.

この「水酸化反応が生じない程度の速さ」に関しては、以下で示す本発明者等による実験の結果、120秒未満の時間が特定されている。   Regarding this “speed that does not cause a hydroxylation reaction”, a time of less than 120 seconds has been specified as a result of experiments by the present inventors as described below.

以上のことより、改質合金を熱処理して成形体に拡散浸透させる際には、図6の制御図で示すように、Nd-Cu合金の拡散浸透温度であって融点である520℃まで昇温させる過程において、260〜400℃の温度範囲が260℃の時刻t1〜400℃の時刻t2までの時間間隔120秒未満となるように温度制御し、さらに改質合金の溶融温度まで昇温するものである。   From the above, when the modified alloy is heat-treated and diffused into the compact, as shown in the control diagram of FIG. 6, the Nd—Cu alloy diffusion penetration temperature increases to the melting point of 520 ° C. In the process of heating, the temperature is controlled so that the temperature range of 260 to 400 ° C. is less than 120 seconds from the time t1 of 260 ° C. to the time t2 of 400 ° C., and the temperature is raised to the melting temperature of the modified alloy. Is.

溶融したNd-Cu合金の融液が粒界相BP内に拡散浸透していき、Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe、Nd-Co-Fe-Gaやこれらが混在した粒界相の一部もしくは全部がNd-Cu合金で改質された粒界相が形成される。   The molten Nd-Cu alloy melt diffuses and penetrates into the grain boundary phase BP, and Nd-Co, Nd-Fe, Nd-Ga, Nd-Co-Fe, Nd-Co-Fe-Ga and these A grain boundary phase in which a part or all of the mixed grain boundary phase is modified with the Nd—Cu alloy is formed.

改質合金MとしてNd-Al合金を使用する場合は、その融点が640〜650℃であることから、したがって、640〜650℃の温度雰囲気下とすることでNd-Al合金を溶融させてその融液を粒界相内に拡散浸透させることができ、Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe、Nd-Co-Fe-Gaやこれらが混在した粒界相の一部もしくは全部がNd-Al合金で改質された粒界相が形成される。   When Nd-Al alloy is used as the modified alloy M, the melting point is 640 to 650 ° C. Therefore, the Nd-Al alloy is melted by setting the temperature atmosphere to 640 to 650 ° C. The melt can be diffused and penetrated into the grain boundary phase, and Nd-Co, Nd-Fe, Nd-Ga, Nd-Co-Fe, Nd-Co-Fe-Ga and one of these Part or all of the grain boundary phase is modified with an Nd—Al alloy.

このように700℃以下の低融点の改質合金の塊Mを使用して低温で溶融させることにより、たとえばナノ結晶磁石の場合に800℃程度以上の高温雰囲気下に置かれた際に問題となる結晶粒の粗大化の問題は生じ得ない。   Thus, by using a low melting point alloy alloy M having a low melting point of 700 ° C. or less and melting at a low temperature, for example, in the case of a nanocrystalline magnet, there is a problem when placed in a high temperature atmosphere of about 800 ° C. or more. The problem of coarsening of the crystal grains cannot occur.

上記するNd-Cu合金、Nd-Al合金、Pr-Cu合金、Pr-Al合金のいずれかを使用し、それらの融点以上の温度(せいぜい650℃)で所定時間熱処理をおこなうことにより、図8で示すように、粒界相BPがNdもしくはPrリッチな組成に改質された希土類磁石RMが製造される。   By using any one of the Nd-Cu alloy, Nd-Al alloy, Pr-Cu alloy, and Pr-Al alloy described above and performing a heat treatment for a predetermined time at a temperature equal to or higher than their melting points (at most 650 ° C), FIG. As shown, a rare earth magnet RM in which the grain boundary phase BP is modified to a composition rich in Nd or Pr is manufactured.

同図で示すように、改質合金Mによる改質が十分に進んだ段階では異方軸とほぼ平行な界面(特定の面)が形成される。このように上記する製造方法によって得られる本発明の希土類磁石RMは、成形体Sに異方性を付与するための熱間塑性加工を施して得られる希土類磁石前駆体Cに対して、700℃以下の低融点の改質合金の融液を粒界相内に拡散浸透させることにより、熱間塑性加工によって生じた残留歪みが改質合金の融液と接触することで除去され、さらに結晶粒の微細化と、結晶粒間の磁気分断が促進することによってその保磁力が向上する。特に、N2ガス等の不活性ガス雰囲気下における熱処理の過程で改質合金は水酸化反応することなく、該改質合金の融点以上で成形体内に十分に拡散浸透することより、Dy等を使用しないことによる材料コストの低廉化、真空高温炉を使用しないことによる設備コストの低廉化に基づいて製造コストを大幅に削減しながら、保磁力性能に優れた希土類磁石を製造することが可能となる。 As shown in the figure, an interface (specific surface) substantially parallel to the anisotropic axis is formed when the reforming by the reforming alloy M is sufficiently advanced. Thus, the rare earth magnet RM of the present invention obtained by the manufacturing method described above is 700 ° C. with respect to the rare earth magnet precursor C obtained by performing hot plastic working for imparting anisotropy to the compact S. By diffusing and infiltrating the melt of the following low melting point modified alloy into the grain boundary phase, residual strain caused by hot plastic working is removed by contact with the melt of the reformed alloy, and crystal grains are further removed. The coercive force is improved by promoting the miniaturization and magnetic separation between crystal grains. In particular, the reformed alloy does not undergo a hydroxylation reaction during the heat treatment in an inert gas atmosphere such as N 2 gas, but sufficiently diffuses and penetrates into the molded body at the melting point or higher of the reformed alloy. It is possible to manufacture rare earth magnets with excellent coercive force performance while significantly reducing manufacturing costs based on the reduction of material costs by not using them and the reduction of equipment costs by not using vacuum high temperature furnaces. Become.

[改質合金を熱処理して拡散浸透させるに当たり、昇温過程である260〜400℃の温度範囲の通過時間を種々変化させて改質合金の拡散浸透の可否を検証した実験とその結果]
本発明者等は、改質合金を熱処理して昇温する過程において、改質合金を構成するNd等が水酸化反応を起こし得る温度範囲である260〜400℃の通過時間をどの程度に調整することで水酸化反応の発生を抑止できるかに関し、実験をおこなった。
[Experiment and results of verifying whether or not the modified alloy can diffuse and penetrate by changing the passage time in the temperature range of 260 to 400 ° C, which is the temperature rising process, when the modified alloy is heat treated and diffused and penetrated]
In the process of heat-treating the modified alloy by heat treatment, the present inventors adjust how much the transit time of 260 to 400 ° C., which is a temperature range in which Nd constituting the modified alloy can cause a hydroxylation reaction, is adjusted. An experiment was conducted on whether or not the occurrence of the hydroxylation reaction can be suppressed by doing so.

(実験条件)
まず、テストピース磁石は据え込み加工にて作成した。また、熱処理条件は、N2ガスによる不活性ガス雰囲気下と真空雰囲気下の二種の条件でおこなった。
(Experimental conditions)
First, the test piece magnet was created by upsetting. The heat treatment was performed under two conditions: an inert gas atmosphere with N 2 gas and a vacuum atmosphere.

N2ガスによる不活性ガス雰囲気での実験は、ランプ炉としてアルバック社製のMILA-3000を使用し、熱処理条件を650℃、熱処理時間を120分、昇温速度は図9で示す通りであり、N2ガス:5リットル/分で露点-65℃、改質合金にはNd-Cu合金の板材を使用し、その浸透量は10mass%とした。 The experiment in an inert gas atmosphere using N 2 gas was performed using ULVAC's MILA-3000 as the lamp furnace, the heat treatment conditions were 650 ° C., the heat treatment time was 120 minutes, and the heating rate was as shown in FIG. , N 2 gas: dew point -65 ° C. at 5 liters / minute, Nd—Cu alloy plate was used as the modified alloy, and the penetration amount was 10 mass%.

一方、真空雰囲気下での実験は、ランプ炉としてアルバック社製のMILA-3000を使用し、熱処理条件を650℃、熱処理時間を120分、昇温速度は図9で示す通りであり、真空度:10-3Paで、改質合金にはNd-Cu合金の板材を使用し、その浸透量は10mass%とした。 On the other hand, in the experiment under a vacuum atmosphere, ULVAC's MILA-3000 was used as a lamp furnace, the heat treatment conditions were 650 ° C., the heat treatment time was 120 minutes, and the heating rate was as shown in FIG. : 10 -3 Pa, Nd-Cu alloy plate was used as the modified alloy, and the penetration amount was 10 mass%.

比較例1〜5、および実施例の260〜400℃の通過時間に関する条件を以下の表1に示す。   The conditions regarding the transit times of Comparative Examples 1 to 5 and Examples of 260 to 400 ° C. are shown in Table 1 below.

Figure 0006003452
Figure 0006003452

(実験結果)
実験結果を以下の表2に示す。
(Experimental result)
The experimental results are shown in Table 2 below.

Figure 0006003452
(注記)拡散浸透の可否については、高価な真空炉を使用してなる比較例4、5と同等かそれ以上の改質効果が得られた場合を○、そうでない場合を×としている。
Figure 0006003452
(Note) With regard to the possibility of diffusion and penetration, ○ is indicated when a reforming effect equivalent to or higher than Comparative Examples 4 and 5 using an expensive vacuum furnace is obtained, and × is indicated otherwise.

表2より、処理前後の保磁力の測定結果より、比較例1〜3は改質効果は見られず、実施例と比較例4、5で改質効果が確認できた。   From Table 2, from the measurement results of the coercive force before and after the treatment, Comparative Examples 1 to 3 showed no reforming effect, and the reforming effect could be confirmed in Examples and Comparative Examples 4 and 5.

これら実施例と高価な真空炉を使用してなる比較例4、5の結果より、実施例は真空炉を使用した比較例4、5よりも高い改質効果が得られることが実証されている。   From the results of Comparative Examples 4 and 5 using these Examples and an expensive vacuum furnace, it is demonstrated that the Examples can obtain a higher reforming effect than Comparative Examples 4 and 5 using a vacuum furnace. .

また、処理前後のテストピースを観察した結果、比較例1〜3ではNd-Cu合金板が成形体表面に残っており、その拡散浸透が十分になされていないことがこの観察からも確認できた。   Moreover, as a result of observing the test pieces before and after the treatment, in Comparative Examples 1 to 3, it was confirmed from this observation that the Nd—Cu alloy plate remained on the surface of the molded body and the diffusion and penetration was not sufficiently performed. .

これに対し、実施例のテストピースにはNd-Cu合金板が成形体表面に殆ど残っておらず、成形体内に十分に拡散浸透していることがこの観察からも確認できた。   On the other hand, it was confirmed from this observation that almost no Nd—Cu alloy plate remained on the surface of the molded body in the test piece of the example and sufficiently diffused and penetrated into the molded body.

本実験結果より、260〜400℃の通過時間として、112秒では良好な結果が得られ、168秒以上では良好な結果が得られていないことから、良好な結果が得られている112秒に極めて近い120秒を改質合金が十分に拡散浸透する閾値として設定し、260〜400℃の通過時間を120秒未満に調整することにより、改質合金の十分な拡散浸透が促進されて保磁力性能に優れた希土類磁石が製造できると結論付けることとした。   From this experimental result, a good result was obtained at 112 seconds as a transit time of 260 to 400 ° C., and a good result was not obtained at 168 seconds or more. By setting the extremely close 120 seconds as the threshold value for the modified alloy to sufficiently diffuse and penetrate, and adjusting the transit time of 260-400 ° C to less than 120 seconds, sufficient diffusion and penetration of the modified alloy is promoted and the coercive force is increased. It was concluded that a rare earth magnet with excellent performance could be manufactured.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

R…銅ロール、B…急冷薄帯(急冷リボン)、D…超硬ダイス、P…超硬パンチ、S…成形体、C…希土類磁石前駆体、M…改質合金(の塊)、MP…主相(ナノ結晶粒、結晶粒)、BP…粒界相、RM…希土類磁石、H…高温炉   R: Copper roll, B: Quenched ribbon (quenched ribbon), D: Carbide die, P ... Carbide punch, S ... Molded body, C ... Rare earth magnet precursor, M ... Modified alloy (lumps), MP ... main phase (nanocrystal grains, crystal grains), BP ... grain boundary phase, RM ... rare earth magnet, H ... high temperature furnace

Claims (4)

RE-Fe-B系の主相(RE:Nd、Prの少なくとも一種)と該主相の周りにあるRE-X合金(X:金属元素)の粒界相からなる金属組織の成形体にRE-Y合金(Y:金属元素であって重希土類元素を含まない)からなる改質合金を接触させ、熱処理して改質合金の融液を成形体に拡散浸透させて希土類磁石を製造する希土類磁石の製造方法において、
前記熱処理は不活性ガス雰囲気下で400℃を超えるRE-Y合金の溶融温度以上に昇温しておこなうものであり、この昇温の過程において、260〜400℃の温度範囲を120秒未満に調整する希土類磁石の製造方法。
RE formed into a compact of a metal structure composed of a RE-Fe-B main phase (at least one of RE: Nd and Pr) and a grain boundary phase of an RE-X alloy (X: metal element) around the main phase. Rare earths that produce rare earth magnets by contacting a reformed alloy made of an -Y alloy (Y: a metal element and not containing heavy rare earth elements) and then heat-treating the melt of the modified alloy to diffuse into the compact In the method of manufacturing a magnet,
The heat treatment is performed by raising the temperature above the melting temperature of the RE-Y alloy exceeding 400 ° C. in an inert gas atmosphere. In this temperature rising process, the temperature range of 260 to 400 ° C. is set to less than 120 seconds. Manufacturing method of rare earth magnet to be adjusted.
前記RE-Y合金がNd-Cu合金、Nd-Al合金、Pr-Cu合金、Pr-Al合金のいずれか一種からなり、前記RE-Y合金の溶融温度が480〜650℃の範囲である請求項1に記載の希土類磁石の製造方法。   The RE-Y alloy is made of any one of Nd-Cu alloy, Nd-Al alloy, Pr-Cu alloy, and Pr-Al alloy, and the melting temperature of the RE-Y alloy is in the range of 480 to 650 ° C. Item 2. A method for producing a rare earth magnet according to Item 1. 前記不活性ガスが窒素ガスである請求項1または2に記載の希土類磁石の製造方法。   The method for producing a rare earth magnet according to claim 1, wherein the inert gas is nitrogen gas. 成形体に改質合金を接触させる前に、該成形体に異方性を与える熱間塑性加工を施す請求項1〜3のいずれかに記載の希土類磁石の製造方法。   The method for producing a rare earth magnet according to any one of claims 1 to 3, wherein hot plastic working which gives anisotropy to the compact is performed before the reformed alloy is brought into contact with the compact.
JP2012207503A 2012-09-20 2012-09-20 Rare earth magnet manufacturing method Expired - Fee Related JP6003452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012207503A JP6003452B2 (en) 2012-09-20 2012-09-20 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012207503A JP6003452B2 (en) 2012-09-20 2012-09-20 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JP2014063850A JP2014063850A (en) 2014-04-10
JP6003452B2 true JP6003452B2 (en) 2016-10-05

Family

ID=50618832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012207503A Expired - Fee Related JP6003452B2 (en) 2012-09-20 2012-09-20 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP6003452B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6414592B2 (en) * 2014-05-29 2018-10-31 日立金属株式会社 Method for producing RTB-based sintered magnet
JP7087830B2 (en) * 2018-03-22 2022-06-21 日立金属株式会社 Manufacturing method of RTB-based sintered magnet
CN111430091B (en) * 2020-04-28 2023-05-05 宁德市星宇科技有限公司 High-coercivity sintered NdFeB magnet and preparation method thereof
CN115762942B (en) * 2022-11-25 2023-05-26 四川大学 Preparation method of anisotropic flaky nanocrystalline rare earth permanent magnet material and rare earth permanent magnet material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3373950B2 (en) * 1994-10-14 2003-02-04 本田技研工業株式会社 Heat bonding method of two kinds of members having different thermal expansion coefficients
JPH08264361A (en) * 1995-03-28 1996-10-11 Seiko Epson Corp Rare earth magnet and its manufacture
JP4860493B2 (en) * 2007-01-18 2012-01-25 株式会社アルバック Permanent magnet manufacturing method and permanent magnet manufacturing apparatus
JP5093485B2 (en) * 2007-03-16 2012-12-12 信越化学工業株式会社 Rare earth permanent magnet and manufacturing method thereof
JP2011159852A (en) * 2010-02-02 2011-08-18 Toyota Motor Corp Method of manufacturing permanent magnet
JP2011216642A (en) * 2010-03-31 2011-10-27 Tdk Corp Anisotropic exchange spring magnet, method of manufacturing the same, anisotropic bonded magnet, and anisotropic sintered magnet
CN102214508B (en) * 2010-04-02 2014-03-12 烟台首钢磁性材料股份有限公司 R-T-B-M-A rare earth permanent magnet and manufacturing method thereof
JP5757394B2 (en) * 2010-07-30 2015-07-29 日立金属株式会社 Rare earth permanent magnet manufacturing method
BR112013006106B1 (en) * 2010-09-15 2020-03-03 Toyota Jidosha Kabushiki Kaisha METHOD OF RARE-LAND MAGNET PRODUCTION
JP5742813B2 (en) * 2012-01-26 2015-07-01 トヨタ自動車株式会社 Rare earth magnet manufacturing method

Also Published As

Publication number Publication date
JP2014063850A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP5742813B2 (en) Rare earth magnet manufacturing method
JP5640954B2 (en) Rare earth magnet manufacturing method
JP6003920B2 (en) Rare earth magnet manufacturing method
JP5725200B2 (en) Rare earth magnets
JP5870914B2 (en) Rare earth magnet manufacturing method
JP5915637B2 (en) Rare earth magnet manufacturing method
KR101849479B1 (en) Method of manufacturing rare earth magnet
JP2013149862A (en) Method of manufacturing rare earth magnet
KR101966785B1 (en) A Fabricating method of magnet of Nd-Fe-B system
JP5392435B2 (en) Rare earth magnet manufacturing method
JP6003452B2 (en) Rare earth magnet manufacturing method
JP6221978B2 (en) Rare earth magnet manufacturing method
KR101813427B1 (en) Method of manufacturing rare earth magnet
JP5742733B2 (en) Rare earth magnet manufacturing method
JP2012195392A (en) Method of manufacturing r-t-b permanent magnet
JP6313202B2 (en) Rare earth magnet manufacturing method
JP2013157345A (en) Method of producing rare-earth magnet
JP2019140279A (en) Method for manufacturing rare earth magnet
JP2013138111A (en) Method of manufacturing rare-earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R151 Written notification of patent or utility model registration

Ref document number: 6003452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees