JP7087830B2 - Manufacturing method of RTB-based sintered magnet - Google Patents

Manufacturing method of RTB-based sintered magnet Download PDF

Info

Publication number
JP7087830B2
JP7087830B2 JP2018158918A JP2018158918A JP7087830B2 JP 7087830 B2 JP7087830 B2 JP 7087830B2 JP 2018158918 A JP2018158918 A JP 2018158918A JP 2018158918 A JP2018158918 A JP 2018158918A JP 7087830 B2 JP7087830 B2 JP 7087830B2
Authority
JP
Japan
Prior art keywords
sintered magnet
rtb
based sintered
alloy powder
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018158918A
Other languages
Japanese (ja)
Other versions
JP2019169695A (en
Inventor
智仁 槙
修嗣 三野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to CN201910212614.9A priority Critical patent/CN110299236B/en
Publication of JP2019169695A publication Critical patent/JP2019169695A/en
Application granted granted Critical
Publication of JP7087830B2 publication Critical patent/JP7087830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Description

本発明はモータなどに用いられるR-T-B系焼結磁石の製造方法に関する。 The present invention relates to a method for manufacturing an RTB-based sintered magnet used for a motor or the like.

R-T-B系焼結磁石(Rは希土類元素うちの少なくとも一種であり、Ndを必ず含む。TはFeまたはFeとCoであり、Bは硼素である)は家電・産業用モータ、電気自動車(EV)やハイブリッド自動車(HEV)の駆動用モータや電動パワーステアリング(EPS)用モータなどの製品で使用され、これらの小型化・高性能化に貢献している。これらに使用される永久磁石には高温環境下でも減磁の少ない高耐熱材料が必要とされている。耐熱性を向上させる一つの方法としては保磁力向上があり、一般にはDyやTbといった重希土類元素を添加することで保磁力を増大させ、高温での不可逆熱減磁を抑制することが行われている。しかしながら重希土類元素を多く添加すると飽和磁気分極が低下し、残留磁束密度Bの低下につながる。また重希土類元素は資源リスクの高い原料であることからその使用量を削減することが求められている。 R-TB-based sintered magnets (R is at least one of the rare earth elements and always contains Nd. T is Fe or Fe and Co, B is boron) are household / industrial motors and electricity. It is used in products such as drive motors for automobiles (EVs) and hybrid vehicles (HEVs) and motors for electric power steering (EPS), and contributes to their miniaturization and higher performance. The permanent magnets used for these require highly heat-resistant materials with little demagnetization even in a high-temperature environment. One method of improving heat resistance is to improve coercive force. Generally, by adding heavy rare earth elements such as Dy and Tb, coercive force is increased and irreversible demagnetization at high temperature is suppressed. ing. However, if a large amount of heavy rare earth elements is added, the saturated magnetic polarization decreases, which leads to a decrease in the residual magnetic flux density Br . In addition, since heavy rare earth elements are raw materials with high resource risk, it is required to reduce the amount used.

そこで近年、より少ない重希土類元素によってR-T-B系焼結磁石のHcJを向上させることが検討されている。例えば、重希土類元素のフッ化物または酸化物や、各種の金属MまたはM合金をそれぞれ単独、または混合して焼結磁石の表面に存在させ、その状態で熱処理することにより、保磁力上昇に寄与する重希土類元素を磁石内に拡散させることが提案されている。この手法により重希土類元素削減に加えて残留磁束密度Bの低下が抑制される。 Therefore, in recent years, it has been studied to improve HcJ of RTB-based sintered magnets by using less heavy rare earth elements. For example, a heavy rare earth element fluoride or oxide or various metal M or M alloys can be present on the surface of a sintered magnet individually or mixed and heat-treated in that state to contribute to an increase in coercive force. It has been proposed to diffuse heavy rare earth elements into magnets. By this method, in addition to the reduction of heavy rare earth elements, the decrease of the residual magnetic flux density Br is suppressed.

また、重希土類元素を含まない場合でも、例えば、Ndを含む合金を拡散させる(特許文献1及び2)ことでR-T-B系焼結磁石の粒界組織を改質し、保磁力HcJを向上させることが提案されている。 Further, even when the heavy rare earth element is not contained, for example, the grain boundary structure of the RTB-based sintered magnet is modified by diffusing the alloy containing Nd (Patent Documents 1 and 2), and the coercive force H. It has been proposed to improve cJ .

特許文献1には、R1i-M1j(R1はY及びScを含む希土類元素、M1はAl、Si、C、P、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Sb、Hf、Ta、W、Pb、Biから選ばれる1種又は2種以上、15<j≦99、iは残部。) かつ金属間化合物相を70体積%以上含む合金の粉末をR-T-B系焼結磁石表面に存在させた状態で熱処理し拡散させる方法が開示されている。特許文献2には、R-T-B系焼結磁石の表面に粘着剤を塗布し、Dy及びTbの少なくとも一方である重希土類元素の合金または化合物の粉末を付着させて熱処理する方法が開示されている。 In Patent Document 1, R1i-M1j (R1 is a rare earth element containing Y and Sc, M1 is Al, Si, C, P, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Ge, Zr, One or more selected from Nb, Mo, Ag, In, Sn, Sb, Hf, Ta, W, Pb, Bi, 15 <j≤99, i is the balance.) And 70 volumes of intermetal compound phase. Disclosed is a method of heat-treating and diffusing an alloy powder containing% or more in a state of being present on the surface of an RTB-based sintered magnet. Patent Document 2 discloses a method in which an adhesive is applied to the surface of an RTB-based sintered magnet, and a powder of an alloy or compound of a heavy rare earth element, which is at least one of Dy and Tb, is attached and heat-treated. Has been done.

特開2008-263179号公報Japanese Unexamined Patent Publication No. 2008-263179 国際公開第2018/030187号International Publication No. 2018/030187

本発明者らは、特許文献1に記載されているようなR-M合金粉末をR-T-B系焼結磁石表面に存在させた状態で熱処理し拡散させる方法について検討したところ、熱処理後の焼結体表面に高さ0.1~0.5mmの凸部が複数個発生する場合があることがわかった。さらに調べたところ、凸部はR-M合金が溶解して生じた液相とR-T-B系焼結磁石から生じた液相が混ざった組成であり、前記液相の混合物が凝固して盛り上がった金属溜りであることがわかった。金属溜りがあると後工程において加工精度が低下するため、金属溜りを取り除く工程が増加し生産性が低下する問題が発生する。 The present inventors have investigated a method of heat-treating and diffusing an RM alloy powder as described in Patent Document 1 in a state of being present on the surface of an RTB-based sintered magnet. It was found that a plurality of convex portions having a height of 0.1 to 0.5 mm may be generated on the surface of the sintered body. Further investigation revealed that the convex portion has a composition in which a liquid phase generated by melting the RM alloy and a liquid phase generated from the RTB-based sintered magnet are mixed, and the mixture of the liquid phases solidifies. It turned out that it was a raised metal pool. If there is a metal pool, the processing accuracy is lowered in the subsequent process, so that the process of removing the metal pool is increased and the productivity is lowered.

また、R-M合金または化合物の粉末は酸化しやすく、粉末が活性であることから発熱して燃える危険性があり、R-T-B系焼結磁石の製造工程において粉末の取り扱いに注意する必要があった。 In addition, the powder of the RM alloy or compound is easily oxidized, and since the powder is active, there is a risk of heat generation and burning, so care should be taken when handling the powder in the manufacturing process of the RTB-based sintered magnet. I needed it.

本開示の実施形態は、磁気特性を低下させることなく金属溜りの発生を抑え、また粉末を燃えにくくして取り扱いを容易にすることを可能とする。 The embodiments of the present disclosure make it possible to suppress the generation of metal pools without deteriorating the magnetic properties, and to make the powder less combustible and easier to handle.

本開示のR-T-B系焼結磁石の製造方法は、例示的な実施形態において、R(Rは希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む)-T(TはFeを主とする遷移金属元素であって、Coを含んでもよい)-B系焼結磁石素材を用意する工程と、R-M(Rは希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む、MはAl、Cu、Zn、Ga、Fe、Co、Niから選ばれる1種以上)合金粉末を用意する工程と、前記R-M合金粉末の粒子表面に平均厚さが0.5μm以上3μm以下のR-OH層を形成する工程と、前記R-OH層を形成したR-M合金粉末を前記R-T-B系焼結磁石素材の表面に塗布する工程と、前記R-OH層を形成したR-M合金粉末を塗布した前記R-T-B系焼結磁石素材に熱処理を行う工程とを含む。 The method for producing an RTB-based sintered magnet of the present disclosure is, in an exemplary embodiment, R (R is at least one of rare earth elements and always contains at least one of Nd and Pr) -T ( T is a transition metal element mainly containing Fe and may contain Co.)-A step of preparing a B-based sintered magnet material and RM (R is at least one of rare earth elements, Nd and M is one or more selected from Al, Cu, Zn, Ga, Fe, Co, and Ni, which always contains at least one of Pr.) The step of preparing the alloy powder and the average thickness on the particle surface of the RM alloy powder. A step of forming an R—OH layer having a thickness of 0.5 μm or more and 3 μm or less, and a step of applying the RM alloy powder having the R—OH layer formed on the surface of the RTB-based sintered magnet material. And the step of performing a heat treatment on the RTB-based sintered magnet material coated with the RM alloy powder on which the R—OH layer is formed.

ある実施形態において、前記R-OH層を形成する工程は、R-M合金粉末を温度20℃以上150℃以下、相対湿度60%以上100%以下の雰囲気にさらすことにより形成する。 In one embodiment, the step of forming the R—OH layer is formed by exposing the RM alloy powder to an atmosphere having a temperature of 20 ° C. or higher and 150 ° C. or lower and a relative humidity of 60% or higher and 100% or lower.

本開示の実施形態によると、磁気特性を低下させることなく金属溜りの発生を抑えることができ、また粉末を燃えにくくして取り扱いを容易にすることが可能となる。 According to the embodiment of the present disclosure, it is possible to suppress the generation of metal pools without deteriorating the magnetic properties, and it is possible to make the powder less combustible and easier to handle.

R-M合金粉末の断面におけるR-M合金とR-OH外殻層及びR-OH外殻層の厚さを示す模式図である。It is a schematic diagram which shows the thickness of the RM alloy, the R-OH outer shell layer, and the R-OH outer shell layer in the cross section of the RM alloy powder. 水酸化処理したR-M合金粉末の断面図である。It is sectional drawing of the RM alloy powder which has been subjected to the hydroxylation treatment. 金属溜り発生頻度とR-OH層の平均厚さの関係図である。It is a relationship diagram of the metal accumulation occurrence frequency and the average thickness of the R—OH layer. 拡散熱処理後のR-T-B系焼結磁石の保磁力増加量ΔHcJとR-OH層の平均厚さの関係図である。It is a relationship diagram of the coercive force increase amount ΔH cJ of the RTB-based sintered magnet after the diffusion heat treatment and the average thickness of the R—OH layer.

本発明者らは検討の結果、R-T-B系焼結磁石素材の表面にR-M合金粉末を塗布し、熱処理をしてR及びMを焼結磁石素材内に拡散させる方法において、R-M合金粉末を湿潤雰囲気にさらすことでR-M合金粉末の粒子表面にR-OH層(水酸化膜層)を形成しておくと、金属溜りの発生を抑制できることを見出した。そして、R-OH層(水酸化膜層)の厚さを特定範囲にすることにより、磁気特性を低下させることなく金属溜りの発生を抑えることができることを見出した。また、R-OH層の形成により粉末を燃えにくくして取り扱いを容易にすることができることもわかった。 As a result of the study, the present inventors have applied RM alloy powder to the surface of the RTB-based sintered magnet material and heat-treated it to diffuse R and M into the sintered magnet material. It has been found that the generation of metal pools can be suppressed by forming an R—OH layer (hydroxyl film layer) on the particle surface of the RM alloy powder by exposing the RM alloy powder to a moist atmosphere. Then, they have found that by setting the thickness of the R—OH layer (hydroxyl film layer) within a specific range, it is possible to suppress the generation of metal pools without deteriorating the magnetic properties. It was also found that the formation of the R—OH layer makes it difficult for the powder to burn and makes it easier to handle.

<R-T-B系焼結磁石素材>
まず、拡散の対象となるR-T-B系焼結磁石素材を用意する。R-T-B系焼結磁石素材としては、公知の磁石素材を使用することができる。R-T-B系焼結磁石素材は、例えば以下の組成を有する。
希土類元素R:12~17原子%(Rは希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む)、
B(Bの一部はCで置換されてもよい)5~8原子%、
添加元素M´(Al、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、及びBiからなる群から選択された少なくとも1種):0~5原子%、
T(Feを主とする遷移金属元素であって、Coを含んでもよい)及び不可逆不純物:残部。
<RTB-based sintered magnet material>
First, an RTB-based sintered magnet material to be diffused is prepared. As the RTB-based sintered magnet material, a known magnet material can be used. The RTB-based sintered magnet material has, for example, the following composition.
Rare earth element R: 12 to 17 atomic% (R is at least one of the rare earth elements and always contains at least one of Nd and Pr),
B (part of B may be substituted with C) 5-8 atomic%,
Select from the group consisting of additive elements M'(Al, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi. At least one species): 0-5 atomic%,
T (a transition metal element mainly containing Fe, which may contain Co) and irreversible impurities: balance.

ここで希土類元素RはNd及びPrの少なくとも一方を必ず含むが、例えば、La及びCeの少なくとも一方を含んでもよく、例えば、Dy及びTbの少なくとも一方を含んでもよい。 Here, the rare earth element R always contains at least one of Nd and Pr, but may contain at least one of La and Ce, for example, and may contain at least one of Dy and Tb, for example.

上記組成のR-T-B系焼結磁石素材は、公知の任意の製造方法によって製造される。R-T-B系焼結磁石素材は、焼結上がりの状態でもよいし、切削加工や研磨加工が施されていてもよい。R-T-B系焼結磁石素材の形状及び大きさは任意である。 The RTB-based sintered magnet material having the above composition is produced by any known production method. The RTB-based sintered magnet material may be in a state of being sintered, or may be cut or polished. The shape and size of the RTB-based sintered magnet material are arbitrary.

<R-M合金粉末>
次にR-M合金粉末(Rは希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む、MはAl、Cu、Zn、Ga、Fe、Co、Niから選ばれる1種類以上)を用意する。R-M合金粉末のRはNd及びPrの少なくとも一方を必ず含むが、例えば、La及びCeの少なくとも一方を含んでもよく、例えば、Dy及びTbの少なくとも一方を含んでもよい。RはR-M合金粉末全体の25原子%以上であり、好ましくはR-M合金粉末全体の50原子%以上である。MはAl、Cu、Ga、Fe、Coから選ばれる1種類以上であることが好ましい。
<RM alloy powder>
Next, RM alloy powder (R is at least one of rare earth elements and always contains at least one of Nd and Pr, M is one or more selected from Al, Cu, Zn, Ga, Fe, Co and Ni. ) Is prepared. R of the RM alloy powder always contains at least one of Nd and Pr, but may contain at least one of La and Ce, for example, and may contain at least one of Dy and Tb, for example. R is 25 atomic% or more of the total RM alloy powder, preferably 50 atomic% or more of the total RM alloy powder. M is preferably one or more selected from Al, Cu, Ga, Fe, and Co.

R-M合金粉末の作製方法は特に限定されない。鋳造法で作製したインゴットを粉砕してもよく、公知のアトマイズ法で作製してもよい。 The method for producing the RM alloy powder is not particularly limited. The ingot produced by the casting method may be pulverized, or may be produced by a known atomization method.

そして、前記R-M合金粉末に対し、粉末粒子表面にR-OH層を形成させる。これにより金属溜りを抑制することができる。R-OH層を形成させる方法は、R-M合金粉末を湿潤雰囲気にさらすことで行われる。R-M合金粉末の粒子表面のR成分が雰囲気中の水分と反応し、R-M合金粉末の外殻部にのみR-OH層が形成される。粉末粒子表面にR-OH層が均一に形成されていても、粉末粒子の中心部であるR-M合金の融点よりも高い温度に加熱することでR-M合金が溶解し、R-OH層を通り抜けてR-T-B系焼結磁石素材に拡散することが可能である。また、R-OH層が形成されることにより、R-M合金粉末が安定化して燃えにくくなり、R-T-B系焼結磁石の製造工程において粉末の取り扱いが容易になる。湿潤雰囲気にさらす方法は、例えば恒温恒湿槽内で温度20度以上150℃以下、相対湿度60%以上100%以下の雰囲気中に保持することで行われる。前記R-OH層を形成する工程は、例えば、前記雰囲気に2時間~200時間さらすことにより形成される。 Then, an R—OH layer is formed on the surface of the powder particles with respect to the RM alloy powder. This makes it possible to suppress metal accumulation. The method of forming the R—OH layer is carried out by exposing the RM alloy powder to a moist atmosphere. The R component on the particle surface of the RM alloy powder reacts with the moisture in the atmosphere, and the R—OH layer is formed only on the outer shell portion of the RM alloy powder. Even if the R-OH layer is uniformly formed on the surface of the powder particles, the RM alloy is melted by heating to a temperature higher than the melting point of the RM alloy, which is the center of the powder particles, and the R-OH is formed. It is possible to pass through the layer and diffuse into the RTB-based sintered magnet material. Further, the formation of the R—OH layer stabilizes the RM alloy powder and makes it difficult to burn, which facilitates the handling of the powder in the manufacturing process of the RTB-based sintered magnet. The method of exposing to a moist atmosphere is performed by, for example, holding in an atmosphere having a temperature of 20 ° C. or higher and 150 ° C. or lower and a relative humidity of 60% or higher and 100% or lower in a constant temperature and humidity chamber. The step of forming the R—OH layer is formed by, for example, exposing the atmosphere to the atmosphere for 2 hours to 200 hours.

R-M合金粉末の粒子表面に形成されるR-OH層(R-OHの外殻層)とR-M合金粉末の粒子の中心部におけるR-M合金は、電子顕微鏡などを用いてR-M合金粉末の断面組織を観察することにより、組成差によるコントラストの違いから見分けることができる。 The RM alloy formed on the surface of the RM alloy powder particles (the outer shell layer of RM) and the RM alloy in the center of the RM alloy powder particles are R by using an electron microscope or the like. By observing the cross-sectional structure of the -M alloy powder, it can be distinguished from the difference in contrast due to the difference in composition.

図1は、R-M合金粉末の断面におけるR-OH層と中心部のR-M合金を模式的に示した図である。R-M合金1の周囲にR-OH層2が存在し、R-OH層の厚さdは、R-M合金粉末の粒子表面からの深さ方向の厚さである。R-OH層の厚さdは、温度、湿度及び保持時間によって変化し、高温、高湿、長時間であるほど厚さが増す。R-OH層の平均厚さは0.5μm以上である。平均厚さが0.5μm未満の場合、金属溜りを抑制する効果が得られない可能性がある。また、R-OH層の厚さは3μm以下である。R-OH層が厚くなりすぎると、R-OH層形成後にR-M合金からなる中心部の割合が減少し、R-T-B系焼結磁石素材に拡散する液相成分が少なくなる。そのため、R-T-B系焼結磁石素材に付着させるR-M合金粉末の総量を増やす必要が生じ効率の低下を招く。 FIG. 1 is a diagram schematically showing an R—OH layer in a cross section of an RM alloy powder and an RM alloy in a central portion. The R—OH layer 2 exists around the RM alloy 1, and the thickness d of the R—OH layer is the thickness of the RM alloy powder in the depth direction from the particle surface. The thickness d of the R—OH layer varies depending on the temperature, humidity and holding time, and the thickness increases as the temperature, humidity and duration increase. The average thickness of the R—OH layer is 0.5 μm or more. If the average thickness is less than 0.5 μm, the effect of suppressing metal accumulation may not be obtained. The thickness of the R—OH layer is 3 μm or less. If the R—OH layer becomes too thick, the proportion of the central portion made of the RM alloy decreases after the formation of the R—OH layer, and the liquid phase component diffused into the RTB-based sintered magnet material decreases. Therefore, it is necessary to increase the total amount of the RM alloy powder adhered to the RTB-based sintered magnet material, which causes a decrease in efficiency.

R-M合金粉末の粒度は、例えば500μm以下である。粒度の下限は、10μm以上が望ましい。粒度が小さすぎると、R-OH層形成後にR-M合金からなる中心部の割合が減少し、R-T-B系焼結磁石素材に拡散する液相が少なくなる。そのため、R-T-B系焼結磁石素材に付着させるR-M合金粉末の総量を増やす必要が生じ効率の低下を招く。 The particle size of the RM alloy powder is, for example, 500 μm or less. The lower limit of the particle size is preferably 10 μm or more. If the particle size is too small, the proportion of the central portion made of the RM alloy decreases after the formation of the R—OH layer, and the amount of the liquid phase diffused into the RTB-based sintered magnet material decreases. Therefore, it is necessary to increase the total amount of the RM alloy powder adhered to the RTB-based sintered magnet material, which causes a decrease in efficiency.

<塗布工程>
前記R-OH層を形成したR-M合金粉末を前記R-T-B系焼結磁石の表面に塗布する。塗布する形態はどのようなものでもよい。例えば、流動浸漬法を用いることにより、粘着剤が塗布されたR-T-B系焼結磁石素材に粉末状のR-M合金粉末を付着させる方法、R-M合金粉末を収容した処理容器内にR-T-B系焼結磁石素材をディッピングする方法、R-T-B系焼結磁石素材にR-M合金粉末を振りかける方法、などがあげられる。また、R-M合金粉末を収容した処理容器に振動、揺動、回転を与えたり、処理容器内でR-M合金粉末を流動させてもよい。
<Applying process>
The RM alloy powder on which the R—OH layer is formed is applied to the surface of the RTB-based sintered magnet. Any form may be applied. For example, a method of adhering powdered RM alloy powder to an RTB-based sintered magnet material coated with an adhesive by using a fluid dipping method, a processing container containing RM alloy powder. Examples thereof include a method of dipping an RTB-based sintered magnet material and a method of sprinkling RM alloy powder on the RTB-based sintered magnet material. Further, the processing container containing the RM alloy powder may be subjected to vibration, rocking, or rotation, or the RM alloy powder may be allowed to flow in the processing container.

使用可能な粘着剤としては、PVA(ポリビニルアルコール)、PVB(ポリビニルビニリデン)、PVP(ポリビニルピロリドン)などがあげられる。粘着剤が水系の粘着剤の場合、塗布の前にR-T-B系焼結磁石素材を予備的に加熱してもよい。予備加熱の目的は余分な溶媒を除去し粘着力をコントロールすること、及び、均一に粘着剤を付着させることである。加熱温度は60~100℃が好ましい。揮発性の高い有機溶媒系の粘着剤の場合はこの工程は省略してもよい。 Examples of the pressure-sensitive adhesive that can be used include PVA (polyvinyl alcohol), PVB (polyvinyl vinylidene), PVP (polyvinylpyrrolidone) and the like. When the pressure-sensitive adhesive is a water-based pressure-sensitive adhesive, the RTB-based sintered magnet material may be preheated before application. The purpose of preheating is to remove excess solvent to control the adhesive strength and to uniformly adhere the adhesive. The heating temperature is preferably 60 to 100 ° C. In the case of a highly volatile organic solvent-based pressure-sensitive adhesive, this step may be omitted.

R-T-B系焼結磁石の表面に粘着剤を塗布する方法は、どのようなものでもよい。塗布の具体例としては、スプレー法、浸漬法、ディスペンサーによる塗布などがあげられる。 Any method may be used to apply the adhesive to the surface of the RTB-based sintered magnet. Specific examples of the coating include a spray method, a dipping method, and a dispenser coating.

前記R-OH層を形成したR-M合金粉末を塗布した前記R-T-B系焼結磁石に熱処理を行うことによって、R-M合金粉末中のR成分及びM成分を前記R-T-B系焼結磁石の内部に拡散させる。拡散のための熱処理温度は、R-T-B系焼結磁石素材の焼結温度以下(例えば1000℃以下)である。また、R-M合金粉末の融点よりも高い温度(例えば500℃以上)である。前記熱処理の後、必要に応じてさらに400℃~700℃で10分~72時間の熱処理を行ってもよい。 By heat-treating the RTB-based sintered magnet coated with the RM alloy powder on which the R—OH layer is formed, the R component and the M component in the RM alloy powder are removed from the RT. -Diffuse inside the B-based sintered magnet. The heat treatment temperature for diffusion is not more than the sintering temperature of the RTB-based sintered magnet material (for example, 1000 ° C. or less). Further, the temperature is higher than the melting point of the RM alloy powder (for example, 500 ° C. or higher). After the heat treatment, if necessary, a heat treatment at 400 ° C. to 700 ° C. for 10 minutes to 72 hours may be performed.

<実施例>
本開示を実施例によりさらに詳細に説明するが、本開示はそれらに限定されるものではない。
<Example>
The present disclosure will be described in more detail by way of examples, but the present disclosure is not limited thereto.

まず公知の方法で、組成比Nd=13.4、B=5.8、Al=0.5、Cu=0.1、Co=1.1、残部=Fe(原子%)のR-T-B系焼結磁石を作製した。これを機械加工することにより、大きさが5mm×20mm×30mmのR-T-B系焼結磁石素材を得た。得られたR-T-B系焼結磁石素材の磁気特性をBHトレーサーによって測定したところ、HcJは1035kA/m、Brは1.45Tであった。 First, by a known method, RT- with a composition ratio of Nd = 13.4, B = 5.8, Al = 0.5, Cu = 0.1, Co = 1.1, and the balance = Fe (atomic%). A B-based sintered magnet was produced. By machining this, an RTB-based sintered magnet material having a size of 5 mm × 20 mm × 30 mm was obtained. When the magnetic properties of the obtained RTB-based sintered magnet material were measured by a BH tracer, HcJ was 1035 kA / m and Br was 1.45 T.

次に、組成比Nd=37、Tb=33、Cu=30(原子%)のR-M合金粉末をガスアトマイズ法により作製して用意した。得られたR-M合金粉末の粒度は106μm以下であった。続いて、前記R-M合金粉末に対して恒温恒湿槽内で温度80℃、相対湿度90%の雰囲気中で20h(時間)、48h及び168hの間、ぞれぞれ保持し、R-M合金粉末に対して水酸化処理を行った。 Next, an RM alloy powder having a composition ratio of Nd = 37, Tb = 33, and Cu = 30 (atomic%) was prepared by a gas atomizing method. The particle size of the obtained RM alloy powder was 106 μm or less. Subsequently, the RM alloy powder was held in a constant temperature and humidity chamber at a temperature of 80 ° C. and a relative humidity of 90% for 20 hours (hours), 48 hours and 168 hours, respectively, and R- The M alloy powder was subjected to a hydroxylation treatment.

水酸化処理した合金粉末の断面を走査型電子顕微鏡により観察し、R-OH層の厚さを測定した。図2は、水酸化処理したR-M合金粉末の断面における反射電子像(組成コントラスト像)である。図2の反射電子像が示すように、水酸化処理した(48h及び168h)R-M合金粉末の表面には、明るいコントラストのR-M合金を取り囲むように暗いコントラストのR-OH層が形成された。 The cross section of the hydroxylated alloy powder was observed with a scanning electron microscope, and the thickness of the R—OH layer was measured. FIG. 2 is a backscattered electron image (composition contrast image) in a cross section of the hydroxylated RM alloy powder. As shown in the backscattered electron image of FIG. 2, a dark contrast RH layer is formed on the surface of the hydroxylated (48h and 168h) RM alloy powder so as to surround the bright contrast RM alloy. Was done.

次にR-OH層の平均厚さを測定した。測定方法は、R-OH層の厚さを1個の粉末粒子につき20か所測定し、その平均値をR-OH層の平均厚さとした。平均厚さは、20hは0.5μm、48hは1.3μm、168hは2.3μmとなり、恒温恒湿槽内での保持時間が長時間になるほど、R-OH層の平均厚さは大きくなった。 Next, the average thickness of the R—OH layer was measured. In the measuring method, the thickness of the R-OH layer was measured at 20 points per powder particle, and the average value was taken as the average thickness of the R-OH layer. The average thickness is 0.5 μm for 20h, 1.3 μm for 48h, and 2.3 μm for 168h. The longer the holding time in the constant temperature and humidity chamber, the larger the average thickness of the R-OH layer. rice field.

次に、R-T-B系焼結磁石素材にディッピング法により粘着剤としてPVAをR-T-B系焼結磁石素材の全面に塗布した。粘着剤を塗布したR-T-B系焼結磁石素材に水酸化処理したR-M合金粉末を付着させた。処理容器にR-M合金粉末を広げ、粘着剤を塗布したR-T-B系焼結磁石素材の全面に付着させた。 Next, PVA was applied to the entire surface of the RTB-based sintered magnet material as an adhesive by a dipping method on the RTB-based sintered magnet material. The hydroxylated RM alloy powder was attached to the RTB-based sintered magnet material coated with the pressure-sensitive adhesive. The RM alloy powder was spread on the treatment container and adhered to the entire surface of the RTB-based sintered magnet material coated with the adhesive.

拡散のための熱処理は、450℃で2時間の予備熱処理後、900℃で10時間行った。その後、更に490℃で3時間の熱処理を行った。 The heat treatment for diffusion was performed at 450 ° C. for 2 hours and then at 900 ° C. for 10 hours. Then, the heat treatment was further performed at 490 ° C. for 3 hours.

熱処理完了後、目視にてR-T-B系焼結磁石素材表面における金属溜りの発生の有無を確認した。1個のR-T-B系焼結磁石素材に金属溜りが1か所でも発生した場合は有り、1か所も発生しなかった場合を無しとし、全個数に対する金属溜り有りの割合を発生頻度として求めた。 After the heat treatment was completed, it was visually confirmed whether or not metal pools were generated on the surface of the RTB-based sintered magnet material. There is a case where a metal pool is generated even in one place in one RTB-based sintered magnet material, and there is no case where no metal pool is generated in one place, and the ratio of the metal pool to the total number is generated. Obtained as frequency.

図3に金属溜り発生頻度とR-OH層の平均厚さの関係を示す。図3に示すように、水酸化処理を行わなかった(R-OH層の平均厚さが0μm)ときは金属溜りが100%であったのに対し、20hの水酸化処理を行った(R-OH層の厚さが0.5μm)ときは金属溜りが40%となり大幅に低減されている。さらに水酸化処理を48h(R-OH層の厚さが1.3μm)及び168h(R-OH層の厚さが2.3μm)の場合は金属溜りが発生しなかった。 FIG. 3 shows the relationship between the frequency of metal accumulation and the average thickness of the R—OH layer. As shown in FIG. 3, when the hydroxylation treatment was not performed (the average thickness of the R—OH layer was 0 μm), the metal pool was 100%, whereas the hydroxylation treatment was performed for 20 hours (R). When the thickness of the −OH layer is 0.5 μm), the metal pool is 40%, which is significantly reduced. Further, when the hydroxylation treatment was carried out at 48 h (thickness of the R-OH layer was 1.3 μm) and 168 h (thickness of the R-OH layer was 2.3 μm), no metal pool was generated.

図4に未拡散のR-T-B系焼結磁石の保磁力に対する拡散熱処理後のR-T-B系焼結磁石の保磁力増加量ΔHcJとR-OH層の平均厚さの関係を示す。水酸化処理によってR-OH層が形成されてもΔHcJの減少は見られなかった。 FIG. 4 shows the relationship between the increase in the coercive force of the RTB-based sintered magnet after the diffusion heat treatment with respect to the coercive force of the undiffused RTB-based sintered magnet ΔH cJ and the average thickness of the R—OH layer. Is shown. No decrease in ΔH cJ was observed even when the R—OH layer was formed by the hydroxylation treatment.

実施例1と同様の方法でR-T-B系焼結磁石素材を準備した。次に、組成比Nd=46、Tb=33、Cu=21(原子%)のR-M合金粉末をガスアトマイズ法により作製して用意した。得られたR-M合金粉末の粒度は106μm以下であった。続いて、前記R-M合金粉末に対して恒温恒湿槽内で温度80℃、相対湿度90%の雰囲気中で168hの間保持し、R-M合金粉末に対して水酸化処理を行った。水酸化処理したR-M合金粉末の表面に形成されたR-OH層の平均厚さは2.3μmであった。 An RTB-based sintered magnet material was prepared in the same manner as in Example 1. Next, an RM alloy powder having a composition ratio of Nd = 46, Tb = 33, and Cu = 21 (atomic%) was prepared by a gas atomizing method. The particle size of the obtained RM alloy powder was 106 μm or less. Subsequently, the RM alloy powder was held in a constant temperature and humidity chamber at a temperature of 80 ° C. and a relative humidity of 90% for 168 hours, and the RM alloy powder was subjected to hydroxylation treatment. .. The average thickness of the R—OH layer formed on the surface of the hydroxylated RM alloy powder was 2.3 μm.

次に、実施例1と同様の方法でR-T-B系焼結磁石素材にディッピング法により粘着剤としてPVAをR-T-B系焼結磁石素材の全面に塗布した。粘着剤を塗布したR-T-B系焼結磁石素材に水酸化処理したR-M合金粉末を付着させた。処理容器にR-M合金粉末を広げ、粘着剤を塗布したR-T-B系焼結磁石素材の全面に付着させた。 Next, PVA as an adhesive was applied to the entire surface of the RTB-based sintered magnet material as an adhesive by the dipping method in the same manner as in Example 1. The hydroxylated RM alloy powder was attached to the RTB-based sintered magnet material coated with the pressure-sensitive adhesive. The RM alloy powder was spread on the treatment container and adhered to the entire surface of the RTB-based sintered magnet material coated with the adhesive.

拡散のための熱処理は、450℃で2時間の予備熱処理後、900℃で10時間行った。その後、さらに、490℃で3時間の熱処理を行った。 The heat treatment for diffusion was performed at 450 ° C. for 2 hours and then at 900 ° C. for 10 hours. Then, the heat treatment was further performed at 490 ° C. for 3 hours.

熱処理完了後、目視にてR-T-B系焼結磁石素材表面の金属溜りの発生の有無を確認したところ、水酸化処理を行った場合は金属溜りが発生しなかった。また、水酸化処理を行ってもΔHcJの減少は見られなかった。 After the heat treatment was completed, it was visually confirmed whether or not metal pools were generated on the surface of the RTB-based sintered magnet material. As a result, no metal pools were generated when the hydroxylation treatment was performed. In addition, no decrease in ΔH cJ was observed even after the hydroxylation treatment.

本開示のR-T-B系焼結磁石の製造方法によって得られるNd-Fe-B系焼結磁石は、家電・産業用モータ、電気自動車(EV)やハイブリッド自動車(HEV)の駆動用モータや電動パワーステアリング(EPS)用モータなどの製品で使用され得る。 The Nd-Fe-B-based sintered magnet obtained by the method for manufacturing the RT-B-based sintered magnet of the present disclosure is a motor for driving home appliances / industrial motors, electric vehicles (EV) and hybrid vehicles (HEV). And can be used in products such as motors for electric power steering (EPS).

1・・・R-M合金、2・・・R-OH層 1 ... RM alloy, 2 ... R-OH layer

Claims (2)

R(Rは希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む)-T(TはFeを主とする遷移金属元素であって、Coを含んでもよい)-B系焼結磁石素材を用意する工程と、
R-M(Rは希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む、MはAl、Cu、Zn、Ga、Fe、Co、Niから選ばれる1種以上)合金粉末を用意する工程と、
前記R-M合金粉末の粒子表面に平均厚さが0.5μm以上3μm以下のR-OH層を形成する工程と、
前記R-OH層を形成したR-M合金粉末を前記R-T-B系焼結磁石素材の表面に塗布する工程と、
前記R-OH層を形成したR-M合金粉末を塗布した前記R-T-B系焼結磁石素材に熱処理を行う工程と、
を含む、R-T-B系焼結磁石の製造方法。
R (R is at least one of rare earth elements and always contains at least one of Nd and Pr) -T (T is a transition metal element mainly containing Fe and may contain Co) -B-based firing. The process of preparing the magnet material and
RM (R is at least one of rare earth elements and always contains at least one of Nd and Pr, M is one or more selected from Al, Cu, Zn, Ga, Fe, Co and Ni) alloy powder. The process of preparing and
A step of forming an R—OH layer having an average thickness of 0.5 μm or more and 3 μm or less on the particle surface of the RM alloy powder, and
The step of applying the RM alloy powder on which the R—OH layer is formed to the surface of the RTB-based sintered magnet material, and
A step of heat-treating the RTB-based sintered magnet material coated with the RM alloy powder on which the R—OH layer is formed, and
A method for manufacturing an RTB-based sintered magnet, including the above method.
前記R-OH層を形成する工程は、R-M合金粉末を温度20℃以上150℃以下、相対湿度60%以上100%以下の雰囲気にさらすことにより形成する、請求項1に記載のR-T-B系焼結磁石の製造方法。 The R— according to claim 1, wherein the step of forming the R—OH layer is formed by exposing the RM alloy powder to an atmosphere having a temperature of 20 ° C. or higher and 150 ° C. or lower and a relative humidity of 60% or higher and 100% or lower. A method for manufacturing a TB-based sintered magnet.
JP2018158918A 2018-03-22 2018-08-28 Manufacturing method of RTB-based sintered magnet Active JP7087830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910212614.9A CN110299236B (en) 2018-03-22 2019-03-20 Method for producing R-T-B sintered magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018054745 2018-03-22
JP2018054745 2018-03-22

Publications (2)

Publication Number Publication Date
JP2019169695A JP2019169695A (en) 2019-10-03
JP7087830B2 true JP7087830B2 (en) 2022-06-21

Family

ID=68108521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018158918A Active JP7087830B2 (en) 2018-03-22 2018-08-28 Manufacturing method of RTB-based sintered magnet

Country Status (1)

Country Link
JP (1) JP7087830B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7380369B2 (en) * 2020-03-24 2023-11-15 株式会社プロテリアル Manufacturing method of RTB sintered magnet and alloy for diffusion

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020620A1 (en) 1999-09-09 2001-03-22 Sumitomo Special Metals Co., Ltd. CORROSION-RESISTANT R-Fe-B BONDED MAGNET AND POWDER FOR FORMING R-Fe-B BONDED MAGNET AND METHOD FOR PREPARATION THEREOF
JP2007329331A (en) 2006-06-08 2007-12-20 Hitachi Metals Ltd R-Fe-B BASED RARE EARTH SINTERED MAGNET AND ITS MANUFACTURING METHOD
JP2009054716A (en) 2007-08-24 2009-03-12 Hitachi Metals Ltd RARE EARTH-BASED PERMANENT MAGNET HAVING Mg-CONTAINING Al COATING ON SURFACE THEREOF, AND MANUFACTURING METHOD THEREOF
JP2009120409A (en) 2007-11-12 2009-06-04 Shin Etsu Chem Co Ltd Method for forming rare earth hydroxide coating and rare earth oxide coating
JP2009185391A (en) 2002-11-28 2009-08-20 Tokyo Electron Ltd Member inside plasma treatment vessel
JP2012212782A (en) 2011-03-31 2012-11-01 Tdk Corp Rare earth magnet, method of manufacturing the same, and rotary machine
JP2014063850A (en) 2012-09-20 2014-04-10 Toyota Motor Corp Method of manufacturing rare earth magnet
WO2015020182A1 (en) 2013-08-09 2015-02-12 Tdk株式会社 R-t-b type sintered magnet, and motor
JP2016207985A (en) 2015-04-28 2016-12-08 信越化学工業株式会社 Manufacturing method of rare earth magnet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020620A1 (en) 1999-09-09 2001-03-22 Sumitomo Special Metals Co., Ltd. CORROSION-RESISTANT R-Fe-B BONDED MAGNET AND POWDER FOR FORMING R-Fe-B BONDED MAGNET AND METHOD FOR PREPARATION THEREOF
JP2009185391A (en) 2002-11-28 2009-08-20 Tokyo Electron Ltd Member inside plasma treatment vessel
JP2007329331A (en) 2006-06-08 2007-12-20 Hitachi Metals Ltd R-Fe-B BASED RARE EARTH SINTERED MAGNET AND ITS MANUFACTURING METHOD
JP2009054716A (en) 2007-08-24 2009-03-12 Hitachi Metals Ltd RARE EARTH-BASED PERMANENT MAGNET HAVING Mg-CONTAINING Al COATING ON SURFACE THEREOF, AND MANUFACTURING METHOD THEREOF
JP2009120409A (en) 2007-11-12 2009-06-04 Shin Etsu Chem Co Ltd Method for forming rare earth hydroxide coating and rare earth oxide coating
JP2012212782A (en) 2011-03-31 2012-11-01 Tdk Corp Rare earth magnet, method of manufacturing the same, and rotary machine
JP2014063850A (en) 2012-09-20 2014-04-10 Toyota Motor Corp Method of manufacturing rare earth magnet
WO2015020182A1 (en) 2013-08-09 2015-02-12 Tdk株式会社 R-t-b type sintered magnet, and motor
JP2016207985A (en) 2015-04-28 2016-12-08 信越化学工業株式会社 Manufacturing method of rare earth magnet

Also Published As

Publication number Publication date
JP2019169695A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6414597B2 (en) Method for producing RTB-based sintered magnet
JP6477723B2 (en) Method for producing RTB-based sintered magnet
JP6414598B2 (en) Method for producing RTB-based sintered magnet
JP6725028B2 (en) Method for manufacturing RTB-based sintered magnet
JP5831451B2 (en) Method for producing RTB-based sintered magnet
WO2015020182A1 (en) R-t-b type sintered magnet, and motor
KR20110002441A (en) Rare earth magnet and its preparation
JP6443179B2 (en) Method for producing RTB-based sintered magnet
JP6840353B2 (en) Manufacturing method of RTB-based sintered magnet
JP6604381B2 (en) Manufacturing method of rare earth sintered magnet
JP7087830B2 (en) Manufacturing method of RTB-based sintered magnet
CN110299236B (en) Method for producing R-T-B sintered magnet
JP2018142640A (en) Method for manufacturing r-t-b based sintered magnet
JP6939339B2 (en) Manufacturing method of RTB-based sintered magnet
JP7310499B2 (en) Method for producing RTB based sintered magnet
JP2019062158A (en) Method for manufacturing r-t-b based sintered magnet
JP7000774B2 (en) Manufacturing method of RTB-based sintered magnet
JP6717231B2 (en) Method for manufacturing sintered RTB magnet
JP6760169B2 (en) Manufacturing method of RTB-based sintered magnet
JP6623995B2 (en) Method for producing RTB based sintered magnet
JP2019060010A (en) Diffusion source
JP6414592B2 (en) Method for producing RTB-based sintered magnet
JP7367428B2 (en) RTB system sintered magnet
JP2022147794A (en) Production method of r-t-b based sintered magnet
JP6743649B2 (en) Method for manufacturing RTB-based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210712

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7087830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350