JP6003446B2 - Method for manufacturing oriented magnet and rare earth magnet - Google Patents

Method for manufacturing oriented magnet and rare earth magnet Download PDF

Info

Publication number
JP6003446B2
JP6003446B2 JP2012206285A JP2012206285A JP6003446B2 JP 6003446 B2 JP6003446 B2 JP 6003446B2 JP 2012206285 A JP2012206285 A JP 2012206285A JP 2012206285 A JP2012206285 A JP 2012206285A JP 6003446 B2 JP6003446 B2 JP 6003446B2
Authority
JP
Japan
Prior art keywords
magnet
molded body
molten glass
alloy
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012206285A
Other languages
Japanese (ja)
Other versions
JP2014063772A (en
Inventor
山下 修
修 山下
彰 加納
彰 加納
栄介 保科
栄介 保科
昌揮 杉山
昌揮 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012206285A priority Critical patent/JP6003446B2/en
Publication of JP2014063772A publication Critical patent/JP2014063772A/en
Application granted granted Critical
Publication of JP6003446B2 publication Critical patent/JP6003446B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、希土類磁石の前駆体である配向磁石の製造方法と、この方法によって製造された配向磁石を使用した希土類磁石の製造方法に関するものである。   The present invention relates to a method for producing an oriented magnet, which is a precursor of a rare earth magnet, and a method for producing a rare earth magnet using the oriented magnet produced by this method.

希土類磁石の製造方法の一例を概説すると、たとえばNd-Fe-B系の金属溶湯を急冷凝固して得られた微粉末を加圧成形しながら成形体とし、この成形体に磁気的異方性を付与するべく熱間塑性加工を施して希土類磁石前駆体(配向磁石)を製造し、この希土類磁石前駆体に対し、その保磁力を高める改質合金を拡散浸透させて希土類磁石を製造する方法が一般に適用されている。なお、特許文献1には、この改質合金として低融点のNd-Cu合金を使用し、これを配向磁石表面に付着し、熱処理することで拡散浸透させる技術が開示されている。   An outline of an example of a method for producing a rare earth magnet is as follows. For example, a fine powder obtained by rapid solidification of a Nd-Fe-B metal melt is formed into a compact while being pressed, and the magnetic anisotropy is applied to the compact. Of rare earth magnet precursor (orientation magnet) by performing hot plastic working to impart a rare earth magnet, and a rare earth magnet is manufactured by diffusing and infiltrating a modified alloy that increases the coercive force of the rare earth magnet precursor. Is generally applied. Patent Document 1 discloses a technique in which a low-melting point Nd—Cu alloy is used as the modified alloy, and this is attached to the surface of the oriented magnet and diffused and permeated by heat treatment.

上記する一般的な製造方法においては、配向磁石の表面に酸化膜やその成形過程で使用される離型剤等が不純物として付着してしまうことが往々にしてあり、これらを残した状態でその上から改質合金を配向磁石に配し、改質合金を融解させて拡散浸透をおこなおうとすると、酸化膜や不純物が改質合金の拡散浸透を阻害してしまい、保磁力を十分に高めることができないといった問題が生じ得る。   In the general manufacturing method described above, an oxide film or a mold release agent used in the molding process often adheres to the surface of the oriented magnet as an impurity, If the modified alloy is placed on the oriented magnet from above and the modified alloy is melted to perform diffusion and penetration, the oxide film and impurities will inhibit the diffusion and penetration of the modified alloy and sufficiently increase the coercive force. The problem of being unable to do so can arise.

この問題に対し、特許文献2には、希土類磁石の熱間塑性加工に当たり、NiやCu等の合金からなる軟質金属を成形体の表面に被覆しておく異方性希土類磁石の製造方法が開示されている。この方法によれば、成形型との焼付けを防止しながら、大気中で加熱しても成形体の表面酸化を防止することができるとしている。   To deal with this problem, Patent Document 2 discloses a method for manufacturing an anisotropic rare earth magnet in which a soft metal made of an alloy such as Ni or Cu is coated on the surface of a molded body in hot plastic working of a rare earth magnet. Has been. According to this method, surface oxidation of the molded body can be prevented even when heated in the atmosphere while preventing baking with the mold.

しかしながら、既に酸化膜が形成されている成形体の表面に軟質金属をコーティングしてもその密着性は必ずしも良好でなく、軟質金属は剥がれ易い。さらに、この軟質金属にて成形型との潤滑性を確保しようとしているが、軟質金属が固体潤滑剤ゆえに成形型と軟質金属の摩擦係数は自ずと高くなってしまい、熱間塑性加工時に大きな成形荷重を要することになる。   However, even if a soft metal is coated on the surface of a molded body on which an oxide film is already formed, the adhesion is not always good, and the soft metal is easily peeled off. Furthermore, the soft metal is trying to secure lubricity with the mold, but since the soft metal is a solid lubricant, the coefficient of friction between the mold and the soft metal naturally increases, resulting in a large molding load during hot plastic working. Will be required.

特開2011−061038号公報JP 2011-061038 A 特開平7−176443号公報JP-A-7-176443

本発明は上記する問題に鑑みてなされたものであり、熱間塑性加工前の成形体表面の酸化膜を効果的に除去できるとともに、その後の熱間塑性加工において成形体と成形型の間の良好な潤滑性を保証することのできる配向磁石の製造方法と、この方法で得られた配向磁石を使用する希土類磁石の製造方法を提供することを目的とする。   The present invention has been made in view of the problems described above, and can effectively remove the oxide film on the surface of the molded body before hot plastic working, and between the molded body and the mold in the subsequent hot plastic working. It is an object of the present invention to provide a method for producing an oriented magnet capable of ensuring good lubricity and a method for producing a rare earth magnet using the oriented magnet obtained by this method.

前記目的を達成すべく、本発明による配向磁石の製造方法は、磁石材料となる粉末を加圧成形してなる成形体を溶融ガラス中に浸漬し、陽極となる該成形体と溶融ガラス中に配設された陰極部材が繋がれた電源を含む回路に通電して成形体の表面を電解研磨する第1のステップ、電解研磨され、表面に溶融ガラスが付着している成形体からなる熱間塑性加工前駆体を成形型内に収容して熱間塑性加工をおこない、熱間塑性加工前駆体に磁気的異方性が付与された配向磁石を製造する第2のステップからなるものである。   In order to achieve the above-mentioned object, the method for producing an oriented magnet according to the present invention includes immersing a molded body obtained by pressure-molding a powder as a magnet material in molten glass, and in the molded body and the molten glass serving as an anode. A first step of energizing a circuit including a power source to which a disposed cathode member is connected and electrolytically polishing the surface of the molded body, a hot process comprising a molded body that has been electropolished and has molten glass attached to the surface This is a second step in which the plastic working precursor is housed in a mold and subjected to hot plastic working to produce an oriented magnet in which magnetic anisotropy is imparted to the hot plastic working precursor.

本発明による配向磁石の製造方法は、成形体に対して磁気的異方性を与える熱間塑性加工(強加工ともいう)を施す際にこの成形体を溶融ガラス中に浸漬して電解研磨しておき、電解研磨された成形体を成形型にて熱間塑性加工することにより、成形体の表面に形成されている酸化膜を電解研磨によって効果的に除去することができる。さらに、このことによって成形体とこの成形体の表面に付着した溶融ガラスの濡れ性が良好となり、潤滑膜切れが生じ難いことから、成形型内における熱間塑性加工の際に成形型と成形体の間の摩擦係数も小さくなり、成形荷重を小さくすることができるものである。   The method for producing an oriented magnet according to the present invention is such that when a hot plastic working (also referred to as strong working) is performed to give magnetic anisotropy to the compact, the compact is immersed in molten glass and electropolished. The oxide film formed on the surface of the molded body can be effectively removed by electropolishing by subjecting the electrolytically polished molded body to hot plastic working with a molding die. Further, this improves the wettability of the molded body and the molten glass adhering to the surface of the molded body, and it is difficult for the lubricating film to break. Therefore, the mold and the molded body are subjected to hot plastic working in the mold. The friction coefficient between the two becomes small, and the molding load can be reduced.

本発明の製造方法が製造対象とする配向磁石には、組織を構成する主相(結晶粒)の粒径が200nm以下程度のナノ結晶磁石は勿論のこと、粒径が300nm以上のもの、さらには粒径が1μm以上の焼結磁石などが包含されるが、中でも、熱間塑性加工を必須とするナノ結晶磁石に対して好適なものである。   The oriented magnet to be produced by the production method of the present invention includes not only nanocrystalline magnets having a grain size of the main phase (crystal grains) constituting the structure of about 200 nm or less, but also those having a grain size of 300 nm or more, Includes a sintered magnet having a particle diameter of 1 μm or more, and is particularly suitable for a nanocrystalline magnet that requires hot plastic working.

ここで、「電解研磨」とは、金属製のワークを陽極として電解液を介して直流電流を通電し、ワーク表面を溶解させることで研磨効果を得る方法であり、ワーク表面を切削や磨耗、変形等することで平滑化させる物理的研磨と異なり、ワークに物理的外力を付与しないことから残留応力は発生せず、加工に伴う変質層が生じない電気化学的研磨方法である。本発明の製造方法では、溶融状態で導電性を有する溶融ガラスをこの電解液として使用する。   Here, “electrolytic polishing” is a method of obtaining a polishing effect by passing a direct current through an electrolytic solution with a metal workpiece as an anode and dissolving the workpiece surface. The workpiece surface is cut or worn, Unlike physical polishing that is smoothed by deformation or the like, it is an electrochemical polishing method in which no physical stress is applied to the workpiece, so that no residual stress is generated and a deteriorated layer is not generated during processing. In the production method of the present invention, molten glass having conductivity in the molten state is used as the electrolytic solution.

成形体の表面には少なからず酸化膜が形成されていることから、熱間塑性加工の前段で電解研磨にてこの酸化膜を十分に取り除いておくことで、溶融ガラスと成形体との濡れ性が良好となり、成形体の表面に溶融ガラスを付着させた状態でこれを成形型内に収容し、熱間塑性加工を実施することが可能となる。成形体の表面に溶融ガラスが付着していることでこれが潤滑剤の役割を担い、成形型内での成形型の熱間塑性加工の際の成形荷重を低減することができる。   Since not less than an oxide film is formed on the surface of the molded body, the wettability between the molten glass and the molded body can be achieved by removing this oxide film sufficiently by electrolytic polishing before the hot plastic working. Thus, it becomes possible to accommodate the molten glass on the surface of the molded body in a mold and perform hot plastic working. Since the molten glass adheres to the surface of the molded body, this plays the role of a lubricant, and the molding load during the hot plastic working of the molding die in the molding die can be reduced.

熱間塑性加工の前段で成形体表面の酸化膜が十分に除去されていることから、熱間塑性加工にて成形された配向磁石やこの配向磁石からなる希土類磁石の保磁力(磁気特性)を向上させることができる。   Since the oxide film on the surface of the compact is sufficiently removed before the hot plastic working, the coercive force (magnetic properties) of the oriented magnet formed by hot plastic working and the rare earth magnet made of this oriented magnet can be reduced. Can be improved.

また、熱間塑性加工の際には成形体を加熱した上で成形荷重が付与されることになるが、従来の製造方法では、この成形体の加熱によっても成形体の表面に酸化膜が生じていた。   In addition, in the case of hot plastic working, a molding load is applied after the molded body is heated. In the conventional manufacturing method, an oxide film is formed on the surface of the molded body even by heating the molded body. It was.

そこで、前記第1のステップにおいて加熱された溶融ガラス中に成形体を浸漬させることにより、熱間塑性加工の際(ここではその前段)の成形体の加熱が高温の溶融ガラスにて実施されることから、成形体が空気(酸素)に触れない状態で加熱されることとなり、成形体の加熱の際に酸化膜が生じるのを効果的に抑止することができる。   Therefore, by immersing the molded body in the molten glass heated in the first step, heating of the molded body at the time of hot plastic working (here, the preceding stage) is performed with the high-temperature molten glass. Therefore, the molded body is heated in a state where it does not come into contact with air (oxygen), and it is possible to effectively suppress the formation of an oxide film when the molded body is heated.

この製造方法で使用される製造装置の一例としては、溶融ガラスを収容する収容槽、この槽を収容して赤外線や電磁波、高周波などのヒータ等を備えた容器、収容槽内に配設される陰極用の電極部材、この陰極用電極部材と陽極となる成形体を繋いで電源が介在する外部回路などから構成される形態を挙げることができる。なお、溶融ガラスは、収容槽内に固形のガラスを載置し、装置に内蔵されたヒータ等で熱処理することでガラスを溶融して生成することができる。   As an example of a manufacturing apparatus used in this manufacturing method, a storage tank that stores molten glass, a container that stores this tank and includes a heater such as infrared ray, electromagnetic wave, and high frequency, and the like are disposed in the storage tank. Examples include a cathode electrode member, an external circuit in which a power source is interposed by connecting the cathode electrode member and a molded body serving as an anode, and the like. Note that the molten glass can be generated by placing glass in a storage tank and heat-treating it with a heater or the like built in the apparatus to melt the glass.

また、この回路の末端に導電性の吊り治具を接続し、この吊り治具にて成形体を把持した姿勢で溶融ガラス中に成形体を浸漬する構成であってもよい。   Moreover, the structure which immerses a molded object in molten glass in the attitude | position which connected the electrically conductive suspension jig to the terminal of this circuit, and hold | gripped the molded object with this suspension jig may be sufficient.

上記するように、成形体の表面に既に生じている酸化膜が取り除かれ、さらには熱間塑性加工前の熱処理の際に酸化膜が生成されていない成形体を熱間塑性加工することで、保磁力性能に優れた配向磁石が製造される。   As described above, the oxide film already generated on the surface of the molded body is removed, and further, the molded body in which no oxide film is generated during the heat treatment before the hot plastic working is hot plastic processed, An oriented magnet excellent in coercive force performance is manufactured.

また、本発明は希土類磁石の製造方法にも及ぶものであり、この方法は、前記製造方法における第2のステップで製造された配向磁石に対し、保磁力を高める改質合金を拡散浸透させて希土類磁石を製造するものである。   Further, the present invention extends to a method for producing a rare earth magnet, and this method diffuses and infiltrates a modified alloy that increases the coercive force into the oriented magnet produced in the second step of the production method. It manufactures rare earth magnets.

ここで、配向磁石に拡散浸透される改質合金としては、既述するように保磁力性能の高いDy、Tbといった重希土類元素を単独で使用したり、重希土類元素を含む合金である、60Nd-30Cu-10Dy合金(共晶点503℃)や50Nd-30Cu-20Dy(共晶点576℃)などを使用してもよいが、材料コスト等を勘案して、重希土類元素を含まない改質合金である、Nd-Cu合金(共晶点520℃)やPr-Cu合金(共晶点480℃)、Nd-Pr-Cu合金、Nd-Al合金(共晶点640℃)、Pr-Al合金(650℃)、Nd-Pr-Al合金、Nd-Co合金(共晶点566℃)、Pr-Co合金(共晶点540℃)、Nd-Pr-Co合金のいずれか一種を適用するのが好ましい。   Here, as described above, the modified alloy diffused and permeated into the oriented magnet is an alloy containing heavy rare earth elements such as Dy and Tb having high coercive force performance alone or containing heavy rare earth elements. -30Cu-10Dy alloy (eutectic point 503 ° C) or 50Nd-30Cu-20Dy (eutectic point 576 ° C), etc. may be used, but considering the material cost, etc., it does not contain heavy rare earth elements Nd-Cu alloy (eutectic point 520 ° C), Pr-Cu alloy (eutectic point 480 ° C), Nd-Pr-Cu alloy, Nd-Al alloy (eutectic point 640 ° C), Pr-Al Apply any one of alloy (650 ℃), Nd-Pr-Al alloy, Nd-Co alloy (eutectic point 566 ℃), Pr-Co alloy (eutectic point 540 ℃), Nd-Pr-Co alloy Is preferred.

本発明の製造方法で得られた希土類磁石は、磁気特性に優れた配向磁石の保磁力性能がさらに高められたものである。   The rare earth magnet obtained by the production method of the present invention is obtained by further enhancing the coercive force performance of an oriented magnet having excellent magnetic properties.

以上の説明から理解できるように、本発明の配向磁石と希土類磁石の製造方法によれば、電解研磨にて成形体の表面に生じている酸化膜を十分に除去することができる。この酸化膜の除去により、成形体に良好な濡れ性を有する溶融ガラスが付着される。この成形体を成形型内で熱間塑性加工する際に、成形体と成形型の間の摩擦係数を小さくすることで熱間塑性加工時の成形荷重を小さくすることができ、また、保磁力性能に代表される磁気特性に優れた配向磁石と希土類磁石を製造することができる。   As can be understood from the above description, according to the method of manufacturing the oriented magnet and rare earth magnet of the present invention, the oxide film generated on the surface of the molded body by electrolytic polishing can be sufficiently removed. By removing the oxide film, molten glass having good wettability is attached to the molded body. When this molded body is hot plastic processed in the mold, the frictional load between the molded body and the mold can be reduced to reduce the molding load during hot plastic processing, and the coercive force An oriented magnet and a rare earth magnet excellent in magnetic properties represented by performance can be produced.

(a)、(b)の順で本発明の配向磁石の製造方法の第1のステップにおける成形体の製造までを説明した模式図である。It is the schematic diagram explaining to manufacture of the molded object in the 1st step of the manufacturing method of the oriented magnet of this invention in order of (a) and (b). 図1bで示す成形体のミクロ構造を説明した図である。It is the figure explaining the microstructure of the molded object shown in FIG. 1b. 図1に続いて、製造方法の第1のステップを説明した図である。FIG. 2 is a diagram for explaining a first step of the manufacturing method following FIG. 1. 図3に続いて第2のステップを説明した図である。FIG. 4 is a diagram illustrating a second step following FIG. 3. 製造された配向磁石のミクロ構造を説明した図である。It is a figure explaining the microstructure of the manufactured oriented magnet. 図1〜5にて説明される配向磁石の製造方法で製造された配向磁石を使用した希土類磁石の製造方法を説明した模式図である。It is the schematic diagram explaining the manufacturing method of the rare earth magnet using the oriented magnet manufactured with the manufacturing method of the oriented magnet demonstrated in FIGS. 製造された希土類磁石のミクロ構造を説明した図である。It is a figure explaining the microstructure of the manufactured rare earth magnet.

以下、図面を参照して本発明の配向磁石と希土類磁石の製造方法の実施の形態を説明する。なお、図示例はナノ結晶磁石である希土類磁石の製造方法を説明したものであるが、本発明の希土類磁石の製造方法はナノ結晶磁石の製造に限定されるものではなく、結晶粒の相対的に大きな焼結磁石等の製造に適用できることは勿論のことである。   Hereinafter, embodiments of a method for producing an oriented magnet and a rare earth magnet according to the present invention will be described with reference to the drawings. The illustrated example describes a method for producing a rare-earth magnet, which is a nanocrystalline magnet. However, the method for producing a rare-earth magnet of the present invention is not limited to the production of a nanocrystalline magnet, and relative crystal grains Of course, it can be applied to the production of large sintered magnets.

(配向磁石の製造方法の実施の形態)
図1a、bはその順で本発明の配向磁石の製造方法の第1のステップにおける成形体の製造までを説明した模式図であり、図2は図1bで示す成形体のミクロ構造を説明した図である。また、図3は図1に続いて、製造方法の第1のステップを説明した図であり、図4は図3に続いて第2のステップを説明した図であり、図5は製造された配向磁石のミクロ構造を説明した図である。
(Embodiment of manufacturing method of oriented magnet)
FIGS. 1a and 1b are schematic views illustrating, in that order, the production of the molded body in the first step of the method for producing an oriented magnet of the present invention, and FIG. 2 illustrates the microstructure of the molded body shown in FIG. 1b. FIG. 3 is a diagram for explaining the first step of the manufacturing method subsequent to FIG. 1, FIG. 4 is a diagram for explaining the second step following FIG. 3, and FIG. It is a figure explaining the microstructure of an orientation magnet.

図1aで示すように、たとえば50kPa以下に減圧したArガス雰囲気の不図示の炉中で、単ロールによるメルトスピニング法により、合金インゴットを高周波溶解し、配向磁石を与える組成の溶湯を銅ロールRに噴射して急冷薄帯B(急冷リボン)を製作し、これを粗粉砕する。   As shown in FIG. 1a, for example, an alloy ingot is melted at a high frequency by a melt spinning method using a single roll in a furnace not shown in an Ar gas atmosphere whose pressure is reduced to 50 kPa or less. To produce a quenched ribbon B (quenched ribbon), which is coarsely pulverized.

粗粉砕された急冷薄帯Bを図1bで示すように超硬ダイスDとこの中空内を摺動する超硬パンチPで画成されたキャビティ内に充填し、超硬パンチPで加圧しながら(X方向)加圧方向に電流を流して通電加熱することにより、ナノ結晶組織のNd-Fe-B系の主相(50nm〜200nm程度の結晶粒径)と、主相の周りにあるNd-X合金(X:金属元素)の粒界相からなる成形体Sを製作する。   As shown in FIG. 1B, the coarsely pulverized quenched ribbon B is filled into a cavity defined by a carbide die D and a carbide punch P sliding in the hollow, and is pressed with the carbide punch P. (X direction) Nd-Fe-B main phase (crystal grain size of about 50 nm to 200 nm) of nanocrystalline structure and Nd around the main phase by flowing current in the pressurizing direction and conducting heating. A compact S composed of a grain boundary phase of -X alloy (X: metal element) is produced.

ここで、粒界相を構成するNd-X合金は、Ndと、Co、Fe、Ga等のうちの少なくとも1種以上の合金からなり、たとえば、Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe、Nd-Co-Fe-Gaのうちのいずれか一種、もしくはこれらの二種以上が混在したものであって、Ndリッチな状態となっている。   Here, the Nd—X alloy constituting the grain boundary phase is made of Nd and at least one alloy of Co, Fe, Ga, etc., for example, Nd—Co, Nd—Fe, Nd—Ga, One of Nd-Co-Fe and Nd-Co-Fe-Ga, or a mixture of two or more of these, is in an Nd-rich state.

図2で示すように、成形体Sはナノ結晶粒MP(主相)間を粒界相BPが充満する等方性の結晶組織を呈している。   As shown in FIG. 2, the compact S exhibits an isotropic crystal structure in which the grain boundary phase BP is filled between the nanocrystal grains MP (main phase).

成形された成形体Sの表面には少なからず酸化膜が形成されており、この酸化膜を残したままでこれを熱間塑性加工して配向磁石を成形すると、配向磁石の保磁力性能を低下させてしまう。そこで、製造された成形体Sに対してその表面の酸化膜を除去して熱間塑性加工前駆体を製造する。   An oxide film is formed on the surface of the molded body S which is molded, and if this oriented oxide film is formed by hot plastic processing with the oxide film remaining, the coercive force performance of the oriented magnet is lowered. End up. Therefore, a hot plastic working precursor is manufactured by removing the oxide film on the surface of the manufactured compact S.

図3は、酸化膜除去装置を示すとともに酸化膜の除去方法を説明した図である。図示する酸化膜除去装置Eは、溶融ガラスLを収容する収容槽Zと、この収容槽Zを収容して赤外線や電磁波、高周波などのヒータYaを備えた容器Yと、収容槽Z内に配設される白金等からなる陰極部材Gと、陽極となる成形体Sを把持する導電性の吊り治具Jと、この吊り治具Jと陰極部材Gを繋いで電源およびスイッチが介在する回路Fとから構成されている。   FIG. 3 is a diagram illustrating an oxide film removing apparatus and explaining an oxide film removing method. The illustrated oxide film removing apparatus E includes a storage tank Z that stores the molten glass L, a container Y that stores the storage tank Z and includes a heater Ya for infrared rays, electromagnetic waves, high frequencies, and the like. A cathode member G made of platinum or the like, a conductive suspension jig J that holds a molded body S to be an anode, and a circuit F in which the suspension jig J and the cathode member G are connected and a power source and a switch are interposed. It consists of and.

まず、収容槽Z内に不図示の固形のガラスを収容し、ヒータYaを稼働してガラスを加熱溶融して高温状態の溶融ガラスLを収容槽Z内で生成し、この溶融ガラスLを介してここに浸漬された成形体Sを熱処理して熱間塑性加工の準備をおこなう。   First, solid glass (not shown) is accommodated in the storage tank Z, the heater Ya is operated, the glass is heated and melted, and a high-temperature molten glass L is generated in the storage tank Z. The molded body S immersed here is heat-treated to prepare for hot plastic working.

次に、回路のスイッチをONし、陽極である成形体Sと陰極部材Gの間を導電性の溶融ガラスLを介して通電し、成形体Sを溶融ガラスL内に浸漬する前にその表面に形成されている酸化膜を電解研磨にて除去することによって熱間塑性加工前駆体を製作する。   Next, the circuit switch is turned on, and a current is passed between the molded body S, which is an anode, and the cathode member G through the conductive molten glass L, and the surface of the molded body S before being immersed in the molten glass L. The hot plastic working precursor is manufactured by removing the oxide film formed on the surface by electropolishing.

この電解研磨による酸化膜除去により、成形体Sの表面と溶融ガラスとの濡れ性を良好なものとできる。   By removing the oxide film by electropolishing, the wettability between the surface of the molded body S and the molten glass can be improved.

そして、熱間塑性加工の前段における成形体Sの熱処理を酸素の存在しない溶融ガラスL内で実施することで、この熱処理の際に成形体Sの表面に酸化膜が生じるのを抑止することができる。   Then, by performing the heat treatment of the molded body S in the previous stage of the hot plastic working in the molten glass L without oxygen, it is possible to suppress the formation of an oxide film on the surface of the molded body S during this heat treatment. it can.

すなわち、高温の溶融ガラスL内で電解研磨と熱処理をおこなうことで、成形体Sの表面に既に生じていた酸化膜を除去でき、しかも酸化膜を生じることなく所望に熱処理することができる(以上、第1のステップ)。   That is, by performing electropolishing and heat treatment in the high-temperature molten glass L, the oxide film already formed on the surface of the molded body S can be removed, and heat treatment can be performed as desired without forming an oxide film (above). , First step).

次に、この酸化膜が除去されて熱処理された成形体Sを溶融ガラスL内から取り出し、この成形体Sに異方性を与えるべく、図4で示すように成形体Sを超硬ダイスDに収容してその長手方向(図1bでは水平方向が長手方向)の端面に超硬パンチPを当接させ、超硬パンチPで加圧しながら(X方向)熱間塑性加工をおこなう。この熱間塑性加工により、図5で示すように異方性のナノ結晶粒MPを有する結晶組織の配向磁石C(希土類磁石前駆体)が製作される(第2のステップ)。   Next, the molded body S, from which the oxide film has been removed and heat-treated, is taken out from the molten glass L, and the molded body S is made of a carbide die D as shown in FIG. The cemented carbide punch P is brought into contact with the end face in the longitudinal direction (the horizontal direction is the longitudinal direction in FIG. 1b), and hot plastic working is performed while pressing with the cemented carbide punch P (X direction). By this hot plastic working, as shown in FIG. 5, an oriented magnet C (rare earth magnet precursor) having a crystalline structure having anisotropic nanocrystal grains MP is manufactured (second step).

この熱間塑性加工においては、成形体Sの表面に濡れ性の良好な溶融ガラスが付着していることから、この溶融ガラスが成形体Sと超硬ダイスDとの間の潤滑剤となるため、熱間塑性加工時の成形(鍛造)荷重を低減することが可能となる。   In this hot plastic working, since molten glass having good wettability adheres to the surface of the molded body S, this molten glass becomes a lubricant between the molded body S and the carbide die D. It is possible to reduce the molding (forging) load during hot plastic working.

なお、熱間塑性加工による加工度(圧縮率)が大きい場合、たとえば圧縮率が10%程度以上の場合を、熱間強加工もしくは単に強加工と称することができる。   When the degree of processing (compression rate) by hot plastic working is large, for example, the case where the compression rate is about 10% or more can be referred to as hot strong processing or simply strong processing.

図5で示す配向磁石Cの結晶組織において、ナノ結晶粒MPは扁平形状をなし、異方軸とほぼ平行な界面は湾曲したり屈曲している。   In the crystal structure of the oriented magnet C shown in FIG. 5, the nanocrystal grains MP have a flat shape, and the interface substantially parallel to the anisotropic axis is curved or bent.

次に、図6で示すように、製作された配向磁石Cをヒータ内蔵の高温炉H内に収容し、改質合金の塊Mを希土類磁石前駆体Cの上下に配して双方を接触させ、炉内を高温雰囲気とする。   Next, as shown in FIG. 6, the manufactured oriented magnet C is accommodated in a high-temperature furnace H with a built-in heater, and a mass M of the reformed alloy is arranged above and below the rare earth magnet precursor C so that both are brought into contact with each other. The furnace has a high temperature atmosphere.

ここで、改質合金Mとしては、重希土類元素を含まないRE-Y合金(RE: Nd、Prの少なくとも一種、Y:遷移金属元素)を使用するのが好ましい。遷移金属元素Yとしては、Cu、Alのうちのいずれか一種を適用し、したがって、RE-Y合金としては、Nd-Cu合金、Nd-Al合金、Pr-Cu合金、Pr-Al合金のいずれか一種を使用する。   Here, as the reforming alloy M, it is preferable to use an RE-Y alloy (RE: Nd, at least one of Pr, Y: transition metal element) that does not contain heavy rare earth elements. As the transition metal element Y, any one of Cu and Al is applied. Therefore, as the RE-Y alloy, any of Nd-Cu alloy, Nd-Al alloy, Pr-Cu alloy and Pr-Al alloy can be used. Or use a kind.

RE-Y合金として上記例示の合金を使用した場合、Nd-Cu合金の共晶点は520℃、Pr-Cu合金の共晶点は480℃、Nd-Al合金の共晶点は640℃、Pr-Al合金の共晶点は650℃であり、いずれも700℃以下の低融点である。   When the above-exemplified alloy is used as the RE-Y alloy, the eutectic point of the Nd-Cu alloy is 520 ° C, the eutectic point of the Pr-Cu alloy is 480 ° C, the eutectic point of the Nd-Al alloy is 640 ° C, The eutectic point of the Pr—Al alloy is 650 ° C., both of which have a low melting point of 700 ° C. or less.

改質合金MとしてNd-Cu合金を使用する場合は、その共晶点が520℃であることから、したがって、高温炉H内を520℃程度かそれ以上の温度雰囲気下(たとえば600℃程度)とすることで改質合金であるNd-Cu合金が溶融する。   When an Nd-Cu alloy is used as the reforming alloy M, the eutectic point is 520 ° C. Therefore, the temperature inside the high temperature furnace H is about 520 ° C or higher (eg, about 600 ° C). As a result, the Nd—Cu alloy, which is a modified alloy, melts.

溶融したNd-Cu合金の融液が粒界相BP内に拡散浸透していき、Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe、Nd-Co-Fe-Gaやこれらが混在した粒界相の一部もしくは全部がNd-Cu合金で改質された粒界相が形成される。   The molten Nd-Cu alloy melt diffuses and penetrates into the grain boundary phase BP, and Nd-Co, Nd-Fe, Nd-Ga, Nd-Co-Fe, Nd-Co-Fe-Ga and these A grain boundary phase in which a part or all of the mixed grain boundary phase is modified with the Nd—Cu alloy is formed.

改質合金MとしてNd-Al合金を使用する場合は、その共晶点が640℃であることから、したがって、640〜650℃の温度雰囲気下とすることでNd-Al合金を溶融させてその融液を粒界相内に拡散浸透させることができ、Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe、Nd-Co-Fe-Gaやこれらが混在した粒界相の一部もしくは全部がNd-Al合金で改質された粒界相が形成される。   When Nd-Al alloy is used as the modified alloy M, the eutectic point is 640 ° C. Therefore, the Nd-Al alloy is melted by setting the temperature atmosphere at 640 to 650 ° C. The melt can be diffused and penetrated into the grain boundary phase, and Nd-Co, Nd-Fe, Nd-Ga, Nd-Co-Fe, Nd-Co-Fe-Ga and one of these Part or all of the grain boundary phase is modified with an Nd—Al alloy.

このように700℃以下の低融点の改質合金の塊Mを使用して低温で溶融させることにより、たとえばナノ結晶磁石の場合に800℃程度以上の高温雰囲気下に置かれた際に問題となる結晶粒の粗大化の問題は生じ得ない。   Thus, by using a low melting point alloy alloy M having a low melting point of 700 ° C. or less and melting at a low temperature, for example, in the case of a nanocrystalline magnet, there is a problem when placed in a high temperature atmosphere of about 800 ° C. or more. The problem of coarsening of the crystal grains cannot occur.

上記するNd-Cu合金やNd-Al合金、Pr-Cu合金、Pr-Al合金のいずれかを使用し、600℃以上700℃以下の温度で所定時間熱処理をおこなうことにより、図7で示すように、粒界相BPがNdもしくはPrリッチな組成に改質された希土類磁石RMが製造される。   As shown in FIG. 7, by using any of the Nd-Cu alloy, Nd-Al alloy, Pr-Cu alloy, or Pr-Al alloy described above and performing heat treatment for a predetermined time at a temperature of 600 ° C. to 700 ° C. In addition, a rare earth magnet RM in which the grain boundary phase BP is modified to a composition rich in Nd or Pr is manufactured.

同図で示すように、改質合金Mによる改質が十分に進んだ段階では異方軸とほぼ平行な界面(特定の面)が形成される。このように上記する製造方法によって得られる希土類磁石RMは、成形体Sに異方性を付与するための熱間塑性加工を施して得られる配向磁石Cに対して、700℃以下の低融点の改質合金の融液を粒界相内に拡散浸透させることにより、熱間塑性加工によって生じた残留歪みが改質合金の融液と接触することで除去され、さらに結晶粒の微細化と、結晶粒間の磁気分断が促進することによってその保磁力が向上する。   As shown in the figure, an interface (specific surface) substantially parallel to the anisotropic axis is formed when the reforming by the reforming alloy M is sufficiently advanced. Thus, the rare earth magnet RM obtained by the manufacturing method described above has a low melting point of 700 ° C. or lower with respect to the oriented magnet C obtained by performing hot plastic working for imparting anisotropy to the compact S. By diffusing and infiltrating the melt of the reformed alloy into the grain boundary phase, residual strain generated by hot plastic working is removed by contacting the melt of the reformed alloy, and further refinement of crystal grains, The coercive force is improved by promoting the magnetic separation between crystal grains.

[保磁力性能評価実験とその結果]
本発明者等は、以下の方法で実施例および比較例にかかる配向磁石を製造し、それぞれの配向磁石の保磁力を測定するとともに、熱間塑性加工時の成形荷重や加工後の配向磁石の酸素濃度を測定し、さらに成形型の焼付けの有無を観察する実験をおこなった。
[Coercivity Performance Evaluation Experiment and Results]
The inventors of the present invention manufactured oriented magnets according to Examples and Comparative Examples by the following method, measured the coercive force of each oriented magnet, and formed molding loads during hot plastic working and of oriented magnets after processing. An experiment was conducted to measure the oxygen concentration and observe the presence or absence of baking of the mold.

(実施例)
図3で示す装置を用いて、ガラス(組成が、P2O5:55mass%、Na2O:20mass%、K2O:15.0mass%、Al2O3:9.5mass%であり、導電率が溶融時の電気抵抗約10Ωcm)を収容槽内に収容し、全体が790℃になるまで加熱してガラスを溶融させ、溶融ガラス中に常温の等方性磁石(直径10mm、高さ15mm)を浸漬した。次いで、電極と等方性磁石の間に磁石へ流れる電流が1A/dm2となるように電圧を印加し、この状態を5分間保持した。次に溶融ガラスから取り出した等方性磁石を、鍛造プレスによって高さが初期の20%(3mm)となるまでひずみ速度1/sで熱間塑性加工した。
(Example)
Using the apparatus shown in FIG. 3, glass (composition is P 2 O 5 : 55 mass%, Na 2 O: 20 mass%, K 2 O: 15.0 mass%, Al 2 O 3 : 9.5 mass%, conductivity) Is stored in a storage tank and heated until the whole reaches 790 ° C to melt the glass, and isotropic magnets (diameter 10mm, height 15mm) at room temperature in the molten glass Soaked. Next, a voltage was applied between the electrode and the isotropic magnet so that the current flowing to the magnet was 1 A / dm 2, and this state was maintained for 5 minutes. Next, the isotropic magnet taken out from the molten glass was hot plastic processed at a strain rate of 1 / s until the height became 20% (3 mm) of the initial height by a forging press.

加工後の表面を観察したところ、焼付けは全く確認されなかった。また、熱間塑性加工時の最大荷重は18.4kN(10試験体の平均)、加工後の磁石の酸素濃度は1580ppm(10試験体の平均、ワーク表面からガラスを除去した後に試験体全体を150μm以下に粉砕し、攪拌した後、測定試料を採取した。粉砕作業以降はAr雰囲気中で実施した。)、保磁力は14.2kN(10試験体の平均、表面を含む1mm角の試料で測定、試料採取位置は中央部)であった。   When the surface after processing was observed, no baking was confirmed. The maximum load during hot plastic working is 18.4kN (average of 10 specimens), and the oxygen concentration of the magnet after machining is 1580ppm (average of 10 specimens, after removing the glass from the workpiece surface, the entire specimen is 150μm After crushing and stirring below, a measurement sample was collected.After the crushing operation, it was carried out in an Ar atmosphere.), The coercive force was 14.2 kN (average of 10 specimens, measured with a 1 mm square sample including the surface, The sampling position was the central part).

(比較例)
図3で示す装置を用いて、ガラス(組成が、P2O5:55mass%、Na2O:20mass%、K2O:15.0mass%、Al2O3:9.5mass%)を収容槽内に収容し、全体が790℃になるまで加熱してガラスを溶融させ、溶融ガラス中に常温の等方性磁石(直径10mm、高さ15mm)を浸漬した。ここでは、電極と等方性磁石の間に電圧を印加せずに、この状態を5分間保持した。次に、溶融ガラスから取り出した等方性磁石を、鍛造プレスによって高さが初期の20%(3mm)となるまでひずみ速度1/sで熱間塑性加工した。
(Comparative example)
Using the apparatus shown in FIG. 3, glass (composition is P 2 O 5 : 55 mass%, Na 2 O: 20 mass%, K 2 O: 15.0 mass%, Al 2 O 3 : 9.5 mass%) in the storage tank The glass was melted by heating until the whole reached 790 ° C., and a normal temperature isotropic magnet (diameter 10 mm, height 15 mm) was immersed in the molten glass. Here, this state was maintained for 5 minutes without applying a voltage between the electrode and the isotropic magnet. Next, the isotropic magnet taken out from the molten glass was hot plastic processed at a strain rate of 1 / s until the height became 20% (3 mm) of the initial height by a forging press.

加工後の表面を観察したところ、成形型のうちで成形体と接する面に焼付けが確認された。また、熱間塑性加工時の最大荷重は23.1kN(10試験体の平均)であり、実施例に比して高い値となった。また、加工後の磁石の酸素濃度は1880ppm(10試験体の平均、ワーク表面からガラスを除去した後に試験体全体を150μm以下に粉砕し、攪拌した後、測定試料を採取した。粉砕作業以降はAr雰囲気中で実施した。)、保磁力は13.5kN(10試験体の平均、表面を含む1mm角の試料で測定、試料採取位置は中央部)であり、実施例に比して保磁力性能が低下していることが分かった。   When the surface after processing was observed, baking was confirmed on the surface in contact with the molded body in the mold. The maximum load during hot plastic working was 23.1 kN (average of 10 specimens), which was a higher value than in the examples. The oxygen concentration of the magnet after processing was 1880 ppm (average of 10 specimens, after removing the glass from the workpiece surface, the whole specimen was crushed to 150 μm or less, stirred, and a measurement sample was taken. The coercive force was 13.5kN (average of 10 specimens, measured with a 1mm square sample including the surface, sample collection position in the center). Was found to be decreasing.

本実験より、電解研磨にて成形体の表面から酸化膜を除去した後に熱間塑性加工をおこなうことにより、成形型に焼付けは生じず、熱間塑性加工時の鍛造荷重も低減でき、さらに、保磁力性能に優れた配向磁石(および希土類磁石)を製造できることが実証されている。   From this experiment, by performing hot plastic processing after removing the oxide film from the surface of the molded body by electropolishing, baking does not occur in the mold, and the forging load during hot plastic processing can be reduced. It has been demonstrated that oriented magnets (and rare earth magnets) with excellent coercivity performance can be produced.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

R…銅ロール、B…急冷薄帯(急冷リボン)、D…超硬ダイス、P…超硬パンチ、S…成形体、C…配向磁石(希土類磁石前駆体)、M…改質合金(の塊)、MP…主相(ナノ結晶粒、結晶粒)、BP…粒界相、RM…希土類磁石、E…酸化膜除去装置、Y…容器、Ya…ヒータ、Z…収容槽、J…吊り治具、F…回路、G…陰極部材、L…溶融ガラス、H…高温炉   R: Copper roll, B: Quenched ribbon (quenched ribbon), D: Carbide die, P: Carbide punch, S ... Molded body, C ... Oriented magnet (rare earth magnet precursor), M ... Modified alloy (of Lump), MP ... main phase (nanocrystal grains, crystal grains), BP ... grain boundary phase, RM ... rare earth magnet, E ... oxide film removal device, Y ... container, Ya ... heater, Z ... storage tank, J ... hanging Jig, F ... Circuit, G ... Cathode member, L ... Molten glass, H ... High temperature furnace

Claims (5)

磁石材料となる粉末を加圧成形してなる成形体を溶融ガラス中に浸漬し、陽極となる該成形体と溶融ガラス中に配設された陰極部材が繋がれた電源を含む回路に通電して成形体の表面を電解研磨する第1のステップ、
電解研磨され、表面に溶融ガラスが付着している成形体からなる熱間塑性加工前駆体を成形型内に収容して熱間塑性加工をおこない、熱間塑性加工前駆体に磁気的異方性が付与された配向磁石を製造する第2のステップからなる配向磁石の製造方法。
A molded body formed by pressure-molding a powder as a magnet material is immersed in molten glass, and a circuit including a power source in which the molded body serving as an anode is connected to a cathode member disposed in the molten glass is energized. A first step of electropolishing the surface of the molded body,
A hot plastic working precursor consisting of a molded body that has been electropolished and has molten glass attached to the surface is placed in a mold and subjected to hot plastic working, and the hot plastic working precursor is magnetically anisotropic. The manufacturing method of the oriented magnet which consists of a 2nd step which manufactures the oriented magnet to which was given.
第1のステップでは、加熱された溶融ガラス中に成形体を浸漬させる請求項1に記載の配向磁石の製造方法。   The method for producing an oriented magnet according to claim 1, wherein in the first step, the molded body is immersed in the heated molten glass. 前記溶融ガラスは、固形のガラスを加熱して生成されたものである請求項2に記載の配向磁石の製造方法。   The method for producing an oriented magnet according to claim 2, wherein the molten glass is produced by heating solid glass. 第1のステップでは、導電性の吊り治具にて成形体を吊った状態で溶融ガラス中に該成形体を浸漬し、該吊り治具が回路の一部をなしている請求項1〜3のいずれかに記載の配向磁石の製造方法。   In the first step, the molded body is immersed in molten glass in a state where the molded body is suspended by a conductive suspension jig, and the suspension jig forms a part of a circuit. The manufacturing method of the oriented magnet in any one of. 請求項1〜4のいずれかに記載の製造方法における第2のステップで製造された配向磁石に対し、保磁力を高める改質合金を拡散浸透させて希土類磁石を製造する希土類磁石の製造方法。   A method for producing a rare earth magnet, wherein a rare earth magnet is produced by diffusing and infiltrating a modified alloy for increasing the coercive force into the oriented magnet produced in the second step in the production method according to claim 1.
JP2012206285A 2012-09-19 2012-09-19 Method for manufacturing oriented magnet and rare earth magnet Expired - Fee Related JP6003446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012206285A JP6003446B2 (en) 2012-09-19 2012-09-19 Method for manufacturing oriented magnet and rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012206285A JP6003446B2 (en) 2012-09-19 2012-09-19 Method for manufacturing oriented magnet and rare earth magnet

Publications (2)

Publication Number Publication Date
JP2014063772A JP2014063772A (en) 2014-04-10
JP6003446B2 true JP6003446B2 (en) 2016-10-05

Family

ID=50618780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012206285A Expired - Fee Related JP6003446B2 (en) 2012-09-19 2012-09-19 Method for manufacturing oriented magnet and rare earth magnet

Country Status (1)

Country Link
JP (1) JP6003446B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6451529B2 (en) * 2015-07-07 2019-01-16 トヨタ自動車株式会社 High frequency induction heating method
US10734143B2 (en) * 2017-03-30 2020-08-04 Tdk Corporation R-T-B based sintered magnet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115512A (en) * 1982-12-22 1984-07-04 日本電気株式会社 Method of insulating ceramic electronic part
JPH02214106A (en) * 1989-02-15 1990-08-27 Namiki Precision Jewel Co Ltd Hot plastic-deformation magnet and manufacture thereof
JP2005294381A (en) * 2004-03-31 2005-10-20 Tdk Corp Magnet and manufacturing method thereof
JP2007127214A (en) * 2005-11-04 2007-05-24 Ebatekku:Kk Manufacturing method for magnetic wheel and manufacturing method for magnetic coupling
JP4372105B2 (en) * 2006-01-13 2009-11-25 信越化学工業株式会社 High corrosion resistance permanent magnet and method of manufacturing the same
JP4173893B2 (en) * 2006-03-17 2008-10-29 Tdk株式会社 Rare earth magnet and manufacturing method thereof
JP2008218647A (en) * 2007-03-02 2008-09-18 Osaka Industrial Promotion Organization Acid cleaning method for rare-earth magnet, and rare-earth magnet subjected to acid cleaning by the method
JP2010114200A (en) * 2008-11-05 2010-05-20 Daido Steel Co Ltd Method of manufacturing rare-earth magnet

Also Published As

Publication number Publication date
JP2014063772A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
KR101661416B1 (en) Method for producing rare-earth magnet
JP5640954B2 (en) Rare earth magnet manufacturing method
JP5870914B2 (en) Rare earth magnet manufacturing method
JP5196080B2 (en) Rare earth magnet manufacturing method
JP5725200B2 (en) Rare earth magnets
RU2595073C1 (en) Method of producing rare-earth magnet
CN106205992B (en) The Sintered NdFeB magnet and preparation of high-coercive force and low remanent magnetism temperature sensitivity
KR101740165B1 (en) Rare earth magnet and method for producing same
CN105849828B (en) The method for manufacturing rare-earth magnet
JP5915637B2 (en) Rare earth magnet manufacturing method
JP5691989B2 (en) Method for producing magnetic powder for forming sintered body of rare earth magnet precursor
JP2013149862A (en) Method of manufacturing rare earth magnet
JP2021013031A (en) Magnet manufacturing
US10062504B2 (en) Manufacturing method of rare-earth magnet
JP6003446B2 (en) Method for manufacturing oriented magnet and rare earth magnet
JP6003452B2 (en) Rare earth magnet manufacturing method
US10192679B2 (en) Method of manufacturing rare earth magnet
JP5742733B2 (en) Rare earth magnet manufacturing method
JP2016115777A (en) Rare earth magnet and manufacturing method thereof
JP6313202B2 (en) Rare earth magnet manufacturing method
JP2016076614A (en) Method for manufacturing rare earth magnet
JP2013138111A (en) Method of manufacturing rare-earth magnet
CN108242334A (en) The manufacturing method of rare-earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R151 Written notification of patent or utility model registration

Ref document number: 6003446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees