JP6003239B2 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP6003239B2
JP6003239B2 JP2012123415A JP2012123415A JP6003239B2 JP 6003239 B2 JP6003239 B2 JP 6003239B2 JP 2012123415 A JP2012123415 A JP 2012123415A JP 2012123415 A JP2012123415 A JP 2012123415A JP 6003239 B2 JP6003239 B2 JP 6003239B2
Authority
JP
Japan
Prior art keywords
compression ratio
cylinder
low
intake
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012123415A
Other languages
Japanese (ja)
Other versions
JP2013249747A (en
Inventor
小松 明
明 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2012123415A priority Critical patent/JP6003239B2/en
Publication of JP2013249747A publication Critical patent/JP2013249747A/en
Application granted granted Critical
Publication of JP6003239B2 publication Critical patent/JP6003239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、内燃機関に関し、特に、複数気筒のうち任意の気筒を休止させる減筒運転が可能な内燃機関に関する。   The present invention relates to an internal combustion engine, and more particularly to an internal combustion engine capable of a reduced-cylinder operation in which an arbitrary cylinder among a plurality of cylinders is deactivated.

複数の気筒のうち少なくとも一部の気筒を運転中に停止状態にできる内燃機関において、運転中に停止状態にされる気筒を高負荷運転点用に設定し、残りの気筒を低負荷運転点用に設定する技術が知られている。このような内燃機関は、例えば特許文献1に開示されている。   In an internal combustion engine in which at least some of the cylinders can be stopped during operation, the cylinders that are stopped during operation are set for the high load operation point, and the remaining cylinders are for the low load operation point. The technique of setting to is known. Such an internal combustion engine is disclosed in Patent Document 1, for example.

また、低圧縮比のシリンダ群と高圧縮比のシリンダ群とを備る多気筒ディーゼルエンジンにおいて、低中負荷運転時は低圧縮比のシリンダ群を停止させると共に高圧縮比のシリンダ群を稼働させ、高負荷運転時は高圧縮比のシリンダ群を停止させると共に低圧縮比のシリンダ群を稼働させる技術も知られている。このようなディーゼルエンジンは、例えば特許文献2に開示されている。   In a multi-cylinder diesel engine equipped with a low compression ratio cylinder group and a high compression ratio cylinder group, the low compression ratio cylinder group is stopped and the high compression ratio cylinder group is operated during low and medium load operation. A technique is also known in which a high compression ratio cylinder group is stopped and a low compression ratio cylinder group is operated during a high load operation. Such a diesel engine is disclosed in Patent Document 2, for example.

特開2005−517115号公報JP 2005-517115 A 特開平03−275949号公報Japanese Patent Laid-Open No. 03-275949

ところで、上述の従来技術においては、低中負荷運転領域では高圧縮比設定の気筒を稼働させると共に低圧縮比設定の気筒を休止させるので、エンジンの燃焼効率向上により燃費の改善を図ることが期待される。しかしながら、従来技術では、休止させる気筒は燃料噴射を停止するのみで、吸排気バルブの開閉作動は停止させていない。そのため、減筒運転を実施したとしても、吸排気バルブの開閉作動によりポンピングフリクションが増加し、結果としてエンジンの燃費を十分に改善できない可能性がある。   By the way, in the above-described prior art, in the low and medium load operation region, the cylinder set with the high compression ratio is operated and the cylinder set with the low compression ratio is deactivated, so that it is expected to improve the fuel efficiency by improving the combustion efficiency of the engine. Is done. However, in the prior art, the cylinder to be stopped only stops the fuel injection, and the opening / closing operation of the intake / exhaust valve is not stopped. Therefore, even if the reduced-cylinder operation is performed, the pumping friction increases due to the opening / closing operation of the intake / exhaust valve, and as a result, the fuel consumption of the engine may not be sufficiently improved.

本発明は、このような点に鑑みてなされたもので、その目的は、複数気筒のうち任意の気筒を休止させる減筒運転が可能な内燃機関において、エンジンの燃費及び始動性を効果的に向上させることにある。   The present invention has been made in view of the above points, and an object of the present invention is to effectively improve the fuel efficiency and startability of an engine in an internal combustion engine capable of reducing the number of cylinders in a plurality of cylinders. It is to improve.

上述の目的を達成するため、本発明の内燃機関は、複数気筒のうち任意の気筒の吸排気バルブ及び燃料噴射を停止させる減筒運転が可能な内燃機関であって、圧縮比を所定の低圧縮比に設定した少なくとも一つの低圧縮比気筒と、圧縮比を前記所定の低圧縮比よりも高く設定した少なくとも一つの高圧縮比気筒と、前記低圧縮比気筒及び前記高圧縮比気筒の吸排気バルブと燃料噴射とを稼働状態もしくは停止状態に選択的に切り替え可能な減筒運転制御手段とを備え、前記減筒運転制御手段は、前記内燃機関の運転状態が減筒運転領域内の所定の低中負荷領域にある時は、前記低圧縮比気筒の吸排気バルブと燃料噴射とを停止状態にすると共に前記高圧縮比気筒の吸排気バルブと燃料噴射とを稼働状態にする一方、前記内燃機関の運転状態が減筒運転領域内の所定の高負荷領域にある時は、前記高圧縮比気筒の吸排気バルブと燃料噴射とを停止状態にすると共に前記低圧縮比気筒の吸排気バルブと燃料噴射とを稼働状態にすることを特徴とする。   In order to achieve the above-described object, an internal combustion engine of the present invention is an internal combustion engine capable of a reduced-cylinder operation that stops intake and exhaust valves and fuel injection of any cylinder among a plurality of cylinders, and has a compression ratio of a predetermined low value. At least one low compression ratio cylinder set to the compression ratio, at least one high compression ratio cylinder set to a compression ratio higher than the predetermined low compression ratio, and the suction of the low compression ratio cylinder and the high compression ratio cylinder A reduced-cylinder operation control means capable of selectively switching the exhaust valve and the fuel injection between an operating state and a stopped state, wherein the reduced-cylinder operation control means has a predetermined operating condition in the reduced-cylinder operating region. In the low and medium load region, the intake and exhaust valves and the fuel injection of the low compression ratio cylinder are stopped and the intake and exhaust valves and the fuel injection of the high compression ratio cylinder are operated. The operating state of the internal combustion engine When in a predetermined high load region within the cylinder operation region, the intake / exhaust valve and fuel injection of the high compression ratio cylinder are stopped and the intake / exhaust valve and fuel injection of the low compression ratio cylinder are in operation It is characterized by.

また、前記減筒運転制御手段は、前記内燃機関の運転状態が全筒運転領域にある時は、前記低圧縮比気筒及び前記高圧縮比気筒の吸排気バルブと燃料噴射とを稼働状態にすることが好ましい。   The reduced-cylinder operation control means activates the intake / exhaust valves and fuel injection of the low compression ratio cylinder and the high compression ratio cylinder when the operation state of the internal combustion engine is in the all cylinder operation region. It is preferable.

また、前記内燃機関のベース圧縮比に対して、前記低圧縮比気筒の圧縮比の減少割合を前記高圧縮比気筒の圧縮比の増加割合よりも大きく設定することが好ましい。   In addition, it is preferable that the reduction ratio of the compression ratio of the low compression ratio cylinder is set larger than the increase ratio of the compression ratio of the high compression ratio cylinder with respect to the base compression ratio of the internal combustion engine.

また、前記低圧縮比気筒から排出される排気で駆動するタービンを含む第1の高圧段過給機と、前記高圧縮比気筒から排出される排気で駆動するタービンを含む第2の高圧段過給機とを備えてもよい。   A first high-pressure stage turbocharger including a turbine driven by exhaust gas discharged from the low compression ratio cylinder; and a second high-pressure stage turbocharger including a turbine driven by exhaust gas discharged from the high compression ratio cylinder. And a feeder.

また、前記第1及び第2の過給機を通過した排気で駆動するタービンを含む低圧段過給機をさらに備えてもよい。   Moreover, you may further provide the low pressure stage supercharger containing the turbine driven with the exhaust_gas | exhaustion which passed the said 1st and 2nd supercharger.

本発明の内燃機関によれば、エンジンの燃費及び始動性を効果的に向上することができる。   According to the internal combustion engine of the present invention, the fuel efficiency and startability of the engine can be effectively improved.

本発明の一実施形態に係る内燃機関を示す全体構成図である。1 is an overall configuration diagram showing an internal combustion engine according to an embodiment of the present invention. 本発明の一実施形態に係る内燃機関の制御マップを示す図である。It is a figure which shows the control map of the internal combustion engine which concerns on one Embodiment of this invention. 本発明の一実施形態に係る内燃機関と比較例のエンジンとの全筒全負荷トルク線及び減筒全負荷トルク線を説明する図である。It is a figure explaining all the cylinder full load torque lines and the reduced cylinder full load torque lines of the internal combustion engine which concerns on one Embodiment of this invention, and the engine of a comparative example. 本発明の一実施形態に係る内燃機関と比較例のエンジンとの各気筒の出力トルクを説明する図である。It is a figure explaining the output torque of each cylinder of the internal combustion engine which concerns on one Embodiment of this invention, and the engine of a comparative example. 本発明の他の実施形態に係る内燃機関を示す全体構成図である。It is a whole block diagram which shows the internal combustion engine which concerns on other embodiment of this invention.

以下、図1〜4に基づいて、本発明の一実施形態に係る内燃機関を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, an internal combustion engine according to an embodiment of the present invention will be described with reference to FIGS. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

図1に示すように、本実施形態に係る内燃機関は、例えば直列6気筒のディーゼルエンジン(以下、単にエンジンという)10であって、減筒用バルブ休止機構30と、低圧縮比用の高圧段ターボチャージャ20と、高圧縮比用の高圧段ターボチャージャ21と、低圧段ターボチャージャ22と、低圧縮比用のEGR装置23と、高圧縮比用のEGR装置24と、電子制御ユニット(以下、ECUという)40と、エンジン回転センサ41と、アクセル開度センサ42とを備えている。   As shown in FIG. 1, the internal combustion engine according to the present embodiment is, for example, an in-line 6-cylinder diesel engine (hereinafter simply referred to as an engine) 10, which includes a reduced cylinder valve deactivation mechanism 30 and a high pressure for a low compression ratio. Stage turbocharger 20, high compression ratio high pressure turbocharger 21, low pressure stage turbocharger 22, low compression ratio EGR device 23, high compression ratio EGR device 24, and electronic control unit ECU) 40, an engine rotation sensor 41, and an accelerator opening sensor 42.

エンジン10の6個の気筒#1〜6のうち、3個の気筒#1〜3はベース圧縮比に対して圧縮比を低く設定した低圧縮比気筒グループAとして構成され、他の3個の気筒#4〜6はベース圧縮比に対して圧縮比を高く設定した高圧縮比気筒グループBとして構成されている。本実施形態において、ベース圧縮比に対する増減割合は、低圧縮比気筒グループAが高圧縮比気筒グループBよりも大きくなるように、例えばベース圧縮比“ε16”に対し低圧縮比気筒グループAは“ε14”、高圧縮比気筒グループBは“ε17”に設定されている。なお、設定する圧縮比はこれらの数値に限定されるものではなく、エンジン10の仕様等に応じて適宜変更することが可能である。   Of the six cylinders # 1 to # 6 of the engine 10, three cylinders # 1 to # 3 are configured as a low compression ratio cylinder group A in which the compression ratio is set lower than the base compression ratio, and the other three The cylinders # 4 to # 6 are configured as a high compression ratio cylinder group B in which the compression ratio is set higher than the base compression ratio. In the present embodiment, the increase / decrease ratio with respect to the base compression ratio is set so that, for example, the low compression ratio cylinder group A is greater than the base compression ratio “ε16” so that the low compression ratio cylinder group A is larger than the high compression ratio cylinder group B. ε14 ”and the high compression ratio cylinder group B are set to“ ε17 ”. The compression ratio to be set is not limited to these numerical values, and can be appropriately changed according to the specifications of the engine 10 and the like.

低圧縮比気筒グループAの吸気マニホールド11aには各気筒#1〜3に新気を導入するための低圧縮比用の吸気通路12aが接続され、この吸気通路12aには吸気を冷却するインタークーラ15aが設けられている。高圧縮比気筒グループBの吸気マニホールド11bには各気筒#4〜6に新気を導入するための高圧縮比用の吸気通路12bが接続されて、この吸気通路12bには吸気を冷却するインタークーラ15bが設けられている。これら2本の吸気通路12a,12bは、高圧段ターボチャージャ20,21よりも吸気上流側でメイン吸気通路12から分岐して形成されている。   The intake manifold 11a of the low compression ratio cylinder group A is connected to an intake passage 12a for low compression ratio for introducing fresh air into each of the cylinders # 1 to # 3. An intercooler for cooling intake air is connected to the intake passage 12a. 15a is provided. The intake manifold 11b of the high compression ratio cylinder group B is connected to an intake passage 12b for high compression ratio for introducing fresh air into each of the cylinders # 4 to # 6. The intake passage 12b is an intercooler for cooling the intake air. A cooler 15b is provided. These two intake passages 12 a and 12 b are formed to branch from the main intake passage 12 on the intake upstream side of the high-pressure stage turbochargers 20 and 21.

低圧縮比気筒グループAの排気マニホールド13aには気筒#1〜3から排気を排出するための低圧縮比用の排気通路14aが接続され、高圧縮比気筒グループBの排気マニホールド13bには気筒#4〜6から排気を排出するための高圧縮比用の排気通路14bが接続されている。これら2本の排気通路14a,14bは、高圧段ターボチャージャ20,21よりも排気下流側でメイン排気通路14に合流する。   The exhaust manifold 13a of the low compression ratio cylinder group A is connected to an exhaust passage 14a for low compression ratio for discharging exhaust from the cylinders # 1 to # 3, and the exhaust manifold 13b of the high compression ratio cylinder group B is connected to the cylinder # 1. An exhaust passage 14b for high compression ratio for exhausting exhaust gas from 4 to 6 is connected. These two exhaust passages 14 a and 14 b merge with the main exhaust passage 14 on the exhaust downstream side of the high-pressure stage turbochargers 20 and 21.

減筒用バルブ休止機構30は公知の構造であって、例えばロッカーアームを二分割して連結ピンを油圧等でスライドさせてバルブロストモーションさせることで、図示しない吸排気バルブを稼働状態から停止状態に切り替える。この減筒用バルブ休止機構30の作動は、ECU40から入力される指示信号に応じて制御される。なお、減筒用バルブ休止機構30は必ずしもロッカーアームを二分割した構造に限定されず、他の公知の構造を適用することも可能である。   The reduced-cylinder valve suspension mechanism 30 has a known structure. For example, the intake / exhaust valve (not shown) is stopped from the operating state by dividing the rocker arm into two parts and sliding the connecting pin with hydraulic pressure to cause the valve lost motion. Switch to. The operation of the reduced cylinder valve pause mechanism 30 is controlled in accordance with an instruction signal input from the ECU 40. The reduced-cylinder valve resting mechanism 30 is not necessarily limited to a structure in which the rocker arm is divided into two, and other known structures can be applied.

低圧縮比用の高圧段ターボチャージャ20は公知の可変容量型過給機であって、低圧縮比用の吸気通路12aに設けられたコンプレッサ20aと、低圧縮比用の排気通路14aに設けられたタービン20bと、タービン20bに設けられた可変翼(不図示)とを備えている。これらコンプレッサ20aとタービン20bとは、回転軸を介して連結されている。この高圧段ターボチャージャ20の可変翼の開度は、ECU40から入力される指示信号に応じて制御される。   The high-pressure turbocharger 20 for low compression ratio is a known variable displacement supercharger, and is provided in the compressor 20a provided in the intake passage 12a for low compression ratio and the exhaust passage 14a for low compression ratio. The turbine 20b and variable blades (not shown) provided in the turbine 20b are provided. The compressor 20a and the turbine 20b are connected via a rotating shaft. The opening degree of the variable blades of the high-pressure stage turbocharger 20 is controlled according to an instruction signal input from the ECU 40.

高圧縮比用の高圧段ターボチャージャ21は公知の可変容量型過給機であって、高圧縮比用の吸気通路12bに設けられたコンプレッサ21aと、高圧縮比用の排気通路14bに設けられたタービン21bと、タービン21bに設けられた可変翼(不図示)とを備えている。これらコンプレッサ21aとタービン21bとは、回転軸を介して連結されている。この高圧段ターボチャージャ21の可変翼の開度は、ECU40から入力される指示信号に応じて制御される。   The high-pressure turbocharger 21 for high compression ratio is a known variable displacement supercharger, and is provided in the compressor 21a provided in the intake passage 12b for high compression ratio and the exhaust passage 14b for high compression ratio. Turbine 21b, and variable blades (not shown) provided on turbine 21b. The compressor 21a and the turbine 21b are connected via a rotating shaft. The opening degree of the variable blades of the high-pressure stage turbocharger 21 is controlled in accordance with an instruction signal input from the ECU 40.

低圧段ターボチャージャ22は、メイン吸気通路12に設けられたコンプレッサ22aと、メイン排気通路14に設けられたタービン22bとを備えている。これらコンプレッサ22aとタービン22bとは、回転軸を介して連結されている。なお、低圧段ターボチャージャ22は一段に限られず、複数段であってもよい。   The low-pressure stage turbocharger 22 includes a compressor 22 a provided in the main intake passage 12 and a turbine 22 b provided in the main exhaust passage 14. The compressor 22a and the turbine 22b are connected via a rotating shaft. The low-pressure stage turbocharger 22 is not limited to a single stage, and may be a plurality of stages.

低圧縮比用のEGR装置23は、低圧縮比用の排気通路14aと低圧縮比用の吸気通路12aとを接続するEGR通路23aと、EGR通路23aに設けられたEGRクーラ23bと、EGR通路23aに設けられたEGRバルブ23cと、EGR通路23aに設けられたEGR逆止弁23dとを備えている。この低圧縮比用のEGR装置23による排気の環流量(以下、EGR量という)は、ECU40から入力される指示信号に応じてEGRバルブ23cの開度が制御されることで調整される。   The EGR device 23 for low compression ratio includes an EGR passage 23a that connects the exhaust passage 14a for low compression ratio and the intake passage 12a for low compression ratio, an EGR cooler 23b provided in the EGR passage 23a, and an EGR passage. EGR valve 23c provided in 23a, and EGR check valve 23d provided in EGR passage 23a are provided. The exhaust gas flow rate (hereinafter referred to as EGR amount) by the low-compression-ratio EGR device 23 is adjusted by controlling the opening degree of the EGR valve 23c in accordance with an instruction signal input from the ECU 40.

高圧縮比用のEGR装置24は、高圧縮比用の排気通路14bと高圧縮比用の吸気通路12bとを接続するEGR通路24aと、EGR通路24aに設けられたEGRクーラ24bと、EGR通路24aに設けられたEGRバルブ24cと、EGR通路24aに設けられたEGR逆止弁24dとを備えている。この高圧縮比用のEGR装置24によるEGR量は、ECU40から入力される指示信号に応じてEGRバルブ24cの開度が制御されることで調整される。   The EGR device 24 for high compression ratio includes an EGR passage 24a that connects the exhaust passage 14b for high compression ratio and the intake passage 12b for high compression ratio, an EGR cooler 24b provided in the EGR passage 24a, and an EGR passage. EGR valve 24c provided in 24a and EGR check valve 24d provided in EGR passage 24a are provided. The amount of EGR by the EGR device 24 for high compression ratio is adjusted by controlling the opening degree of the EGR valve 24c in accordance with an instruction signal input from the ECU 40.

ECU40は、エンジン10の燃料噴射等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備え構成されている。この各種制御を行うために、ECU40には、エンジン回転センサ41、アクセル開度センサ42等の各種センサの出力信号が入力される。   The ECU 40 performs various controls such as fuel injection of the engine 10, and includes a known CPU, ROM, RAM, input port, output port, and the like. In order to perform these various controls, the ECU 40 receives output signals from various sensors such as the engine rotation sensor 41 and the accelerator opening sensor 42.

また、ECU40は、エンジン回転センサ41及びアクセル開度センサ42で検出されるエンジン10の運転状態に基づいて、減筒用バルブ休止機構30の作動を制御する。より詳しくは、ECU40には、エンジン回転数とエンジン負荷率とをパラメータとする図2に示す制御マップが記憶されている。この制御マップ上には、エンジン10の減筒運転領域内における低中負荷領域に対応する減筒高圧縮比運転領域Xと、この減筒運転領域内における高負荷領域に対応する減筒低圧縮比運転領域Yと、この減筒運転領域よりも高負荷の全筒運転領域Zとが設定されている。   In addition, the ECU 40 controls the operation of the valve deactivation mechanism 30 for reducing cylinders based on the operating state of the engine 10 detected by the engine rotation sensor 41 and the accelerator opening sensor 42. More specifically, the ECU 40 stores a control map shown in FIG. 2 using the engine speed and the engine load factor as parameters. On this control map, the reduced cylinder high compression ratio operation region X corresponding to the low and medium load region in the reduced cylinder operation region of the engine 10 and the reduced cylinder low compression corresponding to the high load region in the reduced cylinder operation region. A specific operation region Y and an all-cylinder operation region Z having a higher load than the reduced-cylinder operation region are set.

ECU40は、エンジン10の運転状態が制御マップ上の減筒高圧縮比運転領域Xにある時は、低圧縮比気筒グループAの吸排気バルブを停止状態にすると共に、高圧縮比気筒グループBの吸排気バルブを稼働状態にする指示信号を減筒用バルブ休止機構30に出力する。また、これと同時に、ECU40は低圧縮比気筒グループAの各気筒#1〜3の図示しないインジェクタに燃料噴射を停止させる指示信号も出力する。これにより、低圧縮比気筒グループAを休止させると共に、高圧縮比気筒グループBを稼働させてエンジン10を運転する減筒運転が実行される。   When the operating state of the engine 10 is in the reduced-cylinder high compression ratio operation region X on the control map, the ECU 40 stops the intake / exhaust valves of the low compression ratio cylinder group A and the high compression ratio cylinder group B. An instruction signal for operating the intake / exhaust valve is output to the valve deactivation mechanism 30 for reducing cylinders. At the same time, the ECU 40 also outputs an instruction signal for stopping fuel injection to injectors (not shown) of the cylinders # 1 to # 3 of the low compression ratio cylinder group A. Thereby, while the low compression ratio cylinder group A is deactivated, the reduced cylinder operation in which the engine 10 is operated by operating the high compression ratio cylinder group B is executed.

また、ECU40は、エンジン10の運転状態が制御マップ上の減筒低圧縮比運転領域Yにある時は、高圧縮比気筒グループBの吸排気バルブを停止状態にすると共に、低圧縮比気筒グループAの吸排気バルブを稼働状態にする指示信号を減筒用バルブ休止機構30に出力する。また、これと同時に、ECU40は高圧縮比気筒グループBの各気筒#4〜6の図示しないインジェクタに燃料噴射を停止させる指示信号も出力する。これにより、高圧縮比気筒グループBを休止させると共に、低圧縮比気筒グループAを稼働させてエンジン10を運転する減筒運転が実行される。   In addition, when the operating state of the engine 10 is in the reduced cylinder low compression ratio operation region Y on the control map, the ECU 40 stops the intake / exhaust valves of the high compression ratio cylinder group B, and lowers the low compression ratio cylinder group. An instruction signal for operating the intake / exhaust valve of A is output to the valve deactivation mechanism 30 for reducing cylinders. At the same time, the ECU 40 outputs an instruction signal for stopping fuel injection to injectors (not shown) of the cylinders # 4 to # 6 of the high compression ratio cylinder group B. Thus, the high compression ratio cylinder group B is deactivated, and the low compression ratio cylinder group A is operated to operate the engine 10 by operating the low compression ratio cylinder group A.

さらに、ECU40は、エンジン10の運転状態がマップ上の全筒運転領域Zにある時は、低圧縮比気筒グループA及び高圧縮比気筒グループBの全ての吸排気バルブを稼働状態にする指示信号を減筒用バルブ休止機構30に出力する。これにより、エンジン10の運転状態が全筒運転領域Zにある時は、低圧縮比気筒グループAと高圧縮比気筒グループBとを稼働させてエンジン10を運転する全筒運転が実行される。   Further, when the operating state of the engine 10 is in the all-cylinder operating region Z on the map, the ECU 40 is an instruction signal for setting all the intake and exhaust valves of the low compression ratio cylinder group A and the high compression ratio cylinder group B to the operating state. Is output to the valve deactivation mechanism 30. Thereby, when the operating state of the engine 10 is in the all-cylinder operation region Z, the all-cylinder operation in which the engine 10 is operated by operating the low compression ratio cylinder group A and the high compression ratio cylinder group B is executed.

次に、本実施形態に係るエンジン10の作用効果について説明する。この作用効果を説明するために、ベース圧縮比“ε16”に対して低圧縮比気筒グループAが“ε14”、高圧縮比気筒グループBが“ε17”に設定された本実施形態のエンジン10を、以下の表1に示す二種類のエンジンと比較する。なお比較例1のエンジンは全6気筒が同一のベース圧縮比“ε16”で設定され、比較例2のエンジンはベース圧縮比“ε16”に対して同一の増減割合で低圧縮比気筒グループAが“ε15”、高圧縮比気筒グループBが“ε17”に設定されている。   Next, the effect of the engine 10 according to the present embodiment will be described. In order to explain this effect, the engine 10 of this embodiment in which the low compression ratio cylinder group A is set to “ε14” and the high compression ratio cylinder group B is set to “ε17” with respect to the base compression ratio “ε16”. Compared with the two types of engines shown in Table 1 below. In the engine of comparative example 1, all six cylinders are set with the same base compression ratio “ε16”, and in the engine of comparative example 2, the low compression ratio cylinder group A has the same increase / decrease rate with respect to the base compression ratio “ε16”. “Ε15” and the high compression ratio cylinder group B are set to “ε17”.

一般的にエンジンの圧縮比を低く設定すると、エンジンの燃焼は悪化し、結果としてエンジンの熱効率が低下するため、エンジンの燃費は悪化する。これを回避するために、本実施形態のエンジン10は、減筒運転領域内において筒内最大圧(以下、P−MAXという)に制限が入らない低中負荷領域では、二つの気筒グループのうち高圧縮比気筒グループBを稼働させる。すなわち、全6気筒を同一のベース圧縮比“ε16”に設定した比較例1のエンジンに比べ、本実施形態のエンジン10は、減筒運転領域内における低中負荷領域でベース圧縮比“ε16”よりも高い高圧縮比“ε17”で運転することが可能に構成されている。   Generally, when the compression ratio of the engine is set to be low, the combustion of the engine is deteriorated, and as a result, the thermal efficiency of the engine is lowered, so that the fuel consumption of the engine is deteriorated. In order to avoid this, the engine 10 according to the present embodiment has two cylinder groups in the low and medium load region where the maximum in-cylinder pressure (hereinafter referred to as P-MAX) is not limited in the reduced-cylinder operation region. The high compression ratio cylinder group B is operated. That is, as compared with the engine of the comparative example 1 in which all the six cylinders are set to the same base compression ratio “ε16”, the engine 10 of the present embodiment has a base compression ratio “ε16” in the low and medium load region in the reduced-cylinder operation region. It is possible to operate at a higher compression ratio “ε17” than that.

したがって、本実施形態のエンジン10によれば、減筒運転領域においてエンジンの熱効率が上昇して、エンジン10の燃費を効果的に向上することができる。同時に、低負荷時や低温時に発生しやすいHC・CO等の排ガス低減を図ることができると共に、エンジン10の始動性も向上することができる。   Therefore, according to the engine 10 of the present embodiment, the thermal efficiency of the engine increases in the reduced-cylinder operation region, and the fuel consumption of the engine 10 can be effectively improved. At the same time, it is possible to reduce exhaust gas such as HC / CO that is likely to occur at low loads or low temperatures, and to improve the startability of the engine 10.

また、減筒運転システムを備えたエンジンにおいて、燃費低減効果を高めるには、減筒運転領域を拡大させればよい。具体的には、燃料噴射量を増加させればよいが、P−MAXに制限があるため、この手法には限界がある。本実施形態のエンジン10では、減筒運転領域内における高負荷領域で低圧縮比気筒グループAを稼働させるので、全6気筒を同一のベース圧縮比“ε16”に設定した比較例1のエンジンに比べ、燃料噴射量を増加することが可能に構成されている。   Further, in an engine equipped with a reduced-cylinder operation system, in order to increase the fuel consumption reduction effect, the reduced-cylinder operation region may be expanded. Specifically, the fuel injection amount may be increased, but there is a limit to this method because P-MAX is limited. In the engine 10 of the present embodiment, the low compression ratio cylinder group A is operated in the high load region in the reduced cylinder operation region, so that the engine of Comparative Example 1 in which all six cylinders are set to the same base compression ratio “ε16” is used. In comparison, the fuel injection amount can be increased.

したがって、本実施形態のエンジン10によれば、燃料噴射量の増加により、図3に示すようにエンジン10の減筒全負荷トルク線α0は比較例1の減筒全負荷トルク線α1よりも高くなり、減筒運転領域を増加させることが可能となり、結果としエンジン10の燃費を確実に向上することができる。 Therefore, according to the engine 10 of the present embodiment, the reduced cylinder full load torque line α 0 of the engine 10 is greater than the reduced cylinder full load torque line α 1 of the comparative example 1 as shown in FIG. As a result, it becomes possible to increase the reduced-cylinder operation region, and as a result, the fuel consumption of the engine 10 can be improved reliably.

また、本実施形態のエンジン10は、減筒運転領域において低圧縮比気筒グループA、もしくは、高圧縮比気筒グループBの何れか一方の気筒グループを休止させる場合は吸排気バルブと燃料噴射とを停止状態にする。   Further, the engine 10 of the present embodiment has an intake / exhaust valve and fuel injection when the low compression ratio cylinder group A or the high compression ratio cylinder group B is deactivated in the reduced cylinder operation region. Stop.

したがって、本実施形態のエンジン10によれば、減筒運転時に単に気筒への燃料噴射を停止させる従来例に比べて、吸排気バルブの開閉作動によるポンピングフリクションを低減することが可能となり、エンジン10の燃費をより効果的に向上することができる。   Therefore, according to the engine 10 of the present embodiment, it is possible to reduce the pumping friction due to the opening / closing operation of the intake / exhaust valve compared to the conventional example in which the fuel injection into the cylinder is simply stopped during the reduced cylinder operation. The fuel efficiency of the fuel can be improved more effectively.

また、本実施形態のエンジン10は、エンジン10の運転状態が全筒運転領域にある時は、低圧縮比気筒グループAと高圧縮比気筒グループBとの双方の気筒グループを稼働状態にする。ここで、本実施形態のエンジン10では、ベース圧縮比に対する増減割合は、低圧縮比気筒グループAが高圧縮比気筒グループBよりも大きく設定されている(低圧縮比気筒グループAがベース圧縮比“ε16”に対してマイナス2の“ε14”、高圧縮比気筒グループBがベース圧縮比“ε16”に対してプラス1の“ε17”)。   Further, the engine 10 of the present embodiment puts both the low compression ratio cylinder group A and the high compression ratio cylinder group B into the operating state when the operation state of the engine 10 is in the all cylinder operation region. Here, in the engine 10 of the present embodiment, the rate of increase / decrease with respect to the base compression ratio is set so that the low compression ratio cylinder group A is larger than the high compression ratio cylinder group B (the low compression ratio cylinder group A is the base compression ratio). “Ε14” minus 2 with respect to “ε16”, and the high compression ratio cylinder group B is “ε17” plus 1 with respect to the base compression ratio “ε16”).

すなわち、図4に示すように、各気筒のP−MAXを例えば16MPaとすると、低圧縮比気筒グループAの各気筒の最大トルクは約350Nm、高圧縮比気筒グループBの各気筒の最大トルクは約200Nmとなり、エンジン10の最大出力は約1650Nm(=350Nm*3+200Nm*3)になる。これに対し、P−MAXが同じ16MPaの場合、比較例1の最大出力は約1500Nm(=250Nm*6)で、比較例2のエンジンの最大出力は約1500Nm(=300Nm*3+200Nm*3)になる。結果として、本実施形態のエンジン10は、比較例1や比較例2のエンジンに対して最大出力を約150Nmほど増加させることが可能になる。   That is, as shown in FIG. 4, when the P-MAX of each cylinder is 16 MPa, for example, the maximum torque of each cylinder of the low compression ratio cylinder group A is about 350 Nm, and the maximum torque of each cylinder of the high compression ratio cylinder group B is The engine 10 has a maximum output of about 1650 Nm (= 350 Nm * 3 + 200 Nm * 3). On the other hand, when P-MAX is the same 16 MPa, the maximum output of Comparative Example 1 is about 1500 Nm (= 250 Nm * 6), and the maximum output of the engine of Comparative Example 2 is about 1500 Nm (= 300 Nm * 3 + 200 Nm * 3). Become. As a result, the engine 10 of the present embodiment can increase the maximum output by about 150 Nm compared to the engines of Comparative Example 1 and Comparative Example 2.

したがって、本実施形態のエンジン10によれば、ベース圧縮比に対する増減割合を低圧縮比気筒グループAが高圧縮比気筒グループBよりも大きくなるように設定したことで、図3に示すように、従来の全筒全負荷トルク線β1を本システム採用時の全筒全負荷トルク線β0へ拡大が可能となり、結果として、エンジン10の高出力化とダウンサイジング化との両立を図ることができる。 Therefore, according to the engine 10 of the present embodiment, the increase / decrease ratio with respect to the base compression ratio is set so that the low compression ratio cylinder group A is larger than the high compression ratio cylinder group B, as shown in FIG. The conventional all cylinder full load torque line β 1 can be expanded to the all cylinder full load torque line β 0 when the present system is adopted, and as a result, both high output and downsizing of the engine 10 can be achieved. it can.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。   In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.

例えば、第一実施形態において、図5に示すように、低圧縮比気筒グループAの吸気系と高圧縮比気筒グループBの吸気系とを統合してインタークーラ15a,15bを一つにしてもよい。この場合、低圧段ターボチャージャ22よりも吸気下流側で分岐する低圧縮比用の吸気通路12aと高圧縮比用の吸気通路12bとを、インタークーラ15よりも吸気上流側で合流させると共に、これら吸気通路12a,12bにそれぞれ吸気の流路を切り替える開閉バルブ16a,16bを設ければよい。   For example, in the first embodiment, as shown in FIG. 5, the intake system of the low compression ratio cylinder group A and the intake system of the high compression ratio cylinder group B are integrated into one intercooler 15a, 15b. Good. In this case, the intake passage 12a for low compression ratio and the intake passage 12b for high compression ratio that branch on the intake downstream side of the low-pressure stage turbocharger 22 are merged on the intake upstream side of the intercooler 15, and these Opening / closing valves 16a and 16b for switching the intake air flow paths may be provided in the intake passages 12a and 12b, respectively.

また、エンジン10は、直列6気筒のエンジンに限定されず、V型エンジンや6気筒以外の多気筒エンジンであってもよい。   The engine 10 is not limited to an in-line 6-cylinder engine, and may be a V-type engine or a multi-cylinder engine other than 6 cylinders.

10 エンジン(内燃機関)
30 減筒用バルブ休止機構(減筒運転制御手段)
40 ECU(減筒運転制御手段)
20 高圧段ターボチャージャ(第1の高圧段過給機)
21 高圧段ターボチャージャ(第2の高圧段過給機)
22 低圧段ターボチャージャ(低圧段過給機)
A 低圧縮比気筒グループ
B 高圧縮比気筒グループ
10 Engine (Internal combustion engine)
30 Valve deactivation mechanism for reduced cylinders (reducing cylinder operation control means)
40 ECU (reducing cylinder operation control means)
20 High-pressure stage turbocharger (first high-pressure stage turbocharger)
21 High-pressure turbocharger (second high-pressure turbocharger)
22 Low pressure turbocharger (low pressure turbocharger)
A Low compression ratio cylinder group B High compression ratio cylinder group

Claims (5)

複数気筒のうち任意の気筒の吸排気バルブ及び燃料噴射を停止させる減筒運転が可能な内燃機関であって、
圧縮比を所定の低圧縮比に設定した少なくとも一つの低圧縮比気筒と、
圧縮比を前記所定の低圧縮比よりも高く設定した少なくとも一つの高圧縮比気筒と、
前記低圧縮比気筒及び前記高圧縮比気筒の吸排気バルブと燃料噴射とを稼働状態もしくは停止状態に選択的に切り替え可能な減筒運転制御手段と、を備え、
前記減筒運転制御手段は、
前記内燃機関の運転状態が減筒運転領域内の所定の低中負荷領域である減筒高圧縮比運転領域にある時は、前記低圧縮比気筒の吸排気バルブと燃料噴射とを停止状態にすると共に前記高圧縮比気筒の吸排気バルブと燃料噴射とを稼働状態にし、前記内燃機関の運転状態が減筒運転領域内の所定の高負荷領域である減筒低圧縮比運転領域にある時は、前記高圧縮比気筒の吸排気バルブと燃料噴射とを停止状態にすると共に前記低圧縮比気筒の吸排気バルブと燃料噴射とを稼働状態にし、前記内燃機関の運転状態が前記減筒低圧縮比運転領域より更に高負荷領域であり且つ最大負荷を含む全筒運転領域にある時は、前記低圧縮比気筒及び前記高圧縮比気筒の全ての吸排気バルブと燃料噴射とを稼動状態にし、
前記減筒高圧縮比運転領域、前記減筒低圧縮比運転領域及び前記全筒運転領域は、それぞれ負荷方向の幅を有することを特徴とする内燃機関。
An internal combustion engine capable of reduced-cylinder operation that stops intake and exhaust valves and fuel injection of any cylinder among a plurality of cylinders,
At least one low compression ratio cylinder having a compression ratio set to a predetermined low compression ratio;
At least one high compression ratio cylinder having a compression ratio set higher than the predetermined low compression ratio;
Reduced-cylinder operation control means capable of selectively switching the intake and exhaust valves and fuel injection of the low compression ratio cylinder and the high compression ratio cylinder to an operating state or a stopped state,
The reduced-cylinder operation control means includes
When the operating state of the internal combustion engine is in the reduced-cylinder high compression ratio operating region , which is a predetermined low and medium load region in the reduced-cylinder operating region , the intake / exhaust valve and fuel injection of the low compression ratio cylinder are stopped. When the intake / exhaust valve and the fuel injection of the high compression ratio cylinder are in an operating state , and the operation state of the internal combustion engine is in a reduced cylinder low compression ratio operation region which is a predetermined high load region in the reduced cylinder operation region , the high and the intake and exhaust valves and fuel injection of the compression ratio cylinder to a running state and the intake and exhaust valves and fuel injection of the low compression ratio cylinder while stopped, the operating state of the internal combustion engine is low the reduced cylinder When the engine is in the all-cylinder operation region that is higher than the compression ratio operation region and includes the maximum load, all the intake / exhaust valves and fuel injection in the low compression ratio cylinder and the high compression ratio cylinder are put into operation. ,
The internal combustion engine, wherein the reduced-cylinder high compression ratio operation region, the reduced-cylinder low compression ratio operation region, and the all-cylinder operation region each have a width in the load direction .
前記全筒運転領域は、前記減筒高圧縮比運転領域及び前記減筒低圧縮比運転領域よりも、負荷方向の幅が広い請求項1に記載の内燃機関。 The internal combustion engine according to claim 1, wherein the all-cylinder operation region is wider in the load direction than the reduced-cylinder high compression ratio operation region and the reduced-cylinder low compression ratio operation region . 前記内燃機関のベース圧縮比に対して、前記低圧縮比気筒の圧縮比の減少割合を前記高圧縮比気筒の圧縮比の増加割合よりも大きく設定した請求項1又は2に記載の内燃機関。   The internal combustion engine according to claim 1 or 2, wherein a reduction ratio of the compression ratio of the low compression ratio cylinder is set to be larger than an increase ratio of the compression ratio of the high compression ratio cylinder with respect to the base compression ratio of the internal combustion engine. 前記低圧縮比気筒から排出される排気で駆動するタービンを含む第1の高圧段過給機と、
前記高圧縮比気筒から排出される排気で駆動するタービンを含む第2の高圧段過給機と、
前記第1及び第2の高圧段過給機を通過した排気で駆動するタービンを含む低圧段過給機と、
を備える請求項1から3の何れかに記載の内燃機関。
A first high-pressure supercharger including a turbine driven by exhaust discharged from the low compression ratio cylinder;
A second high-pressure supercharger including a turbine driven by exhaust discharged from the high compression ratio cylinder;
A low pressure turbocharger including a turbine driven by exhaust gas that has passed through the first and second high pressure turbochargers;
An internal combustion engine according to any one of claims 1 to 3.
前記低圧段過給機のコンプレッサよりも吸気下流側で分岐する低圧縮比用吸気通路及び高圧縮比用吸気通路であって、前記第1の高圧段過給機のコンプレッサ及び前記第2の高圧段過給機のコンプレッサをそれぞれ通過した後、両コンプレッサの吸気下流側で合流する低圧縮比用吸気通路及び高圧縮比用吸気通路と、
前記低圧縮比用吸気通路及び前記高圧縮比用吸気通路の合流部よりも吸気下流側に設けられ、前記低圧縮比気筒及び前記高圧縮比気筒に導入される吸気を冷却する一つのインタークーラと、
前記低圧縮比用吸気通路及び前記高圧縮比用吸気通路にそれぞれ設けられて、吸気の流路を切り替える第1開閉バルブ及び第2開閉バルブと、
をさらに備える請求項4に記載の内燃機関。
An intake passage for a low compression ratio and an intake passage for a high compression ratio that branch downstream from the compressor of the low-pressure stage turbocharger, wherein the compressor of the first high-pressure stage supercharger and the second high-pressure stage An intake passage for low compression ratio and an intake passage for high compression ratio that merge on the intake downstream side of both compressors after passing through the compressor of the stage supercharger,
One intercooler, which is provided on the downstream side of the intake air from the merging portion of the low compression ratio intake passage and the high compression ratio intake passage, and cools the intake air introduced into the low compression ratio cylinder and the high compression ratio cylinder When,
A first on-off valve and a second on-off valve that are provided in the low compression ratio intake passage and the high compression ratio intake passage, respectively, to switch the intake air flow path;
The internal combustion engine according to claim 4, further comprising:
JP2012123415A 2012-05-30 2012-05-30 Internal combustion engine Expired - Fee Related JP6003239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012123415A JP6003239B2 (en) 2012-05-30 2012-05-30 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012123415A JP6003239B2 (en) 2012-05-30 2012-05-30 Internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013249747A JP2013249747A (en) 2013-12-12
JP6003239B2 true JP6003239B2 (en) 2016-10-05

Family

ID=49848682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012123415A Expired - Fee Related JP6003239B2 (en) 2012-05-30 2012-05-30 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP6003239B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6007504B2 (en) * 2012-02-13 2016-10-12 いすゞ自動車株式会社 diesel engine
JP6404026B2 (en) * 2014-08-04 2018-10-10 日野自動車株式会社 Multistage supercharging system and control method of multistage supercharging system
KR102383215B1 (en) * 2016-04-18 2022-04-05 현대자동차 주식회사 Engine system
KR102383216B1 (en) * 2016-04-29 2022-04-05 현대자동차 주식회사 Engine system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275949A (en) * 1990-03-23 1991-12-06 Mazda Motor Corp Diesel engine
JPH0444440U (en) * 1990-08-13 1992-04-15
DE10204482A1 (en) * 2002-02-05 2003-08-14 Daimler Chrysler Ag Internal combustion engine
JP4780351B2 (en) * 2008-04-01 2011-09-28 トヨタ自動車株式会社 Multi-cylinder engine
JP2011202644A (en) * 2010-03-26 2011-10-13 Nippon Soken Inc Control device for internal combustion engine, and internal combustion engine
JP5595107B2 (en) * 2010-04-27 2014-09-24 日野自動車株式会社 Internal combustion engine

Also Published As

Publication number Publication date
JP2013249747A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
US9228504B2 (en) Diesel engine
JP4544271B2 (en) Control device for internal combustion engine
US10513976B2 (en) Engine system
US8640459B2 (en) Turbocharger control systems and methods for improved transient performance
WO2011058628A1 (en) Internal combustion engine control device
JP4893514B2 (en) Control device for an internal combustion engine with a supercharger
JP6003239B2 (en) Internal combustion engine
JP2010024974A (en) Control device of internal combustion engine with supercharger
JP5998618B2 (en) diesel engine
JP5998901B2 (en) Turbocharged engine
JP2014125992A (en) Supercharging system and method of controlling supercharging system
JP2006250002A (en) Variable cylinder internal combustion engine
JP2009235944A (en) Supercharging apparatus for engine
JP2006299892A (en) Internal combustion engine with supercharger
JP6073772B2 (en) engine
JP2010168954A (en) Control device for internal combustion engine
JP2011241713A (en) Control device of internal combustion engine
JP2010116894A (en) Control device of internal combustion engine
JP6756531B2 (en) Internal combustion engine control method and control device
JP5970972B2 (en) Internal combustion engine with mechanical supercharger
JP2009293621A (en) Control device of internal combustion engine
JP6298744B2 (en) engine
JP5974805B2 (en) Multi-cylinder engine with turbocharger
JP2011241723A (en) Egr device of internal combustion engine with supercharger
JP2010190150A (en) Egr device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 6003239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees