JP6001473B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP6001473B2
JP6001473B2 JP2013024868A JP2013024868A JP6001473B2 JP 6001473 B2 JP6001473 B2 JP 6001473B2 JP 2013024868 A JP2013024868 A JP 2013024868A JP 2013024868 A JP2013024868 A JP 2013024868A JP 6001473 B2 JP6001473 B2 JP 6001473B2
Authority
JP
Japan
Prior art keywords
resin
semiconductor device
recess
semiconductor
sealing resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013024868A
Other languages
Japanese (ja)
Other versions
JP2014154780A (en
Inventor
卓矢 門口
卓矢 門口
知巳 奥村
知巳 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2013024868A priority Critical patent/JP6001473B2/en
Publication of JP2014154780A publication Critical patent/JP2014154780A/en
Application granted granted Critical
Publication of JP6001473B2 publication Critical patent/JP6001473B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/37124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/3754Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor device.

近年、複数の半導体素子の上下面に金属板を電気的・熱的に接続し、樹脂封止した半導体装置が知られている(例えば、特許文献1参照)。このような半導体装置の一例としては、絶縁ゲート型バイポーラ・トランジスタ(IGBT)やダイオード等の半導体素子が縦横に配列された半導体装置を挙げることができる。   In recent years, a semiconductor device in which a metal plate is electrically and thermally connected to upper and lower surfaces of a plurality of semiconductor elements and sealed with a resin is known (for example, see Patent Document 1). As an example of such a semiconductor device, a semiconductor device in which semiconductor elements such as an insulated gate bipolar transistor (IGBT) and a diode are arranged vertically and horizontally can be given.

IGBTは、バイポーラトランジスタのベースを電界効果トランジスタ(FET)のゲートで置換したものであり、電流駆動方式であるバイポーラトランジスタの高速性や耐電力性と、電圧駆動方式である電界効果トランジスタの省電力性を兼備しているため、上記のような半導体装置は、スイッチング動作を行うパワー半導体装置として用いることができる。   The IGBT is obtained by replacing the base of a bipolar transistor with the gate of a field effect transistor (FET), and the high speed and power durability of a bipolar transistor that is a current driving method and the power saving of a field effect transistor that is a voltage driving method. Therefore, the semiconductor device as described above can be used as a power semiconductor device that performs a switching operation.

特開2007−73743号公報JP 2007-73743 A

ところで、上記のような半導体装置の製造工程において、半導体素子等を樹脂封止する際には、例えば、金型から樹脂を注入するゲートの位置を、最外列において隣接する半導体素子の間に設定する。   By the way, in the manufacturing process of the semiconductor device as described above, when the semiconductor element or the like is sealed with resin, for example, the position of the gate for injecting the resin from the mold is set between the adjacent semiconductor elements in the outermost row. Set.

この場合、最外列において隣接する半導体素子間の中央部分から流れ込む樹脂の流れと、最外列において隣接する各々の半導体素子の外側から流れ込む樹脂の流れが存在し、両者は最外列において隣接する半導体素子と、その内側に配列された半導体素子との間の部分で合流する。合流する部分の上下は金属板で挟まれているため、空気の逃げ場がなくなり、ボイドが発生する問題が生じる。   In this case, there is a resin flow flowing from the central portion between adjacent semiconductor elements in the outermost row and a resin flow flowing from the outside of each adjacent semiconductor element in the outermost row, and both are adjacent in the outermost row. Are joined at a portion between the semiconductor elements to be arranged and the semiconductor elements arranged inside thereof. Since the upper and lower portions of the joining portion are sandwiched between metal plates, there is no air escape and a problem of voids arises.

このような問題は、複数の半導体素子が縦横に配列された半導体装置のみならず、例えば、2つの半導体装置を配列した半導体装置においても発生する。   Such a problem occurs not only in a semiconductor device in which a plurality of semiconductor elements are arranged vertically and horizontally, but also in, for example, a semiconductor device in which two semiconductor devices are arranged.

本発明は上記の点に鑑みてなされたものであり、ボイドの発生を抑制可能な半導体装置の製造方法を提供することを課題とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a method of manufacturing a semiconductor device capable of suppressing the generation of voids.

本半導体装置の製造方法は、平面上の第1の方向に配列された複数の半導体素子と、前記複数の半導体素子を封止する封止樹脂と、前記複数の半導体素子と電気的に接続され、前記平面に垂直な方向から視て、前記封止樹脂の所定の面から前記第1の方向と直交する方向に突出する部分を備えた複数の端子と、前記平面に垂直な方向から視て、前記所定の面から前記半導体素子側に窪んだ形状であって、前記封止樹脂となる樹脂を充填する際の樹脂注入口の位置の両側に設けられた第1の凹部及び第2の凹部と、を有し、前記第1の凹部は、前記平面に垂直な方向から視て、前記複数の半導体素子のうちの一の半導体素子と対向する位置であって、かつ、前記樹脂注入口の前記一の半導体素子側において前記所定の面から突出する端子間に設けられ、前記第2の凹部は、前記平面に垂直な方向から視て、前記複数の半導体素子のうちの他の半導体素子と対向する位置であって、かつ、前記樹脂注入口の前記他の半導体素子側において前記所定の面から突出する端子間に設けられ、前記第1の凹部及び前記第2の凹部は、それぞれ、前記平面に垂直な方向から視て、前記所定の面側に形成され前記封止樹脂を前記平面に垂直な方向に貫通する貫通部と、前記貫通部の前記半導体素子側に形成され前記封止樹脂の上面から前記平面に垂直な方向に所定の深さだけ窪んだ段差部と、を備えている半導体装置の製造方法であって、前記封止樹脂は、前記樹脂注入口から樹脂を注入して形成されるThe method for manufacturing the semiconductor device includes a plurality of semiconductor elements arranged in a first direction on a plane, a sealing resin for sealing the plurality of semiconductor elements, and the plurality of semiconductor elements electrically connected. A plurality of terminals provided with portions protruding in a direction perpendicular to the first direction from a predetermined surface of the sealing resin as viewed from a direction perpendicular to the plane, and as viewed from a direction perpendicular to the plane. The first recess and the second recess provided on both sides of the position of the resin injection port when filling the resin serving as the sealing resin with a shape recessed from the predetermined surface to the semiconductor element side And the first recess is a position facing one semiconductor element of the plurality of semiconductor elements when viewed from a direction perpendicular to the plane, and the resin injection port Provided between the terminals protruding from the predetermined surface on the one semiconductor element side. The second recess is a position facing the other semiconductor element of the plurality of semiconductor elements when viewed from a direction perpendicular to the plane, and the other semiconductor of the resin injection port Provided between the terminals protruding from the predetermined surface on the element side, the first concave portion and the second concave portion are respectively formed on the predetermined surface side when viewed from a direction perpendicular to the plane. A penetrating portion penetrating the sealing resin in a direction perpendicular to the plane, and a step formed on the semiconductor element side of the penetrating portion and recessed from the upper surface of the sealing resin by a predetermined depth in a direction perpendicular to the plane The sealing resin is formed by injecting a resin from the resin injection port .

開示の技術によれば、ボイドの発生を抑制可能な半導体装置の製造方法を提供できる。 According to the disclosed technology, it is possible to provide a method for manufacturing a semiconductor device capable of suppressing generation of voids.

第1の実施の形態に係る半導体装置の回路構成を例示する図である。1 is a diagram illustrating a circuit configuration of a semiconductor device according to a first embodiment; 第1の実施の形態に係る半導体装置を例示する斜視図である。1 is a perspective view illustrating a semiconductor device according to a first embodiment; 第1の実施の形態に係る半導体装置を例示する図2のA−A線に沿う断面図である。FIG. 3 is a cross-sectional view taken along line AA of FIG. 2 illustrating the semiconductor device according to the first embodiment. 第1の実施の形態に係る半導体装置を例示する図2のB−B線に沿う断面図である。FIG. 3 is a cross-sectional view taken along line BB in FIG. 2 illustrating the semiconductor device according to the first embodiment. 第1の実施の形態に係る半導体装置の内部構造を例示する平面図である。1 is a plan view illustrating an internal structure of a semiconductor device according to a first embodiment; 図5の凹部近傍を拡大して例示する図である。It is a figure which expands and illustrates the recessed part vicinity of FIG. 第1の実施の形態に係る半導体装置において凹部を設ける位置を説明するための平面図である。It is a top view for demonstrating the position which provides a recessed part in the semiconductor device which concerns on 1st Embodiment. 凹部が貫通部のみから形成され段差部を有しない場合の樹脂の流れについて説明するための斜視図(比較例)である。It is a perspective view (comparative example) for demonstrating the flow of resin when a recessed part is formed only from a penetration part, and does not have a level | step difference part. 第1の実施の形態に係る半導体装置の製造工程において、溶解した樹脂を金型に流入させてモールド成形を行う際の樹脂流動解析結果を例示する図である。In the manufacturing process of the semiconductor device concerning a 1st embodiment, it is a figure which illustrates the resin flow analysis result at the time of performing mold forming by making melted resin flow into a metallic mold. 第1の実施の形態の変形例1に係る半導体装置の製造工程において、溶解した樹脂を金型に流入させてモールド成形を行う際の樹脂流動解析結果を例示する図(その1)である。FIG. 10 is a diagram (part 1) illustrating a resin flow analysis result when performing molding by allowing molten resin to flow into a mold in the manufacturing process of the semiconductor device according to the first modification of the first embodiment; 第1の実施の形態の変形例1に係る半導体装置の製造工程において、溶解した樹脂を金型に流入させてモールド成形を行う際の樹脂流動解析結果を例示する図(その2)である。FIG. 11 is a diagram (part 2) illustrating a resin flow analysis result when performing molding by allowing molten resin to flow into a mold in the manufacturing process of the semiconductor device according to Modification Example 1 of the first embodiment; 第1の実施の形態の変形例1に係る半導体装置の製造工程において、溶解した樹脂を金型に流入させてモールド成形を行う際の樹脂流動解析結果を例示する図(その3)である。FIG. 11 is a diagram (part 3) illustrating a resin flow analysis result when molding is performed by flowing a melted resin into a mold in the manufacturing process of the semiconductor device according to the first modification of the first embodiment; 第1の実施の形態の変形例2に係る半導体装置の内部構造を例示する平面図(その1)である。FIG. 11 is a plan view (part 1) illustrating an internal structure of a semiconductor device according to a second modification of the first embodiment; 第1の実施の形態の変形例2に係る半導体装置の内部構造を例示する平面図(その2)である。FIG. 22 is a plan view (part 2) illustrating the internal structure of the semiconductor device according to the second modification of the first embodiment;

以下、図面を参照して発明を実施するための形態について説明する。なお、各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。   Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. In addition, in each drawing, the same code | symbol is attached | subjected to the same component and the overlapping description may be abbreviate | omitted.

〈第1の実施の形態〉
第1の実施の形態に係る半導体装置は、複数の半導体素子が配列されたものであれば、例えば、2つの半導体素子が配列された形態や、4つの半導体素子が縦横に配列された形態や、更に多くの半導体素子が縦横に配列された形態等のどのような形態でもよいが、
ここでは、4つの半導体素子(2つのIGBT及び2つのダイオード)が縦横に配列された半導体装置を例にして以下の説明を行う。
<First Embodiment>
If the semiconductor device according to the first embodiment has a plurality of semiconductor elements arranged, for example, a form in which two semiconductor elements are arranged, a form in which four semiconductor elements are arranged vertically and horizontally, In addition, any form such as a form in which more semiconductor elements are arranged vertically and horizontally may be used,
Here, the following description will be given by taking a semiconductor device in which four semiconductor elements (two IGBTs and two diodes) are arranged vertically and horizontally as an example.

まず、第1の実施の形態に係る半導体装置の回路構成について説明する。図1は、第1の実施の形態に係る半導体装置の回路構成を例示する図である。図1を参照するに、第1の実施の形態に係る半導体装置1は、IGBT10及び20並びにダイオード31及び32を有するインバータ回路である。   First, the circuit configuration of the semiconductor device according to the first embodiment will be described. FIG. 1 is a diagram illustrating a circuit configuration of the semiconductor device according to the first embodiment. Referring to FIG. 1, the semiconductor device 1 according to the first embodiment is an inverter circuit having IGBTs 10 and 20 and diodes 31 and 32.

半導体装置1において、IGBT10は、コレクタ電極11と、エミッタ電極12と、ゲート電極13とを有する。又、IGBT20は、コレクタ電極21と、エミッタ電極22と、ゲート電極23とを有する。   In the semiconductor device 1, the IGBT 10 includes a collector electrode 11, an emitter electrode 12, and a gate electrode 13. The IGBT 20 includes a collector electrode 21, an emitter electrode 22, and a gate electrode 23.

IGBT10のコレクタ電極11は、ダイオード31のカソード及び高位側電源端子41aと電気的に接続されている。IGBT10のエミッタ電極12は、ダイオード31のアノードと電気的に接続されている。つまり、ダイオード31は、IGBT10と逆並列に接続されている。IGBT10のゲート電極13は、制御電極端子46のうちの少なくとも1つと電気的に接続されている。   The collector electrode 11 of the IGBT 10 is electrically connected to the cathode of the diode 31 and the higher power supply terminal 41a. The emitter electrode 12 of the IGBT 10 is electrically connected to the anode of the diode 31. That is, the diode 31 is connected in antiparallel with the IGBT 10. The gate electrode 13 of the IGBT 10 is electrically connected to at least one of the control electrode terminals 46.

IGBT20のエミッタ電極22は、ダイオード32のアノード及び低位側電源端子42aと電気的に接続されている。IGBT20のコレクタ電極21は、ダイオード32のカソードと電気的に接続されている。つまり、ダイオード32は、IGBT20と逆並列に接続されている。IGBT20のゲート電極13は、制御電極端子47のうちの少なくとも1つと電気的に接続されている。   The emitter electrode 22 of the IGBT 20 is electrically connected to the anode of the diode 32 and the lower power supply terminal 42a. The collector electrode 21 of the IGBT 20 is electrically connected to the cathode of the diode 32. That is, the diode 32 is connected in antiparallel with the IGBT 20. The gate electrode 13 of the IGBT 20 is electrically connected to at least one of the control electrode terminals 47.

又、IGBT10のエミッタ電極12はIGBT20のコレクタ電極21と電気的に接続され、更に出力端子43aと電気的に接続されている。   The emitter electrode 12 of the IGBT 10 is electrically connected to the collector electrode 21 of the IGBT 20 and further electrically connected to the output terminal 43a.

次に、第1の実施の形態に係る半導体装置の構造について説明する。図2は、第1の実施の形態に係る半導体装置を例示する斜視図である。図3は、第1の実施の形態に係る半導体装置を例示する図2のA−A線に沿う断面図である。図4は、第1の実施の形態に係る半導体装置を例示する図2のB−B線に沿う断面図である。図5は、第1の実施の形態に係る半導体装置の内部構造を例示する平面図である。図6は、図5の凹部近傍を拡大して例示する図であり、図6(a)は平面図、図6(b)は図6(a)のC−C線に沿う断面図である。   Next, the structure of the semiconductor device according to the first embodiment will be described. FIG. 2 is a perspective view illustrating the semiconductor device according to the first embodiment. FIG. 3 is a cross-sectional view taken along line AA of FIG. 2 illustrating the semiconductor device according to the first embodiment. 4 is a cross-sectional view taken along line BB in FIG. 2 illustrating the semiconductor device according to the first embodiment. FIG. 5 is a plan view illustrating the internal structure of the semiconductor device according to the first embodiment. 6 is an enlarged view of the vicinity of the concave portion in FIG. 5, FIG. 6 (a) is a plan view, and FIG. 6 (b) is a cross-sectional view taken along line CC in FIG. 6 (a). .

なお、本願では、半導体装置1において、金属板44及び45が露出する面を上面、金属板41及び43が露出する面を下面とする。又、高位側電源端子41a、低位側電源端子42a、及び出力端子43aが突出する面を正面とする。又、吊りリード端子41b、吊りリード端子43b、制御電極端子46、及び制御電極端子47が突出する面を背面とする。又、その他の面を側面とする。   In the present application, in the semiconductor device 1, the surface from which the metal plates 44 and 45 are exposed is referred to as the upper surface, and the surface from which the metal plates 41 and 43 are exposed is referred to as the lower surface. Further, the surface from which the high-order power supply terminal 41a, the low-order power supply terminal 42a, and the output terminal 43a protrude is the front. Further, a surface from which the suspension lead terminal 41b, the suspension lead terminal 43b, the control electrode terminal 46, and the control electrode terminal 47 protrude is defined as a back surface. Also, the other surface is the side surface.

図2〜図6を参照するに、半導体装置1において、高位側電源端子41a及び吊りリード端子41bを含む金属板41、低位側電源端子42aを含む金属板42、並びに出力端子43a及び吊りリード端子43bを含む金属板43が、長手方向が略同一方向(Y方向)を向くように、所定の間隔を開けて並設されている。   2 to 6, in the semiconductor device 1, the metal plate 41 including the high-order power supply terminal 41 a and the suspension lead terminal 41 b, the metal plate 42 including the low-order power supply terminal 42 a, and the output terminal 43 a and the suspension lead terminal. The metal plates 43 including 43b are arranged side by side with a predetermined interval so that the longitudinal direction faces substantially the same direction (Y direction).

又、複数の金属製のリード端子が、長手方向を金属板41の長手方向と略同一方向(Y方向)を向くように所定の間隔を開けて並設された制御電極端子46が設けられている。又、複数の金属製のリード端子が、長手方向を金属板43の長手方向と略同一方向(Y方向)を向くように所定の間隔を開けて並設された制御電極端子47が設けられている。   A plurality of metal lead terminals are provided with control electrode terminals 46 arranged in parallel at predetermined intervals so that the longitudinal direction thereof is substantially the same as the longitudinal direction of the metal plate 41 (Y direction). Yes. A plurality of metal lead terminals are provided with control electrode terminals 47 arranged in parallel at predetermined intervals so that the longitudinal direction thereof is substantially the same as the longitudinal direction of the metal plate 43 (Y direction). Yes.

金属板41、42、及び43、並びに、制御電極端子46及び47の材料としては、各々、例えば、銅(Cu)、ニッケル(Ni)、アルミニウム(Al)等を用いることができる。金属板41、42、及び43、並びに、制御電極端子46及び47の各々の表面に銀(Ag)や金(Au)等のめっき処理を施してもよい。   As materials of the metal plates 41, 42, and 43 and the control electrode terminals 46 and 47, for example, copper (Cu), nickel (Ni), aluminum (Al), and the like can be used, respectively. The surfaces of the metal plates 41, 42, and 43 and the control electrode terminals 46 and 47 may be subjected to a plating process such as silver (Ag) or gold (Au).

金属板41の上面には、コレクタ電極11が錫系のはんだ等の導電性の接合材(図示せず)を介して金属板41と導通するように、IGBT10が実装されている。なお、コレクタ電極11はP型であるため、コレクタ電極11と接続される金属板41をP側と称する場合がある。又、金属板41の上面には、カソードが錫系のはんだ等の導電性の接合材(図示せず)を介して金属板41と導通するように、ダイオード31が実装されている。IGBT10及びダイオード31は、金属板41の長手方向(Y方向)に配列されている。   The IGBT 10 is mounted on the upper surface of the metal plate 41 so that the collector electrode 11 is electrically connected to the metal plate 41 via a conductive bonding material (not shown) such as tin solder. Since the collector electrode 11 is P-type, the metal plate 41 connected to the collector electrode 11 may be referred to as the P side. A diode 31 is mounted on the upper surface of the metal plate 41 so that the cathode is electrically connected to the metal plate 41 through a conductive bonding material (not shown) such as tin-based solder. The IGBT 10 and the diode 31 are arranged in the longitudinal direction (Y direction) of the metal plate 41.

金属板43の上面には、コレクタ電極21が錫系のはんだ等の導電性の接合材(図示せず)を介して金属板43と導通するように、IGBT20が実装されている。又、金属板43の上面には、カソードが錫系のはんだ等の導電性の接合材(図示せず)を介して金属板43と導通するように、ダイオード32が実装されている。IGBT20及びダイオード32は、金属板43の長手方向(Y方向)に配列されている。   The IGBT 20 is mounted on the upper surface of the metal plate 43 so that the collector electrode 21 is electrically connected to the metal plate 43 through a conductive bonding material (not shown) such as tin solder. A diode 32 is mounted on the upper surface of the metal plate 43 so that the cathode is electrically connected to the metal plate 43 via a conductive bonding material (not shown) such as tin solder. The IGBT 20 and the diode 32 are arranged in the longitudinal direction (Y direction) of the metal plate 43.

金属板41のIGBT10及びダイオード31を実装する部分の厚さ(高位側電源端子41a及び吊りリード端子41bを除く部分の厚さ)は、例えば、2〜3mm程度とすることができる。金属板43のIGBT20及びダイオード32を実装する部分の厚さ(出力端子43a及び吊りリード端子43bを除く部分の厚さ)は、例えば、2〜3mm程度とすることができる。金属板41のIGBT10及びダイオード31を実装する部分の厚さと、金属板43のIGBT20及びダイオード32を実装する部分の厚さとを、略同一の厚さとしてもよい。   The thickness of the portion of the metal plate 41 where the IGBT 10 and the diode 31 are mounted (the thickness of the portion excluding the high-order power supply terminal 41a and the suspension lead terminal 41b) can be, for example, about 2 to 3 mm. The thickness of the portion of the metal plate 43 on which the IGBT 20 and the diode 32 are mounted (the thickness of the portion excluding the output terminal 43a and the suspension lead terminal 43b) can be, for example, about 2 to 3 mm. The thickness of the portion of the metal plate 41 where the IGBT 10 and the diode 31 are mounted may be substantially the same as the thickness of the portion of the metal plate 43 where the IGBT 20 and the diode 32 are mounted.

金属板41の高位側電源端子41a及び吊りリード端子41bの厚さは、金属板41のIGBT10及びダイオード31を実装する部分の厚さよりも薄くてもよく、例えば、0.5mm程度とすることができる。金属板43の出力端子43a及び吊りリード端子43bの厚さは、金属板43のIGBT20及びダイオード32を実装する部分の厚さよりも薄くてもよく、例えば、0.5mm程度とすることができる。   The thickness of the higher power supply terminal 41a and the suspension lead terminal 41b of the metal plate 41 may be smaller than the thickness of the portion of the metal plate 41 where the IGBT 10 and the diode 31 are mounted, for example, about 0.5 mm. it can. The thickness of the output terminal 43a and the suspension lead terminal 43b of the metal plate 43 may be smaller than the thickness of the portion of the metal plate 43 where the IGBT 20 and the diode 32 are mounted, and may be about 0.5 mm, for example.

IGBT10及びダイオード31上には、導電性のスペーサ61及び錫系のはんだ等の導電性の接合材(図示せず)を介して、IGBT10のエミッタ電極12及びダイオード31のアノードと導通するように、金属板44が配置されている。金属板44は、錫系のはんだ等の導電性の接合材(図示せず)を介して、金属板43と電気的に接続されている。   The IGBT 10 and the diode 31 are electrically connected to the emitter electrode 12 of the IGBT 10 and the anode of the diode 31 through a conductive bonding member 61 (not shown) such as a conductive spacer 61 and tin-based solder. A metal plate 44 is arranged. The metal plate 44 is electrically connected to the metal plate 43 via a conductive bonding material (not shown) such as tin-based solder.

IGBT20及びダイオード32上には、導電性のスペーサ62及び錫系のはんだ等の導電性の接合材(図示せず)を介して、IGBT20のエミッタ電極22及びダイオード32のアノードと導通するように、金属板45が配置されている。金属板45は、錫系のはんだ等の導電性の接合材(図示せず)を介して、金属板42と電気的に接続されている。なお、エミッタ電極22はN型であるため、エミッタ電極22と接続される金属板42をN側と称する場合がある。   The IGBT 20 and the diode 32 are electrically connected to the emitter electrode 22 of the IGBT 20 and the anode of the diode 32 via a conductive spacer 62 and a conductive bonding material (not shown) such as a tin-based solder. A metal plate 45 is arranged. The metal plate 45 is electrically connected to the metal plate 42 via a conductive bonding material (not shown) such as tin-based solder. Since the emitter electrode 22 is N-type, the metal plate 42 connected to the emitter electrode 22 may be referred to as the N side.

金属板44の厚さは、例えば、2〜3mm程度とすることができる。金属板45の厚さは、例えば、2〜3mm程度とすることができる。金属板44と金属板45とを、略同一の厚さとしてもよい。金属板44及び45の材料としては、例えば、銅(Cu)、ニッケル(Ni)、アルミニウム(Al)等を用いることができる。金属板44及び45の表面に銀(Ag)や金(Au)等のめっき処理を施してもよい。   The thickness of the metal plate 44 can be about 2 to 3 mm, for example. The thickness of the metal plate 45 can be about 2 to 3 mm, for example. The metal plate 44 and the metal plate 45 may have substantially the same thickness. As a material of the metal plates 44 and 45, for example, copper (Cu), nickel (Ni), aluminum (Al), or the like can be used. The surfaces of the metal plates 44 and 45 may be plated with silver (Ag) or gold (Au).

制御電極端子46を構成する各金属製のリード端子は、ボンディングワイヤを介して、IGBT10のゲート電極13や温度センサ(図示せず)等と電気的に接続されている。制御電極端子47を構成する各金属製のリード端子は、ボンディングワイヤを介して、IGBT20のゲート電極23や温度センサ(図示せず)等と電気的に接続されている。制御電極端子46及び47を構成する各金属製のリード端子の厚さは、例えば、0.5mm程度とすることができる。ボンディングワイヤとしては、例えば、金線や銅線等の金属線を用いることができる。   Each metal lead terminal constituting the control electrode terminal 46 is electrically connected to the gate electrode 13 of the IGBT 10, a temperature sensor (not shown) or the like via a bonding wire. Each metal lead terminal constituting the control electrode terminal 47 is electrically connected to the gate electrode 23 of the IGBT 20, a temperature sensor (not shown) or the like via a bonding wire. The thickness of each metal lead terminal constituting the control electrode terminals 46 and 47 can be set to about 0.5 mm, for example. As the bonding wire, for example, a metal wire such as a gold wire or a copper wire can be used.

IGBT10及び20、ダイオード31及び32、金属板41〜45、制御電極端子46及び47、並びにボンディングワイヤは、封止樹脂50により封止されている。但し、金属板41及び43の下面の少なくとも一部は、封止樹脂50の下面から露出している。又、金属板44及び45の上面の少なくとも一部は、封止樹脂50の上面から露出している。   The IGBTs 10 and 20, the diodes 31 and 32, the metal plates 41 to 45, the control electrode terminals 46 and 47, and the bonding wires are sealed with a sealing resin 50. However, at least a part of the lower surfaces of the metal plates 41 and 43 are exposed from the lower surface of the sealing resin 50. Further, at least a part of the upper surfaces of the metal plates 44 and 45 are exposed from the upper surface of the sealing resin 50.

又、金属板41の高位側電源端子41a、金属板42の低位側電源端子42a、及び金属板43の出力端子43aの各々の少なくとも一部は、封止樹脂50の正面から突出している。又、金属板41の端部に形成された吊りリード端子41b、金属板43の端部に形成された吊りリード端子43b、制御電極端子46、及び制御電極端子47の各々の少なくとも一部は、封止樹脂50の背面から突出している。   Further, at least a part of each of the high-order power supply terminal 41 a of the metal plate 41, the low-order power supply terminal 42 a of the metal plate 42, and the output terminal 43 a of the metal plate 43 protrudes from the front surface of the sealing resin 50. Further, at least a part of each of the suspension lead terminal 41b formed at the end of the metal plate 41, the suspension lead terminal 43b formed at the end of the metal plate 43, the control electrode terminal 46, and the control electrode terminal 47, It protrudes from the back surface of the sealing resin 50.

IGBT10とIGBT20が配列されている第1の方向(略X方向)と、吊りリード端子41b及び43b並びに制御電極端子46及び47が突出する第2の方向(略Y方向)とは、直交している。但し、本願における直交は、厳密な意味での直交ではなく、おおよそ直交していることを意味する。例えば、製造上のばらつき等により第1の方向と第2の方向とが90度から10数度程度ずれた場合も直交に含めるものとする。   The first direction (substantially X direction) in which the IGBT 10 and the IGBT 20 are arranged is orthogonal to the second direction (substantially Y direction) from which the suspension lead terminals 41b and 43b and the control electrode terminals 46 and 47 protrude. Yes. However, the orthogonality in the present application is not an orthogonality in a strict sense, but means approximately orthogonal. For example, the case where the first direction and the second direction are deviated from 90 degrees to about 10 and several degrees due to manufacturing variation or the like is included orthogonally.

封止樹脂50の材料としては、例えば、フィラーを含有したエポキシ系樹脂等を用いることができる。封止樹脂50の厚さは、例えば、5mm程度とすることができる。   As a material of the sealing resin 50, for example, an epoxy resin containing a filler can be used. The thickness of the sealing resin 50 can be about 5 mm, for example.

金属板41〜45の封止樹脂50から露出する部分は、IGBT10及び20等が発する熱の外部への放出に寄与することができる。金属板41〜45は、例えば、リードフレームから作製できる。なお、吊りリード端子41b及び43bは、金属板41及び43をリードフレームから作製する際にはリードフレームの本体(図示せず)と接続されており、封止樹脂50で封止後にリードフレームの本体(図示せず)から切断された部分である。   The portions of the metal plates 41 to 45 exposed from the sealing resin 50 can contribute to the release of heat generated by the IGBTs 10 and 20 and the like. The metal plates 41 to 45 can be made from a lead frame, for example. The suspension lead terminals 41b and 43b are connected to the main body (not shown) of the lead frame when the metal plates 41 and 43 are produced from the lead frame. It is the part cut | disconnected from the main body (not shown).

封止樹脂50には、平面視において、背面から背面と対向するIGBT10の一辺側に窪んだ形状の凹部51、及び背面から背面と対向するIGBT20の一辺側に窪んだ形状の凹部52が形成されている。凹部51は本発明に係る第1の凹部、凹部52は本発明に係る第2の凹部の代表的な一例である。なお、本願において、平面視とは、図2等のZ方向(複数の半導体素子が配列された平面に垂直な方向)から視ることをいう。   In the sealing resin 50, a concave portion 51 having a shape recessed from one side to the other side of the IGBT 10 facing the rear surface and a concave portion 52 having a shape recessed from the rear surface to one side of the IGBT 20 facing the rear surface are formed. ing. The recess 51 is a typical example of the first recess according to the present invention, and the recess 52 is a typical example of the second recess according to the present invention. In the present application, the plan view means a view from the Z direction (a direction perpendicular to a plane on which a plurality of semiconductor elements are arranged) in FIG.

凹部51は、封止樹脂50の背面側に形成され封止樹脂50を貫通する貫通部53と、貫通部53のIGBT10側に形成され封止樹脂50の上面から下面側に向って所定の深さTだけ窪んだ段差部54とを有する。同様に、凹部52は、封止樹脂50の背面側に形成され封止樹脂50を貫通する貫通部55と、貫通部55のIGBT20側に形成され封止樹脂50の上面から下面側に向って所定の深さTだけ窪んだ段差部56とを有する。   The recess 51 is formed on the back side of the sealing resin 50 and penetrates the sealing resin 50, and is formed on the IGBT 10 side of the through part 53 and has a predetermined depth from the upper surface to the lower surface side of the sealing resin 50. And a stepped portion 54 depressed by a length T. Similarly, the recess 52 is formed on the back surface side of the sealing resin 50 and penetrates the sealing resin 50, and is formed on the IGBT 20 side of the through portion 55 and extends from the upper surface to the lower surface side of the sealing resin 50. And a stepped portion 56 that is recessed by a predetermined depth T.

凹部51及び52の幅(X方向)は、例えば、2〜3mm程度とすることができる。封止樹脂50の背面に対する凹部51及び52の窪み量(Y方向)は、例えば、5mm程度とすることができる。封止樹脂50の背面に対するに対する貫通部53及び55の窪み量(Y方向)は、例えば、2〜3mm程度とすることができる。段差部54及び56の所定の深さT(Z方向)は、例えば、2〜3mm程度とすることができる。   The widths (X direction) of the recesses 51 and 52 can be set to about 2 to 3 mm, for example. The amount of depression (Y direction) of the recesses 51 and 52 with respect to the back surface of the sealing resin 50 can be set to about 5 mm, for example. The amount of depression (Y direction) of the through portions 53 and 55 with respect to the back surface of the sealing resin 50 can be set to, for example, about 2 to 3 mm. The predetermined depth T (Z direction) of the step portions 54 and 56 can be set to about 2 to 3 mm, for example.

凹部51及び52の長手方向は、金属板41〜43の長手方向(Y方向)、並びに制御電極端子46及び47を構成する複数の金属製のリード端子の長手方向と略同一方向とされている。なお、第1の実施の形態では、凹部51及び52の平面形状は、長手方向をY方向とする矩形状であるが、これには限定されず、例えば、長手方向をY方向とする半楕円形状や、長手方向をY方向とする半多角形状(半八角形状等)としても構わない。   The longitudinal direction of the recesses 51 and 52 is substantially the same as the longitudinal direction (Y direction) of the metal plates 41 to 43 and the longitudinal direction of the plurality of metal lead terminals constituting the control electrode terminals 46 and 47. . In the first embodiment, the planar shape of the recesses 51 and 52 is a rectangular shape whose longitudinal direction is the Y direction, but is not limited to this, for example, a semi-ellipse whose longitudinal direction is the Y direction. The shape or a half-polygon shape (half-octagon shape or the like) whose longitudinal direction is the Y direction may be used.

貫通部53及び段差部54を有する凹部51、並びに貫通部55及び段差部56を有する凹部52を形成するためには、封止樹脂50を形成する際に用いる金型の凹部51及び52を形成したい位置に、凹部51及び52に対応する形状の凸部を形成しておけばよい。   In order to form the concave portion 51 having the through portion 53 and the step portion 54 and the concave portion 52 having the through portion 55 and the step portion 56, the concave portions 51 and 52 of the mold used when forming the sealing resin 50 are formed. What is necessary is just to form the convex part of the shape corresponding to the recessed parts 51 and 52 in the position to want.

なお、便宜上、図5等において、金属板41及び43の上側の封止樹脂50に関しては、各半導体素子の側面部を囲む部分のみを図示している。   For convenience, in FIG. 5 and the like, regarding the sealing resin 50 on the upper side of the metal plates 41 and 43, only the portion surrounding the side surface portion of each semiconductor element is illustrated.

図7は、第1の実施の形態に係る半導体装置において凹部を設ける位置を説明するための平面図である。凹部51は、平面視において、封止樹脂50の背面側の最外列に配置された一の半導体素子の一辺と対向する位置であって、かつ、樹脂注入口の一の半導体素子側において封止樹脂50の背面から突出する端子間に設けられている(図7のDの範囲内)。   FIG. 7 is a plan view for explaining the positions where the recesses are provided in the semiconductor device according to the first embodiment. The recess 51 is a position facing one side of one semiconductor element arranged in the outermost row on the back side of the sealing resin 50 in a plan view, and is sealed on one semiconductor element side of the resin injection port. It is provided between the terminals which protrude from the back surface of the stop resin 50 (within the range of D in FIG. 7).

同様に、凹部52は、平面視において、封止樹脂50の背面側の最外列に配置された他の半導体素子の一辺と対向する位置であって、かつ、樹脂注入口の他の半導体素子側において封止樹脂50の背面から突出する端子間に設けられている(図7のEの範囲内)。なお、本実施の形態において、封止樹脂50の背面側の最外列に配置された半導体素子は、IGBT10及び20である。   Similarly, the recess 52 is a position facing one side of another semiconductor element arranged in the outermost row on the back side of the sealing resin 50 in a plan view, and the other semiconductor element of the resin injection port It is provided between terminals protruding from the back surface of the sealing resin 50 on the side (within the range E in FIG. 7). In the present embodiment, the semiconductor elements arranged in the outermost row on the back side of the sealing resin 50 are the IGBTs 10 and 20.

凹部51及び52は、平面視において、封止樹脂50となる樹脂を充填する際のゲート(樹脂注入口)の位置の両側に設けられている。なお、本実施の形態では、凹部51及び52をゲートの位置に対して対称な位置に設けているが、非対称な位置に設けてもよい。又、ゲートの位置の両側に各々2つ以上の凹部を設けてもよい。なお、ゲートGは、例えば、封止樹脂50の背面側のIGBT10とIGBT20との間の中央部分に配置することができる。   The recesses 51 and 52 are provided on both sides of the position of the gate (resin inlet) when filling the resin to be the sealing resin 50 in plan view. In this embodiment, the recesses 51 and 52 are provided at positions symmetrical with respect to the gate position, but may be provided at asymmetric positions. Two or more recesses may be provided on both sides of the gate position. In addition, the gate G can be arrange | positioned in the center part between IGBT10 and IGBT20 of the back side of the sealing resin 50, for example.

ここで、封止樹脂50に、図6に示す凹部51及び52を設けることにより得られる特有の効果について説明する。   Here, a specific effect obtained by providing the sealing resin 50 with the recesses 51 and 52 shown in FIG. 6 will be described.

図8は、凹部が貫通部のみから形成され段差部を有しない場合の樹脂の流れについて説明するための斜視図(比較例)である。図8では、図5等の凹部51の位置には貫通部53のみが形成され、段差部54は形成されていない。同様に、図5等の凹部52の位置には貫通部55のみが形成され、段差部56は形成されていない。   FIG. 8 is a perspective view (comparative example) for explaining the flow of the resin when the concave portion is formed only from the through portion and does not have the step portion. In FIG. 8, only the penetrating portion 53 is formed at the position of the recess 51 in FIG. 5 and the like, and the stepped portion 54 is not formed. Similarly, only the through portion 55 is formed at the position of the recess 52 in FIG. 5 and the like, and the step portion 56 is not formed.

図8のように、IGBT10及び20並びにダイオード31及び32が縦横に配列された半導体素子において、リード端子が突出する背面側のIGBT10とIGBT20との間の中央部分に配置されたゲートGから樹脂を注入する場合を考える。この場合、図8(a)に示すようにゲートGから注入された樹脂は、図8(b)に示すようにIGBT10とIGBT20との間の中央部分から流れ込む流れと、図8(c)に示すようにIGBT10及び20の外側から流れ込む流れが存在する。   As shown in FIG. 8, in the semiconductor element in which the IGBTs 10 and 20 and the diodes 31 and 32 are arranged vertically and horizontally, the resin is supplied from the gate G arranged in the central portion between the IGBT 10 and the IGBT 20 on the back side where the lead terminals protrude. Consider the case of injection. In this case, as shown in FIG. 8 (a), the resin injected from the gate G flows from the central portion between the IGBT 10 and the IGBT 20 as shown in FIG. 8 (b). As shown, there is a flow flowing from the outside of the IGBTs 10 and 20.

そして、両者の流速が同程度であるため、図8(d)に示すように両者はIGBT10とダイオード31の間の部分及びIGBT20とダイオード32の間の部分で合流する。つまり、IGBT10とダイオード31の間の部分及びIGBT20とダイオード32の間の部分が合流部I(ウェルドライン)となる。   Since the flow speeds of both are approximately the same, they join at the portion between the IGBT 10 and the diode 31 and at the portion between the IGBT 20 and the diode 32 as shown in FIG. That is, the portion between the IGBT 10 and the diode 31 and the portion between the IGBT 20 and the diode 32 form a junction I (weld line).

その後、図8(e)に示すように樹脂が更に流れ、図8(f)に示すようにダイオード31のIGBT10とは反対側、及びダイオード32のIGBT20とは反対側で合流し、合流部J(ウェルドライン)となる。   Thereafter, the resin further flows as shown in FIG. 8 (e), and merges on the side opposite to the IGBT 10 of the diode 31 and the side opposite to the IGBT 20 of the diode 32 as shown in FIG. 8 (f). (Weld line).

合流部IやJ(ウェルドライン)では、ボイドや、樹脂と金属板との界面の剥離が発生し易くなる。特に、IGBTやダイオード等の半導体素子の上下に金属板を配置した両面放熱構造の場合には、半導体素子で挟まれた空間である合流部Iではエアーが抜けないため、このような問題が発生し易くなる。   In the junction I or J (weld line), voids or peeling of the interface between the resin and the metal plate is likely to occur. In particular, in the case of a double-sided heat dissipation structure in which metal plates are arranged above and below a semiconductor element such as an IGBT or a diode, such a problem occurs because air cannot escape at the junction I, which is a space sandwiched between the semiconductor elements. It becomes easy to do.

リード端子が突出する背面側と直交する側(側面側)であるIGBT10とダイオード31との間や、IGBT20とダイオード32との間にゲートGを配置することも考えられるが、この場合には、上記問題に加えて、樹脂のランナー部にリードフレームがないため、金型の型開き時に樹脂のランナーが折れる懸念が生じる。   Although it is conceivable to arrange the gate G between the IGBT 10 and the diode 31 on the side (side surface side) orthogonal to the back side from which the lead terminal protrudes, or between the IGBT 20 and the diode 32, in this case, In addition to the above problem, since there is no lead frame in the resin runner portion, there is a concern that the resin runner breaks when the mold is opened.

又、ゲートGを図8とは反対の正面側に設けることも考えられるが、この場合には、ボンディングワイヤの部分が合流部(ウェルドライン)となり、ボンディングワイヤの倒れが発生するおそれがあり、好ましくない。   In addition, although it is conceivable to provide the gate G on the front side opposite to that in FIG. 8, in this case, the bonding wire portion becomes a joining portion (weld line), and the bonding wire may fall down. It is not preferable.

一方、本実施の形態のように、ゲートGの両側に、図6に示すような段差部を有する凹部を、平面視において、封止樹脂50の背面から突出する端子間であって、かつ、封止樹脂50の背面側の最外列に配置された半導体素子の一辺と対向する位置に設けることにより、樹脂の合流部(ウェルドライン)を半導体素子間ではなく、半導体素子の外側に持って行くことができる。   On the other hand, as in the present embodiment, concave portions having stepped portions as shown in FIG. 6 are formed on both sides of the gate G between the terminals protruding from the back surface of the sealing resin 50 in plan view, and By providing the sealing resin 50 at a position facing one side of the semiconductor elements arranged in the outermost row on the back side of the sealing resin 50, the resin junction (weld line) is held outside the semiconductor elements, not between the semiconductor elements. can go.

図9は、第1の実施の形態に係る半導体装置の製造工程において、溶解した樹脂を金型に流入させてモールド成形を行う際の樹脂流動解析結果を例示する図である。この場合、図9(a)に示すようにゲートGから注入された樹脂は、図9(b)に示すようにIGBT10とIGBT20との間の中央部分から流れ込む流れと、図9(c)に示すようにIGBT10及び20の外側から流れ込む流れが存在する。しかし、凹部の段差部で樹脂の流動経路が狭くなるため、外側から流れ込む樹脂の流速を中央部分から流れ込む樹脂の流速よりも遅くできる。   FIG. 9 is a diagram exemplifying a resin flow analysis result when the molten resin is caused to flow into the mold and molding is performed in the manufacturing process of the semiconductor device according to the first embodiment. In this case, as shown in FIG. 9A, the resin injected from the gate G flows from the central portion between the IGBT 10 and the IGBT 20 as shown in FIG. As shown, there is a flow flowing from the outside of the IGBTs 10 and 20. However, since the resin flow path becomes narrow at the step portion of the recess, the flow rate of the resin flowing from the outside can be made slower than the flow rate of the resin flowing from the central portion.

その結果、図9(d)に示すように両者はIGBT10とダイオード31の間の部分の外側及びIGBT20とダイオード32の間の部分の外側で合流する。つまり、IGBT10とダイオード31の間の部分の外側及びIGBT20とダイオード32の間の部分の外側が合流部K(ウェルドライン)となる。   As a result, as shown in FIG. 9D, both merge at the outside of the portion between the IGBT 10 and the diode 31 and the outside of the portion between the IGBT 20 and the diode 32. That is, the outer side of the portion between the IGBT 10 and the diode 31 and the outer side of the portion between the IGBT 20 and the diode 32 become the junction K (weld line).

その後、図9(e)に示すように樹脂が更に流れ、図9(f)に示すようにダイオード31のIGBT10とは反対側の部分の外側、及びダイオード32のIGBT20とは反対側の部分の外側で合流し、合流部L(ウェルドライン)となる。   Thereafter, the resin further flows as shown in FIG. 9 (e), and as shown in FIG. 9 (f), the outside of the part of the diode 31 opposite to the IGBT 10 and the part of the diode 32 opposite to the IGBT 20 are shown. It merges on the outside and becomes a merged portion L (weld line).

このとき、合流部KやLにはエアーが抜けることを妨げる壁等が存在しないため、エアーを外側に押し出すことができ、エアーの巻き込みを抑制することができる。これにより、ボイドの発生や、樹脂と金属板との界面の剥離の発生を抑制することができ、耐久性が高く信頼性の高い半導体装置1を実現できる。   At this time, since there is no wall or the like that prevents air from escaping in the merging portions K and L, the air can be pushed out and the entrainment of air can be suppressed. Thereby, generation | occurrence | production of a void and generation | occurrence | production of the peeling of the interface of resin and a metal plate can be suppressed, and the semiconductor device 1 with high durability and high reliability is realizable.

このように、第1の実施の形態では、ゲートの両側に、段差部を有する凹部を、平面視において、封止樹脂の背面から突出する端子間であって、かつ、封止樹脂の背面側の最外列に配置された半導体素子の一辺と対向する位置に設ける。これにより、半導体素子の外側から流れ込む樹脂の流速を中央部分から流れ込む樹脂の流速よりも遅くできるため、樹脂の合流部(ウェルドライン)を半導体素子間ではなく、半導体素子の外側に持って行くことが可能となる。その結果、ボイドの発生や、樹脂と金属板との界面の剥離の発生を抑制することが可能となり、耐久性が高く信頼性の高い半導体装置を実現できる。   As described above, in the first embodiment, the recesses having the stepped portions on both sides of the gate are between the terminals protruding from the back surface of the sealing resin in a plan view and on the back surface side of the sealing resin. Are provided at positions facing one side of the semiconductor elements arranged in the outermost row. As a result, the flow velocity of the resin flowing from the outside of the semiconductor element can be made slower than the flow velocity of the resin flowing from the central portion, so that the resin junction (weld line) is taken outside the semiconductor element, not between the semiconductor elements. Is possible. As a result, generation of voids and occurrence of peeling at the interface between the resin and the metal plate can be suppressed, and a highly durable and highly reliable semiconductor device can be realized.

又、封止樹脂の背面から突出する端子間に、封止樹脂の背面から半導体素子側に窪んだ形状の凹部を設けることにより、半導体装置の大型化をともなうことなく隣接する端子間の沿面距離を確保することが可能となり、絶縁性を高めることができる。つまり、本実施の形態において、段差部を有する凹部は、樹脂の流速を制御する(遅くする)機能と、沿面距離を確保する機能とを兼ね備えている。   In addition, by providing a recess recessed from the back surface of the sealing resin to the semiconductor element side between the terminals protruding from the back surface of the sealing resin, the creepage distance between adjacent terminals without increasing the size of the semiconductor device Can be ensured, and insulation can be improved. In other words, in the present embodiment, the concave portion having the step portion has both a function of controlling (slowing down) the flow rate of the resin and a function of ensuring the creeping distance.

又、ボンディングワイヤの方向と略同一方向から樹脂が注入することにより、ボンディングワイヤの部分が合流部(ウェルドライン)とならないため、ボンディングワイヤの倒れが発生するおそれを低減できる。   Further, since the resin is injected from substantially the same direction as the direction of the bonding wire, the bonding wire portion does not become a joining portion (weld line), so that the possibility of the bonding wire falling down can be reduced.

なお、平面視において、封止樹脂50の高位側電源端子41aと低位側電源端子42aとの間の部分、及び低位側電源端子42aと出力端子43aとの間の部分にも凹部が形成されているが、これは隣接する端子間の沿面距離を確保することで絶縁性を高めるために設けられたものであり、樹脂の流動には影響しない。   In plan view, recesses are also formed in the portion of the sealing resin 50 between the high-order power supply terminal 41a and the low-order power supply terminal 42a and in the portion between the low-order power supply terminal 42a and the output terminal 43a. However, this is provided in order to increase the insulation by securing the creepage distance between adjacent terminals, and does not affect the flow of the resin.

〈第1の実施の形態の変形例1〉
第1の実施の形態の変形例1では、半導体素子の大きさ、及び、隣接する半導体素子の間隔により樹脂の流動が変化するか否かを検討する。なお、第1の実施の形態の変形例1において、既に説明した実施の形態と同一構成部についての説明は省略する。
<Variation 1 of the first embodiment>
In the first modification of the first embodiment, it is examined whether or not the resin flow changes depending on the size of the semiconductor element and the interval between adjacent semiconductor elements. In the first modification of the first embodiment, the description of the same components as those of the already described embodiment is omitted.

図10は、第1の実施の形態の変形例1に係る半導体装置の製造工程において、溶解した樹脂を金型に流入させてモールド成形を行う際の樹脂流動解析結果を例示する図(その1)であり、半導体素子の大きさが大、隣接する半導体素子の間隔が小である場合の解析結果である。   FIG. 10 is a diagram illustrating an example of a resin flow analysis result when molding is performed by injecting molten resin into a mold in the manufacturing process of the semiconductor device according to the first modification of the first embodiment (No. 1). This is an analysis result when the size of the semiconductor element is large and the interval between adjacent semiconductor elements is small.

図10(a)〜(c)に示す樹脂流動解析結果のように、第1の実施の形態の場合と同様に、半導体素子の外側から流れ込む樹脂の流速を中央部分から流れ込む樹脂の流速よりも遅くできるため、樹脂の合流部(ウェルドライン)を半導体素子間ではなく、半導体素子の外側に持って行くことが可能となる。その結果、第1の実施の形態と同様の効果を奏する。   As in the case of the first embodiment, as in the resin flow analysis results shown in FIGS. 10A to 10C, the flow velocity of the resin flowing from the outside of the semiconductor element is higher than the flow velocity of the resin flowing from the central portion. Since it can be delayed, it is possible to bring the resin junction (weld line) to the outside of the semiconductor element, not between the semiconductor elements. As a result, the same effects as those of the first embodiment are obtained.

図11は、第1の実施の形態の変形例1に係る半導体装置の製造工程において、溶解した樹脂を金型に流入させてモールド成形を行う際の樹脂流動解析結果を例示する図(その2)であり、半導体素子の大きさが中、隣接する半導体素子の間隔が中である場合の解析結果である。   FIG. 11 is a diagram illustrating a resin flow analysis result when molding is performed by injecting molten resin into a mold in the manufacturing process of the semiconductor device according to the first modification of the first embodiment (part 2). This is an analysis result when the size of the semiconductor element is medium and the interval between adjacent semiconductor elements is medium.

図11(a)〜(d)に示す樹脂流動解析結果のように、第1の実施の形態の場合と同様に、半導体素子の外側から流れ込む樹脂の流速を中央部分から流れ込む樹脂の流速よりも遅くできるため、樹脂の合流部(ウェルドライン)を半導体素子間ではなく、半導体素子の外側に持って行くことが可能となる。その結果、第1の実施の形態と同様の効果を奏する。   As in the resin flow analysis results shown in FIGS. 11A to 11D, as in the case of the first embodiment, the flow velocity of the resin flowing from the outside of the semiconductor element is higher than the flow velocity of the resin flowing from the central portion. Since it can be delayed, it is possible to bring the resin junction (weld line) to the outside of the semiconductor element, not between the semiconductor elements. As a result, the same effects as those of the first embodiment are obtained.

図12は、第1の実施の形態の変形例1に係る半導体装置の製造工程において、溶解した樹脂を金型に流入させてモールド成形を行う際の樹脂流動解析結果を例示する図(その3)であり、半導体素子の大きさが小、隣接する半導体素子の間隔が大である場合の解析結果である。   FIG. 12 is a diagram illustrating a resin flow analysis result when a molten resin is poured into a mold and molding is performed in the semiconductor device manufacturing process according to the first modification of the first embodiment (part 3). This is an analysis result when the size of the semiconductor element is small and the interval between adjacent semiconductor elements is large.

図12(a)〜(c)に示す樹脂流動解析結果のように、第1の実施の形態の場合と同様に、半導体素子の外側から流れ込む樹脂の流速を中央部分から流れ込む樹脂の流速よりも遅くできるため、樹脂の合流部(ウェルドライン)を半導体素子間ではなく、半導体素子の外側に持って行くことが可能となる。その結果、第1の実施の形態と同様の効果を奏する。   As in the case of the resin flow analysis results shown in FIGS. 12A to 12C, as in the case of the first embodiment, the flow rate of the resin flowing from the outside of the semiconductor element is higher than the flow rate of the resin flowing from the central portion. Since it can be delayed, it is possible to bring the resin junction (weld line) to the outside of the semiconductor element, not between the semiconductor elements. As a result, the same effects as those of the first embodiment are obtained.

このように、第1の実施の形態の変形例1によれば、半導体素子の大きさや隣接する半導体素子の間隔の広狭にかかわらず、ゲートの両側に、段差部を有する凹部を、平面視において、封止樹脂の背面から突出する端子間であって、かつ、封止樹脂の背面側の最外列に配置された半導体素子の一辺と対向する位置に設けることにより、第1の実施の形態と同様の効果を奏することが確認された。   As described above, according to the first modification of the first embodiment, the recesses having the stepped portions on both sides of the gate are seen in a plan view regardless of the size of the semiconductor element and the interval between adjacent semiconductor elements. The first embodiment is provided between the terminals protruding from the back surface of the sealing resin and at a position facing one side of the semiconductor elements arranged in the outermost row on the back surface side of the sealing resin. It was confirmed that the same effect was achieved.

〈第1の実施の形態の変形例2〉
第1の実施の形態の変形例2では、凹部51及び52を第1の実施の形態とは異なる位置に設ける例を示す。なお、第1の実施の形態の変形例2において、既に説明した実施の形態と同一構成部についての説明は省略する。
<Modification 2 of the first embodiment>
In the second modification of the first embodiment, an example in which the recesses 51 and 52 are provided at positions different from those in the first embodiment is shown. Note that in the second modification of the first embodiment, the description of the same components as those of the already described embodiment will be omitted.

図13は、第1の実施の形態の変形例2に係る半導体装置の内部構造を例示する平面図(その1)である。図14は、第1の実施の形態の変形例2に係る半導体装置の内部構造を例示する平面図(その2)である。   FIG. 13 is a plan view (part 1) illustrating the internal structure of the semiconductor device according to the second modification of the first embodiment. FIG. 14 is a plan view (part 2) illustrating the internal structure of the semiconductor device according to the second modification of the first embodiment.

前述のように、凹部51及び52は、平面視において、封止樹脂50の背面から突出する端子間であって、かつ、封止樹脂50の背面側の最外列に配置された半導体素子の一辺と対向する位置(図7のD又はEの範囲内)に設けることができる。第1の実施の形態では、凹部51を吊りリード端子41bと制御電極端子46のうちの1つとの間に設け、凹部52を吊りリード端子43bと制御電極端子47のうちの1つとの間に設けた。   As described above, the recesses 51 and 52 are between the terminals protruding from the back surface of the sealing resin 50 and in the outermost row on the back surface side of the sealing resin 50 in plan view. It can be provided at a position facing one side (within the range of D or E in FIG. 7). In the first embodiment, the recess 51 is provided between the suspension lead terminal 41 b and one of the control electrode terminals 46, and the recess 52 is provided between the suspension lead terminal 43 b and one of the control electrode terminals 47. Provided.

しかし、図7のD又はEの範囲内であれば、図13や図14に示すように、凹部51を隣接する制御電極端子46の間に設け、凹部52を隣接する制御電極端子47の間に設けてもよい。この場合にも、第1の実施の形態や変形例1と同様の効果を奏する。   However, if it is within the range of D or E in FIG. 7, as shown in FIGS. 13 and 14, the recess 51 is provided between the adjacent control electrode terminals 46, and the recess 52 is provided between the adjacent control electrode terminals 47. May be provided. Also in this case, the same effects as those of the first embodiment and the first modification are obtained.

以上、好ましい実施の形態及びその変形例について詳説したが、上述した実施の形態及びその変形例に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態及びその変形例に種々の変形及び置換を加えることができる。   The preferred embodiment and its modification have been described in detail above, but the present invention is not limited to the above-described embodiment and its modification, and the above-described implementation is performed without departing from the scope described in the claims. Various modifications and substitutions can be added to the embodiment and its modifications.

例えば、上記実施の形態では、複数の半導体素子(IGBT及びダイオード)が縦横に配列された半導体装置を例示したが、本発明は、IGBT及びダイオードが一体化された半導体素子が2つ配列された半導体装置等にも適用することができる。   For example, in the above embodiment, a semiconductor device in which a plurality of semiconductor elements (IGBTs and diodes) are arranged vertically and horizontally is illustrated. However, in the present invention, two semiconductor elements in which IGBTs and diodes are integrated are arranged. The present invention can also be applied to a semiconductor device or the like.

1 半導体装置
10、20 IGBT
11、21 コレクタ電極
12、22 エミッタ電極
13、23 ゲート電極
31、32 ダイオード
41a 高位側電源端子
41b、43b 吊りリード端子
41、42、43、44、45 金属板
42a 低位側電源端子
43a 出力端子
46、47 制御電極端子
50 封止樹脂
51、52 凹部
53、55 貫通部
54、56 段差部
61、62 スペーサ
1 Semiconductor device 10, 20 IGBT
11, 21 Collector electrode 12, 22 Emitter electrode 13, 23 Gate electrode 31, 32 Diode 41a Higher power supply terminal 41b, 43b Hanging lead terminal 41, 42, 43, 44, 45 Metal plate 42a Lower power supply terminal 43a Output terminal 46 47 Control electrode terminal 50 Sealing resin 51, 52 Recess 53, 55 Through part 54, 56 Step part 61, 62 Spacer

Claims (5)

平面上の第1の方向に配列された複数の半導体素子と、
前記複数の半導体素子を封止する封止樹脂と、
前記複数の半導体素子と電気的に接続され、前記平面に垂直な方向から視て、前記封止樹脂の所定の面から前記第1の方向と直交する方向に突出する部分を備えた複数の端子と、
前記平面に垂直な方向から視て、前記所定の面から前記半導体素子側に窪んだ形状であって、前記封止樹脂となる樹脂を充填する際の樹脂注入口の位置の両側に設けられた第1の凹部及び第2の凹部と、を有し、
前記第1の凹部は、前記平面に垂直な方向から視て、前記複数の半導体素子のうちの一の半導体素子と対向する位置であって、かつ、前記樹脂注入口の前記一の半導体素子側において前記所定の面から突出する端子間に設けられ、
前記第2の凹部は、前記平面に垂直な方向から視て、前記複数の半導体素子のうちの他の半導体素子と対向する位置であって、かつ、前記樹脂注入口の前記他の半導体素子側において前記所定の面から突出する端子間に設けられ、
前記第1の凹部及び前記第2の凹部は、それぞれ、前記平面に垂直な方向から視て、前記所定の面側に形成され前記封止樹脂を前記平面に垂直な方向に貫通する貫通部と、前記貫通部の前記半導体素子側に形成され前記封止樹脂の上面から前記平面に垂直な方向に所定の深さだけ窪んだ段差部と、を備えている半導体装置の製造方法であって、
前記封止樹脂は、前記樹脂注入口から樹脂を注入して形成される半導体装置の製造方法
A plurality of semiconductor elements arranged in a first direction on a plane;
A sealing resin for sealing the plurality of semiconductor elements;
A plurality of terminals electrically connected to the plurality of semiconductor elements and provided with portions protruding in a direction orthogonal to the first direction from a predetermined surface of the sealing resin as viewed from a direction perpendicular to the plane When,
Viewed from a direction perpendicular to the plane, the shape is recessed from the predetermined surface toward the semiconductor element, and is provided on both sides of the position of the resin injection port when filling the resin to be the sealing resin. A first recess and a second recess,
The first recess is a position facing one semiconductor element of the plurality of semiconductor elements when viewed from a direction perpendicular to the plane, and the one semiconductor element side of the resin injection port In between the terminals protruding from the predetermined surface,
The second recess is a position facing the other semiconductor element of the plurality of semiconductor elements when viewed from a direction perpendicular to the plane, and the other semiconductor element side of the resin injection port In between the terminals protruding from the predetermined surface,
Each of the first recess and the second recess is a through portion that is formed on the predetermined surface side and penetrates the sealing resin in a direction perpendicular to the plane as viewed from a direction perpendicular to the plane. A step portion formed on the semiconductor element side of the penetrating portion and recessed from the upper surface of the sealing resin by a predetermined depth in a direction perpendicular to the plane, and a manufacturing method of a semiconductor device,
The method for manufacturing a semiconductor device , wherein the sealing resin is formed by injecting resin from the resin injection port .
前記複数の半導体素子は、金属板上に実装されており、
前記金属板の端部は、前記所定の面から突出して前記複数の端子の一部をなす請求項1記載の半導体装置の製造方法
The plurality of semiconductor elements are mounted on a metal plate,
The method of manufacturing a semiconductor device according to claim 1, wherein an end portion of the metal plate protrudes from the predetermined surface and forms part of the plurality of terminals.
前記複数の半導体素子の前記金属板と反対側の面上には、他の金属板が配置されている請求項2記載の半導体装置の製造方法The method of manufacturing a semiconductor device according to claim 2, wherein another metal plate is disposed on a surface of the plurality of semiconductor elements opposite to the metal plate. 前記第1の凹部及び前記第2の凹部の長手方向は、前記第1の凹部及び前記第2の凹部に隣接する端子の長手方向と同一方向である請求項1乃至3の何れか一項記載の半導体装置の製造方法4. The longitudinal direction of the first recess and the second recess is the same as the longitudinal direction of a terminal adjacent to the first recess and the second recess. 5. Semiconductor device manufacturing method . 前記封止樹脂内において、前記複数の端子の少なくとも一部は、金属線を介して、前記半導体素子に設けられた電極と電気的に接続されている請求項1乃至4の何れか一項記載の半導体装置の製造方法5. The device according to claim 1, wherein in the sealing resin, at least a part of the plurality of terminals is electrically connected to an electrode provided on the semiconductor element through a metal wire. Semiconductor device manufacturing method .
JP2013024868A 2013-02-12 2013-02-12 Manufacturing method of semiconductor device Expired - Fee Related JP6001473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013024868A JP6001473B2 (en) 2013-02-12 2013-02-12 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013024868A JP6001473B2 (en) 2013-02-12 2013-02-12 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2014154780A JP2014154780A (en) 2014-08-25
JP6001473B2 true JP6001473B2 (en) 2016-10-05

Family

ID=51576325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013024868A Expired - Fee Related JP6001473B2 (en) 2013-02-12 2013-02-12 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP6001473B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950526B2 (en) 2018-09-18 2021-03-16 Denso Corporation Semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6221542B2 (en) 2013-09-16 2017-11-01 株式会社デンソー Semiconductor device
JP6154342B2 (en) 2013-12-06 2017-06-28 トヨタ自動車株式会社 Semiconductor device
JP2015142072A (en) * 2014-01-30 2015-08-03 株式会社東芝 semiconductor device
JP6294110B2 (en) * 2014-03-10 2018-03-14 トヨタ自動車株式会社 Semiconductor device
JP7065722B2 (en) * 2018-07-31 2022-05-12 三菱電機株式会社 Manufacturing method of semiconductor device, power conversion device and semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251587A (en) * 1992-03-04 1993-09-28 Nec Corp Resin sealed semiconductor device
JP5793995B2 (en) * 2011-06-28 2015-10-14 トヨタ自動車株式会社 Lead frame and power module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950526B2 (en) 2018-09-18 2021-03-16 Denso Corporation Semiconductor device

Also Published As

Publication number Publication date
JP2014154780A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
JP6154342B2 (en) Semiconductor device
JP6001473B2 (en) Manufacturing method of semiconductor device
JP6294110B2 (en) Semiconductor device
JP5845336B2 (en) Semiconductor device and manufacturing method thereof
JP6001472B2 (en) Manufacturing method of semiconductor device
US20140159216A1 (en) Semiconductor module, semiconductor device having semiconductor module, and method of manufacturing semiconductor module
CN100565850C (en) Semiconductor device
JP2015002229A (en) Semiconductor device and electronic device
KR20170063926A (en) Power semiconductor device and method for manufacturing same
CN110383464A (en) Semiconductor device
JP2014157927A (en) Semiconductor device and manufacturing method of the same
JP5623367B2 (en) Semiconductor device and semiconductor device module
JP2014192518A (en) Semiconductor device and manufacturing method of the same
JP2012043956A (en) Semiconductor device and semiconductor device for electric power
KR101766082B1 (en) Power module
JP2016039321A (en) Lead frame, resin molding, surface-mounted electronic component, surface-mounted light-emitting device, and lead frame manufacturing method
JP2010003858A (en) Semiconductor device
JP2020047725A (en) Semiconductor device
JP2019079967A (en) Semiconductor device and manufacturing method thereof
JP2012114455A (en) Semiconductor device for electric power
JP2017069351A (en) Semiconductor device
JP2013187268A (en) Semiconductor module
JP2021044290A (en) Semiconductor device and manufacturing method thereof
JP2015159249A (en) mold package
JP2020150022A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160901

R151 Written notification of patent or utility model registration

Ref document number: 6001473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees