JP6001273B2 - Protective film for semiconductor wafer and method for manufacturing semiconductor chip - Google Patents

Protective film for semiconductor wafer and method for manufacturing semiconductor chip Download PDF

Info

Publication number
JP6001273B2
JP6001273B2 JP2012028911A JP2012028911A JP6001273B2 JP 6001273 B2 JP6001273 B2 JP 6001273B2 JP 2012028911 A JP2012028911 A JP 2012028911A JP 2012028911 A JP2012028911 A JP 2012028911A JP 6001273 B2 JP6001273 B2 JP 6001273B2
Authority
JP
Japan
Prior art keywords
protective film
resin
group
mass
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012028911A
Other languages
Japanese (ja)
Other versions
JP2013165245A5 (en
JP2013165245A (en
Inventor
市六 信広
信広 市六
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012028911A priority Critical patent/JP6001273B2/en
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to SG11201404022UA priority patent/SG11201404022UA/en
Priority to PCT/JP2013/000347 priority patent/WO2013121701A1/en
Priority to CN201380009159.3A priority patent/CN104137229B/en
Priority to KR1020147022574A priority patent/KR20140133519A/en
Priority to TW102103758A priority patent/TWI573833B/en
Publication of JP2013165245A publication Critical patent/JP2013165245A/en
Publication of JP2013165245A5 publication Critical patent/JP2013165245A5/ja
Application granted granted Critical
Publication of JP6001273B2 publication Critical patent/JP6001273B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C09J171/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2461/00Presence of condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2479/00Presence of polyamine or polyimide
    • C09J2479/08Presence of polyamine or polyimide polyimide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding

Description

本発明は、半導体ウエハ用保護フィルム及び半導体チップの製造方法に関する。   The present invention relates to a protective film for a semiconductor wafer and a method for manufacturing a semiconductor chip.

半導体チップの実装面積を小さくするためや、低背化をするために、フリップチップ接続法が用いられている。該接続法では、表面に回路及び接続用バンプが形成されたウエハをダイシングして半導体チップを得、該チップの表面を基板に向けて接続した後、半導体チップを保護するために樹脂封止等を行なう。   In order to reduce the mounting area of the semiconductor chip and reduce the height, a flip chip connection method is used. In this connection method, a semiconductor chip is obtained by dicing a wafer having a circuit and connection bumps formed on the surface, and after the surface of the chip is connected to a substrate, resin sealing or the like is used to protect the semiconductor chip. To do.

上記ダイシング工程において回転刃の振動などによりチップが損傷する(以下「チッピング」という)ことを防止すると共に樹脂封止に代わる封止膜として作用するチップ用保護膜形成用シートが知られている(特許文献1、特許文献2)。   A chip protective film forming sheet that prevents the chip from being damaged by the vibration of the rotary blade in the dicing process (hereinafter referred to as “chipping”) and acts as a sealing film instead of resin sealing is known ( Patent Document 1 and Patent Document 2).

またICカードの捻り防止の為に、線膨張係数の低い補強材を用いたもの(特許文献3)、ICカード内の半導体チップの割れ防止の為に補強材を用いたものが知られている(特許文献4)。   In addition, one using a reinforcing material having a low linear expansion coefficient for preventing twisting of the IC card (Patent Document 3) and one using a reinforcing material for preventing cracking of the semiconductor chip in the IC card are known. (Patent Document 4).

上記チップ用保護膜はウエハの裏面に貼付して使用される。従って、ダイシング工程において、回転刃によって最後に切断されるのは、該保護膜である。しかし、該保護膜に含まれる樹脂成分は延伸性を有するため切れ難く、また、回転刃に目詰まりを起こして回転刃を振動させ、ウエハを損傷させるという問題がある。   The chip protective film is used by being attached to the back surface of the wafer. Therefore, it is this protective film that is finally cut by the rotary blade in the dicing process. However, since the resin component contained in the protective film has stretchability, it is difficult to cut, and there is a problem that the rotary blade is clogged to vibrate the rotary blade and damage the wafer.

ICカードの捻り防止の為に、線膨張係数の低い補強材を用いた場合、ICカードに捻りや曲げの応力が掛かった際に、補強材が全体に無い場合は、弾性率の低い半導体チップの無い部分で応力緩和が可能であるが、全体に補強材が入っている場合は、薄い半導体チップが捻りや曲げ応力を受けて割れてしまう。   When using a reinforcing material with a low coefficient of linear expansion to prevent twisting of the IC card, if the reinforcing material is not present when the IC card is subjected to twisting or bending stress, a semiconductor chip with a low elastic modulus Although the stress can be relieved in the portion without the crack, if the reinforcing material is contained in the whole, the thin semiconductor chip is cracked by the twisting or bending stress.

ICカード内の半導体チップに補強材を貼り付ける方法では、複数回の硬化工程や、接着剤のはみ出し、補強層の位置ずれや傾き、接着剤厚さ不均質による補強強度のバラツキによる、品質のバラツキや生産性の著しい低下が発生する。   In the method of attaching the reinforcing material to the semiconductor chip in the IC card, the quality of the product can be improved by multiple curing processes, adhesive sticking out, displacement and inclination of the reinforcing layer, and variation in reinforcing strength due to uneven thickness of the adhesive. Variations and a significant decrease in productivity occur.

特開2002−280329号公報JP 2002-280329 A 特開2004−260190号公報JP 2004-260190 A 特開平10−24686号公報Japanese Patent Laid-Open No. 10-24686 特開2000−268152号公報JP 2000-268152 A

本発明は、上記事情に鑑みなされたもので、ダイサーによる切断特性に優れる半導体ウエハ用保護フィルムおよび生産性の高い半導体チップの製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor wafer protective film excellent in cutting characteristics by a dicer and a method of manufacturing a highly productive semiconductor chip.

上記課題を解決するために、本発明によれば、
基材フィルムと、該基材フィルムの上側に形成された保護膜とを備える半導体ウエハ用保護フィルムであって、前記保護膜が下記(A)〜(E)成分を含有するものであることを特徴とする半導体ウエハ用保護フィルムを提供する。
(A)フェノキシ樹脂、ポリイミド樹脂、及び(メタ)アクリル樹脂からなる群より選ばれる少なくとも1種:100質量部、
(B)エポキシ樹脂:5〜200質量部、
(C)繊維状無機充填材以外の充填材:100〜400質量部、
(D)エポキシ樹脂硬化触媒:触媒量、及び
(E)繊維状無機充填材:25〜5000質量部
In order to solve the above problems, according to the present invention,
A protective film for a semiconductor wafer comprising a base film and a protective film formed on the upper side of the base film, wherein the protective film contains the following components (A) to (E): A protective film for a semiconductor wafer is provided.
(A) At least one selected from the group consisting of phenoxy resin, polyimide resin, and (meth) acrylic resin: 100 parts by mass,
(B) Epoxy resin: 5-200 parts by mass,
(C) Fillers other than the fibrous inorganic filler: 100 to 400 parts by mass,
(D) Epoxy resin curing catalyst: catalyst amount, and (E) fibrous inorganic filler: 25-5000 parts by mass

このような半導体ウエハ用保護フィルムの保護膜は、繊維状無機充填材を有することにより、半導体ウェハをダイシングして半導体チップを得る際に、チッピングを防止することができる。また、この半導体ウエハ用保護フィルムの保護膜は抗折強度が高く、市場で使用された際の曲げ応力によるチップの割れを防止することができる。   The protective film of such a protective film for a semiconductor wafer has a fibrous inorganic filler, so that chipping can be prevented when a semiconductor chip is obtained by dicing the semiconductor wafer. Moreover, the protective film of this protective film for semiconductor wafers has a high bending strength, and can prevent chip cracking due to bending stress when used in the market.

また、前記保護膜が補強層と接着層とからなり、
前記接着層は下記(A)〜(D)成分を含有してなるものであり、前記補強層は下記(E)成分を含有してなるものであることが好ましい。
(A)フェノキシ樹脂、ポリイミド樹脂、及び(メタ)アクリル樹脂からなる群より選ばれる少なくとも1種:100質量部、
(B)エポキシ樹脂:5〜200質量部、
(C)繊維状無機充填材以外の充填材:100〜400質量部、
(D)エポキシ樹脂硬化触媒:触媒量、及び
(E)繊維状無機充填材:1000〜5000質量部
Further, the protective film comprises a reinforcing layer and an adhesive layer,
The adhesive layer preferably comprises the following components (A) to (D), and the reinforcing layer preferably comprises the following component (E).
(A) At least one selected from the group consisting of phenoxy resin, polyimide resin, and (meth) acrylic resin: 100 parts by mass,
(B) Epoxy resin: 5-200 parts by mass,
(C) Fillers other than the fibrous inorganic filler: 100 to 400 parts by mass,
(D) Epoxy resin curing catalyst: catalyst amount, and (E) fibrous inorganic filler: 1000 to 5000 parts by mass

このように、保護膜が、補強層と接着層との2層からなるものであれば、より一層、半導体チップのチッピングの防止と抗折強度が向上し、高い生産性を実現することができる。   Thus, if the protective film is composed of two layers of the reinforcing layer and the adhesive layer, the chipping prevention and the bending strength of the semiconductor chip are further improved, and high productivity can be realized. .

また、前記(A)成分におけるフェノキシ樹脂が、ビスフェノールA型フェノキシ樹脂又はビスフェノールF型フェノキシ樹脂であり、前記(B)成分のエポキシ樹脂が、液状ビスフェノールA型エポキシ樹脂又は液状ビスフェノールF型エポキシ樹脂であることが好ましい。   Moreover, the phenoxy resin in the component (A) is a bisphenol A type phenoxy resin or a bisphenol F type phenoxy resin, and the epoxy resin of the component (B) is a liquid bisphenol A type epoxy resin or a liquid bisphenol F type epoxy resin. Preferably there is.

このような(A)成分及び(B)成分の組み合わせであれば、より一層、半導体ウエハ用保護フィルムがダイサーによる切断特性に優れるものとなる。   If it is a combination of such (A) component and (B) component, the protective film for semiconductor wafers will become further excellent in the cutting | disconnection characteristic by a dicer.

また、本発明では、半導体ウェハをダイシングして半導体チップを製造する方法であって、前記半導体ウエハ用保護フィルムを前記半導体ウエハに貼りつけて、一括でダイシングを行うことにより、裏面に前記半導体チップと同一サイズの保護膜を有する半導体チップを製造することを特徴とする半導体チップの製造方法を提供する。   The present invention also relates to a method of manufacturing a semiconductor chip by dicing a semiconductor wafer, wherein the semiconductor chip is attached to the back surface of the semiconductor wafer by attaching the protective film for the semiconductor wafer to the semiconductor wafer and dicing all at once. A method for manufacturing a semiconductor chip is provided, wherein a semiconductor chip having a protective film of the same size as that of the semiconductor chip is manufactured.

このような半導体チップの製造方法であれば、切断時のチッピングが抑制されたものとなり、更に、半導体チップ裏面に有する保護膜の抗折強度が高いものとなるために、半導体チップの高い生産性を実現することができる。   With such a method of manufacturing a semiconductor chip, chipping at the time of cutting is suppressed, and furthermore, since the bending strength of the protective film on the back surface of the semiconductor chip is high, the semiconductor chip has high productivity. Can be realized.

本発明の半導体ウエハ保護フィルムは、保護膜が繊維状無機充填材を有することにより、ダイサーにより切断し易く、半導体チップのチッピングの防止と抗折強度が向上し、高い生産性を実現することができる。   In the semiconductor wafer protective film of the present invention, since the protective film has a fibrous inorganic filler, it can be easily cut by a dicer, chipping prevention and bending strength of the semiconductor chip are improved, and high productivity can be realized. it can.

本発明の半導体ウエハ用保護フィルムの一例を示す断面図である。It is sectional drawing which shows an example of the protective film for semiconductor wafers of this invention. 本発明の半導体ウエハ用保護フィルムの別の一例を示す断面図である。It is sectional drawing which shows another example of the protective film for semiconductor wafers of this invention. 本発明の半導体ウエハ用保護フィルムの更に別の一例を示す断面図である。It is sectional drawing which shows another example of the protective film for semiconductor wafers of this invention.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、
基材フィルムと、該基材フィルムの上側に形成された保護膜とを備える半導体ウエハ用保護フィルムであって、前記保護膜が下記(A)〜(E)成分を含有するものであることを特徴とする半導体ウエハ用保護フィルムであれば、切断特性に優れる半導体ウエハ用保護フィルムとなることを見出した。
(A)フェノキシ樹脂、ポリイミド樹脂、及び(メタ)アクリル樹脂からなる群より選ばれる少なくとも1種:100質量部、
(B)エポキシ樹脂:5〜200質量部、
(C)繊維状無機充填材以外の充填材:100〜400質量部、
(D)エポキシ樹脂硬化触媒:触媒量、及び
(E)繊維状無機充填材:25〜5000質量部
As a result of intensive studies to achieve the above object, the present inventors
A protective film for a semiconductor wafer comprising a base film and a protective film formed on the upper side of the base film, wherein the protective film contains the following components (A) to (E): It has been found that the protective film for semiconductor wafers can be a protective film for semiconductor wafers having excellent cutting characteristics.
(A) At least one selected from the group consisting of phenoxy resin, polyimide resin, and (meth) acrylic resin: 100 parts by mass,
(B) Epoxy resin: 5-200 parts by mass,
(C) Fillers other than the fibrous inorganic filler: 100 to 400 parts by mass,
(D) Epoxy resin curing catalyst: catalyst amount, and (E) fibrous inorganic filler: 25-5000 parts by mass

(A)フェノキシ樹脂、ポリイミド樹脂、及び(メタ)アクリル樹脂からなる群より選ばれる少なくとも1種
フェノキシ樹脂は、エピクロルヒドリンとビスフェノールAもしくはビスフェノールF等から誘導される樹脂である。好ましくは、GPCで測定されるポリスチレン換算の重量平均分子量が10,000〜200,000、より好ましくは20,000〜100,000、最も好ましくは30,000〜80,000である。重量平均分子量が前記下限値以上のものは、膜を形成することが容易であり、一方、前記上限値以下のものは、微細な回路パターンを有する基板表面の凹凸に沿う十分な柔らかさを得ることできるために好ましい。
(A) At least one phenoxy resin selected from the group consisting of a phenoxy resin, a polyimide resin, and a (meth) acrylic resin is a resin derived from epichlorohydrin and bisphenol A or bisphenol F or the like. Preferably, the polystyrene equivalent weight average molecular weight measured by GPC is 10,000 to 200,000, more preferably 20,000 to 100,000, and most preferably 30,000 to 80,000. When the weight average molecular weight is equal to or higher than the lower limit value, it is easy to form a film, while when the weight average molecular weight is equal to or lower than the upper limit value, sufficient softness along the unevenness of the substrate surface having a fine circuit pattern is obtained. This is preferable.

フェノキシ樹脂の例としては、商品名PKHC、PKHH、PKHJで市販されているもの(いずれも巴化学社製)、ビスフェノールA及びビスフェノールF混合タイプの商品名エピコート4250、エピコート4275、エピコート1255HX30で市販されているもの(いずれも日本化薬社製)、臭素化エポキシを用いたエピコート5580BPX40(いずれも日本化薬社製)、ビスフェノールAタイプの商品名YP-50、YP-50S、YP-55、YP-70で市販されているもの(いずれも東都化成社製)、商品名JER E1256、E4250、E4275、YX6954BH30、YL7290BH30で市販されているもの(いずれもジャパンエポキシレジン社製)などがあげられる。上述した重量平均分子量を有する点で、JER E1256が好ましく使用される。該フェノキシ系ポリマーは末端にエポキシ基を有し、これが後述する(B)成分と反応する。   Examples of the phenoxy resin include those sold under the trade names PKHC, PKHH, and PKHJ (all manufactured by Sakai Chemical Industry Co., Ltd.), and the commercial names Epicoat 4250, Epicoat 4275, and Epicoat 1255HX30 of the mixed type of bisphenol A and bisphenol F. (All manufactured by Nippon Kayaku Co., Ltd.), Epicoat 5580BPX40 (all manufactured by Nippon Kayaku Co., Ltd.) using brominated epoxy, bisphenol A type trade names YP-50, YP-50S, YP-55, YP -70 (all manufactured by Toto Kasei Co., Ltd.), and those sold under the trade names JER E1256, E4250, E4275, YX6954BH30, YL7290BH30 (all manufactured by Japan Epoxy Resin). JER E1256 is preferably used in that it has the above-described weight average molecular weight. The phenoxy polymer has an epoxy group at the end, which reacts with the component (B) described later.

ポリイミド樹脂としては、下記繰返し単位を含むものを使用することができる。

Figure 0006001273
(式中、Xは芳香族環又は脂肪族環を含む四価の有機基、Yは二価の有機基、qは1〜300の整数である。) As a polyimide resin, what contains the following repeating unit can be used.
Figure 0006001273
(In the formula, X is a tetravalent organic group containing an aromatic ring or an aliphatic ring, Y is a divalent organic group, and q is an integer of 1 to 300.)

好ましくは、GPCで測定されるポリスチレン換算の重量平均分子量が10,000〜200,000、より好ましくは20,000〜100,000、最も好ましくは30,000〜80,000である。重量平均分子量が前記下限値以上のものは、膜を形成することが容易であり、一方、前記上限値以下のものは、微細な回路パターンを有する基板表面の凹凸に沿う十分な柔らかさを得ることできるために好ましい。   Preferably, the polystyrene equivalent weight average molecular weight measured by GPC is 10,000 to 200,000, more preferably 20,000 to 100,000, and most preferably 30,000 to 80,000. When the weight average molecular weight is equal to or higher than the lower limit value, it is easy to form a film, while when the weight average molecular weight is equal to or lower than the upper limit value, sufficient softness along the unevenness of the substrate surface having a fine circuit pattern is obtained. This is preferable.

上記ポリイミド樹脂は、下記繰り返し単位を有するポリアミック酸樹脂を、常法により脱水、閉環することで得ることができる。

Figure 0006001273
(式中、X、Y、qは上で定義したとおりである。) The polyimide resin can be obtained by dehydrating and ring-closing a polyamic acid resin having the following repeating units by a conventional method.
Figure 0006001273
(Wherein X, Y and q are as defined above.)

上式で表されるポリアミック酸樹脂は、下記構造式(3)

Figure 0006001273
(但し、Xは上記と同様の意味を示す。)
で表されるテトラカルボン酸二無水物と、下記構造式(4)
2N−Y−NH2 (4)
(但し、Yは上記と同様の意味を示す。)
で表されるジアミンを、常法に従って、ほぼ等モルで、有機溶剤中で反応させることによって得ることができる。 The polyamic acid resin represented by the above formula has the following structural formula (3)
Figure 0006001273
(However, X has the same meaning as described above.)
A tetracarboxylic dianhydride represented by the following structural formula (4)
H 2 N-Y-NH 2 (4)
(However, Y has the same meaning as described above.)
Can be obtained by reacting in a substantially equimolar amount in an organic solvent according to a conventional method.

ここで、上記式(3)で表されるテトラカルボン酸二無水物の例としては、下記のものが挙げられ、これらを組み合わせて使用してもよい。   Here, the following are mentioned as an example of the tetracarboxylic dianhydride represented by the said Formula (3), You may use combining these.

Figure 0006001273
Figure 0006001273

上記式(4)で表されるジアミンのうち、好ましくは1〜80モル%、更に好ましくは1〜60モル%が、下記構造式(5)で表されるジアミノシロキサン化合物であることが、有機溶剤への溶解性、基材フィルムに対する接着性、低弾性、柔軟性の点から望ましい。   Among the diamines represented by the above formula (4), it is preferable that 1 to 80 mol%, more preferably 1 to 60 mol% is a diaminosiloxane compound represented by the following structural formula (5). It is desirable from the viewpoint of solubility in a solvent, adhesion to a base film, low elasticity, and flexibility.

Figure 0006001273
(式中、R1は互いに独立に炭素数3〜9の二価の有機基であり、R2およびR3は、それぞれ独立に、非置換もしくは置換の炭素原子数1〜8の一価炭化水素基であり、mは1〜200の整数である。)
Figure 0006001273
(In the formula, R 1 is independently a divalent organic group having 3 to 9 carbon atoms, and R 2 and R 3 are each independently an unsubstituted or substituted monovalent carbon atom having 1 to 8 carbon atoms. It is a hydrogen group, and m is an integer of 1 to 200.)

上記炭素原子数3〜9の二価の有機基であるR1としては、例えば、−(CH23−,−(CH24−,−CH2CH(CH3)−,−(CH26−,−(CH28−等のアルキレン基、下記式 Examples of R 1 that is a divalent organic group having 3 to 9 carbon atoms include — (CH 2 ) 3 —, — (CH 2 ) 4 —, —CH 2 CH (CH 3 ) —, — ( An alkylene group such as CH 2 ) 6 — and — (CH 2 ) 8 —,

Figure 0006001273
のいずれかで表されるアリーレン基、アルキレン・アリーレン基、
−(CH23−O−,−(CH24−O−等のオキシアルキレン基、下記式
Figure 0006001273
An arylene group represented by any one of the following: an alkylene / arylene group,
Oxyalkylene groups such as — (CH 2 ) 3 —O— and — (CH 2 ) 4 —O—,

Figure 0006001273
のいずれかで表されるオキシアリーレン基、下記式
Figure 0006001273
An oxyarylene group represented by any of the following formulae

Figure 0006001273
で表されるオキシアルキレン・アリーレン基等の、エーテル結合を含んでもよい二価炭化水素基が挙げられる。
Figure 0006001273
And a divalent hydrocarbon group which may contain an ether bond, such as an oxyalkylene / arylene group represented by the formula:

2またはR3としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ヘキシル基、シクロヘキシル基、2−エチルヘキシル基、オクチル基等のアルキル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ヘキセニル基等のアルケニル基、フェニル基、トリル基、キシリル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基、これらの炭化水素基の炭素原子に結合した水素原子の一部又は全部がフッ素、臭素、塩素等のハロゲン原子等で置換された基、例えば、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基等のハロゲン置換アルキル基等が挙げられ、中でもメチル基及びフェニル基が好ましい。2種以上のジアミノシロキサン化合物の組み合わせでも使用することができる。 Examples of R 2 or R 3 include alkyl groups such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a hexyl group, a cyclohexyl group, a 2-ethylhexyl group, and an octyl group. Allyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group, alkenyl group such as hexenyl group, aryl group such as phenyl group, tolyl group, xylyl group, aralkyl group such as benzyl group, phenylethyl group, etc. Groups in which part or all of the hydrogen atoms bonded to the carbon atoms of the hydrocarbon group are substituted with halogen atoms such as fluorine, bromine, chlorine, etc., for example, chloromethyl group, bromoethyl group, 3,3,3-trifluoro Examples include halogen-substituted alkyl groups such as propyl group, and among them, methyl group and phenyl group are preferable. A combination of two or more diaminosiloxane compounds can also be used.

上記式(5)で表されるジアミノシロキサン化合物以外の上記式(4)で表されるジアミンとしては、例えば、p−フェニレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、2,2’−ビス(4−アミノフェニル)プロパン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルフィド、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(p−アミノフェニルスルホニル)ベンゼン、1,4−ビス(m−アミノフェニルスルホニル)ベンゼン、1,4−ビス(p−アミノフェニルチオエーテル)ベンゼン、1,4−ビス(m−アミノフェニルチオエーテル)ベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[3−メチル−4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[3−クロロ−4−(4−アミノフェノキシ)フェニル]プロパン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,1−ビス[3−メチル−4−(4−アミノフェノキシ)フェニル]エタン、1,1−ビス[3−クロロ−4−(4−アミノフェノキシ)フェニル]エタン、1,1−ビス[3,5−ジメチル−4−(4−アミノフェノキシ)フェニル]エタン、ビス[4−(4−アミノフェノキシ)フェニル]メタン、ビス[3−メチル−4−(4−アミノフェノキシ)フェニル]メタン、ビス[3−クロロ−4−(4−アミノフェノキシ)フェニル]メタン、ビス[3,5−ジメチル−4−(4−アミノフェノキシ)フェニル]メタン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]パーフルオロプロパン等の芳香族環含有ジアミン等が挙げられ、好ましくはp−フェニレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[3−メチル−4−(4−アミノフェノキシ)フェニル]プロパン等である。   Examples of the diamine represented by the above formula (4) other than the diaminosiloxane compound represented by the above formula (5) include p-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenylmethane, and 4,4. '-Diaminodiphenyl ether, 2,2'-bis (4-aminophenyl) propane, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,4-bis (p-aminophenylsulfonyl) benzene, 1,4-bis (m-aminophenylsulfonyl) benzene, 1,4-bis (p-amino) Phenylthioether) benzene, 1,4-bis (m-aminophenylthioether) benzene, 2,2- [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [3-methyl-4- (4-aminophenoxy) phenyl] propane, 2,2-bis [3-chloro-4- (4) -Aminophenoxy) phenyl] propane, 1,1-bis [4- (4-aminophenoxy) phenyl] ethane, 1,1-bis [3-methyl-4- (4-aminophenoxy) phenyl] ethane, 1, 1-bis [3-chloro-4- (4-aminophenoxy) phenyl] ethane, 1,1-bis [3,5-dimethyl-4- (4-aminophenoxy) phenyl] ethane, bis [4- (4 -Aminophenoxy) phenyl] methane, bis [3-methyl-4- (4-aminophenoxy) phenyl] methane, bis [3-chloro-4- (4-aminophenoxy) phenyl] methane, bi [3,5-dimethyl-4- (4-aminophenoxy) phenyl] methane, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] per Examples thereof include aromatic ring-containing diamines such as fluoropropane, and preferably p-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 1,4-bis (3- Aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [3-methyl-4- (4) -Aminophenoxy) phenyl] propane and the like.

好ましくは、ポリイミド樹脂は、接着性の点から、フェノール性の水酸基を有する。該
フェノール性の水酸基は、ジアミン化合物として、フェノール性の水酸基を有するものを用いることにより備えることができ、このようなジアミンとしては、例えば、下記構造のものが挙げられる。

Figure 0006001273
式中、Aは下記のいずれかの基
Figure 0006001273
式中、Bは下記のいずれかの基
Figure 0006001273
(式中、R4は、互いに独立に、水素原子又はフッ素、臭素、よう素などのハロゲン原子、あるいはアルキル基、アルケニル基、アルキニル基、トリフルオロメチル基、フェニル基などの非置換又は置換の炭素原子数1〜8の一価炭化水素基であり、各芳香環に付いている置換基は異なっていてもよく、nは0〜5の整数である。A、Bはおのおの1種単独でも、2種以上の組み合わせでもよい。Rは水素原子、ハロゲン原子又は非置換もしくは置換の一価炭化水素基である。) Preferably, the polyimide resin has a phenolic hydroxyl group from the viewpoint of adhesiveness. The phenolic hydroxyl group can be prepared by using a diamine compound having a phenolic hydroxyl group. Examples of such a diamine include those having the following structure.
Figure 0006001273
In the formula, A is any of the following groups:
Figure 0006001273
In the formula, B is any of the following groups:
Figure 0006001273
(In the formula, R 4 is independently of each other a hydrogen atom or a halogen atom such as fluorine, bromine or iodine, or an unsubstituted or substituted alkyl group, alkenyl group, alkynyl group, trifluoromethyl group, phenyl group or the like. It is a monovalent hydrocarbon group having 1 to 8 carbon atoms, and the substituents attached to each aromatic ring may be different, and n is an integer of 0 to 5. A and B may each be a single type. A combination of two or more may be used, and R is a hydrogen atom, a halogen atom, or an unsubstituted or substituted monovalent hydrocarbon group.)

上記R4の非置換又は置換の炭素原子数1〜8の一価炭化水素基としては、例えば、上記R2およびR3について例示したものと同様のもの、ならびにエチニル基、プロピニル基、ブチニル基、ヘキシニル基等のアルキニル基等を挙げることができる。 Examples of the unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms of R 4 include those similar to those exemplified for R 2 and R 3 , and ethynyl, propynyl, and butynyl groups. And alkynyl groups such as a hexynyl group.

また、他のフェノール性水酸基を有するジアミンとして以下のものが挙げられる。

Figure 0006001273
(上式中、R’は水素原子、フッ素、臭素、よう素などのハロゲン原子、又は炭素数1〜8の、アルキル基、アルケニル基、アルキニル基、トリフルオロメチル基、フェニル基などの非置換又はハロゲン置換の1価炭化水素基であり、各芳香族環に付いている置換基は異なっていてもよく、Xは単結合、メチレン基、又はプロピレン基である。nは上で定義したとおりである。) Moreover, the following are mentioned as diamine which has another phenolic hydroxyl group.
Figure 0006001273
(In the above formula, R ′ is a hydrogen atom, a halogen atom such as fluorine, bromine or iodine, or an unsubstituted alkyl group, alkenyl group, alkynyl group, trifluoromethyl group, phenyl group or the like having 1 to 8 carbon atoms. Or a halogen-substituted monovalent hydrocarbon group, the substituents attached to each aromatic ring may be different, X is a single bond, a methylene group, or a propylene group, and n is as defined above. .)

上記フェノール性水酸基を有するジアミン化合物の中でも、特に下記式(6)で表されるジアミン化合物が好ましい。   Among the diamine compounds having a phenolic hydroxyl group, a diamine compound represented by the following formula (6) is particularly preferable.

Figure 0006001273
(式中、R4は上で定義したとおりである。)
Figure 0006001273
(Wherein R 4 is as defined above.)

上記フェノール性の水酸基を有するジアミン化合物の配合量としては、ジアミン化合物全体の5〜60質量%、特に10〜40質量%であることが好ましい。該配合量がこの範囲内のポリイミドシリコーン樹脂を用いると、接着力が高く、且つ、柔軟な接着層を形成する組成物が得られる。   As a compounding quantity of the diamine compound which has the said phenolic hydroxyl group, it is preferable that it is 5-60 mass% of the whole diamine compound, and it is especially 10-40 mass%. When a polyimide silicone resin having a blending amount in this range is used, a composition having a high adhesive force and forming a flexible adhesive layer can be obtained.

なお、フェノール性水酸基の導入のためにフェノール性水酸基を有するモノアミンを用いることもでき、その例としては下記の構造を有するモノアミンが挙げられる。   In addition, the monoamine which has a phenolic hydroxyl group can also be used for introduction | transduction of a phenolic hydroxyl group, The monoamine which has the following structure is mentioned as the example.

Figure 0006001273
(式中、R4は上記と同じであり、各芳香環に付いている置換基は異なっていても構わない。Dは1種単独で用いても2種以上を併用してもよい。また、pは1〜3の整数である。)
Figure 0006001273
(In the formula, R 4 is the same as above, and the substituents attached to each aromatic ring may be different. D may be used alone or in combination of two or more. , P is an integer from 1 to 3.)

フェノール性水酸基を有するモノアミンを用いる場合、この配合量としては、ジアミン化合物全体に対して1〜10モル%が好ましい。   When a monoamine having a phenolic hydroxyl group is used, the amount is preferably 1 to 10 mol% based on the entire diamine compound.

ポリアミック酸樹脂は、上述の各出発原料を、不活性な雰囲気下で溶媒に溶かし、通常、80℃以下、好ましくは0〜40℃で反応させて合成することができる。得られたポリアミック酸樹脂を、通常、100〜200℃、好ましくは150〜200℃に昇温させることにより、ポリアミック酸樹脂の酸アミド部分を脱水閉環させ、目的とするポリイミド樹脂を合成することができる。   The polyamic acid resin can be synthesized by dissolving the above starting materials in a solvent under an inert atmosphere and reacting them usually at 80 ° C. or lower, preferably 0 to 40 ° C. The obtained polyamic acid resin is usually heated to 100 to 200 ° C., preferably 150 to 200 ° C., thereby dehydrating and ring-closing the acid amide portion of the polyamic acid resin to synthesize the target polyimide resin. it can.

上記溶媒としては、得られるポリアミック酸に不活性なものであれば、前記出発原料を完全に溶解できるものでなくともよい。例えば、テトラヒドロフラン、1,4−ジオキサン、シクロペンタノン、シクロヘキサノン、γ−ブチロラクトン、N−メチルピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド及びジメチルスルホキシドが挙げられ、好ましくは非プロトン性極性溶媒、特に好ましくはN−メチルピロリドン、シクロヘキサノン及びγ−ブチロラクトンである。これらの溶媒は、1種単独でも2種以上を組み合わせても用いることができる。   The solvent may not be one that can completely dissolve the starting material as long as it is inert to the resulting polyamic acid. Examples include tetrahydrofuran, 1,4-dioxane, cyclopentanone, cyclohexanone, γ-butyrolactone, N-methylpyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and dimethyl sulfoxide, preferably aprotic Polar solvents, particularly preferably N-methylpyrrolidone, cyclohexanone and γ-butyrolactone. These solvents can be used singly or in combination of two or more.

上記の脱水閉環を容易にするためには、トルエン、キシレンなどの共沸脱水剤を用いるのが望ましい。また、無水酢酸/ピリジン混合溶液を用いて低温で脱水閉環を行うこともできる。   In order to facilitate the dehydration ring closure, it is desirable to use an azeotropic dehydrating agent such as toluene or xylene. Further, dehydration ring closure can be performed at a low temperature using an acetic anhydride / pyridine mixed solution.

なお、ポリアミック酸及びポリイミド樹脂の分子量を調整するために、無水マレイン酸、無水フタル酸などのジカルボン酸無水物及び/又はアニリン、n−ブチルアミン、上記に挙げたフェノール性の水酸基を有するモノアミンを添加することもできる。但し、ジカルボン酸無水物の添加量は、テトラカルボン酸二無水物100質量部当たり、通常、0〜2質量部であり、モノアミンの添加量は、ジアミン100質量部当たり、通常、0〜2質量部である。   In addition, in order to adjust the molecular weight of polyamic acid and polyimide resin, dicarboxylic acid anhydrides such as maleic anhydride and phthalic anhydride and / or aniline, n-butylamine, and monoamines having the above-mentioned phenolic hydroxyl groups are added. You can also However, the addition amount of dicarboxylic anhydride is usually 0 to 2 parts by mass per 100 parts by mass of tetracarboxylic dianhydride, and the addition amount of monoamine is usually 0 to 2 parts by mass per 100 parts by mass of diamine. Part.

(メタ)アクリル樹脂としては、たとえば、(メタ)アクリル酸エステルモノマーおよび(メタ)アクリル酸誘導体から導かれる構成単位とからなる(メタ)アクリル酸エステル共重合体が挙げられる。ここで(メタ)アクリル酸エステルモノマーとしては、好ましくはアルキル基の炭素数が1〜18である(メタ)アクリル酸アルキルエステル、たとえば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル等が用いられる。また、(メタ)アクリル酸誘導体としては、たとえば(メタ)アクリル酸、(メタ)アクリル酸グリシジル、(メタ)アクリル酸ヒドロキシエチル等を挙げることができる。   Examples of the (meth) acrylic resin include (meth) acrylic acid ester copolymers composed of structural units derived from (meth) acrylic acid ester monomers and (meth) acrylic acid derivatives. Here, the (meth) acrylic acid ester monomer is preferably a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 18 carbon atoms, such as methyl (meth) acrylate, ethyl (meth) acrylate, (meth ) Propyl acrylate, butyl (meth) acrylate, etc. are used. Examples of the (meth) acrylic acid derivative include (meth) acrylic acid, glycidyl (meth) acrylate, hydroxyethyl (meth) acrylate, and the like.

メタクリル酸グリシジル等を共重合して(メタ)アクリル樹脂にグリシジル基を導入することにより、後述する熱硬化型接着成分としてのエポキシ樹脂との相溶性が向上し、また硬化後のガラス転移温度(Tg)が高くなり耐熱性も向上する。また、ヒドロキシエチルアクリレート等でアクリル系ポリマーに水酸基を導入することにより、チップへの密着性や粘着物性のコントロールが容易になる。   By copolymerizing glycidyl methacrylate and the like to introduce a glycidyl group into the (meth) acrylic resin, compatibility with an epoxy resin as a thermosetting adhesive component described later is improved, and the glass transition temperature after curing ( Tg) is increased and the heat resistance is also improved. Further, by introducing a hydroxyl group into the acrylic polymer with hydroxyethyl acrylate or the like, it becomes easy to control the adhesion to the chip and the physical properties of the adhesive.

(メタ)アクリル樹脂の重量平均分子量は、100,000以上であることが好ましく、より好ましくは150,000〜1,000,000である。また(メタ)アクリル樹脂のガラス転移温度は、20℃以下であることが好ましく、より好ましくは−70〜0℃程度であって常温(23℃)においては粘着性を有する。   The weight average molecular weight of the (meth) acrylic resin is preferably 100,000 or more, more preferably 150,000 to 1,000,000. The glass transition temperature of the (meth) acrylic resin is preferably 20 ° C. or less, more preferably about −70 to 0 ° C., and has adhesiveness at room temperature (23 ° C.).

(B)エポキシ樹脂
エポキシ樹脂は、前記(A)成分とは異なる樹脂であり、かつ、エポキシ当量が50〜5000g/eqのものであることが好ましく、より好ましくは100〜500g/eqである。
このようなエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂(特に、液状ビスフェノールA型エポキシ樹脂又は液状ビスフェノールF型エポキシ樹脂);レゾルシノール、フェノールノボラック、クレゾールノボラックなどのフェノール類のグリシジルエーテル;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコールなどのアルコール類のグリシジルエーテル;フタル酸、イソフタル酸、テトラヒドロフタル酸などのカルボン酸のグリシジルエーテル;アニリンイソシアヌレートなどの窒素原子に結合した活性水素をグリシジル基で置換したグリシジル型もしくはアルキルグリシジル型のエポキシ樹脂;ビニルシクロヘキサンジエポキシド、3,4−エポキシシクロヘキシルメチル−3,4−ジシクロヘキサンカルボキシレート、2−(3,4−エポキシ)シクロヘキシル−5,5−スピロ(3,4−エポキシ)シクロヘキサン−m−ジオキサンなどのように、分子内の炭素−炭素二重結合をたとえば酸化することによりエポキシが導入された、いわゆる脂環型エポキシドを挙げることができる。その他、ビフェニル骨格、ジシクロヘキサジエン骨格、ナフタレン骨格を有するエポキシ樹脂を用いることができる。
(B) Epoxy resin The epoxy resin is a resin different from the component (A), and preferably has an epoxy equivalent of 50 to 5000 g / eq, more preferably 100 to 500 g / eq.
Examples of such epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins (particularly liquid bisphenol A type epoxy resins or liquid bisphenol F type epoxy resins); glycidyls of phenols such as resorcinol, phenol novolac, and cresol novolac. Ethers: Glycidyl ethers of alcohols such as butanediol, polyethylene glycol, and polypropylene glycol; Glycidyl ethers of carboxylic acids such as phthalic acid, isophthalic acid, and tetrahydrophthalic acid; Active hydrogen bonded to nitrogen atoms such as aniline isocyanurate glycidyl group Glycidyl type or alkyl glycidyl type epoxy resins substituted with vinylcyclohexane diepoxide, 3,4-epoxycyclohexylmethy Carbon-carbon dicarbons in the molecule, such as -3,4-dicyclohexanecarboxylate, 2- (3,4-epoxy) cyclohexyl-5,5-spiro (3,4-epoxy) cyclohexane-m-dioxane. Examples include so-called alicyclic epoxides in which an epoxy is introduced by, for example, oxidizing a heavy bond. In addition, an epoxy resin having a biphenyl skeleton, a dicyclohexadiene skeleton, or a naphthalene skeleton can be used.

これらの中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂(特に、液状ビスフェノールA型エポキシ樹脂又は液状ビスフェノールF型エポキシ樹脂)、o−クレゾールノボラック型エポキシ樹脂およびフェノールノボラック型エポキシ樹脂が好ましく用いられる。これらエポキシ樹脂の2種以上を組み合わせて用いてもよい。   Among these, bisphenol A type epoxy resin, bisphenol F type epoxy resin (particularly liquid bisphenol A type epoxy resin or liquid bisphenol F type epoxy resin), o-cresol novolak type epoxy resin and phenol novolak type epoxy resin are preferably used. . Two or more of these epoxy resins may be used in combination.

(B)エポキシ樹脂は、(A)成分100質量部に対して5〜200質量部、好ましくは10〜200質量部、より好ましくは50〜150質量部配合される。このような割合で、(A)成分と(B)成分を配合すると、硬化前には適度なタックを示し、ウエハへの貼付作業を安定して行なうことができ、また硬化後には、強度に優れた保護膜を得ることができる。   (B) An epoxy resin is 5-200 mass parts with respect to 100 mass parts of (A) component, Preferably it is 10-200 mass parts, More preferably, 50-150 mass parts is mix | blended. When the component (A) and the component (B) are blended at such a ratio, an appropriate tack is exhibited before curing, and a sticking operation to the wafer can be stably performed. An excellent protective film can be obtained.

(A)成分と(B)成分との組み合わせは、(A)成分におけるフェノキシ樹脂が、ビスフェノールA型フェノキシ樹脂又はビスフェノールF型フェノキシ樹脂であり、前記(B)成分のエポキシ樹脂が、液状ビスフェノールA型エポキシ樹脂又は液状ビスフェノールF型エポキシ樹脂であることが好ましい。   In the combination of the component (A) and the component (B), the phenoxy resin in the component (A) is bisphenol A type phenoxy resin or bisphenol F type phenoxy resin, and the epoxy resin of the component (B) is liquid bisphenol A It is preferably a type epoxy resin or a liquid bisphenol F type epoxy resin.

(C)繊維状無機充填材以外の充填材
(C)成分の充填材としては、繊維状無機充填材以外の無機充填材(非繊維状無機充填材)、例えばシリカ、アルミナ、酸化チタン、カーボンブラック、銀粒子等の導電性粒子及びシリコーン樹脂粉末、例えば、ジメチルポリシロキサンを架橋した構造を持つ架橋型球状ジメチルポリシロキサン微粉末(特開平3−93834号公報)、架橋型球状ポリメチルシルセスキオキサン微粉末(特開平3−47848号公報)、架橋型球状ポリシロキサンゴム表面をポリメチルシルセスキオキサン粒子で被覆してなる微粉末(特開平7−196815号公報、特開平9−20631号公報)を使用することができる。
(C) Fillers other than fibrous inorganic fillers (C) Component fillers include inorganic fillers other than fibrous inorganic fillers (non-fibrous inorganic fillers), such as silica, alumina, titanium oxide, carbon Conductive particles such as black and silver particles, and silicone resin powder, for example, a crosslinked spherical dimethylpolysiloxane fine powder having a structure in which dimethylpolysiloxane is crosslinked (Japanese Patent Laid-Open No. 3-93834), a crosslinked spherical polymethylsilsesquioxide Oxane fine powder (Japanese Patent Laid-Open No. 3-47848), fine powder obtained by coating the surface of a crosslinked spherical polysiloxane rubber with polymethylsilsesquioxane particles (Japanese Patent Laid-Open No. 7-196815, Japanese Patent Laid-Open No. 9-20631) Gazette) can be used.

該充填材の配合量は、(A)成分100質量部に対して、100〜400質量部、好ましくは150〜350質量部である。該配合量が前記下限値以上の場合では、充填材の配合目的である低吸水性、低線膨張性等を十分に達成することができる。低吸水性が達成できない場合に、半導体デバイスが吸湿信頼性試験において不合格となり、低線膨張係数が達成できない場合に、半導体ウェハ用保護フィルムとシリコンウエハの複合体の硬化時に線膨張係数のミスマッチが発生して、大きな反りが発生して、その後のダイシングが不可能となる。一方、前記上限値以下の場合では、保護層形成用組成物の粘度を高めすぎる恐れがなく、基材フィルムに塗付する際の流動性が悪くなる恐れがなく、保護膜のシリコンウエハーへの低温での貼りつけが困難となる恐れがなく、ウエハと半導体ウェハ用保護フィルムの複合体が大きく反ることを防止することができる。充填材の含有率は保護膜の30〜80質量%であることが好ましい。   The blending amount of the filler is 100 to 400 parts by mass, preferably 150 to 350 parts by mass with respect to 100 parts by mass of the component (A). When the blending amount is equal to or more than the lower limit value, low water absorption, low linear expansion, and the like, which are blending purposes of the filler, can be sufficiently achieved. When the low water absorption cannot be achieved, the semiconductor device fails the moisture absorption reliability test, and when the low linear expansion coefficient cannot be achieved, the linear expansion coefficient mismatch occurs when the composite of the protective film for semiconductor wafer and the silicon wafer is cured. Occurs, causing a large warp and subsequent dicing becomes impossible. On the other hand, in the case of the upper limit or less, there is no fear that the viscosity of the composition for forming the protective layer is excessively increased, there is no possibility that the fluidity when applied to the base film is deteriorated, and the protective film is applied to the silicon wafer. There is no possibility that sticking at a low temperature becomes difficult, and it is possible to prevent the composite of the wafer and the protective film for a semiconductor wafer from warping greatly. It is preferable that the content rate of a filler is 30-80 mass% of a protective film.

シリカとしては溶融シリカ、結晶シリカが使用される。シリカの平均粒径は、0.1〜10μmが好ましく、より好ましくは0.5〜7μmである。シリカの平均粒径がこの範囲内にあると、塗布された保護膜(接着層)の表面の良好な平滑性が得られる。また、近年、接着層の厚みとしては、15〜50μmが要求されることが多いが、シリカの平均粒径が前記範囲内にあると、2次凝集した粒子が存在しても、該要求を満たしやすい。   As silica, fused silica or crystalline silica is used. The average particle diameter of silica is preferably 0.1 to 10 μm, and more preferably 0.5 to 7 μm. When the average particle diameter of silica is within this range, good smoothness of the surface of the applied protective film (adhesive layer) can be obtained. Further, in recent years, the thickness of the adhesive layer is often required to be 15 to 50 μm. However, if the average particle diameter of silica is within the above range, even if secondary agglomerated particles are present, the requirement is satisfied. Easy to fill.

表面がポリオルガノシルセスキオキサン樹脂で被覆されたシリコーンゴム微粒子は、上述の公報(特開平7−196815号公報、特開平9−20631号公報)に記載された方法で作ることができ、又は、シリコーン複合パウダーKMP600シリーズ(信越化学工業(株)製)として市販されているものを使用することができる。好ましくは粒径の点から、KMP600が使用される。   Silicone rubber fine particles whose surface is coated with a polyorganosilsesquioxane resin can be produced by the method described in the above-mentioned publications (JP-A-7-196815, JP-A-9-20631), or Commercially available silicone composite powder KMP600 series (manufactured by Shin-Etsu Chemical Co., Ltd.) can be used. KMP600 is preferably used from the viewpoint of particle size.

(C)充填材は、好ましくは無機充填材、より好ましくはシリカ、最も好ましくは爆燃法で製造されたシリカが使用される。該シリカは、樹脂分によって濡れ易くなり、定法に従い表面処理されている。表面処理剤としては、その汎用性とコストメリットなどからシラン系(シランカップリング剤)が好ましい。シランカップリング剤としては該アルコキシシランとしては、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α−グリシドキシエチルトリメトキシシラン、α−グリシドキシエチルトリエトキシシラン、β−グリシドキシエチルトリメトキシシラン、β−グリシドキシエチルトリエトキシシラン、α−グリシドキシプロピルトリメトキシシラン、α−グリシドキシプロピルトリエトキシシラン、β−グリシドキシプロピルトリメトキシシラン、β−グリシドキシプロピル−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、α−グリシドキシブチルトリメトキシシラン、α−グリシドキシブチルトリエトキシシラン、β−グリシドキシブチルトリメトキシシラン、β−グリシドキシブチルトリエトキシシラン、γ−グリシドキシブチルトリメトキシシラン、γ−グリシドキシブチルトリエトキシシラン、δ−グリシドキシブチルトリメトキシシラン、δ−グリシドキシブチルトリエトキシシラン、(3、4−エポキシシクロヘキシル)メチルトリメトキシシラン、(3、4−エポキシシクロヘキシル)メチルトリエトキシシラン、β−(3、4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3、4−エポキシシクロヘキシル)エチルトリエトキシシラン、β−(3、4−エポキシシクロヘキシル)エチルトリプロポキシシラン、β−(3、4−エポキシシクロヘキシル)エチルトリブトキシシラン、β−(3、4−エポキシシクロヘキシル)エチルトリフェノキシシラン、γ−(3、4−エポキシシクロヘキシル)プロピルトリメトキシシラン、γ−(3、4−エポキシシクロヘキシル)プロピルトリエトキシシラン、δ−(3、4−エポキシシクロヘキシル)ブチルトリメトキシシラン、δ−(3、4−エポキシシクロヘキシル)ブチルトリエトキシシランなどのトリアルコキシシラン、N−β−(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)γ−アミノプロピルメチルジエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、トリメトキシシリルプロピルナジック酸無水物等、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシランが好ましく用いられる。
The filler (C) is preferably an inorganic filler, more preferably silica, and most preferably silica produced by a deflagration method. The silica is easily wetted by the resin component and is surface-treated according to a conventional method. As the surface treatment agent, a silane (silane coupling agent) is preferable because of its versatility and cost merit. As the silane coupling agent, the alkoxysilane includes glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, α-glycidoxyethyltrimethoxysilane, α-glycidoxyethyltriethoxysilane, β- Glycidoxyethyltrimethoxysilane, β-glycidoxyethyltriethoxysilane, α-glycidoxypropyltrimethoxysilane, α-glycidoxypropyltriethoxysilane, β-glycidoxypropyltrimethoxysilane, β- Glycidoxypropyl-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, α-glycidoxybutyltrimethoxysilane, α-glycidoxybutyl Triethoxysilane, -Glycidoxybutyltrimethoxysilane, β-glycidoxybutyltriethoxysilane, γ-glycidoxybutyltrimethoxysilane, γ-glycidoxybutyltriethoxysilane, δ-glycidoxybutyltrimethoxysilane, δ -Glycidoxybutyltriethoxysilane, (3,4-epoxycyclohexyl) methyltrimethoxysilane, (3,4-epoxycyclohexyl) methyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltripropoxysilane, β- (3,4-epoxycyclohexyl) ethyltributoxysilane, β- (3, 4-epoxycyclohexyl) ethyl Riphenoxysilane, γ- (3,4-epoxycyclohexyl) propyltrimethoxysilane, γ- (3,4-epoxycyclohexyl) propyltriethoxysilane, δ- (3,4-epoxycyclohexyl) butyltrimethoxysilane, δ Trialkoxysilanes such as-(3,4-epoxycyclohexyl) butyltriethoxysilane, N-β- (aminoethyl) γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) γ-aminopropylmethyldiethoxysilane Γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, trimethoxysilylpropyl nadic acid anhydride, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane are preferably used.

(D)エポキシ樹脂硬化触媒
エポキシ樹脂硬化触媒としては、加熱されて硬化するタイプ、所謂熱活性型潜在性エポキシ樹脂硬化剤が好ましい。例えば、ジシアンジアミド、イミダゾール化合物、各種オニウム塩、二塩基酸ジヒドラジド化合物等を挙げることができ、これらの2種以上を組み合わせて用いてもよい。該硬化触媒の量は、触媒として有効な量(触媒量)であればよいが、通常、エポキシ樹脂100質量部に対して、0.1〜20質量部で使用され、好ましくは1〜12質量部用いられる。
(D) Epoxy resin curing catalyst The epoxy resin curing catalyst is preferably a type that cures when heated, so-called thermally activated latent epoxy resin curing agent. Examples include dicyandiamide, imidazole compounds, various onium salts, dibasic acid dihydrazide compounds, and the like, and two or more of these may be used in combination. The amount of the curing catalyst may be an amount effective as a catalyst (catalytic amount), but is usually 0.1 to 20 parts by mass, preferably 1 to 12 parts by mass with respect to 100 parts by mass of the epoxy resin. Used part.

(E)繊維状無機充填材
繊維状無機充填材としては、ガラス繊維、ケイ酸カルシウム繊維、チタン酸カリウム繊維、炭素繊維、窒化珪素、チタン酸カリウムなどのセラミックスウィスカーやセラミックファイバー、金属繊維等が挙げられる。これらの中では、ガラス繊維が最も好ましい。また、ガラス繊維の形態は特に特定されるものではなく、ロービング、ストランド、チョップドストランド、ミルドファイバー、ガラスパウダーと称されるストランドの粉砕品等のいずれでも良い。
(E) Fibrous inorganic filler As the fibrous inorganic filler, ceramic whisker such as glass fiber, calcium silicate fiber, potassium titanate fiber, carbon fiber, silicon nitride, potassium titanate, ceramic fiber, metal fiber, etc. Can be mentioned. Of these, glass fiber is most preferred. The form of the glass fiber is not particularly specified, and any of roving, strand, chopped strand, milled fiber, a pulverized strand called glass powder, and the like may be used.

(E)成分の繊維状無機充填材の形状などは特に制限されるものではないが、例えば、ガラス繊維および炭素繊維の場合は、繊維径が10〜100μmであるものが好ましく、さらには15〜60μmであるものが好ましい。また、アスペクト比(繊維長さ/繊維径の比)が成形体中において、3以上になるものが好ましく、さらには5以上になるものが好ましい。
繊維径が10μm以上であれば、その製造が困難となる恐れがなく、100μm以下であれば、成形体の機械的性質、特に衝撃強さが低下する恐れがないために好ましい。また、アスペクト比が3以上であれば、補強効果が十分に得られるために好ましい。
The shape of the fibrous inorganic filler of component (E) is not particularly limited. For example, in the case of glass fiber and carbon fiber, the fiber diameter is preferably 10 to 100 μm, and more preferably 15 to arbitrariness favored those that are 60μm. Further, the aspect ratio (fiber length / fiber diameter ratio) is preferably 3 or more, more preferably 5 or more in the molded body.
If the fiber diameter is 10 μm or more, the production thereof is not likely to be difficult, and if it is 100 μm or less, the mechanical properties of the molded article, particularly the impact strength, is not liable to decrease, which is preferable. An aspect ratio of 3 or more is preferable because a sufficient reinforcing effect can be obtained.

保護膜の補強効果を向上させる方法として、繊維状の無機充填材がランダムに保護膜中に分布したものより、平面状ランダムに分布したガラス不織布(日本バイリーン社製 ガラス不織布 キュムラス)や、長尺の繊維を網目状に編んだもの(日東紡社製 IPC規格3313 ガラスクロス等)を用いたものが好ましい。そのマトリックス樹脂としては、保護膜が(B)成分としてエポキシ樹脂を含有するために、エポキシ樹脂、ポリアミド樹脂、フェノール樹脂等が好ましく使用される。   As a method of improving the reinforcing effect of the protective film, a glass nonwoven fabric in which a fibrous inorganic filler is randomly distributed in the protective film, a glass nonwoven fabric (Nippon Vilene Co., Ltd. glass nonwoven fabric cumulus), or a long one It is preferable to use a knitted fiber (IPC standard 3313 glass cloth, etc., manufactured by Nittobo Co., Ltd.). As the matrix resin, an epoxy resin, a polyamide resin, a phenol resin, or the like is preferably used because the protective film contains an epoxy resin as the component (B).

繊維状無機充填剤は、保護膜中にランダムに分散させても良いが、保護膜が接着層と補強層で2層構造になっており、繊維状無機充填剤が補強層のみに分散していることが好ましい。補強層のマトリックス樹脂としては、接着層の樹脂を用いても良い。
繊維状無機充填剤は、保護膜中に分散させる場合は、上記(A)成分のフェノキシ樹脂、ポリイミド樹脂、及び(メタ)アクリル樹脂からなる群より選ばれる少なくとも1種を100質量部に対して、25から5000質量部が好ましい。より好ましくは40から3000質量部である。該配合量が前記下限値以上であれば、保護膜が高線膨張係数となって大きく反る恐れがなく、ダイシング時にチッピングの原因となって抗折強度低下を招く恐れがないために好ましい。また該配合量が前記上限値以下である場合は、保護膜のシリコンウエハに対する接着面の平滑性が低下する恐れがなく、接着力の低下を引き起こす恐れがなく、抗折強度が高いものとなる。
The fibrous inorganic filler may be randomly dispersed in the protective film, but the protective film has a two-layer structure of an adhesive layer and a reinforcing layer, and the fibrous inorganic filler is dispersed only in the reinforcing layer. Preferably it is. As the matrix resin for the reinforcing layer, a resin for the adhesive layer may be used.
When the fibrous inorganic filler is dispersed in the protective film, at least one selected from the group consisting of the phenoxy resin, the polyimide resin, and the (meth) acrylic resin as the component (A) is 100 parts by mass. 25 to 5000 parts by mass are preferred. More preferably, it is 40 to 3000 parts by mass. If the blending amount is equal to or greater than the lower limit value, the protective film has a high linear expansion coefficient and is not likely to be greatly warped, and it is preferable that the bending strength is not lowered due to chipping during dicing. Further, when the blending amount is not more than the upper limit value, there is no fear that the smoothness of the adhesion surface of the protective film with respect to the silicon wafer is lowered, there is no possibility that the adhesion force is lowered, and the bending strength is high. .

その他の成分
本発明の保護膜は、上述した成分に加えて、エポキシ樹脂の硬化剤、各種の添加剤を含むことができる。硬化剤としては、フェノール樹脂、例えば、アルキルフェノール、多価フェノール、ナフトール等のフェノール類とアルデヒド類との縮合物等が用いられ、好ましくはフェノールノボラック樹脂、o−クレゾールノボラック樹脂、p−クレゾールノボラック樹脂、t−ブチルフェノールノボラック樹脂、ジシクロペンタジエンクレゾール樹脂、ポリパラビニルフェノール樹脂、ビスフェノールA型ノボラック樹脂、ビスフェノールF型ノボラック樹脂、あるいはこれらの変性物等が用いられる。
Other Components The protective film of the present invention may contain an epoxy resin curing agent and various additives in addition to the components described above. As the curing agent, phenol resins, for example, condensates of phenols such as alkylphenols, polyhydric phenols, naphthols, and aldehydes are used, preferably phenol novolak resins, o-cresol novolak resins, p-cresol novolak resins. T-butylphenol novolak resin, dicyclopentadiene cresol resin, polyparavinylphenol resin, bisphenol A type novolak resin, bisphenol F type novolak resin, or modified products thereof.

添加剤としては、顔料、染料等が挙げられ、これらを配合して、本発明における保護膜を着色すると、レーザーマーク性能が向上する。さらに、保護膜とチップ裏面との接着性・密着性を向上させる目的で、シランカップリング剤を添加することもできる。その他、難燃剤、帯電防止剤等を配合してよい。   Examples of the additive include pigments and dyes. When these are blended and the protective film in the present invention is colored, the laser mark performance is improved. Furthermore, a silane coupling agent can be added for the purpose of improving the adhesion and adhesion between the protective film and the chip back surface. In addition, you may mix | blend a flame retardant, an antistatic agent, etc.

本発明の半導体ウェハ用保護フィルムの硬化後の弾性率としては10〜100GPaが好ましい。硬化後の弾性率が10GPa以上であれば、抗折時の曲げ応力に対して半導体ウェハ用保護フィルムが十分に耐えることができ、抗折強度低下の原因となる恐れがない。また弾性率が100GPa以下の場合には、半導体ウェハ用保護フィルムとシリコンウエハの複合硬化物が反った場合に、シリコンウエハー側に大きな応力が発生して、チッピングが多く発生する恐れがなく、抗折強度の低下につながる恐れがない。   The elastic modulus after curing of the protective film for a semiconductor wafer of the present invention is preferably 10 to 100 GPa. If the elastic modulus after curing is 10 GPa or more, the protective film for a semiconductor wafer can sufficiently withstand bending stress at the time of bending, and there is no possibility of causing a decrease in bending strength. In addition, when the elastic modulus is 100 GPa or less, there is no possibility that a large stress is generated on the silicon wafer side when the composite cured product of the semiconductor wafer protective film and the silicon wafer is warped, and a lot of chipping occurs. There is no risk of lowering the folding strength.

半導体ウエハ用保護フィルム
本発明における半導体ウエハ用保護フィルムは、図1〜図3に示すように、基材フィルム1と、該基材フィルム1の上側に形成された保護膜2とを備える半導体ウエハ用保護フィルム10である。そして、保護膜2が上述した(A)〜(E)成分を含有するものである。
図1は、(E)成分の繊維状無機充填材3が保護膜2中にランダムに分散されている形態の半導体ウエハ用保護フィルム10である。
図2は、保護膜2が、補強層3’と接着層4とからなるものであり、接着層4は(A)〜(D)成分を含有してなるものであり、補強層3’は(E)成分を含有してなるものである。補強層3’としては、ガラスクロス等が好ましい。この場合は、繊維状無機充填材の含有量は、(A)成分100質量部に対して25〜1000質量部であることが好ましい。
図3は、保護膜2が、補強層3’’と接着層4とからなるものであり、接着層4は(A)〜(D)成分を含有してなるものであり、補強層3’’は(E)成分を含有してなるものである。補強層3’’としては、プリプレグ(例えばエポキシ樹脂が含浸したガラスクロス等)が好ましい。この場合は、繊維状無機充填材の含有量は、(A)成分100質量部に対して1000〜5000質量部であることが好ましい。半導体ウエハに対する配置としては反りの防止の為に、線膨張係数が小さくなる配置方法が好ましく、半導体ウエハ(不図示)、接着層4、補強層3’’となることが好ましい。
The protective film for semiconductor wafers in this invention is a semiconductor wafer provided with the base film 1 and the protective film 2 formed above the base film 1, as shown in FIGS. The protective film 10 for use. And the protective film 2 contains the (A)-(E) component mentioned above.
FIG. 1 shows a protective film 10 for a semiconductor wafer in which a fibrous inorganic filler 3 of component (E) is randomly dispersed in a protective film 2.
In FIG. 2, the protective film 2 is composed of a reinforcing layer 3 ′ and an adhesive layer 4. The adhesive layer 4 contains components (A) to (D), and the reinforcing layer 3 ′ (E) It contains a component. As the reinforcing layer 3 ′, glass cloth or the like is preferable. In this case, the content of the fibrous inorganic filler is preferably 25 to 1000 parts by mass with respect to 100 parts by mass of the component (A).
In FIG. 3, the protective film 2 comprises a reinforcing layer 3 ″ and an adhesive layer 4, and the adhesive layer 4 contains the components (A) to (D), and the reinforcing layer 3 ′. 'Contains the component (E). As the reinforcing layer 3 ″, a prepreg (for example, a glass cloth impregnated with an epoxy resin) is preferable. In this case, it is preferable that content of a fibrous inorganic filler is 1000-5000 mass parts with respect to 100 mass parts of (A) component. The arrangement with respect to the semiconductor wafer is preferably an arrangement method in which the coefficient of linear expansion is small in order to prevent warpage, and is preferably a semiconductor wafer (not shown), an adhesive layer 4 and a reinforcing layer 3 ″.

本発明の半導体ウエハ用保護フィルムの作成方法として、以下の(方法1)〜(方法3)が挙げられるが、これらの方法に制限されるものではない。
(方法1)溶剤で分散させた、上記(A)〜(D)成分を含む接着層組成物中に繊維状無機充填剤((E)成分)を常法により混合分散し、下記の方法にて基材フィルム1上に塗布して保護膜2を形成し、接着層と補強層が一体となった半導体ウエハ用保護フィルム10を作成する(図1)。
(方法2)基材フィルム1上に網目状の繊維状無機充填剤((E)成分)からなる補強層3’を配置して、その上から溶剤で分散させた、上記(A)〜(D)成分を含む接着層組成物を塗布して、接着層4と補強層3’が傾斜的に配置した2層構造の保護膜2を有する半導体ウエハ用保護フィルム10を作成する(図2)。
(方法3)マトリックス樹脂を含浸させた網目状の繊維状無機充填材((E)成分)からなるフィルム状の補強層3’’と、下記の方法にて接着層組成物((A)〜(D)成分)から作成したフィルム状の接着層4とを貼り合わせた2層構造の保護膜2を有する半導体ウエハ用保護フィルム10を作成する(図3)。
Although the following (Method 1)-(Method 3) are mentioned as a production method of the protective film for semiconductor wafers of this invention, It is not restrict | limited to these methods.
(Method 1) A fibrous inorganic filler (component (E)) is mixed and dispersed by a conventional method in an adhesive layer composition containing the components (A) to (D) dispersed with a solvent. Then, the protective film 2 is formed by coating on the base film 1 to form a protective film 10 for a semiconductor wafer in which the adhesive layer and the reinforcing layer are integrated (FIG. 1).
(Method 2) The above-described (A) to (A), in which a reinforcing layer 3 ′ composed of a network-like fibrous inorganic filler (component (E)) is disposed on the base film 1 and dispersed with a solvent from above. D) An adhesive layer composition containing the component is applied to produce a protective film 10 for a semiconductor wafer having a protective film 2 having a two-layer structure in which the adhesive layer 4 and the reinforcing layer 3 ′ are arranged in an inclined manner (FIG. 2). .
(Method 3) A film-like reinforcing layer 3 ″ made of a network-like fibrous inorganic filler impregnated with a matrix resin (component (E)) and an adhesive layer composition ((A) to A protective film 10 for a semiconductor wafer having a protective film 2 having a two-layer structure in which the film-like adhesive layer 4 prepared from the component (D) is bonded is prepared (FIG. 3).

(方法1)における保護膜2や(方法2)及び(方法3)における接着層4は、基材フィルム1上に上記対応する成分を混合して得られる組成物を、厚み5〜100μm、好ましくは10〜60μmになるように、グラビアコーター等公知の方法で施与して得ることができる。なお、上記の組成物は、必要に応じ、溶剤、例えばシクロヘキサノンに分散させて塗布することができる。   The protective film 2 in (Method 1) and the adhesive layer 4 in (Method 2) and (Method 3) are made of a composition obtained by mixing the corresponding components on the base film 1, and have a thickness of 5 to 100 μm, preferably Can be obtained by applying by a known method such as a gravure coater so as to be 10 to 60 μm. In addition, said composition can be apply | coated by disperse | distributing to a solvent, for example, cyclohexanone, as needed.

基材フィルム1としては、ポリエチレンフィルム、ポリプロピレンフィルム、ポリ塩化ビニルフィルム、ポリエチレンテレフタレートフィルム、ポリイミドフィルム等が用いられる。保護膜2を硬化した後に、基材フィルム1を剥離する場合には、耐熱性に優れたポリエチレンテレフタレートフィルム、ポリイミドフィルムが好ましく用いられる。また、その際、該基材フィルムの表面にシリコーン樹脂等を塗布して離型処理を施し、又は、基材フィルム1と保護膜2の間に、剥離性の層を形成してもよい。   As the base film 1, a polyethylene film, a polypropylene film, a polyvinyl chloride film, a polyethylene terephthalate film, a polyimide film, or the like is used. When the base film 1 is peeled after the protective film 2 is cured, a polyethylene terephthalate film or a polyimide film excellent in heat resistance is preferably used. At that time, a silicone resin or the like may be applied to the surface of the base film to perform a release treatment, or a peelable layer may be formed between the base film 1 and the protective film 2.

基材フィルム1の膜厚は5〜200μm、好ましくは10〜150μm、特に好ましくは20〜100μm程度である。   The film thickness of the base film 1 is 5 to 200 μm, preferably 10 to 150 μm, particularly preferably about 20 to 100 μm.

半導体ウエハ用保護フィルムは、例えば、以下の方法で使用する。
(1)表面に回路が形成された半導体ウエハの裏面に、本発明における半導体ウエハ用保護フィルムの保護膜を貼付する工程、
(2)半導体ウエハ用保護フィルムの基材フィルムを剥離する工程、
(3)加熱して保護膜を硬化する工程、
(4)半導体ウエハおよび保護膜をダイシングする工程。
ここで、工程(3)と(4)は、逆の順であってもよい。
The protective film for a semiconductor wafer is used, for example, by the following method.
(1) The process of sticking the protective film of the protective film for semiconductor wafers in this invention on the back surface of the semiconductor wafer in which the circuit was formed in the surface,
(2) The process of peeling the base film of the protective film for semiconductor wafers,
(3) a step of curing the protective film by heating,
(4) A step of dicing the semiconductor wafer and the protective film.
Here, steps (3) and (4) may be performed in reverse order.

上記(4)のダイシング工程は、ダイシングシートを用いて、定法に従い行うことができる。ダイシングにより、裏面に保護膜を有する半導体チップが得られる。該チップを、コレット等の汎用手段によりピックアップして、基板上に配置する。本発明の半導体ウエハ用保護フィルムを用いることによって、チップ切断面に微小な損傷が発生し難くなり、半導体装置を高い歩留まりで製造することができる。   The dicing step (4) can be performed according to a conventional method using a dicing sheet. A semiconductor chip having a protective film on the back surface is obtained by dicing. The chip is picked up by a general-purpose means such as a collet and placed on the substrate. By using the protective film for a semiconductor wafer of the present invention, it is difficult for minute damage to occur on the cut surface of the chip, and a semiconductor device can be manufactured with a high yield.

以下、実施例により本発明を説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not restrict | limited to the following Example.

保護層形成用組成物の調製
約50質量部のシクロヘキサノンに、表1に示す質量部の(A)成分を溶解した。得られた溶液と、表1に示す量の他の成分を混合して、固形分約70質量%の組成物を得た。
The cyclohex non Preparation about 50 parts by weight of the protective layer-forming composition was dissolved (A) component of the mass parts shown in Table 1. The obtained solution was mixed with other components in the amounts shown in Table 1 to obtain a composition having a solid content of about 70% by mass.

表1に示す各成分及び以下で用いる成分は以下のとおりである。
(A)成分
フェノキシ樹脂:Mw約60,000、JER 1256(ジャパンエポキシレジン社製)
ポリイミド樹脂1:合成法を後述する。
アクリル樹脂1:アクリル酸ブチル55質量部、メタクリル酸メチル15質量部、メタクリル酸グリシジル20質量部、及びアクリル酸2−ヒドロキシエチル15質量部の共重合体(重量平均分子量90万、ガラス転移温度−28℃)
(B)成分
エポキシ樹脂:RE310S(日本化薬社製)、25℃の粘度15Pa.s
(C)成分
シリカ:SC2050、平均粒径0.5μm、最大粒径5μm、KBM−403処理品、(株)アドマテックス社製
(D)成分
ジシアンジアミド(DICY-7):ジャパンエポキシレジン社製
(E)成分
エポキシ含浸ガラスクロス EGテープ タイプS:有沢製作所社製
ガラスクロス:日東紡社製 IPC規格3313 ガラスクロス
ガラス繊維:日本電気硝子製ミルドファイバーGP−10MA(繊維径10μm、平均繊維長70μm、アスペクト比7)
Each component shown in Table 1 and components used below are as follows.
(A) component Phenoxy resin: Mw about 60,000, JER 1256 (made by Japan Epoxy Resin Co., Ltd.)
Polyimide resin 1: The synthesis method will be described later.
Acrylic resin 1: 55 parts by weight of butyl acrylate, 15 parts by weight of methyl methacrylate, 20 parts by weight of glycidyl methacrylate, and 15 parts by weight of 2-hydroxyethyl acrylate (weight average molecular weight 900,000, glass transition temperature − 28 ℃)
(B) Component Epoxy resin: RE310S (manufactured by Nippon Kayaku Co., Ltd.), viscosity at 25 ° C. and 15 Pa. s
(C) Component Silica: SC2050 , average particle size 0.5 μm, maximum particle size 5 μm, KBM-403 treated product, (D) component dicyandiamide (DICY-7): manufactured by Japan Epoxy Resin Co., Ltd. ( E) Component Epoxy impregnated glass cloth EG tape Type S: Arisawa Seisakusho glass cloth: Nittobo IPC standard 3313 Glass cloth Glass fiber: Nippon Electric Glass milled fiber GP-10MA (fiber diameter 10 μm, average fiber length 70 μm, Aspect ratio 7)

ポリイミド樹脂1の合成
還流冷却器を連結したコック付きの25ml水分定量受器、温度計、攪拌器を備えた1リットルのセパラブルフラスコに、下記構造式で表わされるジアミノシロキサン(KF−8010、信越化学社製)49.01質量部、反応溶媒として2−メチルピロリドン100質量部を仕込み、80℃で攪拌し、ジアミンを分散させた。これに酸無水物として6FDA(2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン)42.68質量部と2−メチルピロリドン100質量部との溶液を滴下して室温で2時間攪拌反応を行うことにより、酸無水物リッチのアミック酸オリゴマーを合成した。

Figure 0006001273
次に、下記式:
Figure 0006001273
で示されるフェノール性水酸基を有するジアミン(HAB、和歌山精化製)8.31質量部と100質量部の2−メチルピロリドンを、還流冷却器が連結されたコック付きの25ml水分定量受器、温度計、攪拌器を備えた1リットルのセパラブルフラスコに仕込み、分散させ、前出の酸無水物リッチのアミック酸オリゴマーを滴下した後、室温で16時間攪拌し、ポリアミック酸溶液を合成した。その後、キシレン25mlを投入してから温度を上げ、約180℃で2時間還流させた。水分定量受器に所定量の水がたまっていること、水の流出が見られなくなっていることを確認し、水分定量受器にたまっている流出液を除去しながら、180℃でキシレンを除去した。反応終了後、大過剰のメタノール中に得られた反応液を滴下し、ポリマーを析出させ、減圧乾燥して、骨格中にフェノール性の水酸基を有するポリイミド樹脂を得た。
得られたポリイミド樹脂の赤外吸光スペクトルを測定したところ、未反応の官能基があることを示すポリアミック酸に基づく吸収は現れず、1780cm-1及び1720cm-1にイミド基に基づく吸収を確認し、3500cm-1にフェノール性水酸基に基づく吸収を確認した。得られた樹脂のポリスチレン換算の重量平均分子量は55,000であり、官能基当量は760g/eqであった。 A diaminosiloxane (KF-8010, Shin-Etsu) represented by the following structural formula was placed in a 1-liter separable flask equipped with a 25 ml moisture determination receiver with a cock connected to a synthetic reflux condenser of polyimide resin 1, a thermometer, and a stirrer. (Chemical Co., Ltd.) 49.01 parts by mass and 100 parts by mass of 2-methylpyrrolidone as a reaction solvent were added and stirred at 80 ° C. to disperse the diamine. A solution of 42.68 parts by mass of 6FDA (2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane) and 100 parts by mass of 2-methylpyrrolidone as an acid anhydride was added dropwise thereto at room temperature for 2 hours. By carrying out a stirring reaction, an acid anhydride-rich amic acid oligomer was synthesized.
Figure 0006001273
Next, the following formula:
Figure 0006001273
25 ml water quantitative receiver with a cock connected to a reflux condenser, 8.31 parts by mass of a diamine having a phenolic hydroxyl group (HAB, manufactured by Wakayama Seika) and 100 parts by mass of 2-methylpyrrolidone, A 1-liter separable flask equipped with a total and a stirrer was charged and dispersed, and the above-mentioned acid anhydride-rich amic acid oligomer was added dropwise, followed by stirring at room temperature for 16 hours to synthesize a polyamic acid solution. Thereafter, 25 ml of xylene was added, the temperature was raised, and the mixture was refluxed at about 180 ° C. for 2 hours. Confirm that the specified amount of water has accumulated in the moisture meter and that no water has flowed out, and remove xylene at 180 ° C while removing the effluent collected in the meter. did. After completion of the reaction, the reaction solution obtained in a large excess of methanol was added dropwise to precipitate a polymer and dried under reduced pressure to obtain a polyimide resin having a phenolic hydroxyl group in the skeleton.
When the infrared absorption spectrum of the obtained polyimide resin was measured, absorption based on polyamic acid indicating that there was an unreacted functional group did not appear, and absorption based on an imide group was confirmed at 1780 cm −1 and 1720 cm −1. Absorption based on a phenolic hydroxyl group was confirmed at 3500 cm −1 . The obtained resin had a polystyrene equivalent weight average molecular weight of 55,000 and a functional group equivalent of 760 g / eq.

半導体ウェハ用保護フィルムの作成
(実施例1〜5と比較例1)
表1に示す接着層組成物液(塗工液1〜5)を作成し、実施例では115μmのエポキシプリプレグ補強層上に、比較例では50μmのSUS304補強層上に、20μmの層厚になるように接着層を塗布して、110℃で10分間加熱乾燥して、135と70μmの保護膜を形成した。
Preparation of protective film for semiconductor wafer (Examples 1 to 5 and Comparative Example 1)
The adhesive layer composition liquids (coating liquids 1 to 5) shown in Table 1 were prepared, and the layer thickness was 20 μm on the 115 μm epoxy prepreg reinforcing layer in the example and on the 50 μm SUS304 reinforcing layer in the comparative example. The adhesive layer was applied as described above, and dried by heating at 110 ° C. for 10 minutes to form 135 and 70 μm protective films.

(実施例6)
75μmのガラスクロス IPC規格3313を、シリコーンで表面処理した38μmのPETフィルム上に配置して、その上から表1の塗工液1を接着層が15μmの厚さになるように塗布して、110℃で10分間加熱乾燥して、90μmの保護膜を形成した。
(Example 6)
75 μm glass cloth IPC standard 3313 was placed on a 38 μm PET film surface-treated with silicone, and coating liquid 1 in Table 1 was applied from above so that the adhesive layer had a thickness of 15 μm. The film was dried by heating at 110 ° C. for 10 minutes to form a 90 μm protective film.

(実施例7)
表2のガラス繊維入りの塗工液6をシリコーンで表面処理した38μmのPETフィルム上に保護膜が50μmの厚さになるようにを塗布して、110℃で10分間加熱乾燥して、50μmの保護膜を形成した。
(尚、塗工液6は、塗工液1中にガラス繊維が入った組成となる。)
(Example 7)
The coating solution 6 containing glass fiber in Table 2 was applied on a 38 μm PET film surface-treated with silicone so that the protective film had a thickness of 50 μm, and dried by heating at 110 ° C. for 10 minutes, to 50 μm. A protective film was formed.
(Note that the coating liquid 6 has a composition in which glass fibers are contained in the coating liquid 1.)

(比較例2,3)
塗工液4,5を用いる以外は、実施例7と同様の方法で、135μmの保護膜を形成した。
(Comparative Examples 2 and 3)
A protective film of 135 μm was formed in the same manner as in Example 7 except that the coating liquids 4 and 5 were used.

引張弾性率
得られた保護フィルムを、175℃/4時間で硬化させた後、5mm幅、40mm長さの短冊状サンプルを作成して、測定用サンプルとした。セイコーインスルメンツDMA6100を用い、1Hz、歪幅10μm、0℃から200℃まで3℃/minで昇温した時の、25℃のデータを引張弾性率とした。
The protective film obtained was cured at 175 ° C. for 4 hours, and then a strip sample having a width of 5 mm and a length of 40 mm was prepared as a measurement sample. Using Seiko Instruments DMA6100, data at 25 ° C. when the temperature was raised from 3 ° C./min from 1 ° C. to a strain width of 10 μm from 0 ° C. to 200 ° C. was taken as the tensile modulus.

ダイシング試験
得られた保護フィルムを、テクノビジョン FM−114を用いて、50℃で、厚み75μmのシリコン・ウエハ(8インチの未研磨ウエハを、ディスコ(株)社製、DAG−810を用いてポリグラインド研磨して、75μm厚としたウエハ)に貼り付けた。保護フィルム付シリコン・ウエハを乾燥機で175℃/4時間硬化させて、保護フィルムを硬化した。該保護フィルム付シリコン・ウエハを下記条件で10mm×10mm角のチップにダイシングし、得られたチップ40個の切断端面を観察して、50μm以上のチッピングが無い場合、合格とした。
The protective film obtained by the dicing test was obtained by using Technovision FM-114 at 50 ° C. and using a 75 μm thick silicon wafer (8-inch unpolished wafer, manufactured by DISCO Corporation, DAG-810). The wafer was abraded to a thickness of 75 μm by polygrind polishing. The protective film was cured by curing the silicon wafer with the protective film at 175 ° C./4 hours with a dryer. The silicon wafer with protective film was diced into 10 mm × 10 mm square chips under the following conditions, and the cut end surfaces of the 40 chips obtained were observed, and when there was no chipping of 50 μm or more, the chip was accepted.

ダイシング条件
装置:DISCO ダイサー DAD−341
カット方法:シングル
ダイシング刃:ZH05−SD3500−N1−70EE
刃回転数:30000rpm
刃速度:30mm/sec
ダイシングフィルムの厚み110μm、ダイシングフィルムへの切り込み:50μm
Dicing condition equipment: DISCO Dicer DAD-341
Cutting method: Single dicing blade: ZH05-SD3500-N1-70EE
Blade rotation speed: 30000 rpm
Blade speed: 30 mm / sec
Dicing film thickness 110 μm, cutting into dicing film: 50 μm

抗折強度測定試験
先のダイシング試験で得られた10mm×10mm角のチップ40個の抗折強度を下記条件で測定し、平均値を測定結果とした。結果を表3に示す。
Folding strength measurement test The bending strength of 40 chips of 10 mm × 10 mm square obtained in the dicing test of the test destination was measured under the following conditions, and the average value was taken as the measurement result. The results are shown in Table 3 .

抗折強度測定条件
装置:島津社 オートグラフ
抗折治具: 4mm幅 楔形
支点間距離: 6mm
楔形治具速度:0.01m/min
Folding strength measurement condition equipment: Shimadzu Corporation Autograph
Anti-folding jig: 4 mm wide Distance between wedge-shaped fulcrums: 6 mm
Wedge jig speed: 0.01 m / min

Figure 0006001273
Figure 0006001273

Figure 0006001273
Figure 0006001273

Figure 0006001273
Figure 0006001273

実施例1〜7の保護膜が繊維状無機充填材を含む半導体用保護フィルムは、引張弾性率、ダイシング性能、抗折強度が高く、半導体チップの高い生産性を実現することができる。一方で、比較例1〜3の繊維状無機充填材を含まない半導体用保護フィルムは、ダイシング性能が低く、また、抗折強度も劣っていた。   The protective films for semiconductors in which the protective films of Examples 1 to 7 contain a fibrous inorganic filler have high tensile elastic modulus, dicing performance, and bending strength, and can realize high productivity of semiconductor chips. On the other hand, the protective film for semiconductors not containing the fibrous inorganic filler of Comparative Examples 1 to 3 had low dicing performance and inferior bending strength.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に含有される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. It is contained in the technical range.

1…基材フィルム、 2…保護膜、 3…繊維状無機充填材、 3’,3’’…補強層、 4…接着層、 10…半導体ウエハ用保護フィルム。   DESCRIPTION OF SYMBOLS 1 ... Base film, 2 ... Protective film, 3 ... Fibrous inorganic filler, 3 ', 3 "... Reinforcement layer, 4 ... Adhesive layer, 10 ... Protective film for semiconductor wafers.

Claims (3)

基材フィルムと、該基材フィルムの上側に形成された保護膜とを備える半導体ウエハ用保護フィルムであって、
前記保護膜が補強層と接着層とからなり、
前記接着層は下記(A)〜(D)成分を含有してなるものであり、前記補強層は下記(E)成分を含有してなり、傾斜的に配置されたものであることを特徴とする半導体ウエハ用保護フィルム。
(A)フェノキシ樹脂、ポリイミド樹脂、及び(メタ)アクリル樹脂からなる群より選ばれる少なくとも1種:100質量部、
(B)エポキシ樹脂:5〜200質量部、
(C)繊維状無機充填材以外の充填材:100〜400質量部、
(D)エポキシ樹脂硬化触媒:触媒量、及び
(E)網目状の繊維状無機充填材:25〜5000質量部
A protective film for a semiconductor wafer comprising a base film and a protective film formed on the upper side of the base film,
The protective film comprises a reinforcing layer and an adhesive layer,
Wherein the adhesive layer is to be contain the following (A) ~ (D) component, the reinforcing layer is Ri greens contain the following component (E), those that are inclined arranged A protective film for semiconductor wafers.
(A) At least one selected from the group consisting of phenoxy resin, polyimide resin, and (meth) acrylic resin: 100 parts by mass,
(B) Epoxy resin: 5-200 parts by mass,
(C) Fillers other than the fibrous inorganic filler: 100 to 400 parts by mass,
(D) Epoxy resin curing catalyst: catalyst amount, and (E) network-like fibrous inorganic filler: 25 to 5000 parts by mass
前記(A)成分におけるフェノキシ樹脂が、ビスフェノールA型フェノキシ樹脂又はビスフェノールF型フェノキシ樹脂であり、前記(B)成分のエポキシ樹脂が、液状ビスフェノールA型エポキシ樹脂又は液状ビスフェノールF型エポキシ樹脂であることを特徴とする請求項1に記載の半導体ウエハ用保護フィルム。   The phenoxy resin in the component (A) is a bisphenol A type phenoxy resin or a bisphenol F type phenoxy resin, and the epoxy resin in the component (B) is a liquid bisphenol A type epoxy resin or a liquid bisphenol F type epoxy resin. The protective film for a semiconductor wafer according to claim 1. 半導体ウェハをダイシングして半導体チップを製造する方法であって、請求項1又は請求項2に記載の半導体ウエハ用保護フィルムを前記半導体ウエハに貼りつけて、一括でダイシングを行うことにより、裏面に前記半導体チップと同一サイズの保護膜を有する半導体チップを製造することを特徴とする半導体チップの製造方法。
A method of manufacturing a semiconductor chip by dicing a semiconductor wafer, wherein the protective film for a semiconductor wafer according to claim 1 or 2 is attached to the semiconductor wafer, and dicing is performed on the back surface. A method of manufacturing a semiconductor chip, comprising manufacturing a semiconductor chip having a protective film of the same size as the semiconductor chip.
JP2012028911A 2012-02-13 2012-02-13 Protective film for semiconductor wafer and method for manufacturing semiconductor chip Expired - Fee Related JP6001273B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012028911A JP6001273B2 (en) 2012-02-13 2012-02-13 Protective film for semiconductor wafer and method for manufacturing semiconductor chip
PCT/JP2013/000347 WO2013121701A1 (en) 2012-02-13 2013-01-24 Protective film for semiconductor wafer, and method for manufacturing semiconductor chip
CN201380009159.3A CN104137229B (en) 2012-02-13 2013-01-24 Protective film for semiconductor wafer, and method for manufacturing semiconductor chip
KR1020147022574A KR20140133519A (en) 2012-02-13 2013-01-24 Protective film for semiconductor wafer, and method for manufacturing semiconductor chip
SG11201404022UA SG11201404022UA (en) 2012-02-13 2013-01-24 Protective film for semiconductor wafer and method for manufacturing semiconductor chip
TW102103758A TWI573833B (en) 2012-02-13 2013-01-31 Semiconductor wafer protection film and semiconductor wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012028911A JP6001273B2 (en) 2012-02-13 2012-02-13 Protective film for semiconductor wafer and method for manufacturing semiconductor chip

Publications (3)

Publication Number Publication Date
JP2013165245A JP2013165245A (en) 2013-08-22
JP2013165245A5 JP2013165245A5 (en) 2014-08-14
JP6001273B2 true JP6001273B2 (en) 2016-10-05

Family

ID=48983843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012028911A Expired - Fee Related JP6001273B2 (en) 2012-02-13 2012-02-13 Protective film for semiconductor wafer and method for manufacturing semiconductor chip

Country Status (6)

Country Link
JP (1) JP6001273B2 (en)
KR (1) KR20140133519A (en)
CN (1) CN104137229B (en)
SG (1) SG11201404022UA (en)
TW (1) TWI573833B (en)
WO (1) WO2013121701A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137287A (en) * 2014-01-21 2015-07-30 信越化学工業株式会社 Protective film for semiconductor wafer and method for producing semiconductor chip with protective film for semiconductor wafer
SG11201607716PA (en) 2014-03-24 2016-11-29 Lintec Corp Protection membrane forming film, protection membrane forming utilization sheet, production method and inspection method for workpiece or processed product, workpiece determined as adequate product, and processed product determined as adequate product
CN106660333B (en) * 2014-08-22 2018-11-06 琳得科株式会社 The manufacturing method of protective film formation piece and semiconductor chip with protective film
JP6660156B2 (en) * 2015-11-13 2020-03-04 日東電工株式会社 Manufacturing method of laminated body and combined body / semiconductor device
JP6791626B2 (en) * 2015-12-14 2020-11-25 デクセリアルズ株式会社 Manufacturing method of thermosetting adhesive sheet and semiconductor device
JP6721325B2 (en) 2015-12-14 2020-07-15 デクセリアルズ株式会社 Thermosetting adhesive sheet and method for manufacturing semiconductor device
CN112608700B (en) * 2020-11-30 2022-08-02 江阴职业技术学院 Epoxy adhesive for cutting photovoltaic silicon wafer and preparation method thereof
CN115260963B (en) * 2022-09-27 2022-12-27 武汉市三选科技有限公司 Low-modulus vertical stack packaging film die attach adhesive, and preparation method and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4364508B2 (en) * 2002-12-27 2009-11-18 リンテック株式会社 Protective film forming sheet for chip back surface and manufacturing method of chip with protective film
US7186629B2 (en) * 2003-11-19 2007-03-06 Advanced Materials Sciences, Inc. Protecting thin semiconductor wafers during back-grinding in high-volume production
JP2008247937A (en) * 2007-03-29 2008-10-16 Lintec Corp Sticky adhesive composition, sticky adhesive sheet and method for producing semiconductor device
JP5344802B2 (en) * 2007-03-30 2013-11-20 リンテック株式会社 Protective film forming sheet for chip and semiconductor chip with protective film
KR101485612B1 (en) * 2008-04-25 2015-01-22 신에쓰 가가꾸 고교 가부시끼가이샤 A protective film for semi-conductor wafer
JP5513734B2 (en) * 2008-11-27 2014-06-04 リンテック株式会社 Adhesive composition, adhesive sheet, and method for manufacturing semiconductor device
CN102318059A (en) * 2009-02-12 2012-01-11 住友电木株式会社 Semiconductor protection film-forming film with dicing sheet, method for manufacturing semiconductor device using same,and semiconductor device
JP5388792B2 (en) * 2009-10-23 2014-01-15 新日鉄住金化学株式会社 Multilayer adhesive sheet and manufacturing method thereof
JP5550371B2 (en) * 2010-02-05 2014-07-16 リンテック株式会社 Adhesive composition and adhesive sheet
JP2011082559A (en) * 2010-12-24 2011-04-21 Hitachi Chem Co Ltd Adhesive film for semiconductor

Also Published As

Publication number Publication date
CN104137229B (en) 2017-01-18
WO2013121701A1 (en) 2013-08-22
TWI573833B (en) 2017-03-11
SG11201404022UA (en) 2014-10-30
JP2013165245A (en) 2013-08-22
TW201343774A (en) 2013-11-01
CN104137229A (en) 2014-11-05
KR20140133519A (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5233032B2 (en) Protective film for semiconductor wafer
JP6001273B2 (en) Protective film for semiconductor wafer and method for manufacturing semiconductor chip
JP5046366B2 (en) Adhesive composition and sheet provided with an adhesive layer comprising the adhesive
JP4171898B2 (en) Adhesive tape for dicing and die bonding
JP4658735B2 (en) Adhesive composition and adhesive film
JP2007150065A (en) Adhesive tape for dicing/die bonding
JP5977717B2 (en) Semiconductor encapsulating substrate encapsulating material, semiconductor encapsulating substrate encapsulating material manufacturing method, and semiconductor device manufacturing method
JP2010287884A (en) Method for manufacturing semiconductor chip
KR20070082568A (en) Adhesive composition, adhesive film, and method of producing semiconductor device
JP2008124141A (en) Adhesive film for dicing/die bond
JP2012049388A (en) Sheet for forming semiconductor wafer protective film
JP2004172180A (en) Wafer dicing /die-bonding sheet
JP2008248114A (en) Adhesive composition
JP2010265338A (en) Adhesive composition, adhesive sheet, and dicing die attach film
JP5648617B2 (en) Thermally conductive adhesive composition, adhesive sheet and thermal conductive dicing die attach film using the same
JP2006005159A (en) Cohesive tape for dicing/die bonding
JP2008308618A (en) Adhesive composition and adhesive film
JP2008138124A (en) Adhesive composition and adhesive film
JP4235808B2 (en) Adhesive composition and adhesive film
JP5183076B2 (en) Manufacturing method of semiconductor device
JP2015179769A (en) Sealant with substrate for semiconductor encapsulation, semiconductor apparatus, and manufacturing method of semiconductor apparatus
JP5931700B2 (en) Protective film for semiconductor wafer and method for manufacturing semiconductor chip
JP4530126B2 (en) Adhesive composition and adhesive film
JP4586966B2 (en) Adhesive composition and adhesive film
JP2008308552A (en) Adhesive composition and adhesive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160901

R150 Certificate of patent or registration of utility model

Ref document number: 6001273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees