JP5999605B2 - 自動車安全性評価システム及び自動車安全性評価方法 - Google Patents

自動車安全性評価システム及び自動車安全性評価方法 Download PDF

Info

Publication number
JP5999605B2
JP5999605B2 JP2014142269A JP2014142269A JP5999605B2 JP 5999605 B2 JP5999605 B2 JP 5999605B2 JP 2014142269 A JP2014142269 A JP 2014142269A JP 2014142269 A JP2014142269 A JP 2014142269A JP 5999605 B2 JP5999605 B2 JP 5999605B2
Authority
JP
Japan
Prior art keywords
tire
automobile
safety evaluation
vehicle
safety
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014142269A
Other languages
English (en)
Other versions
JP2016017905A (ja
Inventor
順昭 小俣
順昭 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIGHFREQUENCY VISCOELASTICITY CORPORATION
Original Assignee
HIGHFREQUENCY VISCOELASTICITY CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIGHFREQUENCY VISCOELASTICITY CORPORATION filed Critical HIGHFREQUENCY VISCOELASTICITY CORPORATION
Priority to JP2014142269A priority Critical patent/JP5999605B2/ja
Publication of JP2016017905A publication Critical patent/JP2016017905A/ja
Application granted granted Critical
Publication of JP5999605B2 publication Critical patent/JP5999605B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は自動車安全性評価システム及び自動車安全性評価方法に関する。
自動車の安全性を担保するため、自動車のユーザは、自身の自動車の車両検査を義務的又は任意に実行することが多い。
例えば、特許文献1には、車両検査の検査作業を複数に分割する車両検査システムが開示されている。この車両検査システムにおける検査工程は、検査対象の自動車の移動経路に沿って、その入口の側から順に、第1の検査ステーション、第2の検査ステーション、第3の検査ステーションに区分されている。第1の検査ステーションでは主として目視による検査を行ない、第2の検査ステーションでは測定機器による検査を行ない、第3の検査ステーションではリフトを用いて下回りの分解、点検検査を行なう。この車両検査システムでは、検査作業が1箇所で行われず複数で分割され、流れ作業式に自動車の検査作業が実行できるので、自動車1台当たりの検査時間を短縮化することができる。
また、他の関連技術として、特許文献2には、タイヤ等の粘弾性体における摩擦特性を測定する技術が開示されている。
特許第3977055号公報 特開2007−47130号公報
自動車のタイヤの状態は、停止する際のグリップ力に大きな影響を及ぼすため、自動車の安全性を左右する。しかしながら、自動車のタイヤは、車検において十分な検査が受けられていないと考えられる。例えば、車検においては、タイヤの滑り止めの溝の深さが所定値以上であることが求められるものの、滑り止めの溝の深さが所定値以上であっても、タイヤの劣化が進行していることも考えられる。また、ブレーキ検査ローラーを使用したブレーキ試験では、タイヤの状態が劣化していても不合格とは評価されない。特許文献1に係る車両検査システムで考慮されているのは、検査の効率化であって、タイヤの劣化について正確な検査を行っているものではない。
本発明は、このような問題点を解決するためになされたものであり、自動車の安全性を適切に評価することが可能な自動車安全性評価システム及び自動車安全性評価方法を提供することを目的とする。
本発明の第1の態様における自動車安全性評価システムは、測定センサと、粘弾性特性算出部と、摩擦係数算出部と、安全性評価部を備える。測定センサは、自動車のタイヤの粘弾性特性に関する測定量を測定する。粘弾性特性算出部は、測定センサが測定した測定量を用いてタイヤの粘弾性特性を算出する。摩擦係数算出部は、粘弾性特性算出部が算出した粘弾性特性を用いてタイヤの摩擦係数を算出する。安全性評価部は、摩擦係数算出部が算出したタイヤの摩擦係数に基づいて自動車の安全性を評価する。
本発明の第2の態様における自動車安全性評価方法は、以下のステップ(a)〜(b)を備える。
(a)自動車のタイヤの粘弾性特性に関する測定量を測定する測定ステップ、
(b)測定した測定量を用いてタイヤの粘弾性特性を算出する粘弾性特性算出ステップ、
(c)算出した粘弾性特性を用いてタイヤの摩擦係数を算出する摩擦係数算出ステップ、及び
(d)算出した前記タイヤの前記摩擦係数に基づいて前記自動車の安全性を評価する評価ステップ。
以上の通り、本発明においては、自動車の安全性を評価するために、検出した自動車のタイヤの粘弾性特性に基づいてタイヤの摩擦係数を算出している。タイヤの摩擦係数の低下は安全性の低下に直結し、事故の確率を高めるものと考えられるため、自動車の安全性の適切な評価ができる。
本発明により、自動車の安全性を適切に評価することが可能な自動車安全性評価システム及び自動車安全性評価方法を提供することができる。
実施の形態1にかかる自動車安全性評価システムの構成例を示したブロック図である。 実施の形態1にかかる測定センサ及び粘弾性特性算出部の構成例を示したブロック図である。 実施の形態1において粘弾性特性を算出する方法を説明した図である。 実施の形態1において粘弾性特性を算出する方法を説明した図である。 実施の形態1にかかる摩擦係数算出部の構成例を示したブロック図である。 実施の形態1にかかる安全性評価部の構成例を示したブロック図である。 実施の形態1における自動車安全性評価システムの処理の一例を示したフローチャートである。 実施の形態1における自動車安全性評価システムの使用例1を示した図である。 実施の形態1における自動車安全性評価システムの各部の配置例1を示した上面図である。 実施の形態1における自動車安全性評価システムの各部の配置例2を示した上面図である。 実施の形態1におけるブレーキテスターをXの切断面で切断した断面図である。
以下、図面を参照して本発明の実施の形態について説明する。なお、様々な処理を行う機能ブロックとして以下の図に記載されたシステムの各要素は、ハードウェア的には、メモリやその他のIC(Integrated Circuit)等の回路で構成することができ、ソフトウェア的には、メモリにロードされたプログラムなどによって実現することができる。
[実施の形態1]
図1は、実施の形態1にかかる自動車安全性評価システム1の構成例を示したブロック図である。自動車安全性評価システム1は、測定センサ10と粘弾性特性算出部11と摩擦係数算出部12と安全性評価部13を備える。
測定センサ10は、安全性評価の対象となる自動車について、タイヤの粘弾性特性に関する測定量を測定する。なお、測定するタイヤは、自動車が備える複数(例えば4つ)のタイヤのうち、複数のタイヤでもよく、任意の1つのタイヤでもよい。また、測定する箇所は、タイヤのどの部分でもよい。ただし、摩擦劣化を正確に判断するには、タイヤのトレッド部を測定するのがより好適である。粘弾性特性算出部11は、測定センサ10が測定した測定量を用いて、タイヤの粘弾性特性を算出する。測定センサ10は、所定の場所に固定されていてもよく、また、任意の場所に移動可能なプローブ状であってもよい。
図2は、測定センサ10及び粘弾性特性算出部11の構成例を示したブロック図である。測定センサ10は、音波信号発生部20と接触部21を備える。音波信号発生部20は、タイヤTの粘弾性特性を算出するための入射音波の電気信号を発生させて接触部21に出力する。また、音波信号発生部20は、接触部21が取得した反射音波の電気信号を受信し、受信した電気信号を粘弾性特性算出部11に出力する。接触部21は、自動車のタイヤTに接触し、音波信号発生部20が発生した入射音波をタイヤTに放射するとともに、入射音波がタイヤTに反射されて生じた反射音波(測定量)を取得する。
音波信号発生部20は、詳細には、駆動波形発生器22と方向整合器23と高周波増幅器24を有する。以下、各部について説明する。
駆動波形発生器22は、粘弾性特性算出部11からの音波の放射指示に応じて、タイヤTに放射する音波を生成させるための電気信号(駆動波形)を生成し、生成した電気信号を方向整合器23に出力する。タイヤTに放射する音波の具体例としては、パルス状の音波や、所定の周波数成分を含むような音波が挙げられる。さらに、駆動波形発生器22は、上述の電気信号を生成して出力する場合、生成した電気信号の出力タイミングを示すトリガ信号を高周波増幅器24に出力する。
方向整合器23は、駆動波形発生器22、高周波増幅器24及びトランスデューサ25に接続されている。方向整合器23は、駆動波形発生器22から受信した電気信号をトランスデューサ25に出力するとともに、トランスデューサ25から供給された電気信号を高周波増幅器24に出力する。ここで方向整合器23は、駆動波形発生器22から出力された電気信号が高周波増幅器24に出力されないように信号の伝送方向を調節している。
高周波増幅器24は、方向整合器23を介して受信したトランスデューサ25からの電気信号における高周波成分を所定の増幅率で増幅する。そして、高周波増幅器24は、増幅後の電気信号を粘弾性特性算出部11の時間データメモリ部28に出力する。高周波増幅器24が増幅する電気信号中の高周波成分には、粘弾性特性を算出するのに必要となる測定量が含まれている。なお、高周波増幅器24は、駆動波形発生器22からトリガ信号を受信後、トランスデューサ25から供給される電気信号の受信を開始する。これにより、高周波増幅器24は、タイヤTの粘弾性特性の測定を行わない期間、動作を行わない。そのため、高周波増幅器24の不要な動作を抑制することができる。
次に、接触部21について説明する。接触部21は、詳細には、トランスデューサ25と遅延材26と接触センサ27を有する。以下、各部について説明する。
トランスデューサ25は、例えば圧電素子により構成される。トランスデューサ25は、遅延材26と接触するように取付けられている。トランスデューサ25は、方向整合器23と接続されており、駆動波形発生器22から方向整合器23を介して電気信号が供給されると、この電気信号を音波に変換する。変換された音波は、遅延材26を介してタイヤTに放射(入射)される。さらに、トランスデューサ25は、遅延材26を介してタイヤTからの反射音波(入射音波がタイヤTで反射されて生じる音波)を受信すると、その反射音波を電気信号に変換し、その電気信号を方向整合器23を介して高周波増幅器24に出力する。
以上から、駆動波形発生器22、方向整合器23及びトランスデューサ25は、タイヤTに入射音波を出力する放射部として機能し、方向整合器23、高周波増幅器24及びトランスデューサ25は、入射音波がタイヤTで反射されて生じる反射音波を受信する受信部として機能するといえる。このような構成は、非破壊検査(超音波)でよく使われている。
遅延材26は、一方の面がトランスデューサ25と密着しており、一方の面と対向する他方の面は、タイヤTと接触するように設けられている。このような配置により、遅延材26は、トランスデューサ25から入射された入射音波をタイヤTに伝搬させるとともに、入射音波がタイヤTで反射されて生じる反射音波をトランスデューサ25に伝搬させることができる。遅延材26においては、その伝搬長さによって音波の到達時間を遅延させることで、トランスデューサ25が入射音波を放射してから反射音波を受信するまでの時間を長くすることができる。このため、トランスデューサ25が入射音波を放射している間に、トランスデューサ25が反射音波を受信することを回避することができる。
接触センサ27は、遅延材26へのタイヤTの接触を検出し、検出信号を演算部30に出力する。例えば、遅延材26が路面に設けられている場合には、接触センサ27は遅延材26のすぐ近くに設けられている。
次に、粘弾性特性算出部11について説明する。粘弾性特性算出部11は、詳細には、時間データメモリ部28と基準値記憶部29と演算部30を有する。以下、各部について説明する。
時間データメモリ部28には、測定センサ10の高周波増幅器24から供給された反射音波の電気信号の時間波形が、予め定められた周期で格納される。なお、時間データメモリ部28は、演算部30の制御によって、時間波形を格納する周期を変更することができる。
基準値記憶部29は、タイヤTの粘弾性特性を算出するのに必要な基準値を予め格納している。この基準値は、粘弾性特性の検出対象となる周波数における、振幅値および位相のデータである。基準値の詳細については後述する。基準値記憶部29に格納された基準値は、演算部30により読みだされる。
演算部30は、測定センサ10のデータ測定処理を制御するとともに、測定センサ10の測定結果により取得した反射音波に基づいて、タイヤTの粘弾性特性を算出する。
具体的には、演算部30は、接触センサ27から検出信号を受信すると、タイヤTが測定センサ10の遅延材26に接触したと判定して、駆動波形発生器22に対し、音波の放射指示を出力する。上述の通り、駆動波形発生器22は放射指示に応じて、タイヤTに放射する音波を生成させるための電気信号を生成し、方向整合器23に出力する。このようにして、演算部30は、タイヤTの遅延材26の接触をトリガとして、測定センサ10の測定を開始させる。
測定センサ10がタイヤTの測定を実施し、時間データメモリ部28に反射音波の時間波形データが格納されると、演算部30はそのデータを読み出す。演算部30は、例えばFFT(Fast Fourier Transformation)処理のような周波数領域での波形解析処理を行ない、検出対象となる周波数における振幅値および位相を取得する。なお、検出対象となる周波数は、1つであってもよいし、複数であってもよい。次に、演算部30は、基準値記憶部29に格納されている基準値を読み出し、その基準値と、時間データメモリ部28に格納された反射音波の検出対象となる周波数における振幅値及び位相とに基づいて、タイヤTの粘弾性特性を算出する。
<粘弾性特性の算出方法>
次に、測定センサ10及び粘弾性特性算出部11が実行するタイヤTの粘弾性特性の算出について説明する。この算出方法としては、測定センサ10が入射音波をタイヤTへ放射し、その入射音波がタイヤTの表面で反射されて生じる反射音波に基づいて粘弾性特性算出部11が粘弾性特性(特に損失正接)を測定する、表面反射法が用いられている(例えば、特許文献2参照)。
図3A及び図3Bは、この表面反射法によって粘弾性特性を算出する方法を説明した図である。図3Aは、基準値を取得する際の入射音波の反射状況を示した図面であり、図3Bは、タイヤTの粘弾性特性を算出する際の入射音波の反射状況を示した図面である。なお、以下の説明では、測定センサ10のトランスデューサ25から放射される入射音波の伝搬特性を表す音響インピーダンスを用いる。
まず、図3Aを参照して、基準値について説明する。基準値は、遅延材26において、トランスデューサ25が接触している面と反対側の面がタイヤTと接触していない場合の、測定対象となる周波数における位相及び振幅値である。このとき、入射音波は、遅延材26の端と空気との境界面で反射される。入射音波および反射音波の周波数をfとすると、遅延材26の音響インピーダンスは、周波数fの関数であるZ(f)と表すことができる。同様に、空気中の音響インピーダンスも、周波数fの関数であるZ(f)と表すことができる。ここで、音響インピーダンスZ(f)とZ(f)は複素数の値である。
遅延材26と空気中との境界面における入射音波の反射率RAR(f)は
AR(f)=(Z(f)−Z(f))/(Z(f)+Z(f))・・・(1)
となる。このとき、任意の周波数fにおいてZ(f)はZ(f)に比較して十分小さいため、式(1)から、反射率RAR(f)=−1となる。つまり、遅延材26と空気中との境界面においては、入射音波が全反射する。
以下の説明においては、トランスデューサ25に入射する反射音波の式をa(f)exp(iθ(f))と表す。iは虚数単位、a(f)は対象とする周波数における実数の振幅値であり、θ(f)は0以上の実数であって各周波数における位相を表す。測定センサ10から遅延材26を介してタイヤTに放射される入射音波の式は、
(f)exp(iθ(f))×RAR(f)=−a(f)exp(iθ(f))・・・(2)
となる。従って、式(2)に示す入射音波がタイヤTに放射されるとみなすことができる。基準値記憶部29には、基準値として、式(2)における振幅a(f)及び位相θ(f)が予め格納されている。この基準値は、予め測定をすることにより取得される。
次に、図3Bを参照して、タイヤTの粘弾性特性の算出について説明する。タイヤTの粘弾性特性を算出する場合には、遅延材26がタイヤTと密着した状態で、駆動波形発生器22の電気信号により、トランスデューサ25から図3Aと同一の入射音波が放射される。トランスデューサ25は、遅延材26とタイヤTとの境界面において反射される反射音波を受信し、高周波増幅器24は、その反射音波の電気信号における高周波成分を増幅する。演算部30は、この反射音波を、基準値記憶部29に格納された基準値と比較することにより、タイヤTの損失正接を算出する。
ここで、周波数fの関数であるタイヤTの音響インピーダンスをZ(f)とすると、遅延材26とタイヤTとの境界面における入射音波の反射率RRT(f)は、
RT(f)=(Z(f)−Z(f))/(Z(f)+Z(f))・・・(3)
となる。式(3)から、Z(f)は次のように表される。
(f)=Z(f)×(1+RRT(f))/(1−RRT(f))・・・(4)
以下の説明においては、トランスデューサ25に入射する反射音波の式をa(f)exp(iθ(f))と表す。iは虚数単位、a(f)は対象とする周波数における実数の振幅値であり、θ(f)は0以上の実数であって各周波数における位相を表す。式(2)における基準値より、反射音波の式は
a(f)exp(iθ(f))=−a(f)exp(iθ(f))×RRT(f)・・・(5)
と表される。式(5)から、入射音波の反射率RRT(f)は
RT(f)=−(a(f)/a(f))×exp(i(θ(f)−θ(f))・・・(6)
と表される。ここで、式(4)に式(6)を代入することにより、Z(f)は以下のように得られる。
(f)=Z(f)×(1−(a(f)/a(f))×exp(i(θ(f)−θ(f)))/(1+(a(f)/a(f))×exp(i(θ(f)−θ(f)))・・・(7)
ここで、周波数fの関数であるタイヤTの貯蔵弾性率及び損失弾性率を、それぞれE’(f)及び損失弾性率E”(f)とする。このとき、E’(f)及びE”(f)と、タイヤTの音響インピーダンスZ(f)及び密度ρとの間には、次の関係が成り立つ。
E’+iE”(f)=Z(f)/ρ・・・(8)
式(7)を式(8)に代入し、実数成分と虚数成分とを分離することにより、損失正接tanδ(f)は、次のように算出される。
tanδ(f)=E”/E’={4×(a(f)/a(f))×(1−(a(f)/
(f)))×sin(θ(f)−θ(f))}/{(1−(a(f)/a(f))−4×(a(f)/a(f))×sin(θ(f)−θ(f))}・・・(9)
なお、貯蔵弾性率E’(f)及び損失弾性率E”(f)は、それぞれ次のように算出される。
E’(f)=Re[Z(f)/ρ]=(Z(f)/ρ)×{(1−(a(f)/a(f))−4(a(f)/a(f))×sin(θ(f)−θ(f))}/{1+2(a(f)/a(f))cos(θ(f)−θ(f))+(a(f)/a(f))・・・(10)
E”(f)=Im[Z(f)/ρ]=(Z(f)/ρ)×{4(a(f)/a(f))×(1−(a(f)/a(f)))sin(θ(f)−θ(f))}/{1+2(a(f)/a(f))cos(θ(f)−θ(f))+(a(f)/a(f))・・・(11)
ここで、Re[Z(f)/ρ]はZ(f)/ρの実数成分であり、Im[Z(f)/ρ]はZ(f)/ρの虚数成分である。
式(9)〜(11)の通り、貯蔵弾性率E’(f)、損失弾性率E”(f)及び損失正接tanδ(f)は、いずれもa(f)、θ(f)を基準とする{a(f)/a(f)}、{θ(f)−θ(f)}で定義される。そのため、振幅a(f)及び位相特性θ(f)を基準値として、タイヤTの測定時において取得される反射音波の電気信号のデータと比較することにより、タイヤTの粘弾性特性(特に損失正接)を測定できる。また、上述の通り、タイヤTの損失正接は周波数に依存する。そのため、測定センサ10は、複数の周波数成分毎に損失正接を導出してもよい。また、高い周波数における損失正接を算出する必要がある場合には、入射音波として、超音波がトランスデューサ25から供給されてもよい。
以下、図1に戻って、自動車安全性評価システム1の説明を続ける。摩擦係数算出部12は、粘弾性特性算出部11が算出したタイヤTの粘弾性特性を用いて、タイヤTの摩擦係数を算出する。例えば、周波数fの関数であるタイヤTの摩擦係数μ(f)は、上述の損失正接tanδ(f)及び貯蔵弾性率E’(f)を用いて、
μ(f)=α×E’(f)×tanδ(f)+β・・・(12)
と表される。α(>0)及びβはタイヤの種類(例えばタイヤの材質)によって変化する固有の定数であり、nは所定の実数である(例えばn=−1/3)。なお、摩擦係数μ(f)を求める数式は、式(12)ではない、tanδ(f)を用いた他の多項式や高次式であってもよい。この摩擦係数μ(f)を求めることにより、路面の状態に依存しない、タイヤ固有のグリップ力の大小を検出することができる。なお、定数α及びβは、予め実験等により取得される値である。特に、定数α及びtanδ(f)は、降雨時(wet時)において、摩擦係数との相関が大きい。wet時の摩擦係数の大小が事故率と密接な関係があることは言うまでもない。
図4は、摩擦係数算出部12の構成例を示したブロック図である。摩擦係数算出部12は、詳細には、定数記憶部31と算出部32を有する。定数記憶部31には、上述のα及びβが格納されている。算出部32は、定数記憶部31に格納された定数α及びβを用いて、粘弾性特性算出部11が算出した損失正接tanδ及び貯蔵弾性率E’に基づき、式(12)からタイヤTの摩擦係数μ(f)を算出する。
図1に示す安全性評価部13は、摩擦係数算出部12が算出したタイヤTの摩擦係数に基づいて、対象となる自動車の安全性を評価する。タイヤTの摩擦係数が小さい値になるほど、自動車が急停止しにくくなるため、危険を回避しにくくなる。従って、安全性評価部13は、タイヤTの摩擦係数が小さい値になるほど、安全性を低く評価する。また、安全性評価部13は、タイヤTの摩擦係数が所定の閾値以下になった場合に、安全性が不合格であると評価してもよい。
図5は、安全性評価部13の構成例を示したブロック図である。安全性評価部13は、詳細には、評価値テーブル33と決定部34を有する。評価値テーブルには、タイヤの摩擦係数と、自動車の安全性の評価とを対応付けたテーブルが格納されている。決定部34は、摩擦係数算出部12が算出したタイヤTの摩擦係数に基づいて評価値テーブル33を参照し、その摩擦係数における評価値を取得することにより、対象となる自動車の安全性を評価する。評価値は、例えば、「良い」「及第」「悪い」の三段階がある。「悪い」評価値は、評価されたタイヤの摩擦係数が低下しているため、タイヤの買い替えが奨励される評価値である。
なお、タイヤは、タイヤの大きさ、メーカーや型番、用いられる自動車の種類によって、同じ摩擦係数でも安全性の度合いが変わることがある。そのため、評価値テーブル33には、タイヤの種類に応じて、異なる評価値テーブルが格納されてもよい。この評価値テーブルは、予め各種類のタイヤの摩擦係数を測定することにより取得される。安全性評価部13にタイヤの種類を示す情報が入力されたとき、決定部34はそのタイヤに応じた評価値テーブルを選択し、安全性の評価を行う。
図6は、自動車安全性評価システム1の処理の一例を示したフローチャートである。以下、図6を用いて、自動車安全性評価システム1の全体処理について説明する。
まず、演算部30は、接触センサ27から、タイヤTが接触したことを示す検出信号を受信したか否かを判定する(ステップS1)。検出信号を受信していない場合には(ステップS1のNo)、演算部30は、測定センサ10に測定処理を実行させず、再度ステップS1の判定処理を行う。
演算部30が検出信号を受信した場合には(ステップS1のYes)、演算部30は駆動波形発生器22に対し、音波を放射させる指示を出力する。駆動波形発生器22は、その指示に応じて、タイヤTに放射する音波を生成させるための電気信号を生成し、方向整合器23を介してトランスデューサ25に出力する。トランスデューサ25は、供給された電気信号を入射音波に変換し、遅延材26を介してタイヤTに放射する(ステップS2)。
トランスデューサ25は、遅延材26を介してタイヤTからの反射音波を受信すると、その反射音波を電気信号に変換し、変換後の電気信号を方向整合器23を介して高周波増幅器24に出力する(ステップS3)。高周波増幅器24は、供給された電気信号に含まれる高周波成分を増幅し、増幅した電気信号を時間データメモリ部28に出力する。
演算部30は時間データメモリ部28に格納されたデータを読み出し、周波数領域における波形解析処理を行ない、検出対象となる周波数における振幅値および位相を取得する(ステップS4)。次に、演算部30は、基準値記憶部29に格納されている基準値を読み出す。演算部30は、その基準値と、時間データメモリ部28に格納された反射音波の検出対象となる周波数における振幅値及び位相とに基づいて、タイヤTの粘弾性特性を算出する(ステップS5)。この算出方法の詳細は上述の通りである。
摩擦係数算出部12は、粘弾性特性算出部11が算出したタイヤTの粘弾性特性を用いて、タイヤTの摩擦係数を算出する(ステップS6)。安全性評価部13は、摩擦係数算出部12が算出したタイヤTの摩擦係数に基づいて、対象となる自動車の安全性を評価する(ステップS7)。
このように、本発明では、自動車の安全性を評価するために、検出した自動車のタイヤの粘弾性特性に基づいてタイヤの摩擦係数を算出している。タイヤの摩擦係数の低下は安全性の低下に直結し、事故の確率を高めるとともに損害を大きくするものと考えられるため、本発明を利用することにより、自動車の安全性をより正確に評価することができる。例えば、運転中に不意の危険が生じた場合に、ブレーキによる停止が危険回避に間に合うかどうかを示すといった、自動車の安全性を評価することができる。さらに、検査工程も、自動車のタイヤにセンサを接触させるだけでよいため、単純で手間がかからずに済む。また、タイヤの摩擦係数が低下した(タイヤの特性が劣化した)ことが判定された場合には、自動車のユーザはタイヤを交換する(特に、タイヤを買い替える)ことが想定される。そのため、自動車の安全性の向上を図ることができるほか、タイヤの販売が促進されることも見込まれる。
以下、自動車安全性評価システム1の使用例について説明する。
[使用例1]
図7は、自動車安全性評価システム1の使用例1を示した図である。使用例1では、図1に示した測定センサ10が測定装置100に配置されており、粘弾性特性算出部11、摩擦係数算出部12及び安全性評価部13がコンピュータ200に配置されている。測定装置100及びコンピュータ200は、車両検査場に設けられ、自動車の車両検査に用いられている。換言すれば、自動車安全性評価システム1は、車両検査を行う車両検査システムに組み込まれている。測定装置100は車両検査場内の路面Sに固定して配置され、コンピュータ200は、測定装置100と離れた位置に配置されている。なお、測定装置100は、路面Sに埋め込まれていてもよいし、路面S上に段差として立設されていてもよい。測定装置100は、コンピュータ200と接続されている。
図7において、測定装置100は測定装置100aと測定装置100bの2個が図示されている。測定装置100aは自動車の前輪のタイヤの粘弾性特性に関する測定量を測定し、測定装置100bは自動車の後輪のタイヤの粘弾性特性に関する測定量を測定する。なお、測定装置100a及び100b以外の測定装置が設けられていてもよい。例えば、測定装置100は、普通自動車のタイヤの個数に対応して4個設けられてもよい。また、図7では、前後方向に1つずつ測定装置100を設けているが、左右方向に1つずつ測定装置100を設けてもよい。
コンピュータ200の安全性評価部13は、摩擦係数算出部12が算出したタイヤの摩擦係数が所定の閾値以下である場合には、自動車の車両検査におけるタイヤの摩擦係数の項目について、不合格と評価する。つまり、安全性評価部13は、自動車の車両検査を不合格と評価する。また、安全性評価部13は、摩擦係数算出部12が算出したタイヤの摩擦係数が所定の閾値を超えている場合には、自動車の車両検査におけるタイヤの摩擦係数の項目について、合格と評価する。これらの評価結果は、コンピュータ200に接続されたディスプレイに表示されるようにしてもよい。
なお、式(12)にて示した通り、タイヤの摩擦係数μを正確に算出するためには、タイヤの種類に依存する定数α、β及びtanδ、E’を正確に決定することが望ましい。ここで、タイヤの種類は、自動車の種類に対応して変化する。例えば、タイヤの材質は、タイヤの大きさに依存して変化すると考えられる。つまり、自動車の大きさが異なる場合には、タイヤの材質が異なる(例えば、普通自動車と、トラック等の大型車ではタイヤの材質が異なる。)。また、タイヤのメーカーや型番によっても、タイヤの材質は異なっている。そのため、タイヤの摩擦係数μを算出するためには、タイヤの用途、メーカー、型番といったタイヤの種類の情報がコンピュータ200に正しく入力されることが望ましい。
例えば、ユーザはコンピュータ200に接続された入力装置からタイヤの種類を入力するようにしてもよい。この入力装置はコンピュータ200に、入力されたタイヤの種類の情報を出力する。コンピュータ200の定数記憶部31(図4参照)には、タイヤの種類に対応付けられた定数α及びβの組が、タイヤの種類の数だけ格納される。算出部32は、入力装置300から出力されたタイヤの種類の情報に応じて、対応する定数α及びβを選択し、選択した定数α及びβと、粘弾性特性算出部11が算出したtanδ及びE’とを用いて、タイヤの摩擦係数μを算出する。このようにして、タイヤの種類に応じた定数を正しく決定することができる。
また、安全性評価部13において評価に用いる所定の閾値は、自動車の大きさ、タイヤのメーカーや型番によって異なる値であってもよい。上述の通り、タイヤはその種類によって、同じ摩擦係数でも安全性の度合いが変わりうるためである。例えば、自動車のユーザは、検査対象となる自動車の大きさ、タイヤのメーカーや型番を確認し、その自動車の特性情報をコンピュータ200に入力する。評価値テーブル33には、自動車の特性情報とそれに対応する所定の閾値が格納されており、決定部34は入力された特性情報に応じて、用いる所定の閾値を選択する。安全性評価部13は、選択した閾値を用いて、検査項目の合格・不合格を評価する。
次に、使用例1における測定装置100の配置例について説明する。なお、以下に示すように、車両検査の対象となる自動車1台に対し、測定装置100は複数設けられていてもよい。
[配置例1]
図8は、測定装置100の配置例1を示した上面図である。検査コースC1及びC2は、車両検査システムにおいてサイドスリップ検査を行う際に自動車が通過する直線状のコースである。検査コースC1は、自動車の左側のタイヤが移動するコースであり、検査コースC2は、自動車の右側のタイヤが移動するコースである。なお、自動車は、図8における後方から前方に移動する。そして、検査コースC1上には測定装置100cが埋め込まれ、検査コースC2上には測定装置100dが埋め込まれている。つまり、配置例1では、自動車の左右方向に1つずつ測定装置100が埋め込まれている。
サイドスリップ検査は、自動車が平坦な路面において直進する際に、左右方向にどの程度スリップするかを検査するものである。この検査において、自動車は、検査コースC1及びC2を直進するように移動する。そのため、検査コースC1に測定装置100cを埋め込み、検査コースC2に測定装置100dを埋め込むことによって、自動車の左タイヤは自動的に測定装置100cの上を通り、右タイヤは自動的に測定装置100dの上を通る。このように、自動車が通過する経路の軌道上に測定装置100を埋め込むことによって、タイヤの粘弾性特性を確実に測定することができる。
なお、測定装置100cは、最初に自動車の左前輪のタイヤの粘弾性特性に関する測定量を測定し、その後自動車の左後輪のタイヤの粘弾性特性に関する測定量を測定する。例えば、測定装置100cは、測定した順番に基づいて、測定したタイヤが左前輪か左後輪かを識別し、コンピュータ200に送信する。測定装置100dも、同様の識別を行う。
粘弾性特性算出部11は、測定装置100c及び100dが測定した測定量を用いて、タイヤ毎の粘弾性特性を算出する。摩擦係数算出部12は、粘弾性特性算出部11が算出した粘弾性特性を用いて、タイヤ毎の摩擦係数を算出する。安全性評価部13は、タイヤの摩擦係数が所定の閾値以下であるか否かを、タイヤ毎に評価する。摩擦係数が所定の閾値以下になったタイヤが1つでもある場合には、安全性評価部13は、自動車の車両検査におけるタイヤの摩擦係数の項目について、不合格と評価する。安全性評価部13は、いずれの位置のタイヤが不合格と評価されたかについて、コンピュータ200に接続されたディスプレイ(表示部)に表示してもよい。これにより、ユーザは、自動車のどのタイヤを交換すれば検査に合格できるかを知ることができる。また、全てのタイヤについて、摩擦係数が所定の閾値を超えている場合には、安全性評価部13は、車両検査におけるタイヤの摩擦係数の項目を合格と評価し、その旨をディスプレイに表示してもよい。
[配置例2]
図9は、測定装置100の各部の配置例2を示した上面図である。図9では、車両検査システムにおける検査スペースSのブレーキテスターB1〜B4に、それぞれ測定装置100e〜100hが設けられている。ブレーキテスターB1〜B4は、上部に自動車のタイヤを配置させることにより自動車のブレーキ検査を行う装置であり、自動車のタイヤに対応する数だけ設けられている。図9では、ブレーキテスターは、一般的な自動車のタイヤの数に対応して4つ設けられている。
検査スペースSには、図9に示す後方から前方に自動車が進入する。ブレーキのテストの際、ブレーキテスターB1の上に自動車の左前輪のタイヤが配置され、ブレーキテスターB2の上には右前輪のタイヤが配置される。また、ブレーキテスターB3の上には自動車の左後輪のタイヤが配置され、ブレーキテスターB4の上には右後輪のタイヤが配置される。
ブレーキテスターB1は、前ローラーRF1と後ローラーRB1と昇降部L1を有する。前ローラーRF1は、左前輪タイヤの前部と接触し、回転自在な構成を有する。後ローラーRB1は、左前輪タイヤの後部と接触し、回転自在な構成を有する。つまり、前ローラーRF1と後ローラーRB1とは、タイヤの周方向に沿って異なる位置でトレッドと接触する。なお、タイヤの周方向とは、タイヤの回転軸を中心軸とする周回方向をいう。換言すれば、後ローラーRB1は、タイヤの周方向において前ローラーRF1と異なる位置に配置される。
昇降部L1は、前ローラーRF1と後ローラーRB1との間において、タイヤのトレッドと接触可能に配置されている。昇降部L1の幅は、前ローラーRF1及び後ローラーRB1の幅よりも狭い。なお、ブレーキテスターに一般的に設けられるその他の部品については、説明を省略する。
図10は、図9に示したブレーキテスターB1をXの切断面で切断した断面図である。なお、図面は適宜簡略化されて記載されている。前ローラーRF1は、自動車のタイヤの前部に接触し、後ローラーRB1は、自動車のタイヤの後部に接触する。そして、タイヤTが通常地面と接触する部分には、測定装置100eが接触する。
前ローラーRF1及び後ローラーRB1は、図示しないモータに接続されており、モータの駆動に応じて回転する。ここで、前ローラーRF1は、タイヤの回転軸A0と平行な回転軸A1を中心に回転可能である。また、後ローラーRB1は、タイヤの回転軸A0と平行な回転軸A2を中心に回転可能である。前ローラーRF1及び後ローラーRB1はタイヤのトレッドに接触するため、前ローラーRF1及び後ローラーRB1が回転することにより、ブレーキテスターB1上に位置するタイヤを回転させることができる。なお、タイヤの回転軸A0、前ローラーRF1の回転軸A1及び後ローラーRB1の回転軸A2は、図10の紙面に対して垂直な方向(図9では左右方向)に延びている。
昇降部L1は、図10での上下方向に移動することが可能である。昇降部L1は、最初は下降した状態にある。このとき、ブレーキテスターB1の上にタイヤが停止しても、昇降部L1はタイヤと接触しない。昇降部L1が上昇した状態では、昇降部L1はタイヤの下部(通常路面に接触する箇所)と接触する。昇降部L1の上部には、測定装置100eが設けられている。そのため、測定装置100eは、上昇した状態において、タイヤの下部と接触する。この状態で、測定装置100eはタイヤの粘弾性特性に関する測定量を測定する。昇降部L1〜L4は、コンピュータ200により上昇及び移動の制御がなされる。
図9において、ブレーキテスターB2は、前ローラーRF2と後ローラーRB2と昇降部L2を有し、ブレーキテスターB3は、前ローラーRF3と後ローラーRB3と昇降部L2を有し、ブレーキテスターB4は、前ローラーRF4と後ローラーRB4と昇降部L4を有する。これらのブレーキテスターB2〜B4は、ブレーキテスターB1と同様の構成を有しているため、説明を省略する。
以下、測定装置100e〜100hのタイヤの測定方法について説明する。自動車は、図9の後方から検査スペースSに進入し、自動車のそれぞれのタイヤはブレーキテスターB1〜B4の上に停止する。どのタイヤがどのブレーキテスターBの上に停止するかは、上述の通りである。そして、ブレーキテスターB1〜B4の昇降部L1〜L4は、最初の下降した状態から上昇した状態に移行する。このとき、ブレーキテスターBの測定装置100e〜100hは、それぞれのタイヤの下部と接触する。そして、4つの測定装置100e〜100hは、自動車のタイヤの粘弾性特性に関する測定量を測定する。粘弾性特性算出部11は、測定装置100cが測定した測定量を用いて、それぞれのタイヤの粘弾性特性を算出する。摩擦係数算出部12は、粘弾性特性算出部11が算出した粘弾性特性を用いて、それぞれのタイヤの摩擦係数を算出する。安全性評価部13は、タイヤの摩擦係数が所定の閾値以下であるか否かを、タイヤ毎に評価する。この処理の詳細は配置例1と同様である。
昇降部L1〜L4は、測定装置100e〜100hがタイヤの粘弾性特性に関する測定量を測定した後、位置を下降する。これは、ブレーキテストの際、測定装置100e〜100hがタイヤに接触しないようにするための処置である。その後、ブレーキテスターB1〜B4は、自動車のブレーキ検査を実行する。
なお、ブレーキテスターB1〜B4が自動車のブレーキ検査を実行した後に、測定装置100e〜100hがタイヤの粘弾性特性に関する測定量を測定してもよい。
以上に示した通り、配置例1及び2において自動車安全性評価システム1は、車両検査の工程において、他の検査項目の検査と並行してタイヤの粘弾性特性を検出する。つまり、タイヤの摩擦係数の検査を、従来の車両検査の工程に組込むことができる。このため、タイヤの摩擦係数の検査を他の検査項目の検査と独立に行う場合と比較して、車両検査にかかる時間を削減することができる。また、車両検査においてタイヤの摩擦係数に基づくタイヤの安全性を評価することができるので、車両検査の質を向上させることができる。
なお、配置例1において、測定装置100c及び100dが埋め込まれているのは、サイドスリップ検査の検査コースに限られず、車両検査場において自動車が通過する場所(自動車の移動経路の軌道上)であってもよい。また、配置例2では、ブレーキテスターBにローラーが2つ取付けられている場合について説明した。しかし、ブレーキテスターBに取付けられているローラーは3つ以上であってもよい。この場合でも、昇降部Lは、配置例2と同様、ローラーとローラーとの間に設けられる。測定装置100の測定方法は上述の通りである。また、測定装置100が設けられる個数は4つに限られず、検出対象の自動車のタイヤの数に応じた数だけ設けられてもよい。
配置例2において、測定装置100e〜100hは、ブレーキテスターBではなく、車両検査場における自動車のその他の停車位置に設けられていてもよい。例えば、測定装置100e〜100hは、複数のローラーを有するスピードメータのテスターに設けられていてもよい。この場合、測定装置100e〜100hは、スピードメータの検査の前又は後にタイヤの粘弾性特性に関する測定量を測定する。
[使用例2]
使用例1では、車両検査場に自動車安全性評価システム1が設けられる例について説明した。使用例2では、ガソリンスタンドに自動車安全性評価システム1が設けられる例について説明する。なお、使用例2に設けられる自動車安全性評価システム1の図面は、図7の通りである。
測定センサ10は、自動車がガソリンスタンドで停止する位置に設けられている。例えば、測定センサ10は、給油の際に自動車の4つのタイヤが止まる位置にそれぞれ埋め込まれていてもよい。この4つの測定センサ10は、測定対象となる自動車への給油中に、自動車のタイヤの粘弾性特性に関する測定量を測定する。例えば、測定センサ10は、自動車への給油の開始をトリガとして、タイヤの測定を開始してもよい。粘弾性特性算出部11、摩擦係数算出部12及び安全性評価部13の処理は上述の通りである。そして、コンピュータ200は、自動車への給油が終了した後、安全性評価部13が評価した自動車の安全性の評価結果を、コンピュータ200が備えるディスプレイ(表示部)に表示させる。そのため、安全性が評価された後、ユーザはディスプレイを見ることにより、すぐに評価結果を確認することができる。
使用例2では、ユーザが行く頻度が車両検査場よりも高いと考えられるガソリンスタンドに測定装置100を設けることにより、自動車安全性評価システム1が実効的にタイヤの安全性を評価することができる。また、タイヤの安全性が低下していることをユーザがより早期に認識することができるため、劣化したタイヤを早期に交換する(例えば買い替える)ことが想定される。従って、自動車の安全性をより向上させることができるほか、タイヤの販売がより促進されることも見込まれる。自動車安全性評価システム1が設けられたガソリンスタンドで安全性の評価を確認後、ユーザはそのガソリンスタンドでタイヤ交換をすることが想定されるためである。さらに、給油中にタイヤの測定がなされるため、ユーザはタイヤ測定のための時間を別に設ける必要がない。そのため、タイヤ測定に関するユーザの手間を省くことができる。
なお、使用例2において自動車安全性評価システム1が設けられるのは、ガソリンスタンドに限られず、タイヤ等の自動車部品販売店、自動車整備工場等といった、タイヤの販売等が可能なその他の場所であってもよい。その他、使用例2では、使用例1と同様の構成上の変形を行うことが可能である。
[使用例3]
使用例2では、ガソリンスタンドに自動車安全性評価システム1が設けられる例について説明した。しかし、自動車安全性評価システム1は、ガソリンスタンドに限らず、自動車のユーザが日常的に行くその他の場所に設けられてもよい。使用例3では、測定装置100を駐車場に設ける場合について説明する。この駐車場は、公共用の駐車場でもよいし、コンビニエンスストア、スーパーマーケット、自動車販売店、タイヤ等の自動車部品販売店、自動車整備工場といった店舗の利用者向けの駐車場であってもよい。コンピュータ200は、例えば駐車場を提供する店舗内に設けられる。
使用例3において、安全性評価部13の評価結果は、タイヤの検出が終了した自動車が駐車場から退場する際にユーザに通知されてもよい。例えば、駐車場を管理するコンピュータ200は、測定装置100と、測定装置100が設けられた駐車場の番号(位置)とを、対応付けて記憶していてもよい。コンピュータ200に接続された駐車券回収機が駐車場出口で駐車券を回収する場合には、コンピュータ200は、回収された駐車券に記載された駐車場の番号に対応する測定装置100を特定する。そして、特定した測定装置100で測定されたタイヤについて安全性評価部13が評価した評価結果を、ディスプレイ等で自動車のユーザに通知する。
また、コンピュータ200は、自動車が駐車場に入場して駐車券を発券するとき、備え付けのカメラで撮影された自動車のナンバーを取得してもよい。このとき、コンピュータ200は、撮影された自動車のナンバーと、その自動車に発券した駐車場の番号を対応付けて記憶する。コンピュータ200は、自動車が退場する際にカメラで撮影された自動車のナンバーを取得し、撮影された自動車がどの駐車場の番号に駐車していたかを特定する。そして、その駐車場の番号に設けられた測定装置100で測定されたタイヤの評価結果を特定し、その評価結果をディスプレイ等で自動車のユーザに通知する。このようにして、コンピュータ200は、自動車のタイヤが劣化している場合に、ユーザにタイヤの購入を促すことができる。
なお、測定装置100は、駐車場以外にも、ハンバーガーショップ等のドライブスルーといった、自動車が停止する場所に設けられていてもよい。その他、使用例3では、使用例1−2と同様の構成上の変形を行うことが可能である。
[使用例4]
使用例4では、測定装置100とコンピュータ200とが無線で接続されている場合について説明する。ここでコンピュータ200は、測定装置100と離れた位置(例えば自動車の検査会社の社内)に配置されている。その他の自動車安全性評価システム1の構成は、使用例1と同様である。このとき、安全性評価部13の評価結果は、ユーザの端末に通知されてもよい。
例えば、コンピュータ200は、安全性評価部13の評価結果を記憶するとともに、予め連絡先として記憶している自動車のユーザ端末(例えばスマートフォン等の携帯端末)に、メールで評価結果を通知してもよい。また、コンピュータ200は、ユーザが所定のホームーページを端末で閲覧する際に、そのホームーページに評価結果を表示させてもよい。また、所定のタイヤ販売店に、ユーザの情報とそのユーザの自動車の評価結果を予め通知しておき、ユーザがタイヤ販売店に行った際に、ユーザの情報を確認した上で、自動車の評価結果を店がユーザに通知してもよい。さらに、自動車が自動運転を行う場合、コンピュータ200は、自動車の自動運転を行う自動運転装置・システムに対し、安全性評価部13の評価結果を出力してもよい。自動運転装置・システムは、その評価結果に応じて、自動車の運転を制御することができる。その他、使用例4では、使用例1−3と同様の構成上の変形を行うことが可能である。
[実施の形態2]
次に、本発明の実施の形態2について説明する。なお、以下の説明では、以前に説明した箇所については、適宜説明を省略する。
実施の形態1において、安全性評価部13は、タイヤの摩擦係数に基づいて自動車の安全性を評価した。しかしながら、安全性評価部13は、タイヤの摩擦係数だけでなくタイヤの制動距離のデータにも基づいて、自動車の安全性を評価してもよい。
自動車において、ABSが作動している状態(つまり、自動車が急制動を行う時)の制動距離が所定の値より大きい場合は、タイヤの特性が劣化していると推定できる。自動車が加速をする際に、ブレーキをかけてタイヤの空転を抑制するTCS(Traction Control System)が作動している場合にも、同様の推定が可能である。ABS又はTCS機能の作動頻度が所定の値より大きい場合にも、タイヤの特性が劣化していると推定できる。このため、安全性評価部13は、ABS又はTCS機能が作動している際のタイヤの制動距離、自動車がABS又はTCS機能を有している際のABS又はTCS機能の作動頻度のデータの少なくともいずれか1つを、測定したタイヤの摩擦係数と共に用いることにより、自動車の安全性を評価してもよい。なお、ABS又はTCS機能を有さない自動車でも、安全性評価部13は、ユーザがブレーキをかけた際のタイヤの制動距離のデータと、測定したタイヤの摩擦係数とを共に用いて、自動車の安全性を評価することができる。
さらに、旋回時の舵角や横滑り、車体に発生した横加速度Gに応じた自動車のスピード制御、ユーザが手動でブレーキをかけた際のタイヤロックの度合いにおいても、同様にタイヤ劣化の影響が生じる。このため、安全性評価部13は、自動車の旋回時の舵角、自動車の旋回時の横滑り、横加速度に応じたスピード制御又はユーザが手動でブレーキをかけた際のタイヤロックの度合いのデータの少なくともいずれか1つを、測定したタイヤの摩擦係数と共に用いることにより、自動車の安全性を評価してもよい。これにより、タイヤの劣化具合を、安全性評価により正確に反映させることができる。
さらに、自動車に搭載された加速度センサと車重センサの計測値(加速度及び車重の値)からタイヤに働く制動力や横加速度Gが計算できるので、この制動力や横加速度Gを用いて、制動距離や旋回による横滑りを正規化することにより、タイヤの基準状態からの劣化具合を精度高く判定できる。また、ネットワークで連携した自動車群のこれらの計測値を援用して統計処理することにより、ABS又はTCS機能が作動している際の制動距離、ABS又はTCS機能の作動頻度、及び旋回による横滑りの正規化がより実情を反映して行われるため、より的確な判定ができる。なお、ABS又はTCS機能が作動している際の制動距離、ABS又はTCS機能の作動頻度又は旋回による横滑りのデータは、安全性の評価に用いられるだけでなく、運転者に告知されてもよい。例えば、制動距離が所定の閾値以上の値となり、タイヤが劣化している場合には、安全性評価部13は、自動車のユーザ端末にタイヤが劣化していることを通知するアラームを出力することも可能である。
安全性評価部13は、安全性評価の対象となる自動車のタイヤの制動距離のデータを取得する。例えば、安全性評価の対象となる自動車には、ABS又はTCS機能を使用した時に制動距離を測定するセンサが車載装置として設けられ、そのセンサが安全性評価部13を有するコンピュータ200に制動距離のデータを送信してもよい。そして、安全性評価部13は、摩擦係数算出部12が算出したタイヤの摩擦係数が同じ場合、タイヤの制動距離が長くなるほど、安全性を低く評価する。
例えば、安全性評価部13には、タイヤの摩擦係数及び制動距離の値と、それに対応する安全性の評価値とがテーブルに格納されていてもよい。安全性評価部13は、タイヤの摩擦係数及び制動距離の値に基づいてテーブルを参照し、その摩擦係数及び制動距離の値に対応する安全性の評価値を選択することにより、対象となる自動車の安全性を評価することができる。なお、安全性評価部13は、自動車においてABSやTCSが作動している際のタイヤの制動距離ではなく、ユーザが手動でブレーキをかけた際のタイヤの制動距離に基づいて自動車の安全性を評価してもよい。
[実施の形態3]
実施の形態3では、測定センサ10が測定するタイヤの測定箇所について特定する。自動車の特性に応じて、1つのタイヤにおいて特に劣化しやすい箇所が存在する。例えば、前輪タイヤにおいては、ショルダー部(タイヤにおけるトレッドパターンの両端部)が摩耗しやすく、後輪タイヤにおいては、トレッドパターンのセンター部が摩耗しやすい。そのため、摩耗しやすいそれらの箇所に測定センサ10を接触させ、粘弾性特性の測定を行うことにより、上述と同様、自動車の安全度をより正確に評価できると考えられる。なお、摩耗しやすい自動車のタイヤ及びタイヤの箇所は、ユーザの運転の特性等に応じて異なることも考えられる。そのような場合には、特に摩耗した箇所(又は摩耗が生じやすいと推定される箇所)に測定センサ10を接触させ、測定を行ってもよい。
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、以上に示した実施の形態は、適宜組み合わせることができる。
測定センサ10は、所定の場所に固定された測定装置100に設けられていなくともよく、任意の場所に移動可能なプローブ状であってもよい。
接触部21において、接触センサ27の代わりに光センサが設けられてもよい。光センサは、タイヤによる遮光を検出することにより、タイヤが接触部21に接触したことを検出し、検出信号を演算部30に出力する。同様に、近接センサ等、タイヤが接触部21に接触したことを検出する他の種類のセンサが接触部21に設けられてもよい。
ただし、接触センサ27は必ずしも設けられなくてもよい。例えば、測定装置100に接続された入力端末にタイヤの粘弾性測定開始のスイッチが設けられ、自動車のユーザがそのスイッチを押したことをトリガとして、演算部30が測定センサ10の測定を開始してもよい。
タイヤの粘弾性特性の測定方法は、上述の音波反射法に限られず、他の方法を適用することもできる。例えば、音波をタイヤに透過させ、透過後の音波を測定する透過法を用いてもよい。透過された音波は、トランスデューサによって電気信号に変換されることにより、音波反射法と同様に測定される。
実施の形態1における使用例2〜4において、タイヤの評価結果がタイヤが劣化したことを示している場合(例えば、タイヤの摩擦係数が所定の閾値以下である場合)には、コンピュータ200は、評価結果とともに、タイヤの買い替えを勧めるコメントや、買い替える際のお勧めのタイヤ情報についてユーザに通知してもよい。
1 自動車安全性評価システム
10 測定センサ
11 粘弾性特性算出部
12 摩擦係数算出部
13 安全性評価部
20 音波信号発生部
21 接触部
22 駆動波形発生器
23 方向整合器
24 高周波増幅器
25 トランスデューサ
26 遅延材
27 接触センサ
28 時間データメモリ部
29 基準値記憶部
30 演算部
31 定数記憶部
32 算出部
33 評価値テーブル
34 決定部
100 測定装置
200 コンピュータ

Claims (9)

  1. 自動車のタイヤの粘弾性特性に関する測定量を測定する測定センサと、
    前記測定センサが測定した前記測定量を用いて前記タイヤの粘弾性特性を算出する粘弾性特性算出部と、
    前記粘弾性特性算出部が算出した前記粘弾性特性を用いてタイヤの摩擦係数を算出する摩擦係数算出部と、
    前記摩擦係数算出部が算出した前記タイヤの前記摩擦係数に基づいて前記自動車の安全性を評価する安全性評価部と、を備える自動車安全性評価システムであって、
    前記安全性評価部は、前記測定センサと離れた場所に位置するコンピュータに設けられ、
    前記自動車安全性評価システムは、自動車の車両検査システムに組み込まれており、
    前記車両検査システムは、
    前記自動車のタイヤのトレッドと接触し、前記タイヤの回転軸と平行な第1の回転軸を中心に回転可能な第1のローラーと、
    前記タイヤの周方向において前記第1のローラーと異なる位置に配置され、前記タイヤのトレッドと接触し、前記タイヤの回転軸と平行な第2の回転軸を中心に回転可能な第2のローラーと、を備え、
    前記測定センサは、前記第1のローラーと前記第2のローラーとの間において、前記タイヤのトレッドと接触可能に配置されている、
    自動車安全性評価システム
  2. 自動車のタイヤの粘弾性特性に関する測定量を測定する測定センサと、
    前記測定センサが測定した前記測定量を用いて前記タイヤの粘弾性特性を算出する粘弾性特性算出部と、
    前記粘弾性特性算出部が算出した前記粘弾性特性を用いてタイヤの摩擦係数を算出する摩擦係数算出部と、
    前記摩擦係数算出部が算出した前記タイヤの前記摩擦係数に基づいて前記自動車の安全性を評価する安全性評価部と、を備え、
    前記安全性評価部は、前記自動車でABS又はTCS機能が作動している際の前記自動車の制動距離、又は前記自動車の前記ABS又はTCS機能の作動頻度の少なくともいずれか1つのデータを、前記タイヤの前記摩擦係数と共に用いて前記自動車の安全性を評価する、
    自動車安全性評価システム。
  3. 前記安全性評価部は、前記タイヤの前記摩擦係数が所定の閾値以下である場合に、前記自動車の安全性を不合格と評価する、
    請求項1または2に記載の自動車安全性評価システム。
  4. 前記測定センサは、前記自動車が停止又は通過する場所に設けられ、
    前記安全性評価部は、前記測定センサと離れた場所に位置するコンピュータに設けられる、
    請求項2に記載の自動車安全性評価システム。
  5. 前記自動車安全性評価システムは、自動車の車両検査に用いられ、前記測定センサは、前記車両検査における自動車の移動経路の軌道上に埋め込まれている、
    請求項に記載の自動車安全性評価システム。
  6. 前記自動車安全性評価システムは、ガソリンスタンドに設けられると共に、前記安全性評価部が評価した前記自動車の安全性の評価結果を表示する表示部をさらに備え、
    前記測定センサは、前記ガソリンスタンドにおいて自動車が停止する場所に設けられ、前記自動車への給油中に前記自動車のタイヤの粘弾性特性に関する測定量を測定し、
    前記自動車への給油後、前記自動車安全性評価システムは前記自動車の安全性の評価結果を前記表示部に表示させる、
    請求項に記載の自動車安全性評価システム。
  7. 前記測定センサは、
    前記タイヤに入射音波を放射する放射部と、
    前記放射部が放射した前記入射音波が前記タイヤで反射されて生じる反射音波を受信する受信部と、を有し、
    前記粘弾性特性算出部は、前記受信部が受信した前記反射音波に基づいて前記タイヤの粘弾性特性を算出する、
    請求項1ないし6のいずれか1項に記載の自動車安全性評価システム。
  8. 前記安全性評価部は、前記タイヤの制動距離、前記自動車の旋回時の舵角、前記自動車の旋回時の横滑り、前記自動車の横加速度に応じたスピード制御、又は前記自動車においてブレーキをかけた際のタイヤのロック度合いの少なくともいずれか1つのデータを、前記タイヤの前記摩擦係数と共に用いて前記自動車の安全性を評価する、
    請求項1に記載の自動車安全性評価システム。
  9. 自動車のタイヤの粘弾性特性に関する測定量を測定する測定ステップと、
    測定した前記測定量を用いて前記タイヤの粘弾性特性を算出する粘弾性特性算出ステップと、
    算出した前記粘弾性特性を用いてタイヤの摩擦係数を算出する摩擦係数算出ステップと、
    算出した前記タイヤの前記摩擦係数に基づいて前記自動車の安全性を評価する評価ステップと、を備え
    前記評価ステップにおいて、前記自動車でABS又はTCS機能が作動している際の前記自動車の制動距離、又は前記自動車の前記ABS又はTCS機能の作動頻度の少なくともいずれか1つのデータを、前記タイヤの前記摩擦係数と共に用いて前記自動車の安全性を評価する、
    自動車安全性評価方法。
JP2014142269A 2014-07-10 2014-07-10 自動車安全性評価システム及び自動車安全性評価方法 Active JP5999605B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014142269A JP5999605B2 (ja) 2014-07-10 2014-07-10 自動車安全性評価システム及び自動車安全性評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014142269A JP5999605B2 (ja) 2014-07-10 2014-07-10 自動車安全性評価システム及び自動車安全性評価方法

Publications (2)

Publication Number Publication Date
JP2016017905A JP2016017905A (ja) 2016-02-01
JP5999605B2 true JP5999605B2 (ja) 2016-09-28

Family

ID=55233209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014142269A Active JP5999605B2 (ja) 2014-07-10 2014-07-10 自動車安全性評価システム及び自動車安全性評価方法

Country Status (1)

Country Link
JP (1) JP5999605B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107478723A (zh) * 2017-07-21 2017-12-15 无锡海斯凯尔医学技术有限公司 介质粘弹性的测量方法和装置
JP7095285B2 (ja) * 2018-01-10 2022-07-05 住友ゴム工業株式会社 タイヤの振動特性の評価方法
JP7095508B2 (ja) * 2018-09-10 2022-07-05 株式会社デンソー タイヤシステム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843808A (ja) * 1981-09-11 1983-03-14 Tokyo Tatsuno Co Ltd タイヤの異常検出器
US5396817A (en) * 1991-11-29 1995-03-14 Exxon Research And Engineering Co. Tire inflation and velocity sensor
JP2007047130A (ja) * 2005-08-12 2007-02-22 Omron Corp 摩擦特性測定装置およびそれに向けられるタイヤ
JP5281865B2 (ja) * 2008-10-02 2013-09-04 住友ゴム工業株式会社 タイヤ性能の予測方法
JP5075965B2 (ja) * 2010-10-25 2012-11-21 住友ゴム工業株式会社 摩擦係数の予測方法

Also Published As

Publication number Publication date
JP2016017905A (ja) 2016-02-01

Similar Documents

Publication Publication Date Title
US10591376B2 (en) Method for detecting and signalling the under-inflation state of a tire
JP4091083B2 (ja) タイヤ内部故障検知装置およびタイヤ内部故障検知方法
US9188439B2 (en) Method and device for determining distances on a vehicle
US6545750B2 (en) System for determining the dynamic orientation of a vehicle wheel plane
US20170161840A1 (en) Automobile insurance premium determination system and automobile insurance premium determination method
KR101469714B1 (ko) 타이어 편마모 점검 시스템 및 그 방법
JP5999605B2 (ja) 自動車安全性評価システム及び自動車安全性評価方法
JP2015031693A (ja) レーダセンサ使用による対象物特定方法
WO2016006233A1 (ja) 運転制御装置、自動車及び運転制御方法
CN105973993B (zh) 用于确定在玻璃体处的损伤的空间上的位置的方法和装置
CN114324577A (zh) 使用声音检测车身异常
JP7057449B2 (ja) タイヤ損傷検出システム及び方法
CN104321614B (zh) 用于测定测量站的至少一条路轨的定向的方法以及用于执行该方法的设备
KR102414822B1 (ko) 차량용 센서 장치
KR20160013682A (ko) 타이어의 결함 검출 장치 및 방법
KR102369170B1 (ko) 기체 내부의 이물질 검출 방법 및 기체 내부의 이물질 검출 시스템
KR102518652B1 (ko) 간접식 타이어 압력 모니터링 시스템 및 방법
CN116997818A (zh) 用于操作用来监测机动车辆的底部区域的超声波传感器设备的方法、计算机程序产品、计算机可读存储介质和超声波传感器设备
KR101756348B1 (ko) 간접 방식 타이어 공기압 관리 시스템의 시험 장치 및 방법
CA3016090A1 (en) Measurement methods and devices for vehicle tires
EP4450947A1 (en) Method and apparatus for diagnosing a wheel bearing
KR20110058444A (ko) 타이어의 주행 상태 검출 장치 및 그 방법
US20210183176A1 (en) System and method for inspecting vehicle pull
JP2004196032A (ja) タイヤの異常温度警報装置
KR101496013B1 (ko) 휴대용 플랫스팟 측정 시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160318

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160318

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 5999605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250