JP5997671B2 - Air conditioning control method and air conditioning control system - Google Patents

Air conditioning control method and air conditioning control system Download PDF

Info

Publication number
JP5997671B2
JP5997671B2 JP2013182265A JP2013182265A JP5997671B2 JP 5997671 B2 JP5997671 B2 JP 5997671B2 JP 2013182265 A JP2013182265 A JP 2013182265A JP 2013182265 A JP2013182265 A JP 2013182265A JP 5997671 B2 JP5997671 B2 JP 5997671B2
Authority
JP
Japan
Prior art keywords
temperature
ict device
air conditioner
air
ict
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013182265A
Other languages
Japanese (ja)
Other versions
JP2015050378A (en
Inventor
中村 雅之
雅之 中村
林 俊宏
俊宏 林
橋本 英明
英明 橋本
圭輔 関口
圭輔 関口
秀樹 月元
秀樹 月元
達也 中田
達也 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
NTT Facilities Inc
Original Assignee
Nippon Telegraph and Telephone Corp
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, NTT Facilities Inc filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013182265A priority Critical patent/JP5997671B2/en
Publication of JP2015050378A publication Critical patent/JP2015050378A/en
Application granted granted Critical
Publication of JP5997671B2 publication Critical patent/JP5997671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、空調制御方法および空調制御システムに関し、より詳細には、サーバ室、通信機械室やデータセンタなど複数のICT装置が設置された室内の空調を制御する空調制御方法および空調制御システムに関する。   The present invention relates to an air conditioning control method and an air conditioning control system, and more particularly to an air conditioning control method and an air conditioning control system for controlling air conditioning in a room in which a plurality of ICT devices such as a server room, a communication machine room, and a data center are installed. .

従来から、複数のICT(Information and Communication Technology:情報通信技術)装置が設置されたサーバ室、通信機械室やデータセンタではICT装置を冷却するための冷房の空調機を制御する空調制御システムが存在する。従来の冷房の空調システムは、空調機の設定温度を十分低く設定したり、ICT装置付近の温度を計測し、一定の温度に保たれるよう空調機の設定温度を制御したりしている。   Conventionally, there is an air conditioning control system for controlling a cooling air conditioner for cooling an ICT device in a server room, a communication machine room or a data center where a plurality of ICT (Information and Communication Technology) devices are installed. To do. In the conventional cooling air conditioning system, the set temperature of the air conditioner is set sufficiently low, the temperature in the vicinity of the ICT device is measured, and the set temperature of the air conditioner is controlled so as to be maintained at a constant temperature.

従来の冷房の空調システムにおいて、一部のICT装置に負荷がかかりICT装置の排気熱がたまることなどを回避するため、冷房の空調機でICT装置を必要以上に冷却していた。しかしながら冷房の空調機の設定温度を必要以上に低くすると空調機の消費電力が増大する。そこで空調機の消費電力を最小に抑えつつ、空調機の設定温度を適切に制御することが求められていた。   In the conventional cooling air conditioning system, in order to avoid a load on some ICT devices and the accumulation of exhaust heat of the ICT devices, the ICT devices are cooled more than necessary by the cooling air conditioners. However, if the set temperature of the air conditioner for cooling is lowered more than necessary, the power consumption of the air conditioner increases. Accordingly, it has been required to appropriately control the set temperature of the air conditioner while minimizing the power consumption of the air conditioner.

朝康博、中島忠克、沖津潤、加藤猛、齊藤達也、頭島康博著、「環境配慮型データセンタ向けIT連係空調最適化制御方式」、電子情報通信学会論文誌、B Vol.J95-B、No.3、pp.397-404、2012年Asayasu Hiroshi, Nakajima Tadakatsu, Okitsu Jun, Kato Takeshi, Saito Tatsuya, Toshima Yasuhiro, “IT-linked air conditioning optimization control method for environment-friendly data center”, IEICE Transactions, B Vol.J95-B, No.3, pp.397-404, 2012 一森哲男著、「数理計画法―最適化の手法」、共立出版、p.4、1994年8月Tetsuo Ichimori, "Mathematical programming-Optimization technique", Kyoritsu Shuppan, p. 4, August 1994

例えば、非特許文献1に記載の従来技術は、空調機の吸込温度・吹出温度とICT装置の吸気温度・排気温度との関係をモデリングしたシミュレータを用いて、ICT装置の吸気温度の温度条件を満足しながら空調機の消費電力の総和を最小化するように、空調機の吹出温度を設定し、省エネを図っている。空調室とは、例えば、複数のICT装置と、複数のICT装置が収納されるラックとが設置されたサーバ室、および通信機械室をいう。   For example, the prior art described in Non-Patent Document 1 uses a simulator that models the relationship between the intake temperature / blowout temperature of an air conditioner and the intake air temperature / exhaust temperature of an ICT device, to determine the temperature condition of the intake temperature of the ICT device. In order to minimize the total power consumption of the air conditioner while satisfying, the air temperature of the air conditioner is set to save energy. The air-conditioned room refers to, for example, a server room in which a plurality of ICT devices and a rack in which a plurality of ICT devices are stored, and a communication machine room.

非特許文献1に記載の空調制御方法では、シミュレータを用いて、空調機の消費電力を最小化するように空調機の設定温度を計算する。しかしながら、非特許文献1に記載の空調制御方法では、ICT装置の消費電力を考慮していないため、ICT装置の消費電力は増加しているか否か不明である。   In the air conditioning control method described in Non-Patent Document 1, a set temperature of the air conditioner is calculated using a simulator so as to minimize the power consumption of the air conditioner. However, in the air conditioning control method described in Non-Patent Document 1, since the power consumption of the ICT device is not considered, it is unclear whether the power consumption of the ICT device has increased.

通常は、冷房運転における空調機の設定温度を上げることによって空調機の消費電力は減少する。しかし空調機の設定温度が上昇することによって、ICT装置の吸込温度は上昇しICT装置の内部温度も上昇する。ICT装置に内蔵された冷却ファンは、ICT装置の内部温度の上昇に応じて稼動率が増加するため、冷却ファンの稼動率が増加すると、冷却ファンに使用される消費電力も増加する。よって、冷房運転の空調機の設定温度の上昇によって、ICT装置の消費電力は増加することになる。したがって、空調機の設定温度を上げることで空調機の消費電力は削減できても、ICT装置の消費電力は増加している可能性があるという問題があった。   Normally, the power consumption of the air conditioner is reduced by raising the set temperature of the air conditioner in the cooling operation. However, when the set temperature of the air conditioner rises, the suction temperature of the ICT device rises and the internal temperature of the ICT device also rises. Since the operating rate of the cooling fan built in the ICT device increases as the internal temperature of the ICT device increases, the power consumption used by the cooling fan increases as the operating rate of the cooling fan increases. Therefore, the power consumption of the ICT device increases as the set temperature of the air conditioner for cooling operation increases. Therefore, even if the power consumption of the air conditioner can be reduced by raising the set temperature of the air conditioner, there is a problem that the power consumption of the ICT device may increase.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、空調室を安全な温度に保つことができ、さらに空調機およびICT装置の省エネを実現するための、空調制御方法および空調制御システムを提供することにある。   The present invention has been made in view of such problems. The object of the present invention is to maintain an air-conditioning room at a safe temperature, and to achieve air-conditioning and ICT device energy saving. A control method and an air conditioning control system are provided.

上記課題を解決するための手段として、ICT装置と、前記ICT装置の温度を制御する空調機と、前記空調機および前記ICT装置の稼動・停止を制御する空調機・ICT装置制御装置とがネットワークで接続された空調・ICT装置制御システムにおいて、前記空調機の吹出温度を取得する手段と、前記空調機の消費電力を取得する手段と、前記空調機の吹出温度から前記ICT装置の吸込温度を推定する手段と、前記空調機の吹出温度から前記空調機の消費電力を推定する手段と、前記ICT装置の消費電力を取得する手段と、前記ICT装置の吸込温度から前記ICT装置の消費電力を推定する手段と、前記ICT装置の吸込温度の推定値が前記ICT装置の上限温度以下でかつ前記空調機の消費電力と前記ICT装置の消費電力との合計を最小にするように前記空調機の吹出温度および前記ICT装置の稼動・停止を決定する手段を有することを特徴とするものである。   As means for solving the above problems, an ICT device, an air conditioner for controlling the temperature of the ICT device, and an air conditioner and an ICT device control device for controlling the operation / stop of the air conditioner and the ICT device are networked. In the air-conditioning / ICT device control system connected in the above, the means for obtaining the blow-out temperature of the air-conditioner, the means for obtaining power consumption of the air-conditioner, and the suction temperature of the ICT device from the blow-off temperature of the air-conditioner A means for estimating, a means for estimating the power consumption of the air conditioner from the blowing temperature of the air conditioner, a means for obtaining the power consumption of the ICT apparatus, and the power consumption of the ICT apparatus from the suction temperature of the ICT apparatus. Means for estimating, an estimated value of the suction temperature of the ICT device is equal to or lower than an upper limit temperature of the ICT device, and power consumption of the air conditioner and power consumption of the ICT device It is characterized in that it comprises means for determining the operation and stop of the air temperature and the ICT device of the air conditioner so as to minimize the total.

本発明は、このような目的を達成するために、請求項1に記載の発明は、ICT装置の吸込温度が一定の温度を超えた場合に、前記ICT装置を冷却する空調機の予め設定された第1の吹出温度を、第2の吹出温度に変更するシステムによる空調制御方法であって、前記第1の吹出温度に基づいて、前記ICT装置の吸込温度を推定する第1の計算式を算定する第1のステップと、前記第1の吹出温度に基づいて、前記空調機の消費電力を推定する第2の計算式を算定する第2のステップと、前記ICT装置の吸込温度に基づいて、前記ICT装置の消費電力を推定する第3の計算式を算定する第3のステップと、前記空調機の消費電力および前記ICT装置の消費電力の合計値が最小となるように、前記第2の計算式および前記第3の計算式に基づいて算定される第1の条件式を目的関数とし、前記第1の計算式に前記第2の吹出温度を代入して得た値が第1の閾値以下とする第2の条件式を制約条件とする第4のステップと、前記目的関数および前記制約条件を用いる数理計画法により、前記第2の吹出温度を算出し、所定の負荷を処理するために必要な前記ICT装置の台数に基づいて、稼動する前記ICT装置を決定する第5のステップとを備えることを特徴とする。   In order to achieve such an object, the present invention according to claim 1 is a preset air conditioner that cools the ICT device when the suction temperature of the ICT device exceeds a certain temperature. An air conditioning control method by a system that changes the first blowing temperature to the second blowing temperature, and a first calculation formula for estimating the suction temperature of the ICT device based on the first blowing temperature is Based on the first step of calculating, the second step of calculating the second calculation formula for estimating the power consumption of the air conditioner based on the first blowing temperature, and the suction temperature of the ICT device A third step of calculating a third calculation formula for estimating the power consumption of the ICT device, and the second step so that the total value of the power consumption of the air conditioner and the power consumption of the ICT device is minimized. And the third calculation A second conditional expression in which the first conditional expression calculated based on the objective function is an objective function, and a value obtained by substituting the second blowing temperature into the first calculating expression is equal to or less than a first threshold value. According to the fourth step as the constraint condition and the mathematical function using the objective function and the constraint condition, the second blowing temperature is calculated, and the number of the ICT devices necessary for processing a predetermined load is obtained. And a fifth step of determining the ICT device to be operated.

以上説明したように、本発明によれば、空調室を安全な温度に保つことができ、さらに空調機およびICT装置の省エネを実現することが可能となる。   As described above, according to the present invention, the air conditioning room can be maintained at a safe temperature, and further, energy saving of the air conditioner and the ICT device can be realized.

本発明の一実施形態にかかる、空調制御システムを示す構成図である。It is a lineblock diagram showing an air-conditioning control system concerning one embodiment of the present invention. 本発明の一実施形態にかかる、空調機・ICT装置制御装置を示すブロック図である。It is a block diagram which shows the air conditioner and ICT apparatus control apparatus concerning one Embodiment of this invention. 本発明の一実施形態にかかる、空調制御方法を示すフローチャートである。It is a flowchart which shows the air-conditioning control method concerning one Embodiment of this invention.

以下、本発明の空調制御方法および空調制御システムについて実施形態を挙げ、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the air conditioning control method and the air conditioning control system of the present invention will be described in detail with reference to the drawings.

図1に本発明の一実施形態にかかる、空調制御システムの構成を示す。空調室1は、複数のICT装置2Iと、ICT装置2Iを冷却する複数の空調機3Aとを含む。ICT装置2Iの稼動および停止を制御し、各空調機3Aの吹出温度を制御する空調機・ICT装置制御装置4と、複数のICT装置2Iと、複数の空調機3Aとは、LAN(Local Area Network)などのネットワーク5で接続されている。 FIG. 1 shows a configuration of an air conditioning control system according to an embodiment of the present invention. The air conditioning room 1 includes a plurality of ICT devices 2I j and a plurality of air conditioners 3A i that cool the ICT devices 2I j . The air conditioner / ICT device control device 4 that controls the operation and stop of the ICT device 2I j and controls the blowing temperature of each air conditioner 3A i , the plurality of ICT devices 2I j, and the plurality of air conditioners 3A i are: They are connected by a network 5 such as a LAN (Local Area Network).

空調機3Aの吹出温度とは、空調機3Aの冷気の吹き出し口付近の温度である。空調機3Aの吹出温度は、空調機3Aの吹出し口付近に設置された温度センサによって測定される。空調機3Aの設定温度は、実測温度である吹出温度とは異なり、吹出温度の目標値である。実際に空調で設定できるのは吹出温度の目標値である設定温度であり、吹出温度が設定温度と等しくなるにはある程度の時間を要する。 The outlet temperature of the air conditioner 3A i, the temperature in the vicinity of outlet of the cold air of the air conditioner 3A i. Outlet temperature of the air conditioner 3A i is measured by installed temperature sensor near the air outlet of the air conditioner 3A i. Set temperature of the air conditioner 3A i is different from the air temperature is measured temperature, which is the target value of the air temperature. What can actually be set by air conditioning is a set temperature, which is a target value of the blowing temperature, and it takes a certain amount of time for the blowing temperature to be equal to the set temperature.

ICT装置2Iは、ICT装置2I,…ICT装置2I(j=1〜m,mは正の整数)を含む。ICT装置2Iは、ICT装置2Iの吸込温度を計測する温度センサ部を備える。ICT装置2Iは、例えば、サーバなどのIT機器や通信機器であり、サーバラックに収納されうる。 ICT device 2I j includes ICT device 2I 1 ,... ICT device 2I m (j = 1 to m , m is a positive integer). The ICT device 2I j includes a temperature sensor unit that measures the suction temperature of the ICT device 2I j . The ICT device 2I j is, for example, an IT device such as a server or a communication device, and can be stored in a server rack.

ICT装置2Iの吸込温度とは、ICT装置2I内に吸気される開口部付近の温度である。ICT装置2Iの吸込温度は、ICT装置2I内に吸気される開口部付近に設置された温度センサによって測定される。 The inlet temperature of the ICT device 2I j, which is the temperature of the vicinity of an opening to be sucked into the ICT device 2I j. Inlet temperature of the ICT device 2I j is measured by a temperature sensor installed in the vicinity of an opening to be sucked into the ICT device 2I j.

空調機3Aは、空調機3A,…空調機3A(i=1〜n,nは正の整数)を含む。空調機3Aは、例えば、室内機と室外機とからなる。図1では、空調機が空調室に含まれているが、空調機が空調室とは別の部屋に設けられ、ダクトを通じてICT装置に冷気を供給する態様でもよい。空調機3Aは、吹出温度を制御するための温度設定が可能であり、空調機3Aの吹出温度、消費電力を計測している。 The air conditioner 3A i includes air conditioners 3A 1 ,... 3A n (i = 1 to n, n is a positive integer). Air conditioner 3A i, for example, consists of an indoor unit and an outdoor unit. In FIG. 1, the air conditioner is included in the air conditioning room, but the air conditioner may be provided in a room different from the air conditioning room and supply cold air to the ICT apparatus through a duct. Air conditioner 3A i is capable of temperature setting for controlling the air temperature, measures the air temperature, the power consumption of the air conditioner 3A i.

空調機・ICT装置制御装置4は、SNMP(Simple Network Management Protocol)などを用いて各空調機3Aの吹出温度の情報、各空調機3Aの消費電力の情報、各ICT装置2Iの吸込温度の情報、各ICT装置2Iの消費電力の情報を収集したり、各空調機3Aの吹出温度を設定したりすることができる。また空調機・ICT装置制御装置4は、ICT装置2Iで処理すべき所定の負荷に応じて、どのICT装置2Iを稼動させるか、また、どのICT装置2Iを停止するかを決定する。 Air conditioner · ICT device controller 4, SNMP (Simple Network Management Protocol) outlet temperature information of each air conditioner 3A i by using a power consumption information for each of the air conditioners 3A i, suction of the ICT device 2I j Information on temperature and information on power consumption of each ICT device 2I j can be collected, and the blowout temperature of each air conditioner 3A i can be set. The air conditioner · ICT device controller 4 in response to a predetermined load to be processed in the ICT device 2I j, or to run any ICT device 2I j, also determines whether to stop any ICT device 2I j .

図2に本発明の一実施形態にかかる、空調機・ICT装置制御装置4のブロック図を示す。空調機・ICT装置制御装置4は、LAN経由で各空調機3Aから各空調機3Aの吹出温度の情報や各空調機3Aの消費電力の情報を収集する空調機情報取得部41と、各ICT装置2Iのセンサ部から各ICT装置2Iの吸込温度の情報および各ICT装置2Iの消費電力の情報を受信するICT装置情報取得部42と、各空調機3Aの吹出温度の情報、各空調機3Aの消費電力の情報、各ICT装置2Iの吸込温度の情報などを格納する記憶部43とを備える。また空調機・ICT装置制御装置4は、各ICT装置2Iの吸込温度の推定値を、後述する式から計算するICT装置吸込温度推定部44(第1の算定部)と、各空調機3Aの消費電力の推定値を、後述する式から計算する空調機消費電力推定部45(第2の算定部)と、各ICT装置2Iの消費電力の推定値を、後述する式から計算するICT装置消費電力推定部46(第3の算定部)とを備える。そして空調機・ICT装置制御装置4は、空調機吹出温度・ICT装置稼動停止設定部47を備える。空調機吹出温度・ICT装置稼動停止設定部47は、ICT装置に関する一定の温度条件を満足し、かつ各空調機3Aの消費電力の合計と各ICT装置2Iの消費電力の合計との和が最小となる空調機3Aの吹出温度を求める計算式を算定する条件式算定部471(第4の算定部)と、各空調機3Aの吹出温度を設定し、各ICT装置2Iの稼動および停止を制御する決定部472とを備える。 FIG. 2 is a block diagram of the air conditioner / ICT device control device 4 according to an embodiment of the present invention. Air conditioner · ICT device control device 4, the air conditioner information acquiring unit 41 that collects power consumption information of the air temperature information and each of the air conditioners 3A i of each air conditioner 3A i from each of the air conditioners 3A i via LAN , an ICT device information acquiring unit 42 receives information of the power consumption of the suction temperature information and the ICT device 2I j of each ICT device 2I j from the sensor unit of the ICT device 2I j, outlet temperature of each air conditioner 3A i comprising information, power consumption information for each of the air conditioners 3A i, and a storage unit 43 for storing such information for the suction temperature of the ICT device 2I j. In addition, the air conditioner / ICT device control device 4 includes an ICT device suction temperature estimation unit 44 (first calculation unit) that calculates an estimated value of the suction temperature of each ICT device 2I j from an expression described later, and each air conditioner 3A. i an estimate of power consumption, the air conditioner consumed power estimation unit 45 for calculating the later-described equation (second calculation unit), an estimate of the power consumption of each ICT device 2I j, calculated from below formula An ICT device power consumption estimation unit 46 (third calculation unit). The air conditioner / ICT device control device 4 includes an air conditioner outlet temperature / ICT device operation stop setting unit 47. The air conditioner outlet temperature / ICT device operation stop setting unit 47 satisfies a certain temperature condition regarding the ICT device, and is the sum of the total power consumption of each air conditioner 3A i and the total power consumption of each ICT device 2I j. There is set the condition calculation unit 471 to calculate the equation for determining the outlet temperature of the air conditioner 3A i to be the minimum (fourth calculation unit), an outlet temperature of each air conditioner 3A i, of each ICT device 2I j A determination unit 472 that controls operation and stoppage.

空調機情報取得部41は、LAN経由で各空調機3Aから各空調機3Aの吹出温度の情報や各空調機3Aの消費電力の情報を収集し、ICT装置情報取得部42は、LAN経由で各ICT装置2Iから各ICT装置2Iの吸込温度および各ICT装置2Iの消費電力の情報を収集する。各空調機3Aの吹出温度を変化させた時、各ICT装置2Iの吸込温度がどのようになるかを表わした関係式を次の(式1)(第1の計算式)に示す。
T=f(S1,S2,…Sn) j=1〜m (式1)
Air conditioner information acquisition unit 41 collects power consumption information of the air temperature information and each of the air conditioners 3A i of each air conditioner 3A i from each of the air conditioners 3A i via LAN, ICT device information acquisition unit 42, collecting power usage information of the suction temperature and the ICT device 2I j of each ICT device 2I j from each ICT device 2I j via the LAN. The following (Expression 1) (first calculation expression) shows a relational expression representing what the suction temperature of each ICT device 2I j will be when the blowout temperature of each air conditioner 3A i is changed.
T j = f j (S 1 , S 2, ... S n) j = 1~m ( Equation 1)

nは空調機3Aの台数、mはICT装置2Iの台数、TはICT装置2Iの吸込温度の推定値、S1,S2,…Snは空調機3Aの吹出温度(第1の吹出温度)、fは空調機3Aの吹出温度を変数とするICT装置2Iの吸込温度を表す関数である。ICT装置吸込温度推定部44は、各ICT装置2Iの吸込温度の推定値Tを(式1)から計算する。ICT装置2Iの吸込温度を表す関数fは、記憶部43に予め格納された学習データにより決定されていて、簡単な関数では、空調機3Aの吹出温度Siの一次式で与えることができる。 n is the number of air conditioners 3A i, m number of ICT device 2I j, T j is the estimated value of the suction temperature of the ICT device 2I j, S 1, S 2 , ... S n is outlet temperature of the air conditioner 3A i ( (First blowing temperature), f j is a function representing the suction temperature of the ICT device 2I j with the blowing temperature of the air conditioner 3A i as a variable. The ICT device suction temperature estimation unit 44 calculates an estimated value T j of the suction temperature of each ICT device 2I j from (Equation 1). The function f j representing the suction temperature of the ICT device 2I j is determined by the learning data stored in the storage unit 43 in advance, and is given by a linear expression of the blowout temperature S i of the air conditioner 3A i in a simple function. Can do.

関数fの具体例として一番簡単な形は、次の一次式(式2)で示される。
a1S1+a2S2+…+anSn (式2)
The simplest form of the function f j is shown by the following linear expression (Expression 2).
a 1 S 1 + a 2 S 2 +… + a n S n (Formula 2)

ai(i=1〜n,nは正の整数)はSiの正の係数で、係数aiの決定法は最小自乗法を用いる。 a i (i = 1 to n, n is a positive integer) is a positive coefficient of S i , and the method of determining the coefficient a i uses the least square method.

各空調機3Aの吹出温度を変化させると、ICT装置2Iの吸込温度も時間の経過とともに変化するため、時刻の異なる、各空調機3Aの吹出温度とICT装置2Iの吸込温度のデータの組を複数用意する。時刻の異なるデータの複数の組は、学習データとして記憶部43に格納される。 When the air outlet temperature of each air conditioner 3A i is changed, the suction temperature of the ICT device 2I j also changes with the passage of time, so that the air outlet temperature of each air conditioner 3A i and the air inlet temperature of the ICT device 2I j differ at different times. Prepare multiple sets of data. A plurality of sets of data having different times are stored in the storage unit 43 as learning data.

ICT装置2Iの吸込温度の実測値のデータからなるベクトルを次の(式3)に示す。
T=(T(1),T(2),…,T(k))t (式3)
It indicates a vector of data of measured values of the suction temperature of the ICT device 2I j the following (Equation 3).
T = (T j (1), T j (2), ..., T j (k)) t (Formula 3)

Tの括弧の中の数字はそれぞれ時刻(例えば、単位時間を10分ごととすると、1は10分、2は20分)を表し、tは転置を表す。 The numbers in parentheses of T j each represent time (for example, if the unit time is every 10 minutes, 1 represents 10 minutes, 2 represents 20 minutes), and t represents transposition.

さらに、各空調機3Aの吹出温度の実測値のデータからなる行列を次の(式4)に示す。 Further, it shows a matrix of data of measured values of air temperature of each air conditioner 3A i the following (Equation 4).

Figure 0005997671
Figure 0005997671

S1,S2,…Snの括弧の中の数字はそれぞれTの時刻と同じ時刻を表す。
係数aiを要素としたベクトルAを、
A=(a1,a2,…,an)t (式5)
とすると、
A=(St S)-1 St T (式6)
となる。(St S)-1は、St Sの逆行列を表す。(式3)から(式6)を用いて、各ICT装置2Iの係数a1,a2,…anを決定する。よって、ICT装置2Iの吸込温度のデータからなるベクトルTと、各空調機3Aの吹出温度のデータからなる行列Sとから、係数a1,a2,…,anを求めることができ、関数fおよび(式1)を決定することができる。
The numbers in parentheses of S 1 , S 2 ,... S n each represent the same time as the time of T j .
A vector A with coefficients a i as elements,
A = (a 1 , a 2 , ..., a n ) t (Formula 5)
Then,
A = (S t S) -1 S t T (Formula 6)
It becomes. (S t S) −1 represents an inverse matrix of S t S. Using equations (3) to (6), the coefficients a 1 , a 2 ,..., A n of the ICT devices 2I j are determined. Accordingly, the vector T consisting of data of the suction temperature of the ICT device 2I j, and a matrix S including data of air temperature of each air conditioner 3A i, coefficients a 1, a 2, ..., can be obtained a n , Functions f j and (Equation 1) can be determined.

ICT装置2Iの吸込温度は、空調機3Aの吹出温度と、ICT装置2Iを冷却するための冷気の吹出風量を変数とする式としてもよい。空調機3Aの吹出風量は空調機3Aの冷房能力(処理熱量)に比例して制御される場合がある。冷房能力とは、空調機を冷房運転したとき、室内から単位時間当たりに除去できる熱量(kW)をいう。よって、空調機3Aの設定温度を変更した後の空調機3Aの冷房能力は、空調機3Aの設定温度変更前の吹出風量と、空調機3Aの吸込温度と空調機3Aの吹出温度設定値から推定できる。従って、冷房能力の推定値から、空調機3Aの設定温度変更後の吹出風量を推定できる。空調機3Aの推定された冷房能力から空調機3Aの設定変更後の吹出風量を推定する場合、空調機情報取得部41は、各空調機3Aの吹出風量を取得し、ICT装置情報取得部42は、各ICT装置2Iの実際の吸込温度を取得する。 ICT suction temperature of the device 2I j includes a blowing temperature of the air conditioner 3A i, may be expression that the variable airflow volume of cooling air for cooling the ICT device 2I j. Airflow volume of the air conditioner 3A i is may be controlled in proportion to the cooling capacity of the air conditioner 3A i (processing heat). The cooling capacity refers to the amount of heat (kW) that can be removed from the room per unit time when the air conditioner is cooled. Therefore, the cooling capacity of the air conditioner 3A i after changing the set temperature of the air conditioner 3A i is, before the setting temperature change of the air conditioner 3A i and blowing air volume, the suction temperature and the air-conditioner 3A i of the air conditioner 3A i It can be estimated from the blowing temperature set value. Therefore, from the estimated value of the cooling ability can be estimated airflow volume after setting the temperature change of the air conditioner 3A i. When estimating the airflow volume after setting change of the air conditioner 3A i from estimated cooling capacity of the air conditioner 3A i, the air conditioner information obtaining unit 41 obtains the airflow volume of each of the air conditioners 3A i, ICT device information acquisition unit 42 acquires the actual suction temperature of the ICT device 2I j.

空調機情報取得部41で取得した各空調機3Aの吹出温度を用いて、空調機3Aの吹出温度を変化させた時の空調機3Aの消費電力を推定する関係式を次の(式7)(第2の計算式)に示す。
Pi=gi(Si) i=1〜n (式7)
Using the air temperature of each air conditioner 3A i acquired by the air conditioner information acquisition unit 41, the relational expression for estimating the power consumption of the air conditioner 3A i when the air temperature of the air conditioner 3A i is changed is as follows ( It is shown in Formula 7) (second calculation formula).
P i = g i (S i ) i = 1 to n (Expression 7)

Siは空調機3Aの吹出温度、Piは空調機3Aの消費電力の推定値、giは空調機3Aの吹出温度を変数とする空調機3Aの消費電力を表す関数である。空調機消費電力推定部45は、各空調機3Aの消費電力の推定値Piを(式7)から計算する。空調機3Aの消費電力を表す関数も、記憶部43に予め格納された学習データにより決定される。簡単な関数では、空調機3Aの吹出温度Siの一次式で与えることができ、より精度を高めるには二次式で与える。 S i is outlet temperature of the air conditioner 3A i, P i is the estimated value of the power consumption of the air conditioner 3A i, g i is a function which represents the power consumption of the air conditioner 3A i that the outlet temperature of the air conditioner 3A i as a variable is there. The air conditioner power consumption estimation unit 45 calculates an estimated value P i of the power consumption of each air conditioner 3A i from (Equation 7). A function representing the power consumption of the air conditioner 3A i is also determined by learning data stored in the storage unit 43 in advance. In a simple function, it can be given by a linear expression of the blowout temperature S i of the air conditioner 3A i , and is given by a quadratic expression for higher accuracy.

関数giの具体例として一番簡単な形は、次の一次式(式8)で示される。
b1Si+b2 (式8)
The simplest form of the function g i is shown by the following linear expression (Expression 8).
b 1 S i + b 2 (Formula 8)

b1はSiの負の係数、b2は正の定数で、係数b1および定数b2の決定法は最小自乗法を用いる。 b 1 is a negative coefficient of S i , b 2 is a positive constant, and the method of determining the coefficient b 1 and the constant b 2 uses the least square method.

空調機3Aの吹出温度Siを変化させると、空調機3Aの消費電力Piも時間の経過ともに変化するため、時刻の異なる、空調機3Aの吹出温度Siと空調機3Aの消費電力Piのデータの組を複数用意する。時刻の異なるデータの複数の組は、学習データとして記憶部43に格納される。 Varying the outlet temperature S i of the air conditioner 3A i, for changing the course both power consumption P i and time of the air conditioner 3A i, time different, blowing temperature S i and the air conditioner 3A i of the air conditioner 3A i a set of data of the power consumption P i of preparing a plurality. A plurality of sets of data having different times are stored in the storage unit 43 as learning data.

空調機3Aの消費電力の実測値のデータからなるベクトルを次の(式9)に示す。
P=(Pi(1),Pi(2),…,Pi(k))t (式9)
A vector composed of the data of the actually measured power consumption of the air conditioner 3A i is shown in the following (Equation 9).
P = (P i (1), P i (2), ..., P i (k)) t (Equation 9)

Piの括弧の中の数字はそれぞれ時刻(例えば、単位時間を10分ごととすると、1は10分、2は20分)を表し、tは転置を表す。 The numbers in parentheses of P i each represent time (for example, if the unit time is every 10 minutes, 1 represents 10 minutes, 2 represents 20 minutes), and t represents transposition.

さらに、空調機3Aの吹出温度の実測値のデータからなる行列を次の(式10)に示す。 Further, it shows a matrix of data of the actual measurement values of the air temperature of the air conditioner 3A i the following equation (10).

Figure 0005997671
Figure 0005997671

Siの括弧の中の数字はそれぞれPiの時刻と同じ時刻を表す。 Each of the numbers in the parentheses of the S i represents the same time as the time of P i.

係数b1および定数b2を要素としたベクトルBを、
B=(b1,b2)t (式11)
とすると、
B=(Ut U)-1 Ut P (式12)
となる。(Ut U)-1は、Ut Uの逆行列を表す。(式9)から(式12)を用いて、各空調機3Aについて、各空調機3Aの係数b1、定数b2を決定する。係数b1、定数b2が決定することで、(式8)が決定し、(式8)が決定することで、各空調機3Aの関数giおよび(式7)を決定することができる。
A vector B whose elements are coefficient b 1 and constant b 2 is
B = (b 1 , b 2 ) t (Formula 11)
Then,
B = (U t U) −1 U t P (Formula 12)
It becomes. (U t U) −1 represents an inverse matrix of U t U. Using the equation (9) (Equation 12), for each air conditioner 3A i, the coefficient b 1 of each of the air conditioners 3A i, determining the value of b 2. Coefficients b 1, by the constant b 2 is determined, to determine the equation (8) is determined, by (Equation 8) determines the function g i and (Equation 7) in each of the air conditioners 3A i it can.

空調機3Aの消費電力の推定方法は、空調機3Aの吹出温度と設定温度変更後の推定吹出風量を変数とする式としてもよい。空調機3Aの消費電力を空調機3Aの吹出温度と設定温度変更後の推定吹出風量とを用いて推定する場合、空調機情報取得部41は、各空調機3Aの吹出風量を取得する。 Estimation method of power consumption of the air conditioner 3A i may estimated airflow volume after air temperature and the set temperature change of the air conditioner 3A i as an expression whose variable. When estimating the power consumption of the air conditioner 3A i using the estimated airflow volume after air temperature and the set temperature change of the air conditioner 3A i, the air conditioner information obtaining unit 41 obtains the airflow volume of each of the air conditioners 3A i To do.

ICT装置情報取得部42で取得した各ICT装置2Iの吸込温度を用いて、ICT装置2Iの吸込温度を変化させた時のICT装置2Iの消費電力を推定する関係式を次の(式13)(第3の計算式)に示す。
Qj=hj(Tj) j=1〜m (式13)
Using the suction temperature of the ICT device 2I j acquired by ICT device information acquiring unit 42, ICT device 2I j of the equation for estimating the power consumption of the ICT device 2I j when the suction temperature was varied in the following ( This is shown in Equation 13) (third calculation equation).
Q j = h j (T j ) j = 1 to m (Formula 13)

QjはICT装置2Iの消費電力の推定値、hjはICT装置2Iの吸込温度Tjを変数とするICT装置2Iの消費電力を表す関数である。ICT装置消費電力推定部46は、各ICT装置2Iの消費電力の推定値Qjを(式13)から計算する。ICT装置2Iの消費電力を表す関数も、記憶部43に予め格納された学習データにより決定される。簡単な関数では、ICT装置2Iの吸込温度Tjの一次式で与えることができ、より精度を高めるには二次式で与える。 Q j is an estimated value of power consumption of the ICT device 2I j , and h j is a function representing the power consumption of the ICT device 2I j with the suction temperature T j of the ICT device 2I j as a variable. The ICT device power consumption estimation unit 46 calculates an estimated value Q j of the power consumption of each ICT device 2I j from (Equation 13). A function representing the power consumption of the ICT device 2I j is also determined by learning data stored in advance in the storage unit 43. In a simple function, it can be given by a linear expression of the suction temperature T j of the ICT device 2I j , and is given by a quadratic expression for higher accuracy.

関数hjの具体例として一番簡単な形は、次の一次式(式14)で示される。
d1Tj+d2 (式14)
The simplest form of the function h j is shown by the following linear expression (Expression 14).
d 1 T j + d 2 (Formula 14)

d1はTjの正の係数、d2は正の定数で、係数d1および定数d2の決定法は最小自乗法を用いる。 d 1 is a positive coefficient of T j , d 2 is a positive constant, and the method of determining the coefficient d 1 and the constant d 2 uses the least square method.

ICT装置2Iの吸込温度を変化させると、ICT装置2Iの消費電力も時間の経過ともに変化するため、時刻の異なる、ICT装置2Iの吸込温度とICT装置2Iの消費電力のデータの組を複数用意する。時刻の異なるデータの複数の組は、学習データとして記憶部43に格納される。 Varying the suction temperature of the ICT device 2I j, to change the course of both the power consumption time of the ICT device 2I j, time different, the power consumption of the suction temperature and ICT device 2I j of ICT device 2I j data Prepare multiple sets. A plurality of sets of data having different times are stored in the storage unit 43 as learning data.

ICT装置2Iの消費電力の実測値のデータからなるベクトルを次の(式15)に示す。
Q=(Qj(1),Qj(2),…,Qj(k))t (式15)
Indicates a vector of data of the actual measurement value of the power consumption of the ICT device 2I j the following equation (15).
Q = (Q j (1), Q j (2), ..., Q j (k)) t (Formula 15)

Qjの括弧の中の数字はそれぞれ時刻(例えば、単位時間を10分ごととすると、1は10分、2は20分)を表し、tは転置を表す。 The numbers in parentheses of Q j each represent time (for example, 1 is 10 minutes and 2 is 20 minutes if the unit time is every 10 minutes), and t represents transposition.

さらに、ICT装置2Iの吸込温度の実測値のデータからなる行列を次の(式16)に示す。 Further, it shows a matrix of data of measured values of the suction temperature of the ICT device 2I j the following equation (16).

Figure 0005997671
Figure 0005997671

Tjの括弧の中の数字はそれぞれQjの時刻と同じ時刻を表す。 The numbers in the parentheses of T j represent the same time as the time of Q j .

係数d1および定数d2を要素としたベクトルDを、
D=(d1,d2)t (式17)
とすると、
D=(Vt V)-1 Vt Q (式18)
となる。(Vt V)-1は、Vt Vの逆行列を表す。(式15)から(式18)を用いて、各ICT装置2Iについて、各ICT装置2Iの係数d1および定数d2を決定する。係数d1および定数d2を決定することで、(式14)が決定し、(式14)が決定することで各ICT装置2Iの関数hjおよび(式13)を決定することができる。
A vector D whose elements are coefficient d 1 and constant d 2 is
D = (d 1 , d 2 ) t (Formula 17)
Then,
D = (V t V) -1 V t Q (Formula 18)
It becomes. (V t V) −1 represents an inverse matrix of V t V. Using the equation (15) to (Equation 18) for each ICT device 2I j, determining the coefficients d 1 and the constant d 2 of each ICT device 2I j. By determining the coefficient d 1 and the constant d 2 , (Equation 14) is determined, and by (Equation 14), the function h j and (Equation 13) of each ICT device 2I j can be determined. .

空調機吹出温度・ICT装置稼動停止設定部47は、例えば、外気温が上昇したり、任意のICT装置2Iの負荷が増加し温度が上昇したりして、ICT装置2Iの吸込温度条件を逸脱した時、もとの温度条件を満足し、かつ各空調機3Aの消費電力の合計と各ICT装置2Iの消費電力の合計との和が最小となる空調機3Aの吹出温度を求める。空調機3Aの吹出温度を求める方法としては数理計画法を用いる。数理計画法は、任意の等式もしくは不等式で表される制約条件下で、任意の目的関数を最小化あるいは最大化する変数の組を求める手法である(例えば、非特許文献2を参照)。 Air conditioner blow temperature · ICT device operation stop setting unit 47, for example, outside temperature or rises, the temperature load is increased any ICT device 2I j is or raised, the suction temperature of the ICT device 2I j when deviating a satisfies the original temperature, and outlet temperature of the air conditioner 3A i the sum is minimum between the total power consumption of the total and the ICT device 2I j of the power consumption of each of the air conditioners 3A i Ask for. As a method for determining the outlet temperature of the air conditioner 3A i uses mathematical programming. Mathematical programming is a technique for obtaining a set of variables that minimizes or maximizes an arbitrary objective function under a constraint condition expressed by an arbitrary equality or inequality (see, for example, Non-Patent Document 2).

空調機3Aの吹出温度を求める方法として数理計画法を用いる場合、求める変数の組は各空調機3Aの吹出温度および各ICT装置2Iの稼動・停止状態を表す変数であり、最小化する目的関数は各空調機3Aの消費電力の合計と各ICT装置2Iの消費電力の合計の和である。目的関数を次の(式19)(第1の条件式)に示す。 When using a mathematical programming as a method for determining the outlet temperature of the air conditioner 3A i, set of variables to determine is a variable representing the operating-stop state of the air temperature and the ICT device 2I j of each of the air conditioners 3A i, minimizing the objective function is the sum of the total power consumption of the total and the ICT device 2I j power consumption of each of the air conditioners 3A i to. The objective function is shown in the following (formula 19) (first conditional formula).

Figure 0005997671
Figure 0005997671

rjはICT装置2Iの稼動・停止状態を表す変数であり、ICT装置2Iが稼動状態の場合を1とし、ICT装置2Iが停止状態の場合を0とする。S’iは、求める空調機3Aの吹出温度(第2の吹出温度)である。条件式算定部471は、(式3)、(式13)およびICT装置2Iの稼動・停止状態を表す変数rjに基づいて(式19)を算定する。ICT装置2Iが停止状態の場合、ICT装置2Iの消費電力は0である。(式19)でICT装置2Iの吸込温度Tjは(式1)により空調機3Aの吹出温度Siの関数である。(式19)のTjに(式1)を代入すると、次の(式20)となる。 r j is a variable representing the operating and stopping state of the ICT device 2I j, the case of ICT device 2I j is the operating state and 1, where ICT device 2I j is in the stopped state is 0. S ′ i is the required air outlet temperature (second air outlet temperature) 3A i . The conditional expression calculation unit 471 calculates (Expression 19) based on (Expression 3), (Expression 13) and the variable r j indicating the operating / stopped state of the ICT device 2I j . When the ICT device 2I j is in a stopped state, the power consumption of the ICT device 2I j is zero. In (Equation 19), the suction temperature T j of the ICT device 2I j is a function of the blowing temperature S i of the air conditioner 3A i according to (Equation 1). Substituting (Equation 1) into T j in (Equation 19) yields the following (Equation 20).

Figure 0005997671
Figure 0005997671

(式20)より、(式19)は各空調機3Aの吹出温度S’iと各ICT装置2Iの稼動・停止状態を表す変数rjの関数であることがわかる。 From (Equation 20), it can be seen that (Equation 19) is a function of the blowing temperature S ′ i of each air conditioner 3A i and the variable r j representing the operating / stopped state of each ICT device 2I j .

条件式算定部471はICT装置2Iの温度条件を表す不等式制約条件として、(式1)を用いて次の(式21)(第2の条件式)を算定する。
fj(S’1,S’2,…,S’n)≦T# j=1〜m (式21)
The conditional expression calculation unit 471 calculates the following (Expression 21) (second conditional expression) using (Expression 1) as an inequality constraint condition indicating the temperature condition of the ICT device 2I j .
f j (S ′ 1 , S ′ 2 ,..., S ′ n ) ≦ T # j = 1 to m (Formula 21)

T#はICT装置2Iの吸込温度の上限温度(第1の閾値)であり、ICT装置2Iの吸込温度が、上限温度T#を越えるとICT装置2Iの内部部品の故障の確率が高くなる。上限温度T#は、例えば27℃である。ICT装置2Iの内部部品とは、ハードディスクドライブ(HDD)、電源、メモリなどをいう。 T # is the maximum temperature of a suction temperature of the ICT device 2I j (first threshold value), the inlet temperature of the ICT device 2I j is the probability of failure of the internal components of the upper limit temperature T # exceeds the ICT device 2I j Get higher. The upper limit temperature T # is, for example, 27 ° C. The internal components of the ICT device 2I j are a hard disk drive (HDD), a power supply, a memory, and the like.

また、条件式算定部471は(式21)でICT装置2Iの稼動・停止状態を表す変数rjを考慮すると、ICT装置2Iの温度条件を表す不等式制約条件として、次の(式22)(第3の条件式)を算定してもよい。
fj(S’1,S’2,…,S’n)≦T#+W(1−rj) j=1〜m (式22)
In addition, the conditional expression calculation unit 471 considers the variable r j indicating the operating / stopped state of the ICT device 2I j in (Expression 21), and the following (Expression 22) is used as an inequality constraint condition indicating the temperature condition of the ICT device 2I j. ) (Third conditional expression) may be calculated.
f j (S ′ 1 , S ′ 2 ,..., S ′ n ) ≦ T # + W (1−r j ) j = 1 to m (Formula 22)

Wは十分大きな正の定数である。ICT装置2Iが稼動している場合、ICT装置2Iの稼動・停止状態を表す変数rjは、1となる。よって、(式22)の右辺第2項目は0となり右辺がT#となって、稼動しているICT装置2Iの吸込温度が上限温度T#以下でなければならないという制約条件となる。ICT装置2Iが停止している場合、ICT装置2Iの稼動・停止状態を表す変数rjが0となるので、(式22)の右辺第2項目は定数Wとなり右辺が(T#+W)(第2の閾値)となる。すなわち、停止しているICT装置2Iの吸込温度は本来の上限温度T#を超えてもよいことと同等になり、実質、停止しているICT装置2Iの上限温度に関する制約条件はなくなることになる。何故なら、ICT装置2Iが稼動している場合、ICT装置2Iの吸込温度が上限温度T#を超えるとICT装置2Iの内部部品の故障の確率は高くなるが、ICT装置2Iが停止している場合、ICT装置2Iの吸込温度が上限温度T#を超えてもICT装置2Iの内部部品の故障の確率はほとんどないためである。 W is a sufficiently large positive constant. If ICT device 2I j is running, the variable r j representing the operation-stopped state of the ICT device 2I j is 1. Therefore, the right side second term is made zero right side and T #, the constraint that the suction temperature of the ICT device 2I j running shall not exceed the upper limit temperature T # condition (Equation 22). When the ICT device 2I j is stopped, the variable r j indicating the operating / stopped state of the ICT device 2I j is 0, so the second item on the right side of (Equation 22) is a constant W and the right side is (T # + W) (second threshold). That is, the suction temperature of the stopped ICT device 2I j is equivalent to the fact that it may exceed the original upper limit temperature T # , and there is virtually no restriction on the upper limit temperature of the stopped ICT device 2I j. become. It is because, if the ICT device 2I j is operating, suction temperature of the ICT device 2I j is the higher the probability of failure of the internal components of the upper limit temperature T # exceeds the ICT device 2I j, ICT device 2I j is If it is stopped, the probability of failure of the internal components of the ICT device 2I j even suction temperature exceeds the upper limit temperature T # of ICT device 2I j is because little.

ICT装置2Iの稼動台数に関する制約条件は、次の(式23)で示される。 The constraint condition regarding the number of operating ICT devices 2I j is expressed by the following (Equation 23).

Figure 0005997671
Figure 0005997671

r#は所定の負荷の処理を実行するのに必要となるICT装置2Iの稼働台数である。また、総台数がm台のICT装置2Iの稼動停止する状態を表す変数rjの組み合わせRは次のように表される。
R=(r1,r2,…,rm) j=1〜m (式24)
r # is the number of operating ICT devices 2I j required to execute processing of a predetermined load. Further, a combination R of variables r j representing a state where the total number of m ICT devices 2I j is stopped is expressed as follows.
R = (r 1 , r 2 ,..., R m ) j = 1 to m (Formula 24)

条件式算定部471は、所定の負荷を処理するために必要なICT装置2Iの稼働台数r#を決定する。例えばICT装置2Iの総台数を(m=5)台として、所定の負荷を処理するために必要なICT装置2Iの稼働台数r#を3台とすると、ICT装置2Iの停止台数は2台となる。 Condition calculation unit 471 determines the operation number r # of ICT device 2I j required to handle the given load. For example the total number of ICT device 2I j as (m = 5) stand, when three of the operation number r # of ICT device 2I j required to process a predetermined load, stopping the number of ICT device 2I j is 2 units.

また、総台数が5台のICT装置2Iの稼動停止する状態を表す変数の組み合わせRは次の(式25)で表される。
R=(r1,r2,r3,r4,r5) (式25)
Further, a variable combination R representing a state in which the operation of the five ICT devices 2I j is stopped is expressed by the following (Equation 25).
R = (r 1 , r 2 , r 3 , r 4 , r 5 ) (Formula 25)

ICT装置2Iの稼動停止する状態を表す変数rjは、ICT装置2Iに紐付けられている。例えば変数r1はICT装置2Iに紐付けられ、変数r2はICT装置2Iに紐付けられる。 A variable r j representing a state where the operation of the ICT device 2I j is stopped is linked to the ICT device 2I j . For example variables r 1 is tied to ICT device 2I 1, the variable r 2 is linked to the ICT device 2I 2.

決定部472は、(式19)を目的関数とし、(式22)および(式23)を制約条件として数理計画法により、ICT装置2Iの稼動停止状態および各空調機3Aの吹出温度をそれぞれ決定する。数理計画法としては混合整数2次計画法を使用すればよく、市販のパッケージを利用できる。例えば、ICT装置2Iは稼動し、ICT装置2Iは稼動し、ICT装置2Iは停止し、ICT装置2Iは稼動し、ICT装置2Iは停止すると決定された場合、変数r1は1、変数r2は1、変数r3は0、変数r4は1、変数r5は0となる。よって、(式25)は、次の(式26)で表される。
R=(1,1,0,1,0) (式26)
The determination unit 472 sets the operation stop state of the ICT device 2I j and the blowing temperature of each air conditioner 3A i by mathematical programming using (Equation 19) as an objective function and (Equation 22) and (Equation 23) as constraints. Decide each. As mathematical programming, mixed integer quadratic programming may be used, and commercially available packages can be used. For example, if it is determined that the ICT device 2I 1 operates, the ICT device 2I 2 operates, the ICT device 2I 3 stops, the ICT device 2I 4 operates, and the ICT device 2I 5 stops, the variable r 1 is 1, the variable r 2 is 1, the variable r 3 is 0, the variable r 4 is 1, and the variable r 5 is 0. Therefore, (Expression 25) is expressed by the following (Expression 26).
R = (1,1,0,1,0) (Formula 26)

決定部472は、(式26)で示した、ICT装置2Iの稼動停止する状態を表す変数rjに従って各ICT装置2Iの稼動または停止を実行する。そして算出した各空調機3Aの吹出温度を、各空調機3Aに送信して設定する。 The determination unit 472 executes the operation or stop of each ICT device 2I j according to the variable r j that represents the state where the operation of the ICT device 2I j stops, as shown in (Equation 26). The blowout temperature of each air conditioner 3A i calculated and set by sending to the respective air conditioners 3A i.

なお、決定部472は、(式22)の代わりに(式21)を制約条件として数理計画法を用いて、各ICT装置2Iの稼動停止状態および各空調機3Aの吹出温度を決定してもよい。 Note that the determination unit 472 determines the operation stop state of each ICT device 2I j and the blowing temperature of each air conditioner 3A i using mathematical programming with (Expression 21) as a constraint instead of (Expression 22). May be.

ICT装置2Iの稼動台数に関する制約条件は、(式23)の他に、より一般的に、次の(式27)のようにICT装置2Iのリソースの合計に関する制約条件としてもよい。 In addition to (Equation 23), the constraint condition regarding the number of operating ICT devices 2I j may be more generally a constraint condition regarding the total of resources of the ICT device 2I j as shown in the following (Equation 27).

Figure 0005997671
Figure 0005997671

cjはICT装置2Iに備わるCPU性能、メモリ量、I/O速度などのリソース量、c#は所定の負荷の処理を実行するのに必要となる、ICT装置2IのCPU性能、メモリ量、I/O速度などのリソースの合計である。 c j is the CPU performance of the ICT device 2I j , the amount of resources such as the memory amount and I / O speed, c # is the CPU performance and memory of the ICT device 2I j required to execute processing of a predetermined load This is the total of resources such as volume and I / O speed.

図3に本発明の一実施形態にかかる、空調制御方法のフローチャートを示す。空調機情報取得部41は、各空調機3Aの消費電力Piの情報および各空調機3Aの吹出温度Siの情報を収集し、ICT装置情報取得部42は、各ICT装置2Iの吸込温度Tjの情報を収集する。ICT装置吸込温度推定部44は、収集された各空調機3Aの吹出温度Siの情報および各ICT装置2Iの吸込温度Tjの情報の学習データに基づいて、ICT装置2Iの吸込温度Tjを推定する(式1)を決定し(S101)(第1のステップ)、空調機消費電力推定部45は、収集された各空調機3Aの消費電力Piの情報および各空調機3Aの吹出温度Siの情報の学習データに基づいて、空調機3Aの消費電力Piを推定する(式7)を決定する(S102)(第2のステップ)。決定された(式1)および(式7)は、記憶部43に記録される。 FIG. 3 shows a flowchart of an air conditioning control method according to an embodiment of the present invention. Air conditioner information obtaining unit 41, the information of the air temperature S i collect power consumption P i of information and each of the air conditioners 3A i of each of the air conditioners 3A i, ICT device information acquisition unit 42, the ICT device 2I j to collect the information of the suction temperature T j. ICT device suction temperature estimation unit 44, based on the information of the air temperature S i of each of the air conditioners 3A i collected and learned data of the information of the inlet temperature T j of each ICT device 2I j, the suction of the ICT device 2I j estimating the temperature T j (equation 1) to determine the (S101) (first step), the air conditioner consumed power estimation unit 45, the information and the air-conditioning power consumption P i of each of the air conditioners 3A i collected based on the learning data of the information of the blowout temperature S i of the machine 3A i, determining the estimated power consumption P i of the air conditioner 3A i (equation 7) (S102) (second step). The determined (Expression 1) and (Expression 7) are recorded in the storage unit 43.

ICT装置情報取得部42は、各ICT装置2Iの吸込温度Tjの情報および各ICT装置2Iの消費電力Qjの情報を収集する。ICT装置消費電力推定部46は、収集された各ICT装置2Iの吸込温度Tjの情報および各ICT装置2Iの消費電力Qjの情報の学習データに基づいて、ICT装置2Iの消費電力Qjを推定する(式13)を決定し(S103)(第3のステップ)、決定された(式13)は、記憶部43に記録される。 ICT device information acquisition unit 42 collects information of the power consumption Q j of the suction temperature T j of information and the ICT device 2I j of each ICT device 2I j. ICT devices the power consumption estimation unit 46, based on the information of the inlet temperature T j of each ICT device 2I j collected and learned data of the information of power consumption Q j of each ICT device 2I j, consumption of ICT devices 2I j The power Q j is estimated (Equation 13) is determined (S103) (third step), and the determined (Equation 13) is recorded in the storage unit 43.

条件式算定部471は、ICT装置2Iの吸込温度が一定の温度を超えた場合、所定の負荷を処理するために必要なICT装置の稼働台数r#を決定する(S104)。 Condition calculation unit 471, if the suction temperature of the ICT device 2I j exceeds a predetermined temperature, determines the running number r # of ICT devices required to process the predetermined load (S104).

条件式算定部471は、(式1)、(式7)、(式13)、およびICT装置の稼働台数r#に基づいて、(式19)、(式22)、および(式23)を算定する(S105)。 The conditional expression calculation unit 471 calculates (Expression 19), (Expression 22), and (Expression 23) based on (Expression 1), (Expression 7), (Expression 13), and the operating number r # of the ICT device. Calculate (S105).

決定部472は、(式19)を目的関数とし、(式22)および(式23)を制約条件として(第4のステップ)、各空調機3Aの消費電力の合計および各ICT装置2Iの消費電力の合計が最小となる各空調機3Aの設定温度および各ICT装置2Iの稼動停止を表す変数rjを数理計画法で決定する(S106)(第5のステップ)。ステップS106の具体的な数理計画法の計算式を次の(式28)〜(式34)に示す。 The determination unit 472 uses (Equation 19) as an objective function and (Equation 22) and (Equation 23) as constraints (fourth step), and calculates the total power consumption of each air conditioner 3A i and each ICT device 2I j. The set temperature of each air conditioner 3A i that minimizes the total power consumption and the variable r j representing the operation stop of each ICT device 2I j are determined by mathematical programming (S106) (fifth step). Specific mathematical formulas for mathematical programming in step S106 are shown in the following (formula 28) to (formula 34).

Figure 0005997671
Figure 0005997671

s.t.
Tj=fj(S’1,S’2,…,S’n) (式29)
f1(S’1,S’2,…,S’n)≦T#+W(1−r1) (式30)
f2(S’1,S’2,…,S’n)≦T#+W(1−r2) (式31)



fm(S’1,S’2,…,S’n)≦T#+W(1−rm) (式32)
st
T j = f j (S ′ 1 , S ′ 2 ,..., S ′ n ) (Formula 29)
f 1 (S ′ 1 , S ′ 2 ,..., S ′ n ) ≦ T # + W (1−r 1 ) (Equation 30)
f 2 (S ′ 1 , S ′ 2 ,..., S ′ n ) ≦ T # + W (1−r 2 ) (Formula 31)



f m (S ′ 1 , S ′ 2 ,..., S ′ n ) ≦ T # + W (1−r m ) (Formula 32)

Figure 0005997671
Figure 0005997671

rj∈{0,1} (式34) r j ∈ {0,1} (Formula 34)

(式28)は、各空調機3Aの消費電力の合計と各ICT装置2Iの消費電力の合計との和が最小となることを示す目的関数であり、(式19)に対応する。(式29)は、空調機3Aの吹出温度とICT装置2Iの吸込温度との関係式を表した(式1)に対応し、(式28)を計算する際に使用する。(式30)〜(式32)は、ICT装置2Iの温度条件を表す不等式制約条件であり、(式22)に対応する。(式33)は、ICT装置2Iの稼動台数に関する制約条件であり、(式23)に対応する。(式34)は、各ICT装置2Iの稼動停止を表す変数rjが0または1の数値を取ることを表し、(式28)、(式30)〜(式32)、および(式33)を計算する際に使用する。 (Equation 28) is an objective function indicating that the sum of the total power consumption of each air conditioner 3A i and the total power consumption of each ICT device 2I j is minimum, and corresponds to (Equation 19). (Equation 29) corresponds to (Equation 1) that represents the relational expression between the blowout temperature of the air conditioner 3A i and the suction temperature of the ICT device 2I j , and is used when calculating (Equation 28). (Equation 30) to (Equation 32) are inequality constraints representing the temperature condition of the ICT device 2I j , and correspond to (Equation 22). (Equation 33) is a constraint on operation the number of ICT device 2I j, corresponding to the equation (23). (Expression 34) represents that the variable r j representing the operation stop of each ICT device 2I j takes a numerical value of 0 or 1, and (Expression 28), (Expression 30) to (Expression 32), and (Expression 33). ) Is used when calculating.

ステップS104からステップS106により、各空調機3Aの消費電力Piの合計と各ICT装置2Iの消費電力Qjの合計との和を最小とする(式19)を目的関数とし、(式1)に空調機3Aの吹出温度S’iを代入した値がICT装置2Iの吸込温度の上限温度以下とする(式22)を制約条件とする。またステップS104からステップS106により、目的関数および制約条件を用いる数理計画法により、空調機3Aの吹出温度S’i を算出し、所定の負荷を処理するために必要なICT装置2Iの台数r#に基づいて、稼動・停止するICT装置2Iを決定する。 From step S104 to step S106, the sum of the total power consumption Pi of each air conditioner 3A i and the total power consumption Q j of each ICT device 2I j is minimized (Equation 19) as an objective function. ) to the outlet temperature S 'value obtained by substituting the i is equal to or less than the upper limit temperature of the suction temperature of the ICT device 2I j (constraint equation 22) of the air conditioner 3A i. Also in step S106 from step S104, the mathematical programming method using the objective function and constraints, the air conditioner 3A i calculate the air temperature S 'i of the number of ICT device 2I j required to process a predetermined load Based on r # , the ICT device 2I j to be operated / stopped is determined.

なおステップS104からステップS106において、数理計画法は、数理計画法により停止が決定されるICT装置2Iの吸込温度が、ICT装置2Iの吸込温度の上限温度に任意の定数を加算して得られた第2の閾値(T#+W)以下とする制約条件をさらに用いてもよい。 In step S104 to step S106, the mathematical programming method is obtained by adding an arbitrary constant to the upper limit temperature of the suction temperature of the ICT device 2I j so that the suction temperature of the ICT device 2I j determined to be stopped by the mathematical programming method. A constraint condition that is less than or equal to the second threshold value (T # + W) may be further used.

決定部472は、各ICT装置の稼動停止の情報を送信して、対象となるICT装置を稼動停止して、および各空調機の設定温度を送信して設定し、各空調機を制御する(S107)。各空調機3Aは設定された吹出温度で各ICT装置2Iに給気する。 The determination unit 472 transmits information on the operation stop of each ICT device, stops the operation of the target ICT device, transmits and sets the set temperature of each air conditioner, and controls each air conditioner ( S107). Each air conditioner 3A i supplies air to each ICT device 2I j at the set blowing temperature.

所定の負荷を処理するために必要なICT装置2Iの稼働台数が変わると、再びステップS104に戻り、新たな空調機3Aの設定温度とICT装置2Iの稼動・停止状態を表す変数を計算する。 When the number of operating ICT devices 2I j necessary for processing a predetermined load changes, the process returns to step S104 again, and a variable indicating the set temperature of the new air conditioner 3A i and the operating / stopped state of the ICT device 2I j is obtained. calculate.

なお、記憶部43は、ROM(Read Only Memory)とRAM(Random Access Memory)とを含んで構成される。ROMには、空調機・ICT装置制御装置4全体の動作制御に必要なプログラムや各種のデータ(例えば、ICT装置2Iの吸込温度を推定するための計算式、および、空調機3Aの消費電力を推定するための計算式など)が記録される。RAMには、データやプログラムを一時的に記憶するための記録領域が設けられ、プログラムやデータが保持される。 The storage unit 43 includes a ROM (Read Only Memory) and a RAM (Random Access Memory). In the ROM, programs and various data (for example, a calculation formula for estimating the suction temperature of the ICT device 2I j and the consumption of the air conditioner 3A i are necessary for controlling the operation of the air conditioner / ICT device control device 4 as a whole. The calculation formula for estimating the power is recorded. The RAM is provided with a recording area for temporarily storing data and programs, and holds programs and data.

また、関数f、関数gi、および関数hの決定は、本発明の空調制御システムに必要な計測機能と学習機能とを組み込んだ上で、最初に関数決定のための学習を行なうことにより決定してもいいし、別のシステムを用いて決定した関数を本発明の空調制御システムに格納してもよい。 Further, the determination of the function f j , the function g i , and the function h j is performed by incorporating the measurement function and the learning function necessary for the air conditioning control system of the present invention, and first performing learning for the function determination. The function determined using another system may be stored in the air conditioning control system of the present invention.

本実施形態によれば、空調室を安全な温度に保つことができ、さらに空調機の省エネを実現することが可能となる。   According to the present embodiment, the air conditioning room can be maintained at a safe temperature, and further, energy saving of the air conditioner can be realized.

1 空調室
2I、2I、2I、2I ICT装置
3A、3A、3A、3A 空調機
4 空調機・ICT装置制御装置
5 ネットワーク
41 空調機情報取得部
42 ICT装置情報取得部
43 記憶部
44 ICT装置吸込温度推定部
45 空調機消費電力推定部
46 ICT装置消費電力推定部
47 空調機吹出温度・ICT装置稼動停止設定部
471 条件式算定部
472 決定部
1 air-conditioned room 2I 1, 2I 2, 2I j , 2I m ICT device 3A 1, 3A 2, 3A i , 3A n air conditioner 4 air conditioner · ICT device controller 5 network 41 air conditioner information acquiring unit 42 ICT device information acquisition Unit 43 storage unit 44 ICT device suction temperature estimation unit 45 air conditioner power consumption estimation unit 46 ICT device power consumption estimation unit 47 air conditioner outlet temperature / ICT device operation stop setting unit 471 conditional expression calculation unit 472 determination unit

Claims (8)

ICT装置の吸込温度が一定の温度を超えた場合に、前記ICT装置を冷却する空調機の予め設定された第1の吹出温度を、第2の吹出温度に変更するシステムによる空調制御方法であって、
前記第1の吹出温度に基づいて、前記ICT装置の吸込温度を推定する第1の計算式を算定する第1のステップと、
前記第1の吹出温度に基づいて、前記空調機の消費電力を推定する第2の計算式を算定する第2のステップと、
前記ICT装置の吸込温度に基づいて、前記ICT装置の消費電力を推定する第3の計算式を算定する第3のステップと、
前記空調機の消費電力および前記ICT装置の消費電力の合計値が最小となるように、前記第2の計算式および前記第3の計算式に基づいて算定される第1の条件式を目的関数とし、前記第1の計算式に前記第2の吹出温度を代入して得た値が第1の閾値以下とする第2の条件式を制約条件とする第4のステップと、
前記目的関数および前記制約条件を用いる数理計画法により、前記第2の吹出温度を算出し、所定の負荷を処理するために必要な前記ICT装置の台数に基づいて、稼動する前記ICT装置を決定する第5のステップと
を備えることを特徴とする空調制御方法。
When the suction temperature of the ICT device exceeds a certain temperature, the air conditioning control method by the system changes the preset first blowing temperature of the air conditioner that cools the ICT device to the second blowing temperature. And
A first step of calculating a first calculation formula for estimating a suction temperature of the ICT device based on the first blowing temperature;
A second step of calculating a second calculation formula for estimating the power consumption of the air conditioner based on the first blowing temperature;
A third step of calculating a third calculation formula for estimating the power consumption of the ICT device based on the suction temperature of the ICT device;
The first conditional expression calculated based on the second calculation formula and the third calculation formula so that the total value of the power consumption of the air conditioner and the power consumption of the ICT device is minimized. And a fourth step in which a second conditional expression that sets a value obtained by substituting the second blowing temperature into the first calculation formula to be equal to or less than a first threshold is a constraint condition;
The second blowing temperature is calculated by mathematical programming using the objective function and the constraint condition, and the ICT device to be operated is determined based on the number of the ICT devices necessary for processing a predetermined load. An air conditioning control method comprising: a fifth step.
前記算定する第1のステップは、
前記空調機の吹出温度および前記空調機から吹き出される風量に基づいて、前記ICT装置の吸込温度を推定する第1の計算式を算定することを特徴とする請求項1に記載の空調制御方法。
The first step of calculating is:
2. The air conditioning control method according to claim 1, wherein a first calculation formula for estimating a suction temperature of the ICT device is calculated based on a blowing temperature of the air conditioner and an amount of air blown from the air conditioner. .
前記算定する第2のステップは、
前記空調機の吹出温度および前記空調機から吹き出される風量に基づいて、前記空調機の消費電力を推定する第2の計算式を算定することを特徴とする請求項1または請求項2に記載の空調制御方法。
The second step of calculating is
The second calculation formula for estimating the power consumption of the air conditioner is calculated based on the temperature of the air conditioner and the amount of air blown from the air conditioner. Air conditioning control method.
前記数理計画法は、前記数理計画法により停止が決定される前記ICT装置の吸込温度が、前記第1の閾値に任意の正の定数を加算して得た第2の閾値以下とする第3の条件式とする制約条件をさらに用いることを特徴とする請求項1から請求項3のいずれか一項に記載の空調制御方法。   In the mathematical programming method, the suction temperature of the ICT device whose stoppage is determined by the mathematical programming method is set to be equal to or lower than a second threshold value obtained by adding an arbitrary positive constant to the first threshold value. The air conditioning control method according to any one of claims 1 to 3, further comprising using a constraint condition as a conditional expression. ICT装置の吸込温度が一定の温度を超えた場合に、前記ICT装置を冷却する空調機の予め設定された第1の吹出温度を、第2の吹出温度に変更する空調制御システムであって、
前記第1の吹出温度に基づいて、前記ICT装置の吸込温度を推定する第1の計算式を算定する第1の算定部と、
前記第1の吹出温度に基づいて、前記空調機の消費電力を推定する第2の計算式を算定する第2の算定部と、
前記ICT装置の吸込温度に基づいて、前記ICT装置の消費電力を推定する第3の計算式を算定する第3の算定部と、
前記空調機の消費電力および前記ICT装置の消費電力の合計値が最小となるように、前記第2の計算式および前記第3の計算式に基づいて算定される第1の条件式を目的関数とし、前記第1の計算式に前記第2の吹出温度を代入して得た値が第1の閾値以下とする第2の条件式を制約条件とする第4の算定部と、
前記目的関数および前記制約条件を用いる数理計画法により、前記第2の吹出温度を算出し、所定の負荷を処理するために必要な前記ICT装置の台数に基づいて、稼動する前記ICT装置を決定する決定部と
を備えたことを特徴とする空調制御システム。
When the suction temperature of the ICT device exceeds a certain temperature, the air conditioning control system changes the preset first blowing temperature of the air conditioner that cools the ICT device to the second blowing temperature,
A first calculation unit for calculating a first calculation formula for estimating a suction temperature of the ICT device based on the first blowing temperature;
A second calculating unit that calculates a second calculation formula for estimating power consumption of the air conditioner based on the first blowing temperature;
A third calculation unit for calculating a third calculation formula for estimating the power consumption of the ICT device based on the suction temperature of the ICT device;
The first conditional expression calculated based on the second calculation formula and the third calculation formula so that the total value of the power consumption of the air conditioner and the power consumption of the ICT device is minimized. And a fourth calculation unit having a second conditional expression as a constraint condition that a value obtained by substituting the second blowing temperature into the first calculation formula is equal to or less than a first threshold value;
The second blowing temperature is calculated by mathematical programming using the objective function and the constraint condition, and the ICT device to be operated is determined based on the number of the ICT devices necessary for processing a predetermined load. An air-conditioning control system comprising:
前記第1の算定部は、
前記空調機の吹出温度および前記空調機から吹き出される風量に基づいて、前記ICT装置の吸込温度を推定する第1の計算式を算定することを特徴とする請求項5に記載の空調制御システム。
The first calculation unit includes:
6. The air conditioning control system according to claim 5, wherein a first calculation formula for estimating a suction temperature of the ICT device is calculated based on a blowing temperature of the air conditioner and an air volume blown from the air conditioner. .
前記第2の算定部は、
前記空調機の吹出温度および前記空調機から吹き出される風量に基づいて、前記空調機の消費電力を推定する第2の計算式を算定することを特徴とする請求項5または請求項6に記載の空調制御システム。
The second calculation unit includes:
The second calculation formula for estimating the power consumption of the air conditioner is calculated based on the temperature of the air conditioner and the amount of air blown from the air conditioner. Air conditioning control system.
前記数理計画法は、前記数理計画法により停止が決定される前記ICT装置の吸込温度が、前記第1の閾値に任意の正の定数を加算して得た第2の閾値以下とする第3の条件式とする制約条件をさらに用いることを特徴とする請求項5から請求項7のいずれか一項に記載の空調制御システム。   In the mathematical programming method, the suction temperature of the ICT device whose stoppage is determined by the mathematical programming method is set to be equal to or lower than a second threshold value obtained by adding an arbitrary positive constant to the first threshold value. The air conditioning control system according to any one of claims 5 to 7, further comprising using a constraint condition as a conditional expression.
JP2013182265A 2013-09-03 2013-09-03 Air conditioning control method and air conditioning control system Active JP5997671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013182265A JP5997671B2 (en) 2013-09-03 2013-09-03 Air conditioning control method and air conditioning control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013182265A JP5997671B2 (en) 2013-09-03 2013-09-03 Air conditioning control method and air conditioning control system

Publications (2)

Publication Number Publication Date
JP2015050378A JP2015050378A (en) 2015-03-16
JP5997671B2 true JP5997671B2 (en) 2016-09-28

Family

ID=52700130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013182265A Active JP5997671B2 (en) 2013-09-03 2013-09-03 Air conditioning control method and air conditioning control system

Country Status (1)

Country Link
JP (1) JP5997671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312816B2 (en) 2019-03-29 2023-07-21 テルモ株式会社 Liquid dosing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017469A (en) * 2016-07-28 2018-02-01 株式会社日立製作所 Cooling system, air conditioning control device and air conditioning control method
WO2023199482A1 (en) * 2022-04-14 2023-10-19 日本電信電話株式会社 Electric power amount reduction control device, electric power amount reduction control method, electric power amount reduction control system, and program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082597A (en) * 2006-09-27 2008-04-10 Daikin Ind Ltd Temperature adjustment system and temperature adjustment control method of equipment room
JP4575977B2 (en) * 2008-09-25 2010-11-04 株式会社日立製作所 Air conditioning equipment control system, air conditioning equipment control method, computer room power management system, and power management method
JP5176840B2 (en) * 2008-09-30 2013-04-03 株式会社日立プラントテクノロジー Air conditioning control system and air conditioning control method
JP5218276B2 (en) * 2009-05-19 2013-06-26 富士通株式会社 Air conditioning control system, air conditioning control method, and air conditioning control program
JP5508940B2 (en) * 2010-05-31 2014-06-04 株式会社Nttファシリティーズ Operation control method of air conditioning control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312816B2 (en) 2019-03-29 2023-07-21 テルモ株式会社 Liquid dosing device

Also Published As

Publication number Publication date
JP2015050378A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
US20190338973A1 (en) Variable refrigerant flow, room air conditioner, and packaged air conditioner control systems with cost target optimization
JP6254953B2 (en) Multidimensional optimization to control environmental maintenance modules
US9420725B2 (en) Air conditioning apparatus and air conditioning control method
US9185829B2 (en) Air-conditioning system and air-conditioning method for server room management
US8924026B2 (en) Energy-optimal control decisions for systems
JP6005304B2 (en) Ventilation control device and ventilation control method
JP5218276B2 (en) Air conditioning control system, air conditioning control method, and air conditioning control program
JP5835465B2 (en) Information processing apparatus, control method, and program
US20040240514A1 (en) Air re-circulation index
JP2011242010A (en) Air conditioning system and air conditioning control method for server room management
US8914155B1 (en) Controlling fluid flow in a data center
KR20170120666A (en) Variable air volume modeling for HVAC systems
WO2020008550A1 (en) Energy saving management device, energy saving management system, energy saving management method and program
JP5997671B2 (en) Air conditioning control method and air conditioning control system
KR101727434B1 (en) Method for estimating efficiency of refrigerator using random forest model
JP2019163885A (en) Air-conditioning control device, air-conditioning control method and computer program
KR102032811B1 (en) Appratus and method of reducing energy consumption using removed heat capacity of refrigerator
JP2018109494A (en) Air conditioning control device, air conditioning control method, and computer program
JP6849345B2 (en) Air conditioning system controls, control methods and control programs
JP2015132388A (en) Air conditioning control method and air conditioning control system
US20230332793A1 (en) Air conditioning control device
JP2015187521A5 (en)
JP2021177122A (en) Control device, control method and control program for air conditioning system and air conditioning system
JP2014238197A (en) Air conditioning control method and air conditioning control system
JP6002098B2 (en) Air conditioning control method and air conditioning control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160826

R150 Certificate of patent or registration of utility model

Ref document number: 5997671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250