JP2014238197A - Air conditioning control method and air conditioning control system - Google Patents

Air conditioning control method and air conditioning control system Download PDF

Info

Publication number
JP2014238197A
JP2014238197A JP2013119871A JP2013119871A JP2014238197A JP 2014238197 A JP2014238197 A JP 2014238197A JP 2013119871 A JP2013119871 A JP 2013119871A JP 2013119871 A JP2013119871 A JP 2013119871A JP 2014238197 A JP2014238197 A JP 2014238197A
Authority
JP
Japan
Prior art keywords
temperature
air conditioner
estimating
air
power consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013119871A
Other languages
Japanese (ja)
Inventor
中村 雅之
Masayuki Nakamura
雅之 中村
橋本 英明
Hideaki Hashimoto
英明 橋本
中村 亮太
Ryota Nakamura
亮太 中村
章 竹内
Akira Takeuchi
章 竹内
圭輔 関口
Keisuke Sekiguchi
圭輔 関口
秀樹 月元
Hideki Tsukimoto
秀樹 月元
達也 中田
Tatsuya Nakata
達也 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
NTT Facilities Inc
Original Assignee
Nippon Telegraph and Telephone Corp
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, NTT Facilities Inc filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013119871A priority Critical patent/JP2014238197A/en
Publication of JP2014238197A publication Critical patent/JP2014238197A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Abstract

PROBLEM TO BE SOLVED: To make it possible to keep an air conditioned room at a safe temperature and realize energy saving of an air conditioner.SOLUTION: An air conditioning control method by a system for changing a preset first blow temperature of an air conditioner cooling an ICT device to a second blow temperature, comprises: a first step of estimating a first intake temperature of the ICT device using the first blow temperature and a calculation formula for estimating the first intake temperature of the ICT device; a second step of estimating power consumption of the air conditioner using the first blow temperature and a calculation formula for estimating the power consumption of the air conditioner; a step of acquiring the second intake temperature by a sensor; a step of calculating an error between the second intake temperature and the estimated first intake temperature; and a step of setting the second blow temperature of the air conditioner using a calculation formula for estimating the first intake temperature, a calculation formula for estimating the power consumption, and the error.

Description

本発明は、空調制御方法および空調制御システムに関し、より詳細には、サーバ室、通信機械室やデータセンタなど複数のICT装置が設置された室内の空調を制御する空調制御方法および空調制御システムに関する。   The present invention relates to an air conditioning control method and an air conditioning control system, and more particularly to an air conditioning control method and an air conditioning control system for controlling air conditioning in a room in which a plurality of ICT devices such as a server room, a communication machine room, and a data center are installed. .

従来から、複数のICT(Information and Communication Technology:情報通信技術)装置が設置されたサーバ室、通信機械室やデータセンタではICT装置を冷却するための冷房の空調機を制御する空調制御システムが存在する。従来の冷房の空調システムは、空調機の設定温度を十分低く設定したり、ICT装置付近の温度を計測し、一定の温度に保たれるよう空調機の設定温度を制御したりしている。また、空調機の吸込温度・吹出温度とICT装置の吸気温度・排気温度との関係をモデリングしたシミュレータを用いて、ICT装置の吸気温度の温度条件を満足しながら空調機の消費電力の総和を最小化するように、空調機の吹出温度を設定し、省エネを図っている従来技術がある(非特許文献1を参照)。空調室とは、例えば、複数のICT装置と、複数のICT装置が収納されるラックとが設置されたサーバ室、および通信機械室をいう。   Conventionally, there is an air conditioning control system for controlling a cooling air conditioner for cooling an ICT device in a server room, a communication machine room or a data center where a plurality of ICT (Information and Communication Technology) devices are installed. To do. In the conventional cooling air conditioning system, the set temperature of the air conditioner is set sufficiently low, the temperature in the vicinity of the ICT device is measured, and the set temperature of the air conditioner is controlled so as to be maintained at a constant temperature. In addition, using a simulator that models the relationship between the intake and blowout temperatures of the air conditioner and the intake and exhaust temperatures of the ICT device, the total power consumption of the air conditioner can be calculated while satisfying the temperature conditions of the intake temperature of the ICT device. There is a conventional technique in which the temperature of the air conditioner is set so as to minimize the energy consumption to save energy (see Non-Patent Document 1). The air-conditioned room refers to, for example, a server room in which a plurality of ICT devices and a rack in which a plurality of ICT devices are stored, and a communication machine room.

朝康博、中島忠克、沖津潤、加藤猛、齊藤達也、頭島康博著、「環境配慮型データセンタ向けIT連係空調最適化制御方式」、電子情報通信学会論文誌、B Vol.J95-B、No.3、pp.397-404、2012年Asayasu Hiroshi, Nakajima Tadakatsu, Okitsu Jun, Kato Takeshi, Saito Tatsuya, Toshima Yasuhiro, “IT-linked air conditioning optimization control method for environment-friendly data center”, IEICE Transactions, B Vol.J95-B, No.3, pp.397-404, 2012 一森哲男著、「数理計画法―最適化の手法」、共立出版、p.4、1994年8月Tetsuo Ichimori, "Mathematical programming-Optimization technique", Kyoritsu Shuppan, p. 4, August 1994

しかしながら、従来の冷房の空調システムは、冷房の空調機の設定温度を必要以上に低くすると空調機の消費電力が増大するという問題があった。また、非特許文献1に記載のシミュレータを用いて消費電力を最小化する方法において、シミュレータが十分に実際の空調室の特性を反映できれば、計算された空調機の吹出温度で実際のICT装置の温度条件を満足することが可能である。しかし、通常、シミュレータにはモデル誤差が含まれている。よって、ICT装置の温度条件を満足するように計算された吹出温度で空調機を運転させても、実際のICT装置の吸込温度と、シミュレータで推定されたICT装置の吸込温度とが異なる場合がある。結果として、ICT装置の吸込温度の温度条件を満たすことができず、ICT装置を安定して動作させることができない可能性があるという問題があった。   However, the conventional cooling air conditioning system has a problem that the power consumption of the air conditioner increases when the set temperature of the cooling air conditioner is lowered more than necessary. Further, in the method of minimizing power consumption using the simulator described in Non-Patent Document 1, if the simulator can sufficiently reflect the characteristics of the actual air-conditioning room, the actual air-conditioner outlet temperature can be It is possible to satisfy the temperature condition. However, the simulator usually contains model errors. Therefore, even if the air conditioner is operated at the outlet temperature calculated so as to satisfy the temperature condition of the ICT device, the actual suction temperature of the ICT device may be different from the suction temperature of the ICT device estimated by the simulator. is there. As a result, there is a problem that the temperature condition of the suction temperature of the ICT device cannot be satisfied and the ICT device may not be operated stably.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、空調室を安全な温度に保つことができ、さらに空調機の省エネを実現するための、空調制御方法および空調制御システムを提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide an air-conditioning control method and an air-conditioning control method for maintaining an air-conditioned room at a safe temperature and further realizing energy saving of the air-conditioner. The object is to provide an air conditioning control system.

上記課題を解決するための手段として、ICT装置の温度を制御する空調機と、前記空調機を制御する空調機制御装置がネットワークで接続された空調制御システムにおいて、空調機の吹出温度を取得する手段と、空調機の消費電力を取得する手段と、空調機の吹出温度からICT装置の吸込温度を推定する手段と、空調機の吹出温度から空調機の消費電力を推定する手段と、ICT装置の吸込温度の実測値と推定値の誤差を取得する手段と、ICT装置の吸込温度の推定値と前記誤差の和がICT装置の上限温度以下でかつ空調機の消費電力を最小にするように空調機の吹出温度を決定する手段と、を有する。   As means for solving the above-mentioned problems, an air conditioner that controls the temperature of the ICT device and an air conditioner control system in which the air conditioner control device that controls the air conditioner are connected by a network acquire the air temperature of the air conditioner. Means, means for obtaining power consumption of the air conditioner, means for estimating the suction temperature of the ICT device from the blowing temperature of the air conditioner, means for estimating power consumption of the air conditioner from the blowing temperature of the air conditioner, and ICT device Means for obtaining an error between the measured value and the estimated value of the suction temperature of the ICT device, and the sum of the estimated value of the suction temperature of the ICT device and the error is not more than the upper limit temperature of the ICT device and minimizes the power consumption of the air conditioner And a means for determining a blow-off temperature of the air conditioner.

本発明は、このような目的を達成するために、請求項1に記載の発明は、センサを有するICT装置の吸込温度が一定の温度を超えた場合に、前記ICT装置を冷却する空調機の予め設定された第1の吹出温度を、第2の吹出温度に変更するシステムによる空調制御方法であって、前記第1の吹出温度と、記憶部に予め格納された、前記ICT装置の第1の吸込温度を推定する計算式とを用いて、前記第1の吸込温度を推定する第1のステップと、前記第1の吹出温度と、記憶部に予め格納された、前記空調機の消費電力を推定する計算式とを用いて、前記消費電力を推定する第2のステップと、前記ICT装置の前記センサによって計測された第2の吸込温度を取得するステップと、前記取得された第2の吸込温度と前記推定された第1の吸込温度との誤差を計算するステップと、前記第1の吸込温度を推定する計算式と、前記消費電力を推定する計算式と、前記誤差とを用いて、前記空調機の前記第2の吹出温度を設定するステップとを備えることを特徴とする。   In order to achieve such an object, the present invention provides an air conditioner that cools the ICT device when the suction temperature of the ICT device having a sensor exceeds a certain temperature. An air-conditioning control method using a system for changing a preset first blowing temperature to a second blowing temperature, the first blowing temperature and the first of the ICT device stored in advance in a storage unit. The first step of estimating the first suction temperature using the calculation formula for estimating the suction temperature of the air, the first blowing temperature, and the power consumption of the air conditioner stored in advance in the storage unit A second step of estimating the power consumption using a calculation formula for estimating a second suction temperature measured by the sensor of the ICT device, and the acquired second Suction temperature and the estimated first The second blowout of the air conditioner is calculated using the step of calculating an error from the intake temperature, a calculation formula for estimating the first suction temperature, a calculation formula for estimating the power consumption, and the error. And a step of setting the temperature.

以上説明したように、本発明によれば、空調室を安全な温度に保つことができ、さらに空調機の省エネを実現することが可能となる。また、ICT装置の吸込温度の実測値と推定値の差分を、空調機の吹出温度の設定に反映させることによって、より精度が高く、なおかつICT装置の吸込温度が上限値を超えないように空調機を制御することが可能となる。   As described above, according to the present invention, the air conditioning room can be maintained at a safe temperature, and further, energy saving of the air conditioner can be realized. Also, by reflecting the difference between the measured value and estimated value of the suction temperature of the ICT device in the setting of the air temperature of the air conditioner, the air conditioning is performed with higher accuracy and the suction temperature of the ICT device does not exceed the upper limit value. The machine can be controlled.

本発明の一実施形態にかかる、空調制御システムを示す構成図である。It is a lineblock diagram showing an air-conditioning control system concerning one embodiment of the present invention. 本発明の一実施形態にかかる、空調機制御装置を示すブロック図である。It is a block diagram showing an air-conditioner control device concerning one embodiment of the present invention. 本発明の一実施形態にかかる、空調制御方法を示すフローチャートである。It is a flowchart which shows the air-conditioning control method concerning one Embodiment of this invention.

以下、本発明の空調制御方法および空調制御システムについて実施形態を挙げ、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the air conditioning control method and the air conditioning control system of the present invention will be described in detail with reference to the drawings.

図1に本発明の一実施形態にかかる、空調制御システムの構成を示す。空調室1は、複数のICT装置2Iと、ICT装置2Iを冷却する複数の空調機3Aとを含む。空調機3Aの吹出温度を制御する空調機制御装置4と、複数のICT装置2Iと、複数の空調機3Aとは、LAN(Local Area Network)などのネットワーク5で接続されている。 FIG. 1 shows a configuration of an air conditioning control system according to an embodiment of the present invention. The air conditioning room 1 includes a plurality of ICT devices 2I j and a plurality of air conditioners 3A i that cool the ICT devices 2I j . The air conditioner control device 4 that controls the blowing temperature of the air conditioner 3A i , the plurality of ICT devices 2I j, and the plurality of air conditioners 3A i are connected by a network 5 such as a LAN (Local Area Network).

空調機の吹出温度とは、空調機の冷気の吹き出し口付近の温度である。空調機の吹出温度は、空調機の吹出し口付近に設置された温度センサによって測定される。空調機の設定温度は、実測温度である吹出温度とは異なり、吹出温度の目標値である。実際に空調で設定できるのは吹出温度の目標値である設定温度であり、吹出温度が設定温度と等しくなるにはある程度の時間を要する。   The blowout temperature of the air conditioner is the temperature near the cold air outlet of the air conditioner. The air temperature of the air conditioner is measured by a temperature sensor installed near the air outlet of the air conditioner. The set temperature of the air conditioner is a target value of the blowing temperature, unlike the blowing temperature that is the actually measured temperature. What can actually be set by air conditioning is a set temperature, which is a target value of the blowing temperature, and it takes a certain amount of time for the blowing temperature to be equal to the set temperature.

ICT装置2Iは、ICT装置2I,…ICT装置2I(j=1〜m,mは正の整数)を含む。ICT装置2Iは、ICT装置2Iの吸込温度を計測する温度センサ部を備える。ICT装置2Iは、例えば、サーバなどのIT機器や通信機器であり、サーバラックに収納されうる。 ICT device 2I j includes ICT device 2I 1 ,... ICT device 2I m (j = 1 to m , m is a positive integer). The ICT device 2I j includes a temperature sensor unit that measures the suction temperature of the ICT device 2I j . The ICT device 2I j is, for example, an IT device such as a server or a communication device, and can be stored in a server rack.

ICT装置の吸込温度とは、ICT装置内に吸気される開口部付近の温度である。ICT装置の吸込温度は、ICT装置内に吸気される開口部付近に設置されたセンサによって測定される。   The suction temperature of the ICT device is the temperature near the opening that is sucked into the ICT device. The suction temperature of the ICT device is measured by a sensor installed in the vicinity of the opening that is sucked into the ICT device.

空調機3Aは、空調機3A,…空調機3A(i=1〜n,nは正の整数)を含む。空調機3Aは、例えば、室内機と室外機とからなる。図1では、空調機が空調室に含まれているが、空調機が空調室とは別の部屋に設けられ、ダクトを通じてICT装置に冷気を供給する態様でもよい。空調機3Aは、吹出温度を制御するための温度設定が可能であり、空調機3Aの吹出温度、消費電力を計測している。 The air conditioner 3A i includes air conditioners 3A 1 ,... 3A n (i = 1 to n, n is a positive integer). Air conditioner 3A i, for example, consists of an indoor unit and an outdoor unit. In FIG. 1, the air conditioner is included in the air conditioning room, but the air conditioner may be provided in a room different from the air conditioning room and supply cold air to the ICT apparatus through a duct. Air conditioner 3A i is capable of temperature setting for controlling the air temperature, measures the air temperature, the power consumption of the air conditioner 3A i.

空調機制御装置4は、SNMP(Simple Network Management Protocol)などを用いて空調機3Aの吹出温度や消費電力の情報を収集したり、空調機3Aの吹出温度を設定したりすることができる。 Air conditioner control device 4, or can set the SNMP (Simple Network Management Protocol) to gather information air temperature and power consumption of the air conditioner 3A i by using a blowout temperature of the air conditioner 3A i .

図2に本発明の一実施形態にかかる、空調機制御装置4の例のブロック図を示す。空調機制御装置4は、LAN経由で空調機3Aから空調機の吹出温度情報や空調機の消費電力情報を収集する空調機情報取得部41と、ICT装置のセンサからICT装置の吸込温度を受信するICT装置吸込温度情報取得部42と、空調機の吹出温度の情報、空調機の消費電力の情報、ICT装置の吸込温度の情報などを格納する記憶部43と、各ICT装置2Iの吸込温度の推定値を、後述する式から計算するICT装置吸込温度推定部44と、各空調機3Aの消費電力の推定値を、後述する式から計算する空調機消費電力推定部45と、一定の温度条件を満足し、かつ空調機3Aの消費電力の和が最小となる空調機吹出温度を求める空調機吹出温度設定部(算出部)46と、を有する。 FIG. 2 shows a block diagram of an example of the air conditioner control device 4 according to one embodiment of the present invention. The air conditioner control device 4 includes an air conditioner information acquisition unit 41 that collects air conditioner blowout temperature information and air conditioner power consumption information from the air conditioner 3A i via the LAN, and an ICT device suction temperature from the sensor of the ICT device. The ICT device suction temperature information acquisition unit 42 to receive, the storage unit 43 for storing information on the blowout temperature of the air conditioner, the information on the power consumption of the air conditioner, the information on the suction temperature of the ICT device, and the like of each ICT device 2I j the estimated value of the suction temperature, the ICT device inlet temperature estimating unit 44 calculated from the equation described below, the estimate of the power consumption of each of the air conditioners 3A i, and the air conditioner consumed power estimation unit 45 for calculating from the equation described below, satisfy certain temperature condition, and has air conditioner blow temperature setting unit for determining the air conditioner blow temperature to the sum of the power consumption of the air conditioner 3A i is minimized and (calculating unit) 46, a.

空調機情報取得部41は、LAN経由で空調機3Aから空調機温度情報や消費電力情報を収集する。また、各空調機3Aの吹出温度を変化させた時、各ICT装置2Iの吸込温度がどのようになるかを表わした関係式を次の(式1)に示す。
T=f(S1,S2,…Sn) j=1〜m (式1)
nは空調機3Aの台数、mはICT装置2Iの台数、TはICT装置2Iの吸込温度の推定値(第1の吸込温度)、S1,S2,…Snは空調機3Aの吹出温度(第1の吹出温度)、fは空調機3Aの吹出温度を変数とするICT装置2Iの吸込温度を表す関数である。ICT装置吸込温度推定部44は、各ICT装置2Iの吸込温度の推定値Tを(式1)から計算する。ICT装置2Iの吸込温度を表す関数fは、記憶部43に予め格納された学習データにより決定されていて、簡単な関数では、空調機3Aの吹出温度Siの一次式で与えることができる。
The air conditioner information acquisition unit 41 collects air conditioner temperature information and power consumption information from the air conditioner 3A i via the LAN. Further, when varying the outlet temperature of each air conditioner 3A i, showing the relationship of inlet temperature of the ICT device 2I j is represents what happens in the next equation (1).
T j = f j (S 1 , S 2, ... S n) j = 1~m ( Equation 1)
n is the number of air conditioners 3A i, m is the number of ICT device 2I j, T j is the estimated value of the suction temperature of the ICT device 2I j (first suction temperature), S 1, S 2, ... S n is the air-conditioning outlet temperature of the machine 3A i (first blow-out temperature), f j is a function representing the inlet temperature of the ICT device 2I j to variable outlet temperature of the air conditioner 3A i. The ICT device suction temperature estimation unit 44 calculates an estimated value T j of the suction temperature of each ICT device 2I j from (Equation 1). The function f j representing the suction temperature of the ICT device 2I j is determined by the learning data stored in the storage unit 43 in advance, and is given by a linear expression of the blowout temperature S i of the air conditioner 3A i in a simple function. Can do.

関数fの具体例として一番簡単な形は、次の一次式(式2)で示される。
a1・S1+a2・S2+…+an・Sn (式2)
ai(i=1〜n,nは正の整数)は正の数で、aiの決定法は最小自乗法を用いる。
The simplest form of the function f j is shown by the following linear expression (Expression 2).
a 1・ S 1 + a 2・ S 2 +… + a n・ S n (Formula 2)
a i (i = 1 to n, n is a positive integer) is a positive number, and a least square method is used to determine a i .

各空調機3Aの吹出温度を変化させると、ICT装置2Iの吸込温度も時間の経過とともに変化するため、時刻の異なる、各空調機3Aの吹出温度とICT装置2Iの吸込温度のデータの組を複数用意する。時刻の異なるデータの複数の組は、学習データとして記憶部43に格納される。 Varying the outlet temperature of each air conditioner 3A i, for changing over the suction temperature and time of the ICT device 2I j, time different, the suction temperature of the air temperature and ICT device 2I j of each of the air conditioners 3A i Prepare multiple sets of data. A plurality of sets of data having different times are stored in the storage unit 43 as learning data.

ICT装置2Iの吸込温度の実測値のデータからなるベクトルを次の(式3)に示す。
T=(T(1), T(2), …, T(k))t (式3)
Tの括弧の中の数字はそれぞれ時刻(例えば、単位時間を10分ごととすると、1は10分、2は20分)を表し、tは転置を表す。
It indicates a vector of data of measured values of the suction temperature of the ICT device 2I j the following (Equation 3).
T = (T j (1), T j (2),…, T j (k)) t (Formula 3)
The numbers in parentheses of T j each represent time (for example, if the unit time is every 10 minutes, 1 represents 10 minutes, 2 represents 20 minutes), and t represents transposition.

さらに、各空調機3Aの吹出温度の実測値のデータからなる行列を次の(式4)に示す。 Further, it shows a matrix of data of measured values of air temperature of each air conditioner 3A i the following (Equation 4).

Figure 2014238197
Figure 2014238197

S1,S2,…Snの括弧の中の数字はそれぞれTの時刻と同じ時刻を表す。 The numbers in parentheses of S 1 , S 2 ,... S n each represent the same time as the time of T j .

aiのベクトルAを、
A=(a1, a2, …, an)t (式5)
とすると、
A=(St・S)-1 St・T (式6)
となる。ここで−1は逆行列を表す。同様の処理を各ICT装置2Iについて実施しa1,a2,…anを決定する。よって、ICT装置2Iの吸込温度のデータからなるベクトルTと、各空調機3Aの吹出温度のデータからなる行列Sとから、a1, a2, …, anを求めることができ、関数fおよび(式1)を決定することができる。
a i vector A
A = (a 1 , a 2 ,…, a n ) t (Formula 5)
Then,
A = (S t · S) -1 S t · T (Formula 6)
It becomes. Here, −1 represents an inverse matrix. The same process was performed for each ICT device 2I j a 1, a 2, determines a ... a n. Accordingly, the vector T consisting of data of the suction temperature of the ICT device 2I j, and a matrix S including data of air temperature of each air conditioner 3A i, a 1, a 2 , ..., it is possible to obtain the a n, Functions f j and (Equation 1) can be determined.

ICT装置2Iの吸込温度は、空調機3Aの吹出温度と、ICT装置2Iを冷却するための冷気の吹出風量を変数とする式としてもよい。空調機3Aの吹出風量は空調機3Aの冷房能力(処理熱量)に比例して制御される場合がある。冷房能力とは、空調機を冷房運転したとき、室内から単位時間当たりに除去できる熱量(kW)をいう。よって、空調機3Aの設定温度を変更した後の空調機3Aの冷房能力は、設定温度変更前の吹出風量と、空調機3Aの吸込温度と空調機3Aの吹出温度設定値から推定できる。従って、冷房能力の推定値から、設定温度変更後の吹出風量を推定できる。空調機3Aの推定された冷房能力から設定変更後の吹出風量を推定する場合、空調機情報取得部41は、空調機3Aの吹出風量を取得し、ICT装置吸込温度情報取得部42は、ICT装置2Iの実際の吸込温度を取得する。 ICT suction temperature of the device 2I j includes a blowing temperature of the air conditioner 3A i, may be expression that the variable airflow volume of cooling air for cooling the ICT device 2I j. Airflow volume of the air conditioner 3A i is may be controlled in proportion to the cooling capacity of the air conditioner 3A i (processing heat). The cooling capacity refers to the amount of heat (kW) that can be removed from the room per unit time when the air conditioner is cooled. Therefore, the cooling capacity of the air conditioner 3A i after changing the set temperature of the air conditioner 3A i is the airflow volume of previous setting temperature, the air temperature set point of the suction temperature and the air conditioner 3A i of the air conditioner 3A i Can be estimated. Therefore, the amount of blown air after the set temperature is changed can be estimated from the estimated value of the cooling capacity. When estimating the airflow volume after setting change from the estimated cooling capacity of the air conditioner 3A i, the air conditioner information obtaining unit 41 obtains the airflow volume of the air conditioner 3A i, ICT device inlet temperature information acquisition unit 42 Then, the actual suction temperature of the ICT device 2I j is acquired.

さらに、空調機情報取得部41で取得した空調機の吹出温度を用いて、空調機3Aの吹出温度を変化させた時の空調機3Aの消費電力を推定する関係式を次の(式7)に示す。
Pi=gi(Si) i=1〜n (式7)
Furthermore, the relational expression for estimating the power consumption of the air conditioner 3A i when the air temperature of the air conditioner 3A i is changed using the air temperature of the air conditioner acquired by the air conditioner information acquisition unit 41 is expressed as 7).
P i = g i (S i ) i = 1 to n (Expression 7)

Siは空調機3Aの吹出温度、Piは空調機3Aの消費電力の推定値、giは空調機3Aの吹出温度を変数とする空調機3Aの消費電力を表す関数である。空調機消費電力推定部45は、各空調機3Aの消費電力の推定値Piを(式7)から計算する。空調機3Aの消費電力を表す関数も、記憶部43に予め格納された学習データにより決定される。簡単な関数では、空調機3Aの吹出温度Siの1次式で与えることができる。 S i is outlet temperature of the air conditioning unit 3A i, P i is the estimated value of power consumption in the air conditioner 3A i, g i is a function which represents the power consumption of the air conditioner 3A i that the outlet temperature of the air-conditioner 3A i as a variable is there. The air conditioner power consumption estimation unit 45 calculates an estimated value P i of the power consumption of each air conditioner 3A i from (Equation 7). A function representing the power consumption of the air conditioner 3A i is also determined by learning data stored in the storage unit 43 in advance. In a simple function, it can be given by a linear expression of the blowing temperature S i of the air conditioner 3A i .

関数giの具体例として一番簡単な形は、次の一次式(式8)で示される。
b1・Si+b2 (式8)
b1は負の数、b2は正の数で、b1およびb2の決定法は最小自乗法を用いる。
The simplest form of the function g i is shown by the following linear expression (Expression 8).
b 1・ S i + b 2 (Formula 8)
b 1 is a negative number, b 2 is a positive number, and the least square method is used to determine b 1 and b 2 .

空調機3Aの吹出温度を変化させると、空調機3Aの消費電力も時間の経過ともに変化するため、時刻の異なる、空調機3Aの吹出温度と空調機3Aの消費電力のデータの組を複数用意する。時刻の異なるデータの複数の組は、学習データとして記憶部43に格納される。 When the air temperature of the air conditioner 3A i is changed, the power consumption of the air conditioner 3A i also changes with the passage of time, so the data of the air temperature of the air conditioner 3A i and the power consumption of the air conditioner 3A i at different times Prepare multiple sets. A plurality of sets of data having different times are stored in the storage unit 43 as learning data.

空調機3Aの消費電力の実測値のデータからなるベクトルを次の(式9)に示す。
P=(Pi(1), Pi(2), …, Pi(k))t (式9)
Piの括弧の中の数字はそれぞれ時刻(例えば、単位時間を10分ごととすると、1は10分、2は20分)を表し、tは転置を表す。
A vector composed of the data of the actually measured power consumption of the air conditioner 3A i is shown in the following (Equation 9).
P = (P i (1), P i (2),…, P i (k)) t (Equation 9)
The numbers in parentheses of P i each represent time (for example, if the unit time is every 10 minutes, 1 represents 10 minutes, 2 represents 20 minutes), and t represents transposition.

さらに、空調機3Aの吹出温度の実測値のデータからなる行列を次の(式10)に示す。 Further, it shows a matrix of data of the actual measurement values of the air temperature of the air conditioner 3A i the following equation (10).

Figure 2014238197
Figure 2014238197

Siの括弧の中の数字はそれぞれPiの時刻と同じ時刻を表す。 Each of the numbers in the parentheses of the S i represents the same time as the time of P i.

b1, b2のベクトルBを、
B=(b1, b2)t (式11)
とすると、
B=(Rt・R)-1 Rt・P (式12)
となる。ここで−1は逆行列を表す。同様の処理を各空調機3Aについて実施し各空調機3Aのb1, b2を決定する。こうして各空調機3Aの関数giおよび(式7)を決定することができる。
b 1 , b 2 vector B
B = (b 1 , b 2 ) t (Formula 11)
Then,
B = (R t · R) -1 R t · P (Formula 12)
It becomes. Here, −1 represents an inverse matrix. The same process was performed for each air conditioner 3A i determining b 1, b 2 of each air conditioner 3A i. Thus it is possible to determine the function g i and each air conditioner 3A i (Equation 7).

空調機3Aの消費電力の推定方法は、空調機3Aの吹出温度と設定温度変更後の推定吹出風量を変数とする式としてもよい。空調機3Aの消費電力を空調機3Aの吹出温度と設定温度変更後の推定吹出風量とを用いて推定する場合、空調機情報取得部41は、空調機3Aの吹出風量を取得し、ICT装置吸込温度情報取得部42は、ICT装置2Iの実際の吸込温度を取得する。 Estimation method of power consumption of the air conditioner 3A i may estimated airflow volume after air temperature and the set temperature change of the air conditioner 3A i as an expression whose variable. When estimating the power consumption of the air conditioner 3A i using the estimated airflow volume after air temperature and the set temperature change of the air conditioner 3A i, the air conditioner information obtaining unit 41 obtains the airflow volume of the air conditioner 3A i , ICT device inlet temperature information acquisition unit 42 acquires the actual suction temperature of ICT device 2I j.

空調機吹出温度設定部46は、例えば、外気温が上昇したり、任意のICT装置2Iの負荷が増加し温度が上昇したりして、ICT装置2Iの吸込温度条件を逸脱した時、もとの温度条件を満足し、かつ空調機3Aの消費電力の和が最小となる空調機吹出温度を求める。空調機吹出温度を求める方法としては数理計画法を用いる。数理計画法は、任意の等式もしくは不等式で表される制約条件下で、任意の目的関数を最小化あるいは最大化する変数の組を求める手法である(非特許文献2を参照)。 When the outside air temperature rises or the load of any ICT device 2I j increases and the temperature rises, for example, the air conditioner outlet temperature setting unit 46 deviates from the suction temperature condition of the ICT device 2I j . satisfy the original temperature conditions, and obtains the air conditioner blow temperature to the sum of the power consumption of the air conditioner 3A i is minimized. Mathematical programming is used as a method for determining the air blower temperature. Mathematical programming is a technique for obtaining a set of variables that minimizes or maximizes an arbitrary objective function under a constraint condition expressed by an arbitrary equality or inequality (see Non-Patent Document 2).

空調機の吹出温度を求める方法として数理計画法を用いる場合、求める変数の組は各空調機3Aの吹出温度であり、最小化する目的関数は空調消費電力の和である。目的関数を次の(式13)に示す。 When using a mathematical programming as a method for determining the outlet temperature of the air conditioner, set of variables to determine is the outlet temperature of each air conditioner 3A i, the objective function to be minimized is the sum of air conditioning power. The objective function is shown in the following (Formula 13).

Figure 2014238197
Figure 2014238197

また、不等式制約条件を次の(式14)に示す。
f(S’1,S’2,…S’n)+Dj≦T# j=1〜m (式14)
S’iは、求める空調機3Aの吹出温度(第2の吹出温度)であり、S’1,S’2,…S’nは、求める空調機3Aの吹出温度の組み合わせである。
The inequality constraint condition is shown in the following (Expression 14).
f j (S ′ 1 , S ′ 2 ,... S ′ n ) + D j ≦ T # j = 1 to m (Formula 14)
S ′ i is the blowing temperature (second blowing temperature) of the air conditioner 3A i to be obtained, and S ′ 1 , S ′ 2 ,... S ′ n are combinations of the blowing temperatures of the air conditioner 3A i to be found.

Dは前回の空調設定の結果得られたICT装置2Iの吸込温度の実測値(第2の吸込温度)T *とICT装置2Iの吸込温度の推定値f(S1,S2,…Sn)の誤差であり、次の(式15)で表される。
Dj= T *-f(S1,S2,…Sn) j=1〜m (式15)
T#はICT装置2Iの吸込温度の上限値であり、例えば27℃である。
D j is an actual value (second suction temperature) T j * of the suction temperature of the ICT device 2I j obtained as a result of the previous air conditioning setting, and an estimated value f j (S 1 , S of the suction temperature of the ICT device 2I j. 2 ,... S n ) and is expressed by the following (Equation 15).
D j = T j * −f j (S 1 , S 2 ,... Sn) j = 1 to m (Formula 15)
T # is the upper limit value of the suction temperature of the ICT device 2I j, for example, 27 ° C..

目的関数や制約条件式が全て線形式であれば線形計画法を利用し、目的関数や制約条件式が線形式でなければ非線形計画法を利用する。数理計画法により求めた空調機3Aの吹出温度を空調機3Aに送信する。また、求めた空調機3Aの吹出温度を用いて(式1)より各ICT装置2Iの温度推定値を求める。空調制御周期である一定時間経過後、各ICT装置2Iの吸込温度T *を計測し、(式15)の誤差Dを求め、次回の空調機の吹出温度の算出に使用する。空調制御周期である一定時間とは、例えば10分である。 If all objective functions and constraint expressions are linear, linear programming is used. If the objective function and constraint expressions are not linear, nonlinear programming is used. The blowing temperature of the air conditioner 3A i obtained by the mathematical programming method is transmitted to the air conditioner 3A i . Moreover, the estimated temperature value of each ICT device 2I j is obtained from (Equation 1) using the obtained outlet temperature of the air conditioner 3A i . After a certain time, which is the air conditioning control cycle, the suction temperature T j * of each ICT device 2I j is measured, the error D j in (Equation 15) is obtained, and used for the calculation of the blowout temperature of the next air conditioner. The fixed time that is the air conditioning control cycle is, for example, 10 minutes.

図3に本発明の一実施形態にかかる、空調制御方法のフローチャートを示す。空調機情報取得部41は、空調機3Aの吹出温度情報を収集し、ICT装置吸込温度情報取得部42は、ICT装置2Iの吸込温度情報を収集する。ICT装置吸込温度推定部44は、収集された空調機3Aの吹出温度情報およびICT装置2Iの吸込温度情報に基づいて(式1)を決定し(S100)、決定された(式1)は、記憶部43に記録される。 FIG. 3 shows a flowchart of an air conditioning control method according to an embodiment of the present invention. Air conditioner information acquisition unit 41 collects the air temperature information of the air conditioner 3A i, ICT device inlet temperature information acquisition unit 42 collects inlet temperature information of the ICT device 2I j. The ICT device suction temperature estimation unit 44 determines (Equation 1) based on the collected outlet temperature information of the air conditioner 3A i and the suction temperature information of the ICT device 2I j (S100), and is determined (Equation 1). Is recorded in the storage unit 43.

空調機情報取得部41は、空調機3Aの消費電力情報および吹出温度情報を収集する。空調機消費電力推定部45は、収集された空調機3Aの消費電力情報および吹出温度情報に基づいて(式7)を決定し(S101)、決定された(式7)は、記憶部43に記録される。 Air conditioner information acquisition unit 41 collects power consumption information and outlet temperature information of the air conditioner 3A i. The air conditioner power consumption estimation unit 45 determines (Equation 7) based on the collected power consumption information and blowing temperature information of the air conditioner 3A i (S101), and the determined (Equation 7) is the storage unit 43. To be recorded.

初期状態では各ICT装置2Iの温度誤差Dは0とする(S102)。空調機吹出温度設定部46は、ICT装置2Iの吸込温度の推定値、記憶部43から読みだした、ICT装置2Iの吸込温度を推定する計算式(式1)、空調機3Aの消費電力を推定する計算式(式7)、および誤差Dを用いて各空調機3Aの吹出温度Siを数理計画法にて計算する(S103)。ステップS103の具体的な数理計画法の計算式を次の(式16)〜(式19)に示す。 In the initial state temperature error D j of each ICT device 2I j is 0 to (S102). Air conditioner blow temperature setting unit 46, the estimated value of the suction temperature of the ICT device 2I j, read out from the storage unit 43, the calculation formula for estimating the suction temperature of the ICT device 2I j (Equation 1), the air conditioner 3A i The blowout temperature S i of each air conditioner 3A i is calculated by mathematical programming using the calculation formula (formula 7) for estimating the power consumption and the error D j (S103). Specific mathematical formulas for mathematical programming in step S103 are shown in the following (formula 16) to (formula 19).

Figure 2014238197
Figure 2014238197

s.t.
f1(S’1,S’2,…S’n)+D1≦T# (式17)
f2(S’1,S’2,…S’n)+D2≦T# (式18)



fm(S’1,S’2,…S’n)+Dm≦T# (式19)
st
f 1 (S ′ 1 , S ′ 2 ,... S ′ n ) + D 1 ≦ T # (Equation 17)
f 2 (S ′ 1 , S ′ 2 ,... S ′ n ) + D 2 ≦ T # (Formula 18)



f m (S ′ 1 , S ′ 2 ,... S ′ n ) + D m ≦ T # (Formula 19)

空調機吹出温度設定部46は、計算した吹出温度を各空調機3Aに送信し、各空調機3Aの吹出温度を設定する(S104)。そして、ICT装置吸込温度推定部44は、計算した空調機吹出温度を用いて各ICT装置2Iの吸込温度推定値を計算する(S105)。各空調機3Aは設定された吹出温度で各ICT装置2Iに給気する(S106)。ICT装置吸込温度情報取得部42は、空調機3Aの出力が安定する一定時間経過後、各ICT装置2Iの実際の吸込温度を測定し取得する(S107)。空調機3Aの出力が安定する一定時間とは、例えば10分である。空調機吹出温度設定部46は、測定された各ICT装置2Iの実際の吸込温度と、ステップS105で計算された各ICT装置2Iの吸込温度推定値との誤差Diを計算する(S108)。再びステップS103に戻り、空調機吹出温度設定部46は、各空調機3Aの消費電力の推定式およびステップS108で計算された誤差Dを用いて各空調機3Aの吹出温度S’iを数理計画法にて計算する(S103)。 Air conditioner blow temperature setting unit 46 sends the calculated air temperature to the respective air conditioners 3A i, sets the outlet temperature of each air conditioner 3A i (S104). Then, ICT device suction temperature estimating unit 44 calculates the inlet temperature estimate for each ICT devices 2I j using the calculated air conditioner blow temperature (S105). Each air conditioner 3A i supplies air to each ICT device 2I j at the set blowing temperature (S106). The ICT device suction temperature information acquisition unit 42 measures and acquires the actual suction temperature of each ICT device 2I j after a lapse of a fixed time when the output of the air conditioner 3A i is stabilized (S107). The fixed time during which the output of the air conditioner 3A i is stabilized is, for example, 10 minutes. Air conditioner blow temperature setting unit 46 calculates the actual suction temperature of the ICT device 2I j measured, the error Di between suction temperature estimate for each ICT device 2I j calculated in step S105 (S108) . Returning to step S103 again, the air conditioner blow temperature setting unit 46, air outlet temperature S 'i of each air conditioner 3A i using an error D j calculated by the estimation equation and step S108 in the power consumption of each of the air conditioners 3A i Is calculated by mathematical programming (S103).

図3のフローチャートに関して、本発明の一実施形態ではステップS108の後のループを一定時間毎に継続して行なっている。本発明の一実施形態にかかる空調制御システムではICT装置の動作状況、言い換えればICT装置の発熱状況に関しては直接モニターしていなくとも空調制御が可能である。ICT装置の発熱状況の変化に起因する誤差Dの増減を補正する制御を行うことによりICT装置の発熱状況の変化に対応することが可能である。 With respect to the flowchart of FIG. 3, in one embodiment of the present invention, the loop after step S108 is continuously performed at regular intervals. In the air conditioning control system according to the embodiment of the present invention, the operation status of the ICT device, in other words, the heat generation status of the ICT device can be controlled without being directly monitored. It is possible to cope with a change in the heat generation status of the ICT device by performing control for correcting an increase or decrease in the error D j caused by the change in the heat generation status of the ICT device.

なお、記憶部43は、ROM(Read Only Memory)とRAM(Random Access Memory)とを含んで構成される。ROMには、空調機制御装置4全体の動作制御に必要なプログラムや各種のデータ(例えば、ICT装置2Iの吸込温度を推定するための計算式、および、空調機3Aの消費電力を推定するための計算式など)が記録される。RAMには、データやプログラムを一時的に記憶するための記録領域が設けられ、プログラムやデータが保持される。 The storage unit 43 includes a ROM (Read Only Memory) and a RAM (Random Access Memory). The ROM estimates a program and various data necessary for operation control of the entire air conditioner control device 4 (for example, a calculation formula for estimating the suction temperature of the ICT device 2I j and the power consumption of the air conditioner 3A i The calculation formula for doing this is recorded. The RAM is provided with a recording area for temporarily storing data and programs, and holds programs and data.

また、関数fと関数giの決定は、本発明の空調制御システムに必要な計測機能と学習機能とを組み込んだ上で、最初に関数決定のための学習を行なうことにより決定してもいいし、別のシステムを用いて決定した関数を本発明の空調制御システムに格納してもよい。 Further, the function f j and the function g i may be determined by incorporating the measurement function and the learning function necessary for the air conditioning control system of the present invention and then performing learning for function determination first. Alternatively, a function determined using another system may be stored in the air conditioning control system of the present invention.

本実施形態によれば、空調室を安全な温度に保つことができ、さらに空調機の省エネを実現することが可能となる。   According to the present embodiment, the air conditioning room can be maintained at a safe temperature, and further, energy saving of the air conditioner can be realized.

また本実施形態によれば、ICT装置の吸込温度の実測値と推定値の差分を、空調機の吹出温度の設定に反映させることが可能となり、より精度が高く、なおかつICT装置の吸込温度が上限値を超えないように空調機を制御することが可能となる。   In addition, according to the present embodiment, the difference between the actual measured value and the estimated value of the suction temperature of the ICT device can be reflected in the setting of the blowout temperature of the air conditioner, which is more accurate and the suction temperature of the ICT device is higher. It is possible to control the air conditioner so as not to exceed the upper limit value.

1 空調室
2I、2I、2I、2I ICT装置
3A、3A、3A、3A 空調機
4 空調機制御装置
41 空調機情報取得部
42 ICT装置吸込温度情報取得部
43 記憶部
44 ICT装置吸込温度推定部
45 空調機消費電力推定部
46 空調機吹出温度設定部
1 air-conditioned room 2I 1, 2I 2, 2I j , 2I m ICT device 3A 1, 3A 2, 3A i , 3A n air conditioner 4 air conditioner controller 41 air conditioner information acquiring unit 42 ICT device inlet temperature information acquisition unit 43 stores Unit 44 ICT device suction temperature estimation unit 45 Air conditioner power consumption estimation unit 46 Air conditioner outlet temperature setting unit

Claims (8)

センサを有するICT装置の吸込温度が一定の温度を超えた場合に、前記ICT装置を冷却する空調機の予め設定された第1の吹出温度を、第2の吹出温度に変更するシステムによる空調制御方法であって、
前記第1の吹出温度と、記憶部に予め格納された、前記ICT装置の第1の吸込温度を推定する計算式とを用いて、前記第1の吸込温度を推定する第1のステップと、
前記第1の吹出温度と、前記記憶部に予め格納された、前記空調機の消費電力を推定する計算式とを用いて、前記消費電力を推定する第2のステップと、
前記ICT装置の前記センサによって計測された第2の吸込温度を取得するステップと、
前記取得された第2の吸込温度と前記推定された第1の吸込温度との誤差を計算するステップと、
前記第1の吸込温度を推定する計算式と、前記消費電力を推定する計算式と、前記誤差とを用いて、前記空調機の前記第2の吹出温度を設定するステップと
を備えることを特徴とする空調制御方法。
Air conditioning control by a system that changes the preset first blowing temperature of the air conditioner that cools the ICT device to the second blowing temperature when the suction temperature of the ICT device having the sensor exceeds a certain temperature A method,
A first step of estimating the first suction temperature using the first blow-off temperature and a calculation formula preliminarily stored in the storage unit for estimating the first suction temperature of the ICT device;
A second step of estimating the power consumption using the first blowing temperature and a calculation formula for estimating the power consumption of the air conditioner, which is stored in advance in the storage unit;
Obtaining a second suction temperature measured by the sensor of the ICT device;
Calculating an error between the acquired second suction temperature and the estimated first suction temperature;
Using the calculation formula for estimating the first suction temperature, the calculation formula for estimating the power consumption, and the error, and setting the second blowing temperature of the air conditioner. Air conditioning control method.
前記推定する第1のステップは、
前記第1の吸込温度を推定する計算式の代わりに前記空調機から吹き出される風量に基づいて、前記ICT装置の第1の吸込温度を推定することを特徴とする請求項1に記載の空調制御方法。
The first step of estimating is:
2. The air conditioner according to claim 1, wherein the first suction temperature of the ICT device is estimated based on an air volume blown from the air conditioner instead of a calculation formula for estimating the first suction temperature. Control method.
前記推定する第2のステップは、
前記消費電力を推定する計算式の代わりに前記空調機から吹き出される風量に基づいて、前記空調機の消費電力を推定することを特徴とする請求項1または請求項2に記載の空調制御方法。
The second step of estimating comprises
3. The air conditioning control method according to claim 1, wherein the power consumption of the air conditioner is estimated based on an air volume blown from the air conditioner instead of a calculation formula for estimating the power consumption. 4. .
前記空調機の前記第2の吹出温度と前記誤差との和が所定の上限温度以下で、かつ前記空調機の前記消費電力が最小となるように、前記第2の吹出温度を設定する手段として数理計画法を用い、
前記空調機の前記消費電力が最小という条件を前記数理計画法の目的関数として用い、
前記和が前記上限温度以下という制約条件を前記数理計画法の不等式制約条件として用いることを特徴とする請求項1から請求項3のいずれか一項に記載の空調制御方法。
As means for setting the second blowing temperature so that the sum of the second blowing temperature of the air conditioner and the error is equal to or lower than a predetermined upper limit temperature and the power consumption of the air conditioner is minimized. Using mathematical programming,
Using the condition that the power consumption of the air conditioner is minimum as the objective function of the mathematical programming method,
The air conditioning control method according to any one of claims 1 to 3, wherein a constraint that the sum is equal to or less than the upper limit temperature is used as an inequality constraint in the mathematical programming.
センサを有するICT装置の吸込温度が一定の温度を超えた場合に、前記ICT装置を冷却する空調機の予め設定された第1の吹出温度を、第2の吹出温度に変更する空調制御システムであって、
前記第1の吹出温度と、記憶部に予め格納された、前記ICT装置の第1の吸込温度を推定する計算式とを用いて、前記第1の吸込温度を推定する第1の推定部と、
前記第1の吹出温度と、前記記憶部に予め格納された、前記空調機の消費電力を推定する計算式とを用いて、前記消費電力を推定する第2の推定部と、
前記ICT装置の前記センサによって計測された第2の吸込温度を取得部と、
前記取得された第2の吸込温度と前記推定された第1の吸込温度との誤差を計算する算出部と、
前記第1の吸込温度を推定する計算式と、前記消費電力を推定する計算式と、前記誤差とを用いて、前記空調機の前記第2の吹出温度を設定する設定部と
を備えたことを特徴とする空調制御システム。
An air conditioning control system that changes a preset first blowing temperature of an air conditioner that cools the ICT device to a second blowing temperature when the suction temperature of the ICT device having a sensor exceeds a certain temperature. There,
A first estimator for estimating the first suction temperature using the first blowing temperature and a calculation formula preliminarily stored in the storage unit for estimating the first suction temperature of the ICT device; ,
A second estimation unit that estimates the power consumption using the first blowing temperature and a calculation formula that is stored in advance in the storage unit and that estimates the power consumption of the air conditioner;
A second suction temperature measured by the sensor of the ICT device;
A calculation unit that calculates an error between the acquired second suction temperature and the estimated first suction temperature;
A setting unit for setting the second blowing temperature of the air conditioner using the calculation formula for estimating the first suction temperature, the calculation formula for estimating the power consumption, and the error. Air conditioning control system characterized by
前記第1の推定部は、
前記第1の吸込温度を推定する計算式の代わりに前記空調機から吹き出される風量に基づいて、前記ICT装置の第1の吸込温度を推定することを特徴とする請求項5に記載の空調制御システム。
The first estimation unit includes:
6. The air conditioning according to claim 5, wherein the first suction temperature of the ICT device is estimated based on an air volume blown from the air conditioner instead of a calculation formula for estimating the first suction temperature. Control system.
前記第2の推定部は、
前記消費電力を推定する計算式の代わりに前記空調機から吹き出される風量に基づいて、前記空調機の消費電力を推定することを特徴とする請求項5または請求項6に記載の空調制御システム。
The second estimation unit includes
7. The air conditioning control system according to claim 5, wherein the power consumption of the air conditioner is estimated based on an amount of air blown from the air conditioner instead of a calculation formula for estimating the power consumption. 8. .
前記空調機の前記第2の吹出温度と前記誤差との和が所定の上限温度以下で、かつ前記空調機の前記消費電力が最小となるように、前記第2の吹出温度を設定する手段として数理計画法を用い、
前記空調機の前記消費電力が最小という条件を前記数理計画法の目的関数として用い、
前記和が前記上限温度以下という制約条件を前記数理計画法の不等式制約条件として用いることを特徴とする請求項5から請求項7のいずれか一項に記載の空調制御システム。
As means for setting the second blowing temperature so that the sum of the second blowing temperature of the air conditioner and the error is equal to or lower than a predetermined upper limit temperature and the power consumption of the air conditioner is minimized. Using mathematical programming,
Using the condition that the power consumption of the air conditioner is minimum as the objective function of the mathematical programming method,
The air conditioning control system according to any one of claims 5 to 7, wherein a constraint condition that the sum is equal to or less than the upper limit temperature is used as an inequality constraint condition of the mathematical programming method.
JP2013119871A 2013-06-06 2013-06-06 Air conditioning control method and air conditioning control system Pending JP2014238197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013119871A JP2014238197A (en) 2013-06-06 2013-06-06 Air conditioning control method and air conditioning control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013119871A JP2014238197A (en) 2013-06-06 2013-06-06 Air conditioning control method and air conditioning control system

Publications (1)

Publication Number Publication Date
JP2014238197A true JP2014238197A (en) 2014-12-18

Family

ID=52135483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013119871A Pending JP2014238197A (en) 2013-06-06 2013-06-06 Air conditioning control method and air conditioning control system

Country Status (1)

Country Link
JP (1) JP2014238197A (en)

Similar Documents

Publication Publication Date Title
US11385607B2 (en) Variable air volume modeling for an hvac system
EP2606406B1 (en) Energy-optimal control decisions for hvac systems
JP6254953B2 (en) Multidimensional optimization to control environmental maintenance modules
JP4134781B2 (en) Air conditioning equipment
JP6005304B2 (en) Ventilation control device and ventilation control method
JP6937261B2 (en) Air conditioning control device, air conditioning control method and computer program
JP2018109494A (en) Air conditioning control device, air conditioning control method, and computer program
WO2020008550A1 (en) Energy saving management device, energy saving management system, energy saving management method and program
KR101727434B1 (en) Method for estimating efficiency of refrigerator using random forest model
JP5997671B2 (en) Air conditioning control method and air conditioning control system
US8768519B2 (en) Apparatus and method for controlling grille aperture ratios of a plurality of air transfer grilles
WO2021111617A1 (en) Air-conditioning control device
JP2016056973A (en) Air conditioning control device, air conditioning control method and air conditioning control program
JP2015132388A (en) Air conditioning control method and air conditioning control system
CN116954329A (en) Method, device, equipment, medium and program product for regulating state of refrigeration system
US20230332793A1 (en) Air conditioning control device
JP2014238197A (en) Air conditioning control method and air conditioning control system
EP3707438B1 (en) Control system for hvac comprising an air-handling unit and a terminal unit and method of operating said control system
JP6002098B2 (en) Air conditioning control method and air conditioning control system
JP2012017930A (en) Method of estimating used energy of apparatus in air conditioning system, and used energy estimating device incorporating the method
Aziz et al. Measurement of Air Conditioning and Mechanical Ventilation Command Temperature to Control the Environment of Smart Building
US20240093899A1 (en) Energy optimization of hvac systems under variable ventilation conditions
JP2020139705A (en) Operation control method, operation control program and operation control device
JP2015007828A (en) Air conditioning control method and air conditioning control system
Fjerbæk et al. Benchmarking Heating System Performance in Office Buildings through Grey-box Modeling