JP5996324B2 - Nonvolatile semiconductor memory device and manufacturing method thereof - Google Patents

Nonvolatile semiconductor memory device and manufacturing method thereof Download PDF

Info

Publication number
JP5996324B2
JP5996324B2 JP2012174797A JP2012174797A JP5996324B2 JP 5996324 B2 JP5996324 B2 JP 5996324B2 JP 2012174797 A JP2012174797 A JP 2012174797A JP 2012174797 A JP2012174797 A JP 2012174797A JP 5996324 B2 JP5996324 B2 JP 5996324B2
Authority
JP
Japan
Prior art keywords
electrode
insulating film
hole
film
variable resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012174797A
Other languages
Japanese (ja)
Other versions
JP2014036034A (en
Inventor
信義 粟屋
信義 粟屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012174797A priority Critical patent/JP5996324B2/en
Publication of JP2014036034A publication Critical patent/JP2014036034A/en
Application granted granted Critical
Publication of JP5996324B2 publication Critical patent/JP5996324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、第1電極と第2電極の間に金属酸化物または金属酸窒化物からなる可変抵抗体を狭持してなる不揮発性の可変抵抗素子を情報の記憶に用いる不揮発性半導体記憶装置に関し、特に、かかる可変抵抗素子を複数、3次元マトリクス状に配置した3次元メモリセルアレイの構造に関する。   The present invention relates to a nonvolatile semiconductor memory device that uses a nonvolatile variable resistance element in which a variable resistor made of a metal oxide or metal oxynitride is sandwiched between a first electrode and a second electrode for storing information. In particular, the present invention relates to a structure of a three-dimensional memory cell array in which a plurality of such variable resistance elements are arranged in a three-dimensional matrix.

携帯用電子機器等のモバイル機器の普及とともに、電源オフ時にも記憶したデータを保持することのできる大容量で安価な不揮発性メモリとしてフラッシュメモリが広く使用されている。しかし近年、フラッシュメモリの微細化限界が見えてきており、MRAM(磁気抵抗変化メモリ)、PCRAM(相変化メモリ)、CBRAM(固体電解質メモリ)、RRAM(抵抗変化メモリ)(登録商標)等の不揮発性メモリの開発が盛んに行われている。これらの不揮発性メモリの中でもRRAMは、高速書き換えが可能であり、材料に単純な二元系の遷移金属酸化物が使用可能なため作製が容易であり、既存のCMOSプロセスとの親和性が高いことから注目されている。   With the spread of mobile devices such as portable electronic devices, flash memory is widely used as a large-capacity and inexpensive non-volatile memory capable of holding stored data even when the power is turned off. However, in recent years, the limit of miniaturization of flash memory has become apparent, and non-volatile such as MRAM (Magnetic Resistance Change Memory), PCRAM (Phase Change Memory), CBRAM (Solid Electrolyte Memory), RRAM (Resistance Change Memory) (registered trademark) Active memory has been actively developed. Among these nonvolatile memories, the RRAM can be rewritten at high speed, and can be easily manufactured because a simple binary transition metal oxide can be used as a material, and has high compatibility with an existing CMOS process. It is attracting attention.

RRAMのような2端子型の可変抵抗素子を使ったメモリセルで構成される記憶装置において、最も大容量化が可能なメモリセル構造とメモリセルアレイ構造の組み合わせは、単体の可変抵抗素子で構成される1R型のメモリセルを互いに直交する配線の交差部分に形成するクロスポイント型メモリセルアレイである。かかる1R型のメモリセルは、メモリセル中に可変抵抗素子を流れる電流を制限する素子が存在しないため、容易に複数層のクロスポイント型メモリセルアレイを上下に積層して3次元メモリセルアレイを構成することができる(例えば、下記の特許文献1参照)。しかし、1R型メモリセルは、電流制限素子が存在しないため、選択された2本の配線間に形成されているメモリセル以外の非選択配線に接続するメモリセルを介して寄生電流(回り込み電流)が流れるため、かかる寄生電流が選択メモリセルを流れる読み出し電流に重畳して、読み出し電流が判別困難または不能となる問題がある。   In a memory device composed of memory cells using a two-terminal variable resistance element such as an RRAM, the combination of the memory cell structure and the memory cell array structure that can maximize the capacity is composed of a single variable resistance element. This is a cross-point type memory cell array in which 1R type memory cells are formed at the intersections of mutually orthogonal wirings. In such a 1R type memory cell, there is no element that limits the current flowing through the variable resistance element in the memory cell. Therefore, a three-dimensional memory cell array is easily formed by stacking a plurality of cross-point type memory cell arrays on the top and bottom. (For example, see Patent Document 1 below). However, since there is no current limiting element in the 1R type memory cell, a parasitic current (sneak current) passes through the memory cell connected to the non-selected wiring other than the memory cell formed between the two selected wirings. Therefore, there is a problem that such a parasitic current is superimposed on the read current flowing through the selected memory cell, making it difficult or impossible to determine the read current.

1R型メモリセルにおける寄生電流対策として、可変抵抗素子に直列にトランジスタを接続して1T1R型のメモリセル構造とする方法、或いは、可変抵抗素子に直列にダイオード、バリスタ等の電流制限素子を接続して1D1R型のメモリセル構造とする方法がある。1T1R型メモリセルは、可変抵抗素子に流れる電流の大きさ、方向の制御が可能であり制御性に優れるが、占有面積が大きく容易に多層構造をとることができないため、メモリ容量がチップ面積と設計ルールに制限される。一方、1D1R型メモリセルは、製造プロセスを最適化することでクロスポイント構造による最少面積単位素子を容易に形成でき、例えば下記特許文献2に示すように、多層化も可能であることから、大容量化に適している。   As a countermeasure against the parasitic current in the 1R type memory cell, a transistor is connected in series to the variable resistance element to form a 1T1R type memory cell structure, or a current limiting element such as a diode or a varistor is connected in series to the variable resistance element. There is a method of using a 1D1R type memory cell structure. The 1T1R type memory cell can control the magnitude and direction of the current flowing through the variable resistance element and has excellent controllability. However, since the occupied area is large and a multi-layer structure cannot be easily formed, the memory capacity is as large as the chip area. Limited to design rules. On the other hand, the 1D1R type memory cell can be easily formed with a minimum area unit element having a cross-point structure by optimizing the manufacturing process. Suitable for capacity.

しかし、従来のクロスポイント型メモリセルアレイを多層化して3次元メモリセルアレイを構成する場合、最小サイズのパターンを形成するための高価な最先端露光装置によるフォトリソグラフィ工程が積層数に比例して増加し、コストメリットに限界がある。   However, when forming a three-dimensional memory cell array by multilayering a conventional cross-point memory cell array, the number of photolithography processes by an expensive state-of-the-art exposure apparatus for forming a minimum size pattern increases in proportion to the number of stacked layers. The cost merit is limited.

大容量で安価なRRAMを実現するため、多層化によるマスク工程の増加のない新規なメモリセルアレイ構造として円筒状の積層構造が特許文献2および特許文献3で提案されている。この構成を図23の断面構造図に示す。   In order to realize a large-capacity and inexpensive RRAM, Patent Documents 2 and 3 propose a cylindrical stacked structure as a novel memory cell array structure that does not increase the number of mask processes due to multilayering. This structure is shown in the cross-sectional structure diagram of FIG.

図23に示すように、平板状の導電体で形成された平板電極45が、層間絶縁膜46を介して2層以上に積層され、かかる平板電極45と層間絶縁膜46を貫通する貫通孔が、平板電極の各層に複数形成されている。そして、柱状電極41(41a、41b)が、貫通孔内を平板電極45と接触せずに貫通し、平板電極45と柱状電極41に挟まれた環状部47に、可変抵抗体材料42が、環状部の夫々に環状に形成されている。これにより、環状の可変抵抗体材料42の外周面が平板電極45と電気的に接続し、内周面が柱状電極41と電気的に接続して、夫々の接続点で可変抵抗素子を備えたメモリセル47が形成されている。なお、柱状電極41は、下方に形成されるMOSトランジスタのドレイン領域と接続している。   As shown in FIG. 23, a flat plate electrode 45 formed of a flat conductor is laminated in two or more layers via an interlayer insulating film 46, and a through-hole penetrating the flat plate electrode 45 and the interlayer insulating film 46 is formed. A plurality of layers are formed in each layer of the plate electrode. The columnar electrode 41 (41a, 41b) passes through the through hole without contacting the flat plate electrode 45, and the variable resistor material 42 is formed in the annular portion 47 sandwiched between the flat plate electrode 45 and the columnar electrode 41. Each of the annular portions is formed in an annular shape. Thus, the outer peripheral surface of the annular variable resistor material 42 is electrically connected to the plate electrode 45, the inner peripheral surface is electrically connected to the columnar electrode 41, and variable resistance elements are provided at the respective connection points. A memory cell 47 is formed. The columnar electrode 41 is connected to the drain region of the MOS transistor formed below.

特許文献2では1D1R型をメモリ単位とする円筒状の積層構造が示され、特許文献3では1R型及び1Rと双方向整流素子の直列接続をメモリ単位とする積層構造が示されている。   Patent Document 2 shows a cylindrical stacked structure using 1D1R type as a memory unit, and Patent Document 3 shows a stacked structure using 1R type and 1R connected in series with a bidirectional rectifying element as a memory unit.

しかし、1R型は上述したように回り込み電流に対する回路技術による対策が必要となる。   However, as described above, the 1R type requires countermeasures for circuit current against the sneak current.

一方、金属酸化物の抵抗変化素子は、一方向の極性の電圧で連続的抵抗変化を起こすユニポーラスイッチも可能だが、安定かつ高速のスイッチングを行う点では、書込みと消去を異なる極性の電圧を印加して行うバイポーラスイッチが優れている。特許文献2で示すようなPN接合ダイオードを整流素子として使う1D1R型のメモリでは、このようなバイポーラスイッチの特性を示す抵抗変化素子を良好に動作させることができない。   On the other hand, a metal oxide resistance change element can be a unipolar switch that causes a continuous resistance change with a voltage in one direction, but in terms of stable and high-speed switching, voltages with different polarities are applied for writing and erasing. The bipolar switch is excellent. In a 1D1R type memory using a PN junction diode as a rectifying element as disclosed in Patent Document 2, such a variable resistance element exhibiting the characteristics of a bipolar switch cannot be operated satisfactorily.

これに対し、特許文献3には双方向の整流素子を可変抵抗素子と電極の間に挿入することでバイポーラ型の抵抗変化素子に対応できるメモリ構造が示されている。   On the other hand, Patent Document 3 discloses a memory structure that can cope with a bipolar variable resistance element by inserting a bidirectional rectifying element between a variable resistance element and an electrode.

また、特許文献4には、回り込み電流の抑制のため、金属/絶縁体/金属(MIM)型の2端子素子を双方向の整流素子として用いる場合に、非線形な電圧電流特性を得るのに必要な金属の仕事関数、絶縁体のバンド構造、絶縁体の膜厚の関係が示されている。   In Patent Document 4, it is necessary to obtain non-linear voltage-current characteristics when a metal / insulator / metal (MIM) type two-terminal element is used as a bidirectional rectifying element in order to suppress a sneak current. The relationship between the work function of a simple metal, the band structure of the insulator, and the film thickness of the insulator is shown.

米国特許出願公開第2005/0230724号明細書US Patent Application Publication No. 2005/0230724 特開2008−181978号公報JP 2008-181978 A 特開2010−287872号公報JP 2010-287872 A 特開2011−90758号公報JP 2011-90758 A

図24に、特許文献3に示されている双方向の整流素子と可変抵抗素子を備えたメモリセルの具体的な構造の例を示す。可変抵抗体材料42と平板電極45の間(図24(a))、又は、可変抵抗体材料42と柱状電極41(41a、41b)の間(図24(b))に双方向の整流性を示す絶縁膜44が挿入されている。図25に、双方向整流素子の理想的な電圧電流特性を示す。   FIG. 24 shows an example of a specific structure of a memory cell including a bidirectional rectifying element and a variable resistance element disclosed in Patent Document 3. Bidirectional rectification between the variable resistor material 42 and the plate electrode 45 (FIG. 24A) or between the variable resistor material 42 and the columnar electrodes 41 (41a, 41b) (FIG. 24B). An insulating film 44 is inserted. FIG. 25 shows ideal voltage-current characteristics of the bidirectional rectifying device.

図24に示す構造の問題点は、以下において詳述するように、可変抵抗体材料と双方向整流材料(絶縁膜)が、金属電極を介さず直接接続していることにある。   The problem with the structure shown in FIG. 24 is that the variable resistor material and the bidirectional rectifying material (insulating film) are directly connected without a metal electrode, as will be described in detail below.

図26(a)は、図24(a)に示す構造を概念的に簡略化したものである。図26(b)は図26(a)の1メモリセルに着目した拡大図である。   FIG. 26A conceptually simplifies the structure shown in FIG. FIG. 26B is an enlarged view focusing on one memory cell of FIG.

図26に示す素子において、可変抵抗体42の抵抗変化が均一に起きる場合は、双方向整流材料44と可変抵抗体材料42の接する界面で電圧分布は均一であり、双方向整流素子は図25に示す理想的な電圧電流特性を示す。   In the element shown in FIG. 26, when the resistance change of the variable resistor 42 occurs uniformly, the voltage distribution is uniform at the interface where the bidirectional rectifier material 44 and the variable resistor material 42 are in contact with each other. The ideal voltage-current characteristics shown in

ところが、図26(b)の拡大図に示すように、抵抗変化が可変抵抗体材料42の内部に形成されたフィラメント48のような限定された領域で起きている場合、双方向整流材料44と可変抵抗体材料42の接する界面で電圧は不均等に分布し、双方向整流素子は理想的な電圧電流特性を示さなくなる。   However, as shown in the enlarged view of FIG. 26B, when the resistance change occurs in a limited region such as the filament 48 formed in the variable resistor material 42, the bidirectional rectifying material 44 and The voltage is unevenly distributed at the interface where the variable resistor material 42 contacts, and the bidirectional rectifying element does not exhibit ideal voltage-current characteristics.

本発明は、上記の従来技術における問題点を鑑み、均一な双方向整流特性を有する双方向整流素子と可変抵抗素子を直列に接続したメモリセルを3次元的に集積した3次元メモリセルアレイを備え、大容量で信頼性の高い不揮発性半導体記憶装置およびその製造方法を提供することを目的とする。   In view of the above problems in the prior art, the present invention includes a three-dimensional memory cell array in which memory cells in which bidirectional rectifying elements having uniform bidirectional rectifying characteristics and variable resistance elements are connected in series are three-dimensionally integrated. An object of the present invention is to provide a nonvolatile semiconductor memory device having a large capacity and high reliability and a method for manufacturing the same.

上記目的を達成するための本発明に係る不揮発性半導体記憶装置は、電圧の印加により抵抗特性が変化する不揮発性の可変抵抗素子を備えた2端子型のメモリセルが、互いに直交する第1方向、第2方向、及び、第3方向に夫々複数、3次元マトリクス状に配置された3次元メモリセルアレイを有する不揮発性半導体記憶装置であって、
前記3次元メモリセルアレイが、
前記第1方向および前記第2方向のうち少なくとも何れかの方向に延伸する第1電極を備え、前記第1電極が層間絶縁膜を介して2層以上、前記第3方向に積層され、
前記積層された2層以上の前記第1電極とその間の前記層間絶縁膜を前記第3方向に貫通する複数の貫通孔を備え、前記貫通孔が前記第1方向および前記第2方向に2次元的に配列され、
前記第3方向に延伸する柱状の導電体で構成された、前記貫通孔内を前記第1電極と接触せずに充填する複数の第2電極を備え、
前記メモリセルが、
環状の第3電極と、前記第3電極の内周側面および外周側面の何れか一方と接触する環状の可変抵抗体と、前記第3電極の内周側面および外周側面の何れか他方と接触する環状の絶縁膜と、を備え、
前記第1電極が、前記可変抵抗体および前記環状の絶縁膜の夫々の外周側面のうち前記第3電極と接触しない方の外周側面と電気的に接続し、前記第2電極が、前記可変抵抗体および前記環状の絶縁膜の夫々の内周側面のうち前記第3電極と接触しない方の内周側面と電気的に接続して、環状のメモリセルが形成されてなり、
前記第3電極が、同じ前記第2電極と接続する前記メモリセル間で前記第3方向に分離形成されていることを特徴とする。
In order to achieve the above object, a nonvolatile semiconductor memory device according to the present invention has a first direction in which two-terminal type memory cells each having a nonvolatile variable resistance element whose resistance characteristics change by voltage application are orthogonal to each other. A non-volatile semiconductor memory device having a plurality of three-dimensional memory cell arrays arranged in a three-dimensional matrix, respectively in the second direction and the third direction,
The three-dimensional memory cell array
A first electrode extending in at least one of the first direction and the second direction, wherein the first electrode is laminated in the third direction by two or more layers through an interlayer insulating film;
A plurality of through holes penetrating in the third direction through the stacked two or more first electrodes and the interlayer insulating film therebetween, the through holes being two-dimensional in the first direction and the second direction; Arranged
A plurality of second electrodes configured by columnar conductors extending in the third direction and filling the through holes without contacting the first electrodes;
The memory cell is
An annular third electrode, an annular variable resistor that is in contact with either the inner peripheral side surface or the outer peripheral side surface of the third electrode, and an inner peripheral side surface or the outer peripheral side surface of the third electrode are in contact with each other An annular insulating film,
The first electrode is electrically connected to an outer peripheral side surface of the variable resistor and the annular insulating film that is not in contact with the third electrode, and the second electrode is connected to the variable resistor. An annular memory cell is formed by electrically connecting the inner peripheral side surface of the body and the annular insulating film that is not in contact with the third electrode,
The third electrode is formed separately in the third direction between the memory cells connected to the same second electrode.

上記特徴の本発明に係る不揮発性半導体記憶装置によれば、双方向整流素子を構成する環状の絶縁膜と可変抵抗体とが第3電極を介して接続され、且つ、第3電極が第3方向(貫通孔の軸方向)に電気的に分離形成されているため、安定で均一な双方向整流性を有する素子と可変抵抗素子を直列に接続したメモリセルを3次元的に配列して、大容量で安価であり、かつ信頼性の高い不揮発性半導体記憶装置を実現できる。   According to the nonvolatile semiconductor memory device of the present invention having the above characteristics, the annular insulating film constituting the bidirectional rectifying element and the variable resistor are connected via the third electrode, and the third electrode is the third electrode. Since it is electrically separated in the direction (axial direction of the through hole), a memory cell in which a stable and uniform bidirectional rectifying element and a variable resistance element are connected in series is arranged three-dimensionally, A high-capacity, inexpensive, and highly reliable nonvolatile semiconductor memory device can be realized.

なお、ここで、「環状の」メモリセルとは、メモリセルの形状が円環の場合に限られるものではなく、貫通孔の形状により、方形や三角形、その他様々な形状の環が考えられる。   Here, the “annular” memory cell is not limited to the case where the shape of the memory cell is an annular shape, and a ring having a square shape, a triangular shape, or other various shapes is conceivable depending on the shape of the through hole.

本発明のメモリセル構造を簡略化した模式図を、図26(a)と対比する形で、図27に示す。図27では、可変抵抗体材料42と双方向整流材料44の間に第3電極として中間電極43が挿入されている。これにより、かかる電極43と双方向整流材料との界面の電圧分布は均一であるので、双方向整流素子は図25に示す理想的な電圧電流特性を示すことができる。   FIG. 27 shows a simplified schematic diagram of the memory cell structure of the present invention in comparison with FIG. In FIG. 27, an intermediate electrode 43 is inserted as a third electrode between the variable resistor material 42 and the bidirectional rectifying material 44. Thereby, since the voltage distribution at the interface between the electrode 43 and the bidirectional rectifying material is uniform, the bidirectional rectifying element can exhibit ideal voltage-current characteristics shown in FIG.

上記特徴の本発明に係る不揮発性半導体記憶装置は、更に、前記第1電極が、前記環状の絶縁膜の外周側面と電気的に接続し、前記第2電極が、前記可変抵抗体の内周側面と電気的に接続している構成とすることができる。   In the nonvolatile semiconductor memory device according to the present invention having the above characteristics, the first electrode is electrically connected to an outer peripheral side surface of the annular insulating film, and the second electrode is an inner periphery of the variable resistor. It can be set as the structure electrically connected with the side surface.

上記特徴の本発明に係る不揮発性半導体記憶装置は、更に、前記可変抵抗体、前記第3電極、及び、前記第1電極と前記第2電極のうち前記可変抵抗体と接続する一方の電極が、前記可変抵抗素子を構成し、
前記環状の絶縁膜、前記第3電極、及び、前記第1電極と前記第2電極のうち前記環状の絶縁膜と接続する他方の電極が、2端子の双方向整流素子を構成することができる。
The nonvolatile semiconductor memory device according to the present invention having the above characteristics further includes the variable resistor, the third electrode, and one of the first electrode and the second electrode connected to the variable resistor. , Constituting the variable resistance element,
The annular insulating film, the third electrode, and the other electrode connected to the annular insulating film among the first electrode and the second electrode can constitute a two-terminal bidirectional rectifier. .

上記特徴の本発明に係る不揮発性半導体記憶装置は、更に、前記可変抵抗体が、同じ前記第2電極と接続する前記メモリセル間で前記第3方向に電気的に分離されていることを第2の特徴とする。   In the nonvolatile semiconductor memory device according to the present invention having the above characteristics, the variable resistor is further electrically separated in the third direction between the memory cells connected to the same second electrode. Two features.

上記特徴の本発明に係る不揮発性半導体記憶装置は、更に、
選択トランジスタが前記第1方向と前記第2方向に夫々複数2次元マトリクス状に、前記3次元メモリセルの配置領域に対して前記第3方向に隣接して配置され、
前記第2電極が、その頂面または底面において前記選択トランジスタの入出力端子対の1つと接続していることが好ましい。
The nonvolatile semiconductor memory device according to the present invention having the above characteristics further includes:
Select transistors are arranged in a plurality of two-dimensional matrices in the first direction and the second direction, respectively, adjacent to the arrangement direction of the three-dimensional memory cells in the third direction,
It is preferable that the second electrode is connected to one of the input / output terminal pairs of the selection transistor at a top surface or a bottom surface thereof.

上記特徴の本発明に係る不揮発性半導体記憶装置は、更に、前記可変抵抗体が、遷移金属酸化物もしくはアルミニウム酸化物、又は、遷移金属の酸窒化物で構成されることが好ましい。   In the nonvolatile semiconductor memory device according to the present invention having the above characteristics, it is preferable that the variable resistor is made of a transition metal oxide, an aluminum oxide, or an oxynitride of a transition metal.

上記目的を達成するための本発明に係る不揮発性半導体記憶装置の製造方法は、
上記特徴の本発明に係る不揮発性半導体記憶装置を製造する方法であって、
基板上に、第1電極材料と層間絶縁膜を交互に堆積し、前記第1電極材料と前記層間絶縁膜の積層構造を形成する工程と、
前記積層構造に、前記積層構造を貫通する複数の貫通孔を、前記基板面に平行で互いに直交する第1方向および第2方向に2次元的に配置されるように形成する工程と、
前記貫通孔の側壁に露出した前記第1電極材料を所定の膜厚分エッチング除去し、前記貫通孔の側壁に凹部を形成する工程と、
非線形トンネル膜となる絶縁膜材料と第3電極材料を、夫々、前記貫通孔の前記凹部を含む側壁面を覆うように堆積する工程と、
前記貫通孔の前記凹部を除く側壁面に形成された前記第3電極材料を除去し、前記貫通孔の前記凹部に前記第3電極材料を残存させる工程と、
可変抵抗体材料を、前記貫通孔の側壁面を覆うように堆積する工程と、
前記貫通孔を第2電極材料で充填する工程と、を有することを第1の特徴とする。
In order to achieve the above object, a method for manufacturing a nonvolatile semiconductor memory device according to the present invention includes:
A method of manufacturing a nonvolatile semiconductor memory device according to the present invention having the above characteristics,
A step of alternately depositing a first electrode material and an interlayer insulating film on a substrate to form a laminated structure of the first electrode material and the interlayer insulating film;
Forming a plurality of through holes penetrating the laminated structure in the laminated structure so as to be two-dimensionally arranged in a first direction and a second direction parallel to the substrate surface and orthogonal to each other;
Etching and removing the first electrode material exposed on the side wall of the through hole by a predetermined thickness, and forming a recess on the side wall of the through hole;
Depositing an insulating film material to be a nonlinear tunnel film and a third electrode material so as to cover the side wall surface including the concave portion of the through hole, respectively;
Removing the third electrode material formed on the side wall surface excluding the concave portion of the through hole, and leaving the third electrode material in the concave portion of the through hole;
Depositing a variable resistor material so as to cover a side wall surface of the through hole;
A step of filling the through hole with a second electrode material.

上記目的を達成するための本発明に係る不揮発性半導体記憶装置の製造方法は、
上記特徴の本発明に係る不揮発性半導体記憶装置を製造する方法であって、
基板上に、ダミー膜と層間絶縁膜を交互に堆積し、前記ダミー膜と前記層間絶縁膜の積層構造を形成する工程と、
前記積層構造に、前記積層構造を貫通する複数の貫通孔を、前記基板面に平行で互いに直交する第1方向および第2方向に2次元的に配置されるように形成する工程と、
前記貫通孔の側壁に露出した前記ダミー膜を所定の膜厚分エッチング除去し、前記貫通孔の側壁に凹部を形成する工程と、
非線形トンネル膜となる絶縁膜材料と第3電極材料を、夫々、前記貫通孔の前記凹部を含む側壁面を覆うように順に堆積する工程と、
前記貫通孔の前記凹部を除く側壁面に形成された前記第3電極材料を除去し、前記貫通孔の前記凹部に前記第3電極材料を残存させる工程と、
可変抵抗体材料を、前記貫通孔の側壁面を覆うように堆積する工程と、
前記貫通孔を第2電極材料で充填する工程と、
前記貫通孔に近接して加工用の開口部を、前記積層構造の前記ダミー膜が残存する部分に形成する工程と、
前記開口部を介して、前記層間絶縁膜の間に挟まれた前記ダミー膜を除去する工程と、
前記ダミー膜が除去された領域に、第1電極材料を堆積して埋め込む工程と、
前記開口部の側壁面上に前記層間絶縁膜が露出するまで、前記開口部の側壁に堆積された前記第1電極材料を除去後、前記開口部を絶縁膜で充填する工程と、を有することを第2の特徴とする。
In order to achieve the above object, a method for manufacturing a nonvolatile semiconductor memory device according to the present invention includes:
A method of manufacturing a nonvolatile semiconductor memory device according to the present invention having the above characteristics,
A step of alternately depositing dummy films and interlayer insulating films on the substrate to form a laminated structure of the dummy films and the interlayer insulating films;
Forming a plurality of through holes penetrating the laminated structure in the laminated structure so as to be two-dimensionally arranged in a first direction and a second direction parallel to the substrate surface and orthogonal to each other;
Etching the dummy film exposed on the side wall of the through hole by a predetermined thickness and forming a recess on the side wall of the through hole;
A step of sequentially depositing an insulating film material and a third electrode material to be a nonlinear tunnel film so as to cover a side wall surface including the concave portion of the through hole;
Removing the third electrode material formed on the side wall surface excluding the concave portion of the through hole, and leaving the third electrode material in the concave portion of the through hole;
Depositing a variable resistor material so as to cover a side wall surface of the through hole;
Filling the through hole with a second electrode material;
Forming an opening for processing adjacent to the through hole in a portion where the dummy film of the stacked structure remains;
Removing the dummy film sandwiched between the interlayer insulating films through the opening;
Depositing and embedding a first electrode material in the region where the dummy film has been removed;
Filling the opening with an insulating film after removing the first electrode material deposited on the side wall of the opening until the interlayer insulating film is exposed on the side wall surface of the opening. Is the second feature.

上記目的を達成するための本発明に係る不揮発性半導体記憶装置の製造方法は、
上記特徴の本発明に係る不揮発性半導体記憶装置を製造する方法であって、
基板上に、ダミー膜と層間絶縁膜を交互に堆積し、前記ダミー膜と前記層間絶縁膜の積層構造を形成する工程と、
前記積層構造に、前記積層構造を貫通する複数の貫通孔を、前記基板面に平行で互いに直交する第1方向および第2方向に2次元的に配置されるように形成する工程と、
前記貫通孔の側壁に露出した前記ダミー膜を所定の膜厚分エッチング除去し、前記貫通孔の側壁に凹部を形成する工程と、
第3電極材料を、前記貫通孔の前記凹部を含む側壁面を覆うように堆積する工程と、
前記貫通孔の前記凹部を除く側壁面に形成された前記第3電極材料を除去し、前記貫通孔の前記凹部に前記第3電極材料を残存させる工程と、
可変抵抗体材料を、前記貫通孔の側壁面を覆うように堆積する工程と、
前記貫通孔を第2電極材料で充填する工程と、
前記貫通孔に近接して加工用の開口部を、前記積層構造の前記ダミー膜が残存する部分に形成する工程と、
前記開口部を介して、前記層間絶縁膜の間に挟まれた前記ダミー膜を除去する工程と、
前記ダミー膜が除去された領域に、非線形トンネル膜となる絶縁膜材料と第1電極材料を順に堆積し、前記ダミー膜が除去された領域を前記第1電極材料で埋め込む工程と、
前記開口部の側壁面上に前記絶縁膜材料が露出するまで、前記開口部の側壁に堆積された前記第1電極材料を除去後、前記開口部を絶縁膜で充填する工程と、を有することを第3の特徴とする。
In order to achieve the above object, a method for manufacturing a nonvolatile semiconductor memory device according to the present invention includes:
A method of manufacturing a nonvolatile semiconductor memory device according to the present invention having the above characteristics,
A step of alternately depositing dummy films and interlayer insulating films on the substrate to form a laminated structure of the dummy films and the interlayer insulating films;
Forming a plurality of through holes penetrating the laminated structure in the laminated structure so as to be two-dimensionally arranged in a first direction and a second direction parallel to the substrate surface and orthogonal to each other;
Etching the dummy film exposed on the side wall of the through hole by a predetermined thickness and forming a recess on the side wall of the through hole;
Depositing a third electrode material so as to cover a side wall surface including the concave portion of the through hole;
Removing the third electrode material formed on the side wall surface excluding the concave portion of the through hole, and leaving the third electrode material in the concave portion of the through hole;
Depositing a variable resistor material so as to cover a side wall surface of the through hole;
Filling the through hole with a second electrode material;
Forming an opening for processing adjacent to the through hole in a portion where the dummy film of the stacked structure remains;
Removing the dummy film sandwiched between the interlayer insulating films through the opening;
Depositing an insulating film material to be a nonlinear tunnel film and a first electrode material in order in the region from which the dummy film has been removed, and filling the region from which the dummy film has been removed with the first electrode material;
Filling the opening with an insulating film after removing the first electrode material deposited on the side wall of the opening until the insulating film material is exposed on the side wall surface of the opening. Is the third feature.

上記第3の特徴の本発明に係る不揮発性半導体記憶装置の製造方法は、更に、
前記ダミー膜が、前記第3電極材料の前駆体である前駆体材料であり、
前記貫通孔の側壁に前記凹部を形成する工程、前記第3電極材料を前記貫通孔の前記凹部を含む側壁面を覆うように堆積する工程、及び、前記貫通孔の前記凹部を除く側壁面に形成された前記第3電極材料を除去する工程に代えて、前記貫通孔の側壁に露出した前記ダミー膜の一部を前記第3電極材料に変化させる工程を有することを第4の特徴とする。
The method of manufacturing the nonvolatile semiconductor memory device according to the third aspect of the present invention further includes:
The dummy film is a precursor material that is a precursor of the third electrode material;
Forming the recess on the side wall of the through hole, depositing the third electrode material so as to cover the side wall surface including the recess of the through hole, and on the side wall surface of the through hole excluding the recess. A fourth feature is that, instead of the step of removing the formed third electrode material, there is a step of changing a part of the dummy film exposed on the side wall of the through hole to the third electrode material. .

上記目的を達成するための本発明に係る不揮発性半導体記憶装置の製造方法は、
上記特徴の本発明に係る不揮発性半導体記憶装置を製造する方法であって、
基板上に、第1ダミー膜と層間絶縁膜を交互に堆積し、前記第1ダミー膜と前記層間絶縁膜の積層構造を形成する工程と、
前記積層構造に、前記積層構造を貫通する複数の貫通孔を、前記基板面に平行で互いに直交する第1方向および第2方向に2次元的に配置されるように形成する工程と、
前記貫通孔を第2ダミー膜で充填する工程と、
前記貫通孔に近接して加工用の開口部を、前記積層構造の前記第1ダミー膜が残存する部分に形成する工程と、
前記開口部を介して、前記層間絶縁膜の間に挟まれた前記第1ダミー膜を、前記第2ダミー膜が露出するまで除去する工程と、
前記第1ダミー膜が除去された領域に、第3電極材料の前駆体である前駆体材料、非線形トンネル膜となる絶縁膜材料、及び、第1電極材料を順に堆積し、前記第1ダミー膜が除去された領域を前記第1電極材料で埋め込む工程と、
前記開口部の側壁面上に前記絶縁膜材料が露出するまで、前記開口部の側壁に堆積された前記第1電極材料を除去後、前記開口部を絶縁膜で充填する工程と、
前記貫通孔を充填する前記第2ダミー膜を除去する工程と、
前記貫通孔の側壁に露出した前記前駆体材料の一部を、前記第3電極材料に変化させる工程と、
可変抵抗体材料を、前記貫通孔の側壁面を覆うように堆積する工程と、
前記貫通孔を第2電極材料で充填する工程と、を有することを第5の特徴とする
In order to achieve the above object, a method for manufacturing a nonvolatile semiconductor memory device according to the present invention includes:
A method of manufacturing a nonvolatile semiconductor memory device according to the present invention having the above characteristics,
A step of alternately depositing a first dummy film and an interlayer insulating film on a substrate to form a laminated structure of the first dummy film and the interlayer insulating film;
Forming a plurality of through holes penetrating the laminated structure in the laminated structure so as to be two-dimensionally arranged in a first direction and a second direction parallel to the substrate surface and orthogonal to each other;
Filling the through hole with a second dummy film;
Forming an opening for processing in the vicinity of the through hole in a portion where the first dummy film of the stacked structure remains;
Removing the first dummy film sandwiched between the interlayer insulating films through the opening until the second dummy film is exposed;
In the region from which the first dummy film has been removed, a precursor material that is a precursor of a third electrode material, an insulating film material that becomes a nonlinear tunnel film, and a first electrode material are sequentially deposited, and the first dummy film Filling the region from which the first electrode material is removed with the first electrode material;
Filling the opening with an insulating film after removing the first electrode material deposited on the side wall of the opening until the insulating film material is exposed on the side wall surface of the opening; and
Removing the second dummy film filling the through hole;
Changing a part of the precursor material exposed on the side wall of the through hole to the third electrode material;
Depositing a variable resistor material so as to cover a side wall surface of the through hole;
And filling the through-hole with a second electrode material.

上記第4又は第5の特徴の本発明に係る不揮発性半導体記憶装置の製造方法は、更に、
前記前駆体材料が、多結晶シリコンであり、
前記前駆体材料の一部を前記第3電極材料に変化させる工程が、前記貫通孔の側壁に露出した前記多結晶シリコンをシリサイド化する工程であることを第6の特徴とする。
The method for manufacturing the nonvolatile semiconductor memory device according to the fourth or fifth feature of the present invention further includes:
The precursor material is polycrystalline silicon;
A sixth feature is that the step of changing a part of the precursor material into the third electrode material is a step of siliciding the polycrystalline silicon exposed on the side wall of the through hole.

上記第4又は第5の特徴の本発明に係る不揮発性半導体記憶装置の製造方法は、更に、
前記前駆体材料が、被酸化金属の金属酸化物膜であり、
前記前駆体材料の一部を前記第3電極材料に変化させる工程が、前記貫通孔の側壁に露出した前記金属酸化物膜を還元処理により前記被酸化金属に変化させる、または酸素欠損の多い導電性膜に変化させる工程であることを第7の特徴とする。
The method for manufacturing the nonvolatile semiconductor memory device according to the fourth or fifth feature of the present invention further includes:
The precursor material is a metal oxide film of an oxidizable metal;
The step of changing a part of the precursor material to the third electrode material changes the metal oxide film exposed on the side wall of the through hole to the metal to be oxidized by reduction treatment, or is a conductive material having many oxygen vacancies. A seventh feature is that the process is a process of changing to a conductive film.

上記第1乃至第7の何れかの特徴の本発明に係る不揮発性半導体記憶装置の製造方法は、更に、前記基板上に、選択トランジスタをマトリクス状に形成する工程を有し、
前記貫通孔を形成する工程が、底面において前記選択トランジスタのソース領域またはドレイン領域が露出する前記貫通孔を形成する工程であることが好ましい。
The method for manufacturing a nonvolatile semiconductor memory device according to the present invention having any one of the first to seventh features further includes a step of forming selection transistors in a matrix on the substrate.
The step of forming the through hole is preferably a step of forming the through hole in which the source region or the drain region of the selection transistor is exposed on the bottom surface.

上記第1乃至第7の何れかの特徴の本発明に係る不揮発性半導体記憶装置の製造方法は、更に、
前記層間絶縁膜の間に形成された前記第1電極材料、及び、前記貫通孔内に形成された前記第2電極材料との間に電圧を印加するフォーミング工程を有し、
前記フォーミング工程において、前記可変抵抗体材料の前記第3電極材料と接触する部分の抵抗状態を低抵抗化し、初期高抵抗状態から電圧の印加により抵抗特性が変化する可変抵抗状態に変化させ、前記可変抵抗体材料の前記可変抵抗状態に変化した部分を可変抵抗体として機能させるとともに、前記可変抵抗体材料の前記層間絶縁膜と接触する部分が前記初期高抵抗状態のままであることにより、前記可変抵抗体が前記第3方向に電気的に分離形成されることを第8の特徴とする。
The method for manufacturing a nonvolatile semiconductor memory device according to the present invention having any one of the first to seventh characteristics further includes:
A forming step of applying a voltage between the first electrode material formed between the interlayer insulating films and the second electrode material formed in the through hole;
In the forming step, the resistance state of the portion of the variable resistor material that contacts the third electrode material is reduced, and the resistance state is changed from an initial high resistance state to a variable resistance state that changes due to voltage application, The portion of the variable resistor material that has changed to the variable resistance state functions as a variable resistor, and the portion of the variable resistor material that contacts the interlayer insulating film remains in the initial high resistance state. An eighth feature is that the variable resistor is electrically separated and formed in the third direction.

上記第1乃至第8の何れかの特徴の本発明に係る不揮発性半導体記憶装置の製造方法によれば、可変抵抗体と双方向整流素子を構成する環状の絶縁膜とを接続する第3電極を、第3方向(貫通孔の軸方向)に電気的に分離形成することができる。これにより、安定で均一な双方向整流性を有する素子と可変抵抗素子を直列に接続したメモリセルを3次元的に配列してなる、大容量で安価であり、かつ信頼性の高い不揮発性半導体記憶装置を製造できる。   According to the method for manufacturing a nonvolatile semiconductor memory device of the present invention having any one of the first to eighth features, the third electrode that connects the variable resistor and the annular insulating film that forms the bidirectional rectifying element. Can be electrically separated and formed in the third direction (the axial direction of the through hole). As a result, a large-capacity, inexpensive, and highly reliable non-volatile semiconductor comprising a three-dimensional array of stable and uniform bidirectional rectifying elements and variable resistance elements connected in series A storage device can be manufactured.

本発明によれば、双方向整流素子と可変抵抗素子を一体化した単純な構造のメモリセルを3次元的に集積することが可能となり、不揮発性半導体記憶装置の製造コストを大幅に低減することができる。本発明において、双方向整流素子は、第3方向に分離形成された第3電極(中間電極)と接続しているため、安定で均一な双方向整流特性を有している。これにより、大容量で安価であり、かつ信頼性の高い不揮発性半導体記憶装置が実現される。   According to the present invention, it becomes possible to three-dimensionally integrate memory cells having a simple structure in which a bidirectional rectifying element and a variable resistance element are integrated, and the manufacturing cost of a nonvolatile semiconductor memory device can be greatly reduced. Can do. In the present invention, since the bidirectional rectifying element is connected to the third electrode (intermediate electrode) formed separately in the third direction, it has a stable and uniform bidirectional rectifying characteristic. Thus, a nonvolatile semiconductor memory device having a large capacity, low cost, and high reliability is realized.

本発明の一実施形態に係る不揮発性半導体記憶装置に用いる3次元メモリセルアレイの概略の構成を示す構造断面図1 is a structural cross-sectional view showing a schematic configuration of a three-dimensional memory cell array used in a nonvolatile semiconductor memory device according to an embodiment of the present invention. 本発明の一実施形態に係る不揮発性半導体記憶装置に用いる3次元メモリセルアレイの概略の構成を示す等価回路図1 is an equivalent circuit diagram showing a schematic configuration of a three-dimensional memory cell array used in a nonvolatile semiconductor memory device according to an embodiment of the present invention. 本発明の第1実施形態に係る不揮発性半導体記憶装置の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the non-volatile semiconductor memory device which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る不揮発性半導体記憶装置の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the non-volatile semiconductor memory device which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る不揮発性半導体記憶装置の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the non-volatile semiconductor memory device which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る不揮発性半導体記憶装置の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the non-volatile semiconductor memory device concerning 2nd Embodiment of this invention 本発明の第2実施形態に係る不揮発性半導体記憶装置の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the non-volatile semiconductor memory device concerning 2nd Embodiment of this invention 本発明の第2実施形態に係る不揮発性半導体記憶装置の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the non-volatile semiconductor memory device concerning 2nd Embodiment of this invention 本発明の実施形態に係る不揮発性半導体記憶装置の製造方法において、貫通孔と加工用の開口部の配置の一例を示すレイアウト図FIG. 7 is a layout diagram showing an example of the arrangement of through holes and processing openings in the method for manufacturing a nonvolatile semiconductor memory device according to the embodiment of the present invention. 本発明の第2実施形態に係る不揮発性半導体記憶装置の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the non-volatile semiconductor memory device concerning 2nd Embodiment of this invention 本発明の第2実施形態に係る不揮発性半導体記憶装置の3次元メモリセルアレイの概略の構成を示す構造断面図Structural sectional view showing a schematic configuration of a three-dimensional memory cell array of a nonvolatile semiconductor memory device according to a second embodiment of the present invention. 本発明の第2実施形態に係る不揮発性半導体記憶装置において、3次元メモリセルアレイとデコーダとの接続方法の一例を説明する構造断面図Sectional drawing explaining structure of an example of a connection method between a three-dimensional memory cell array and a decoder in a nonvolatile semiconductor memory device according to a second embodiment of the present invention 本発明の第3実施形態に係る不揮発性半導体記憶装置の3次元メモリセルアレイの概略の構成を示す構造断面図Structural sectional view showing a schematic configuration of a three-dimensional memory cell array of a nonvolatile semiconductor memory device according to a third embodiment of the present invention. 本発明の第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す工程断面図Sectional drawing which shows the manufacturing method of the non-volatile semiconductor memory device which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す工程断面図Sectional drawing which shows the manufacturing method of the non-volatile semiconductor memory device which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る不揮発性半導体記憶装置の製造方法を示す工程断面図Sectional drawing which shows the manufacturing method of the non-volatile semiconductor memory device which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る不揮発性半導体記憶装置の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the non-volatile semiconductor memory device concerning 4th Embodiment of this invention 本発明の第4実施形態に係る不揮発性半導体記憶装置の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the non-volatile semiconductor memory device concerning 4th Embodiment of this invention 本発明の第4実施形態に係る不揮発性半導体記憶装置の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the non-volatile semiconductor memory device concerning 4th Embodiment of this invention 本発明の第4実施形態に係る不揮発性半導体記憶装置の製造方法を示す工程断面図Process sectional drawing which shows the manufacturing method of the non-volatile semiconductor memory device concerning 4th Embodiment of this invention 本発明の第4実施形態に係る不揮発性半導体記憶装置の3次元メモリセルアレイの概略の構成を示す構造断面図Structural sectional view showing a schematic configuration of a three-dimensional memory cell array of a nonvolatile semiconductor memory device according to a fourth embodiment of the present invention. 本発明の実施形態に係る不揮発性半導体記憶装置の製造方法において、貫通孔と加工用の開口部の配置の他の例を示すレイアウト図FIG. 6 is a layout diagram illustrating another example of the arrangement of through holes and processing openings in the method for manufacturing a nonvolatile semiconductor memory device according to the embodiment of the present invention. 従来構成の3次元メモリセルアレイの構成の一例を示す構造断面図Structural sectional view showing an example of a configuration of a conventional three-dimensional memory cell array 双方向整流素子を備える従来構成の3次元メモリセルアレイの構成の一例を示す構造断面図Structural sectional view showing an example of a configuration of a conventional three-dimensional memory cell array including a bidirectional rectifying element 双方向整流素子の電圧電流特性を示すグラフGraph showing voltage-current characteristics of bidirectional rectifier 双方向整流素子を備える従来構成の3次元メモリセルアレイの構成の問題点を説明するための模式図Schematic diagram for explaining the problems of the configuration of a conventional three-dimensional memory cell array including a bidirectional rectifying element 双方向整流素子を備える本発明のメモリセルの構成の模式図Schematic diagram of the configuration of the memory cell of the present invention having a bidirectional rectifying element

〈第1実施形態〉
以下において、本発明の一実施形態に係る不揮発性半導体記憶装置(以降、適宜「本発明装置1」と称す)及びその製造方法につき、図面を参照して説明する。尚、以下に示される構造断面図は、適宜、要部が強調して示されており、図面上の各構成要素の寸法の縮尺と実際の寸法の縮尺とは必ずしも一致するものではない。これは以降の各実施形態においても同様とする。
<First Embodiment>
Hereinafter, a nonvolatile semiconductor memory device according to an embodiment of the present invention (hereinafter, appropriately referred to as “device 1 of the present invention”) and a manufacturing method thereof will be described with reference to the drawings. In the structural cross-sectional views shown below, the essential parts are appropriately emphasized, and the scales of the dimensions of each component on the drawings do not necessarily match the scales of the actual dimensions. The same applies to each of the following embodiments.

図1に、本発明装置1の三次元メモリセルアレイの構造断面図を示す。半導体基板20上に選択トランジスタ21が、基板に平行で互いに垂直な第1方向(X方向)及び第2方向(Y方向に)、夫々複数2次元マトリクス状に配置されている。本実施形態において、選択トランジスタ21は、縦型のトランジスタであり、ソース領域23とドレイン領域24がチャネル領域25を挟むように上下に配置される。チャネル領域25は、ゲート絶縁膜26を介してゲート電極22により囲まれている。ゲート電極22は、第1方向(X方向)の位置が同じ選択トランジスタのゲート電極22同士を互いに接続するように、第2方向(Y方向)に延伸している。一方、ソース領域23は、第2方向(Y方向)の位置が同じ選択トランジスタのソース領域23同士を互いに接続するように、第1方向(X方向)に延伸している。   FIG. 1 shows a sectional view of the structure of a three-dimensional memory cell array of the device 1 of the present invention. On the semiconductor substrate 20, select transistors 21 are arranged in a plurality of two-dimensional matrices in a first direction (X direction) and a second direction (Y direction) that are parallel to the substrate and perpendicular to each other. In the present embodiment, the selection transistor 21 is a vertical transistor, and the source region 23 and the drain region 24 are arranged vertically so that the channel region 25 is sandwiched therebetween. The channel region 25 is surrounded by the gate electrode 22 with the gate insulating film 26 interposed therebetween. The gate electrode 22 extends in the second direction (Y direction) so as to connect the gate electrodes 22 of selection transistors having the same position in the first direction (X direction) to each other. On the other hand, the source region 23 extends in the first direction (X direction) so that the source regions 23 of the selection transistors having the same position in the second direction (Y direction) are connected to each other.

夫々の選択トランジスタのドレイン領域24上に、X方向およびY方向に平面的に拡張する平板電極(第1電極)15と層間絶縁膜16の積層構造を貫通する貫通孔が設けられている。かかる貫通孔の内周側面に沿って、環状のメモリセル17が、第3方向(Z方向)に分離されて、複数形成されている。   On the drain region 24 of each select transistor, a through-hole penetrating the laminated structure of the plate electrode (first electrode) 15 and the interlayer insulating film 16 extending in a plane in the X direction and the Y direction is provided. A plurality of annular memory cells 17 are formed in the third direction (Z direction) along the inner peripheral side surface of the through hole.

メモリセル17は、環状の可変抵抗体材料12、環状の中間電極(第3電極)13、及び、双方向整流性を有する環状の絶縁膜または半導体膜(双方向整流性膜)14を備え、環状の中間電極13の内周側面が可変抵抗体材料12の外周側面と電気的に接続し、環状の中間電極13の外周側面が双方向整流性膜14の内周側面と電気的に接続している。そして、双方向整流性膜14の外周側面が平板電極15と電気的に接続し、可変抵抗体材料12の内周側面が柱状電極(第2電極)11と電気的に接続して、可変抵抗素子と双方向整流素子が直列に接続されたメモリセル17が構成されている。可変抵抗体材料12、及び、これに接触する柱状電極11と中間電極13が、可変抵抗素子を構成する。絶縁膜または半導体膜14、及び、これに接触する平板電極15と中間電極13が、双方向整流素子を構成する。   The memory cell 17 includes an annular variable resistor material 12, an annular intermediate electrode (third electrode) 13, and an annular insulating film or semiconductor film (bidirectional rectifying film) 14 having bidirectional rectification, The inner peripheral side surface of the annular intermediate electrode 13 is electrically connected to the outer peripheral side surface of the variable resistor material 12, and the outer peripheral side surface of the annular intermediate electrode 13 is electrically connected to the inner peripheral side surface of the bidirectional rectifying film 14. ing. The outer peripheral side surface of the bidirectional rectifying film 14 is electrically connected to the plate electrode 15, and the inner peripheral side surface of the variable resistor material 12 is electrically connected to the columnar electrode (second electrode) 11, thereby A memory cell 17 is configured in which an element and a bidirectional rectifying element are connected in series. The variable resistor material 12, and the columnar electrode 11 and the intermediate electrode 13 in contact with the variable resistor material 12 constitute a variable resistance element. The insulating film or semiconductor film 14, and the flat plate electrode 15 and the intermediate electrode 13 in contact with the insulating film or the semiconductor film 14 constitute a bidirectional rectifying element.

ここで、中間電極13は、図1に示すように、貫通孔内を第3方向に延伸せず、メモリセル17毎に第3方向に分離され形成されている。   Here, as shown in FIG. 1, the intermediate electrode 13 is formed so as to be separated in the third direction for each memory cell 17 without extending in the third direction in the through hole.

双方向整流性膜14は、Si窒化膜、ZnO等の伝導帯の底のエネルギーが比較的低い膜を用いることが、非線形の電圧電流特性を出しやすいため好ましい。ここで、電極材料の仕事関数と、双方向整流性膜14の厚さ及びバンド構造は特許文献4で示された条件を満たすことで非線形の電圧電流特性を示すように設定できる。双方向整流性膜14の膜厚は、1nm〜5nm程度が好ましい。   As the bidirectional rectifying film 14, it is preferable to use a film having a relatively low energy at the bottom of the conduction band, such as a Si nitride film or ZnO, because it is easy to obtain nonlinear voltage-current characteristics. Here, the work function of the electrode material, the thickness of the bidirectional rectifying film 14 and the band structure can be set so as to exhibit nonlinear voltage-current characteristics by satisfying the conditions shown in Patent Document 4. The film thickness of the bidirectional rectifying film 14 is preferably about 1 nm to 5 nm.

可変抵抗体材料12は、金属酸化物材料または金属酸窒化物材料から構成される。具体的には、可変抵抗体材料12として、例えば、半導体プロセスと親和性がある酸化ハフニウム(HfOx)、酸化ジルコニウム(ZrOx)、酸化チタン(TiOx)、酸化タンタル(TaOx)、酸化タングステン(WOx)、酸化アルミ(AlOx)、酸窒化ハフニウム(HfOxNy)、酸窒化ジルコニウム(ZrOxNy)、酸窒化チタン(TiOxNy)、酸窒化タンタル(TaOxNy)、酸窒化タングステン(WOxNy)、酸窒化アルミ(AlOxNy)等を用いることができる。或いは、ニッケル(Ni)、バナジウム(V)、コバルト(Co)、亜鉛(Zn)、鉄(Fe)、銅(Cu)の中から選択される遷移金属元素の酸化物又は酸窒化物等を含む材料が挙げられる。また、これらの材料を複数積層した積層構造を用いてもよい。しかしながら、本発明はこれに限られるものではない。電圧の印加に応じて抵抗特性が変化する素子を実現できる限り、可変抵抗体材料12を構成する材料は問わない。   The variable resistor material 12 is made of a metal oxide material or a metal oxynitride material. Specifically, as the variable resistor material 12, for example, hafnium oxide (HfOx), zirconium oxide (ZrOx), titanium oxide (TiOx), tantalum oxide (TaOx), and tungsten oxide (WOx) having an affinity with a semiconductor process. Aluminum oxide (AlOx), hafnium oxynitride (HfOxNy), zirconium oxynitride (ZrOxNy), titanium oxynitride (TiOxNy), tantalum oxynitride (TaOxNy), tungsten oxynitride (WOxNy), aluminum oxynitride (AlOxNy), etc. Can be used. Alternatively, an oxide or oxynitride of a transition metal element selected from nickel (Ni), vanadium (V), cobalt (Co), zinc (Zn), iron (Fe), and copper (Cu) is included. Materials. Alternatively, a stacked structure in which a plurality of these materials are stacked may be used. However, the present invention is not limited to this. Any material can be used for the variable resistor material 12 as long as an element whose resistance characteristics change in response to voltage application can be realized.

上記の金属酸化物または金属酸窒化物を可変抵抗体材料12として用いて可変抵抗素子を構成する場合、製造直後の初期状態にある可変抵抗素子を、電気的ストレスによって高抵抗状態と低抵抗状態の間で切り替え可能な状態(可変抵抗状態)にするためには、使用前に、通常の書き換え動作に用いる電圧パルスより電圧振幅が大きく、かつパルス幅が長い電圧パルスを可変抵抗素子に印加し、抵抗スイッチングがおきる電流パス(フィラメント)を形成する必要がある。かかる電圧印加処理は、フォーミング処理と呼ばれている。そして、可変抵抗体材料12内のかかるフォーミング処理によりフィラメントが形成される部分が、可変抵抗体として機能する。フォーミング処理によって形成されたフィラメントが、その後の素子の電気特性(スイッチング特性)を決定することが知られている。   When the variable resistance element is configured by using the metal oxide or the metal oxynitride as the variable resistance material 12, the variable resistance element in the initial state immediately after manufacture is changed into a high resistance state and a low resistance state by electrical stress. In order to make it possible to switch between the two (variable resistance state), before use, a voltage pulse having a larger voltage amplitude and longer pulse width than the voltage pulse used for normal rewrite operation is applied to the variable resistance element. It is necessary to form a current path (filament) in which resistance switching occurs. Such voltage application processing is called forming processing. And the part in which a filament is formed by this forming process in the variable resistor material 12 functions as a variable resistor. It is known that the filament formed by the forming process determines the electrical characteristics (switching characteristics) of subsequent elements.

また、可変抵抗体材料12を狭持する電極材料(本実施形態では、柱状電極(第1電極)11と中間電極(第3電極)13)については、例えば、Ti、Ta、Hf、Zr、TiN、Pt、Ru、Wからなる金属材料、またはRuO、IrO、ITO(Indium Tin Oxide)などの導電性酸化物等が挙げられる。両電極の間の電圧の印加に応じて、両電極間の電気抵抗が変化する素子である限り、両電極の材料は特に限定しない。 For the electrode material (in this embodiment, the columnar electrode (first electrode) 11 and the intermediate electrode (third electrode) 13) sandwiching the variable resistor material 12, for example, Ti, Ta, Hf, Zr, Examples thereof include metal materials made of TiN, Pt, Ru, and W, or conductive oxides such as RuO 2 , IrO 2 , and ITO (Indium Tin Oxide). The material of both electrodes is not particularly limited as long as it is an element in which the electrical resistance between both electrodes changes according to the application of a voltage between both electrodes.

特に、抵抗変化はポテンシャルバリヤの大きい、仕事関数が大きい電極側と金属酸化物または金属酸窒化物との界面で起っていると考えられている。したがって、可変抵抗体材料12を狭持する両電極のうち、一方の電極を仕事関数の大きな導電性材料で構成して、可変抵抗体材料12とショットキー接合するようにし、他方の電極を仕事関数の小さな導電性材料で構成して、可変抵抗体材料12とオーミック接合するようにするとよい。このように構成することで、可変抵抗素子が安定した抵抗スイッチングを示すことが知られている。具体的には、一方の電極を4.5eVより小さい仕事関数を持つ導電性材料(例えば、Ti、Ta、Hf、Zrなど)から選択し、他方の電極を4.5eV以上の仕事関数を持つ導電性材料(例えば、Pt、TiN、Ru、RuO、ITOなど)から選択することが好ましい。 In particular, the resistance change is considered to occur at the interface between the electrode side having a large potential barrier and a large work function and the metal oxide or metal oxynitride. Therefore, of the two electrodes sandwiching the variable resistor material 12, one electrode is made of a conductive material having a large work function so as to be in Schottky junction with the variable resistor material 12, and the other electrode is It is preferable to configure the conductive material with a small function so as to be in ohmic contact with the variable resistor material 12. With this configuration, it is known that the variable resistance element exhibits stable resistance switching. Specifically, one electrode is selected from a conductive material having a work function smaller than 4.5 eV (for example, Ti, Ta, Hf, Zr, etc.), and the other electrode has a work function of 4.5 eV or more. It is preferable to select from conductive materials (eg, Pt, TiN, Ru, RuO 2 , ITO, etc.).

本実施形態において、柱状電極11は、可変抵抗体材料12に接する周辺電極11aと、かかる周辺電極11aを覆い、貫通孔を充填する内部電極11bの2層構造である。可変抵抗体材料12と接触する周辺電極11aは、Ti、Hf、Zr、Ta等の酸化されやすい金属を用いることが好ましい。後述するフォーミング工程において、可変抵抗体材料12からの酸素の移動を容易とするためである。なお、これらの金属は仕事関数が小さいため、中間電極13として、仕事関数の大きい材料を用いるのが好適となる。具体的には、例えばTiN、TaN、Ru、Ir等を用いるのが好ましい。一方、内部電極11bとしては、例えばTiNを用いることができる。また、平板電極15としては、例えばTiNやTaN等を用いることができる。   In the present embodiment, the columnar electrode 11 has a two-layer structure of a peripheral electrode 11a in contact with the variable resistor material 12 and an internal electrode 11b that covers the peripheral electrode 11a and fills the through hole. The peripheral electrode 11a in contact with the variable resistor material 12 is preferably made of a metal that is easily oxidized such as Ti, Hf, Zr, and Ta. This is to facilitate the movement of oxygen from the variable resistor material 12 in a forming process to be described later. Since these metals have a low work function, it is preferable to use a material having a high work function as the intermediate electrode 13. Specifically, for example, TiN, TaN, Ru, Ir or the like is preferably used. On the other hand, for example, TiN can be used as the internal electrode 11b. Further, as the plate electrode 15, for example, TiN, TaN or the like can be used.

図1に示すように、本発明装置1の三次元メモリセルアレイは、選択トランジスタ21のドレイン領域24上に、貫通孔が第1方向(X方向)及び第2方向(Y方向)に夫々複数配置され、貫通孔の内周側面に沿って、環状のメモリセル17が、第3方向(Z方向)に分離形成される結果、3次元メモリセルアレイを構成している。第2方向(Y方向)に延伸するソース領域23(第1選択線)、ゲート電極22同士を接続する第1方向(X方向)に延伸する配線(第2選択線)、及び、平板電極(第1電極)15と各別に接続する配線(第3選択線)により、三次元メモリセルアレイ内の動作対象のメモリセルの位置が特定される。第1選択線は第1デコーダ(図示せず)に、第2選択線は第2デコーダ(図示せず)、及び、第3選択線は第3デコーダ(図示せず)に、夫々接続する。   As shown in FIG. 1, the three-dimensional memory cell array of the device 1 of the present invention has a plurality of through holes arranged in the first direction (X direction) and the second direction (Y direction) on the drain region 24 of the selection transistor 21. As a result, the annular memory cells 17 are separately formed in the third direction (Z direction) along the inner peripheral side surface of the through hole, thereby forming a three-dimensional memory cell array. A source region 23 (first selection line) extending in the second direction (Y direction), a wiring (second selection line) extending in the first direction (X direction) connecting the gate electrodes 22 to each other, and a plate electrode ( The position of the memory cell to be operated in the three-dimensional memory cell array is specified by the wiring (third selection line) connected to the first electrode 15 separately. The first selection line is connected to a first decoder (not shown), the second selection line is connected to a second decoder (not shown), and the third selection line is connected to a third decoder (not shown).

図2は、図1において同じ第2選択線に接続するY方向の位置が同じメモリセルアレイ(以下、適宜「2次元XZメモリセルアレイ」という)18を抜き出して、等価回路図として示したものである。2次元XZメモリセルアレイ18は、双方向整流素子を備えた1D1R型のメモリセルアレイと等価となる。第2選択線を介してY方向の位置が同じ選択トランジスタ21を導通状態とすることにより、三次元メモリセルアレイのうち一の2次元XZメモリセルアレイ18が選択される。さらに、第1選択線を介して柱状電極(第2電極)11に各別に電圧を印加し、第3選択線を介して平板電極(第1電極)15に各別に電圧を印加することにより、選択された2次元XZメモリセルアレイ18内の動作対象のメモリセルのX方向およびZ方向の位置を選択できる。   FIG. 2 shows an equivalent circuit diagram by extracting a memory cell array (hereinafter referred to as “two-dimensional XZ memory cell array”) 18 having the same position in the Y direction connected to the same second selection line in FIG. . The two-dimensional XZ memory cell array 18 is equivalent to a 1D1R type memory cell array including a bidirectional rectifying element. The two-dimensional XZ memory cell array 18 of the three-dimensional memory cell array is selected by bringing the selection transistors 21 having the same position in the Y direction into the conductive state via the second selection line. Furthermore, by applying a voltage separately to the columnar electrode (second electrode) 11 via the first selection line and applying a voltage separately to the plate electrode (first electrode) 15 via the third selection line, The X-direction and Z-direction positions of the memory cells to be operated in the selected two-dimensional XZ memory cell array 18 can be selected.

なお、本発明装置1はさらに、メモリセルの書き換え、及び、読み出しの各メモリ動作、並びに、フォーミング処理に必要な電圧を発生する電圧発生回路と、上記第1〜第3デコーダ、及び電圧発生回路を制御し、三次元メモリセルアレイ内の選択されたメモリセルのメモリ動作を制御する制御回路と、読み出し動作時において、選択されたメモリセルの記憶状態(抵抗状態)を判別する読み出し回路と、を備えて構成される。かかる電圧発生回路、制御回路、読み出し回路については、公知の構成を利用できるため、詳細な説明を割愛する。   The device 1 of the present invention further includes a voltage generation circuit for generating voltages necessary for memory cell rewriting and reading memory operations and a forming process, the first to third decoders, and the voltage generation circuit. A control circuit for controlling the memory operation of the selected memory cell in the three-dimensional memory cell array, and a read circuit for determining the storage state (resistance state) of the selected memory cell during the read operation. It is prepared for. Since a known configuration can be used for the voltage generation circuit, the control circuit, and the readout circuit, detailed description thereof is omitted.

以下に、本発明装置1の製造方法につき、図面を参照して詳細に説明する。図3〜図5は、本発明素子1を製造する際の各工程における概略の構造断面図を示している。   Below, the manufacturing method of the device 1 of the present invention will be described in detail with reference to the drawings. 3 to 5 are schematic structural cross-sectional views in each step when manufacturing the element 1 of the present invention.

先ず、基板に平行で互いに直交する第1方向(X方向)及び第2方向(Y方向)に2次元的に選択トランジスタ21を配置した基板上に、平板電極(第1電極材料)15と層間絶縁膜16を交互に堆積し、第1電極材料15と層間絶縁膜16の積層構造を形成する。層間絶縁膜16の膜厚は30nm〜100nm程度、第1電極材料15の膜厚も30nm〜100nmと同程度とする。その後、選択トランジスタ21のドレイン領域24の直上に、かかる積層構造を貫通する貫通孔31を、貫通孔の底面において選択トランジスタ21のドレイン領域24が露出する深さで、エッチングにより複数形成する。この状態の構造断面図を図3(a)に示す。図3(a)では、第1電極材料15が第3方向(Z方向)に4段積層されている例を示している。本実施形態では、貫通孔31の断面形状を直径30nmの円形としたが、本発明はこれに限られるものではない。   First, a plate electrode (first electrode material) 15 and an interlayer are formed on a substrate in which selection transistors 21 are two-dimensionally arranged in a first direction (X direction) and a second direction (Y direction) that are parallel to the substrate and orthogonal to each other. Insulating films 16 are alternately deposited to form a laminated structure of the first electrode material 15 and the interlayer insulating film 16. The film thickness of the interlayer insulating film 16 is about 30 nm to 100 nm, and the film thickness of the first electrode material 15 is also about the same as 30 nm to 100 nm. After that, a plurality of through holes 31 penetrating the stacked structure are formed by etching directly above the drain region 24 of the select transistor 21 to a depth at which the drain region 24 of the select transistor 21 is exposed at the bottom of the through hole. A structural sectional view of this state is shown in FIG. FIG. 3A shows an example in which the first electrode material 15 is stacked in four stages in the third direction (Z direction). In the present embodiment, the cross-sectional shape of the through hole 31 is a circle having a diameter of 30 nm, but the present invention is not limited to this.

次に、貫通孔31の側壁に露出した平板電極(第1電極材料)15を、選択的に、所定の膜厚分エッチング除去し、貫通孔31の側壁に凹部を形成する。この状態の構造断面図を図3(b)に示す。   Next, the flat plate electrode (first electrode material) 15 exposed on the side wall of the through hole 31 is selectively etched away by a predetermined thickness to form a recess on the side wall of the through hole 31. A structural sectional view of this state is shown in FIG.

その後、非線形トンネル膜となる双方向整流性膜14と中間電極材料としての金属膜13を、例えばALD(Atomic Layer Deposition)のような等方的な成膜方法を用いて、夫々、貫通孔31の凹部を含む側壁面を覆うように堆積する。堆積する金属膜13の膜厚は、10nm程度が好ましい。この状態の構造断面図を図4(a)に示す。   Thereafter, the bidirectional rectifying film 14 serving as a nonlinear tunnel film and the metal film 13 serving as an intermediate electrode material are respectively formed in the through holes 31 by using an isotropic film forming method such as ALD (Atomic Layer Deposition). It deposits so that the side wall surface containing the recessed part may be covered. The thickness of the deposited metal film 13 is preferably about 10 nm. A sectional view of the structure in this state is shown in FIG.

その後、金属膜13をエッチングし、貫通孔31の凹部を除く側壁面(即ち、層間絶縁膜16に対向する側壁面)に形成された金属膜13を除去する。このエッチングは、例えば、塩素系ガス(Cl、BCl、CCl等)によるプラズマエッチングにより行うことができる。このとき、貫通孔31の底部の金属膜13も同時に除去される。これにより、凹部のみに金属膜13が残存し、中間電極(第3電極)が貫通孔31の軸方向(第3方向)に分離形成される。この状態の構造断面図を図4(b)に示す。 Thereafter, the metal film 13 is etched, and the metal film 13 formed on the side wall surface (that is, the side wall surface facing the interlayer insulating film 16) excluding the concave portion of the through hole 31 is removed. This etching can be performed, for example, by plasma etching using a chlorine-based gas (Cl 2 , BCl 3 , CCl 4, etc.). At this time, the metal film 13 at the bottom of the through hole 31 is also removed at the same time. Thereby, the metal film 13 remains only in the recess, and the intermediate electrode (third electrode) is formed separately in the axial direction (third direction) of the through hole 31. A sectional view of the structure in this state is shown in FIG.

その後、底部に残存する双方向整流性膜14を除去し、貫通孔31の側壁面を覆うように、可変抵抗体材料12を堆積する。この状態の構造断面図を図5に示す。   Thereafter, the bidirectional rectifying film 14 remaining at the bottom is removed, and the variable resistor material 12 is deposited so as to cover the side wall surface of the through hole 31. A structural cross-sectional view of this state is shown in FIG.

その後、貫通孔31の底部に残存する可変抵抗体材料12を例えばRIE(反応性イオンエッチング)で除去し、選択トランジスタ21のドレイン領域24を貫通孔31の底部に露出させた後、貫通孔31を第2電極材料11で充填し、柱状の第2電極を形成する。その後、層間絶縁膜16が露出するまで、上面に堆積された第2電極材料を除去する。これにより、三次元メモリセルアレイが製造される。   Thereafter, the variable resistor material 12 remaining at the bottom of the through hole 31 is removed by, for example, RIE (reactive ion etching), and the drain region 24 of the selection transistor 21 is exposed at the bottom of the through hole 31. Is filled with the second electrode material 11 to form a columnar second electrode. Thereafter, the second electrode material deposited on the upper surface is removed until the interlayer insulating film 16 is exposed. Thereby, a three-dimensional memory cell array is manufactured.

その後、三次元メモリセルアレイの周辺回路を形成することで、図1に示す本発明装置1が製造される。   Thereafter, by forming peripheral circuits of the three-dimensional memory cell array, the inventive device 1 shown in FIG. 1 is manufactured.

引き続き、好ましくは、本発明装置1の平板電極(第1電極)15と柱状電極(第2電極)11間に電圧を印加するフォーミング工程を有していてもよい。これにより、可変抵抗体材料12の中間電極(第3電極)13と接触する部分の抵抗状態が、フィラメントの形成に伴い、初期高抵抗状態から電圧の印加により抵抗特性が変化する可変抵抗状態に低抵抗化する。かかる可変抵抗状態に変化した可変抵抗体材料の部分が、可変抵抗体として機能する。一方、可変抵抗体材料12の中間電極(第3電極)13と接触しない部分(即ち、層間絶縁膜16と接触する部分)は初期高抵抗状態のままであるので、可変抵抗体として電気的に寄与しない。この結果、可変抵抗体が中間電極13に接触する部分のみに、第3方向に電気的に分離されて形成される。   Subsequently, preferably, a forming step of applying a voltage between the plate electrode (first electrode) 15 and the columnar electrode (second electrode) 11 of the device 1 of the present invention may be provided. As a result, the resistance state of the portion of the variable resistor material 12 in contact with the intermediate electrode (third electrode) 13 changes from the initial high resistance state to the variable resistance state in which the resistance characteristics change due to voltage application as the filament is formed. Reduce resistance. The portion of the variable resistor material that has changed to such a variable resistance state functions as a variable resistor. On the other hand, the portion of the variable resistor material 12 that does not contact the intermediate electrode (third electrode) 13 (that is, the portion that contacts the interlayer insulating film 16) remains in the initial high resistance state. Does not contribute. As a result, the variable resistor is formed by being electrically separated in the third direction only at the portion where the variable resistor is in contact with the intermediate electrode 13.

〈第2実施形態〉
以下において、本発明の一実施形態に係る不揮発性半導体記憶装置(以降、適宜「本発明装置2」と称す)及びその製造方法につき、図面を参照して説明する。図6〜図8、及び図10は、本発明装置2を製造する際の各工程における概略の構造断面図を示している。
Second Embodiment
Hereinafter, a nonvolatile semiconductor memory device according to an embodiment of the present invention (hereinafter, appropriately referred to as “present invention device 2”) and a manufacturing method thereof will be described with reference to the drawings. 6 to 8 and FIG. 10 are schematic structural cross-sectional views in respective steps when the device 2 of the present invention is manufactured.

先ず、基板に平行で互いに直交する第1方向(X方向)及び第2方向(Y方向)に2次元的に選択トランジスタ21を配置した基板上に、ダミー膜32と層間絶縁膜16を交互に堆積し、ダミー膜32と層間絶縁膜16の積層構造を形成する。層間絶縁膜16の膜厚は30nm程度、第1電極材料15の膜厚も30nmと同程度とする。その後、選択トランジスタ21のドレイン領域24の直上に、かかる積層構造を貫通する貫通孔31を、貫通孔の底面において選択トランジスタ21のドレイン領域24が露出する深さで、エッチングにより複数形成する。この状態の構造断面図を図6(a)に示す。   First, the dummy film 32 and the interlayer insulating film 16 are alternately arranged on the substrate on which the selection transistors 21 are two-dimensionally arranged in the first direction (X direction) and the second direction (Y direction) which are parallel to the substrate and orthogonal to each other. By depositing, a laminated structure of the dummy film 32 and the interlayer insulating film 16 is formed. The film thickness of the interlayer insulating film 16 is about 30 nm, and the film thickness of the first electrode material 15 is also about 30 nm. After that, a plurality of through holes 31 penetrating the stacked structure are formed by etching directly above the drain region 24 of the select transistor 21 to a depth at which the drain region 24 of the select transistor 21 is exposed at the bottom of the through hole. A structural sectional view of this state is shown in FIG.

次に、貫通孔31の側壁に露出したダミー膜32を、選択的に、所定の膜厚分エッチング除去し、貫通孔31の側壁に凹部を形成する。この状態の構造断面図を図6(b)に示す。   Next, the dummy film 32 exposed on the side wall of the through hole 31 is selectively etched away by a predetermined film thickness to form a recess on the side wall of the through hole 31. A structural sectional view of this state is shown in FIG.

その後、非線形トンネル膜となる双方向整流性膜14と中間電極材料としての金属膜13を、例えばALD(Atomic Layer Deposition)のような等方的な成膜方法を用いて、夫々、貫通孔31の凹部を含む側壁面を覆うように堆積する。堆積する金属膜13の膜厚は、10nm程度が好ましい。この状態の構造断面図を図7(a)に示す。   Thereafter, the bidirectional rectifying film 14 serving as a nonlinear tunnel film and the metal film 13 serving as an intermediate electrode material are respectively formed in the through holes 31 by using an isotropic film forming method such as ALD (Atomic Layer Deposition). It deposits so that the side wall surface containing the recessed part may be covered. The thickness of the deposited metal film 13 is preferably about 10 nm. A structural cross-sectional view of this state is shown in FIG.

その後、金属膜13をエッチングし、貫通孔31の凹部を除く側壁面(即ち、層間絶縁膜16に対向する側壁面)に形成された金属膜13を除去する。このエッチングは、例えば、塩素系ガス(Cl、BCl、CCl等)によるプラズマエッチングにより行うことができる。このとき、貫通孔31の底部の金属膜13も同時に除去される。これにより、凹部のみに金属膜13が残存し、中間電極(第3電極)が貫通孔31の軸方向(第3方向)に分離形成される。この状態の構造断面図を図7(b)に示す。 Thereafter, the metal film 13 is etched, and the metal film 13 formed on the side wall surface (that is, the side wall surface facing the interlayer insulating film 16) excluding the concave portion of the through hole 31 is removed. This etching can be performed, for example, by plasma etching using a chlorine-based gas (Cl 2 , BCl 3 , CCl 4, etc.). At this time, the metal film 13 at the bottom of the through hole 31 is also removed at the same time. Thereby, the metal film 13 remains only in the recess, and the intermediate electrode (third electrode) is formed separately in the axial direction (third direction) of the through hole 31. A structural cross-sectional view of this state is shown in FIG.

その後、底部に残存する双方向整流性膜14を除去し、貫通孔31の側壁面を覆うように、可変抵抗体材料12を堆積する。この状態の構造断面図を図8(a)に示す。   Thereafter, the bidirectional rectifying film 14 remaining at the bottom is removed, and the variable resistor material 12 is deposited so as to cover the side wall surface of the through hole 31. A sectional view of the structure in this state is shown in FIG.

その後、貫通孔31の底部に残存する可変抵抗体材料12を例えばRIE(反応性イオンエッチング)で除去し、選択トランジスタ21のドレイン領域24を貫通孔31の底部露出させた後、貫通孔31を第2電極材料11で充填し、柱状の第2電極を形成する。その後、層間絶縁膜16が露出するまで、上面に堆積された第2電極材料を除去する。この状態の構造断面図を図8(b)に示す。これは、図1において平板電極15の代わりにダミー膜32が堆積されている状態である。   Thereafter, the variable resistor material 12 remaining at the bottom of the through hole 31 is removed by, for example, RIE (reactive ion etching), and the drain region 24 of the selection transistor 21 is exposed at the bottom of the through hole 31. Filled with the second electrode material 11 to form a columnar second electrode. Thereafter, the second electrode material deposited on the upper surface is removed until the interlayer insulating film 16 is exposed. A structural sectional view of this state is shown in FIG. This is a state in which a dummy film 32 is deposited instead of the plate electrode 15 in FIG.

その後、貫通孔31に近接して加工用の開口部33を、最下層のダミー膜32を貫通する深さで、積層構造のダミー膜32が残存する部分に形成し、開口部33を介して、層間絶縁膜16の間に挟まれたダミー膜32を除去する。ダミー膜32の除去には薬液によるエッチングが使用される。エッチング後の状態の構造断面図を図10に示す。なお、図10は、図9のA−A’方向の断面図である。   Thereafter, a processing opening 33 is formed in the portion where the dummy film 32 of the laminated structure remains at a depth penetrating the lowermost dummy film 32 in the vicinity of the through hole 31, and the opening 33 is interposed through the opening 33. Then, the dummy film 32 sandwiched between the interlayer insulating films 16 is removed. Etching with a chemical solution is used to remove the dummy film 32. A sectional view of the structure after etching is shown in FIG. FIG. 10 is a cross-sectional view in the A-A ′ direction of FIG. 9.

図9に貫通孔31と開口部33の配置レイアウトの一例を示す。露光装置の最小加工寸法が30nmの場合、貫通孔31の径を30nm、貫通孔31間の離間距離を、貫通孔31の間に開口部(ここでは、溝)33が挟まれる方向(X方向)では60nm、貫通孔31の間に開口部33が挟まれない方向(Y方向)では30nmまで縮小することができる。なお、図9では貫通孔31を方形パターンで示しているが、貫通孔31の寸法が最小加工寸法に近い場合、マスクパターンが方形であっても、露光エッチング後のパターンは円形に近くなる。さらに、図9において、デコーダと接続する配線と接続するためのコンタクトプラグ37a〜37dの形成領域が、ダミー膜32の積層数だけ設けられている(図12参照)。   FIG. 9 shows an example of an arrangement layout of the through holes 31 and the openings 33. When the minimum processing dimension of the exposure apparatus is 30 nm, the diameter of the through holes 31 is 30 nm, the distance between the through holes 31 is the direction in which the opening (here, the groove) 33 is sandwiched between the through holes 31 (X direction) ) Can be reduced to 60 nm and 30 nm in the direction in which the opening 33 is not sandwiched between the through holes 31 (Y direction). In FIG. 9, the through hole 31 is shown as a square pattern. However, if the dimension of the through hole 31 is close to the minimum processing dimension, the pattern after exposure etching is close to a circle even if the mask pattern is square. Further, in FIG. 9, as many contact plugs 37a to 37d as the number of stacked layers of the dummy films 32 are provided (see FIG. 12).

その後、開口部33を介して、ダミー膜32が除去された領域に第1電極材料15を堆積し、ダミー膜が除去された領域を第1電極材料15で埋め込む。その後、開口部33の側壁面上を層間絶縁膜16が露出するまで、開口部33の側壁に堆積された第1電極材料15を除去し、除去後、開口部33を絶縁膜で充填する。これにより、三次元メモリセルアレイが製造される。   Thereafter, the first electrode material 15 is deposited in the region from which the dummy film 32 has been removed via the opening 33, and the region from which the dummy film has been removed is filled with the first electrode material 15. Thereafter, the first electrode material 15 deposited on the side wall of the opening 33 is removed until the interlayer insulating film 16 is exposed on the side wall surface of the opening 33. After the removal, the opening 33 is filled with an insulating film. Thereby, a three-dimensional memory cell array is manufactured.

その後、三次元メモリセルアレイの周辺回路を形成することで、図11に示す本発明装置2が製造される。本発明装置2の製造後、別途フォーミング工程を行っておくことが好ましい。   Thereafter, by forming the peripheral circuit of the three-dimensional memory cell array, the inventive device 2 shown in FIG. 11 is manufactured. It is preferable to perform a separate forming step after the production of the device 2 of the present invention.

本実施形態の製造方法では、第1電極15は平板状に2次元的に形成されず、開口部33によってY方向に分離され、X方向に延伸する複数の第1電極15が形成される。これら第1電極15の夫々を、金属配線を介してデコーダ(YZデコーダ:図示せず)に各別に接続する構成とできる。この場合、かかるYZデコーダが、三次元メモリセルアレイ内の動作対象のメモリセルのY方向及びZ方向の位置を選択する。このとき、第2選択線を介して動作対象のメモリセルのY方向の位置が同じ選択トランジスタ21を導通状態とする。第1実施形態と同様、第1デコーダ(図示せず)が、動作対象のメモリセルのX方向の位置を選択する。   In the manufacturing method of the present embodiment, the first electrode 15 is not two-dimensionally formed in a flat plate shape, and a plurality of first electrodes 15 that are separated in the Y direction by the opening 33 and extend in the X direction are formed. Each of the first electrodes 15 can be individually connected to a decoder (YZ decoder: not shown) via a metal wiring. In this case, the YZ decoder selects the position in the Y direction and the Z direction of the operation target memory cell in the three-dimensional memory cell array. At this time, the selection transistors 21 having the same position in the Y direction of the memory cells to be operated are brought into conduction via the second selection line. Similar to the first embodiment, a first decoder (not shown) selects a position in the X direction of the memory cell to be operated.

また、Z方向の位置が同じ第1電極15同士を同じ金属配線に接続し、かかる金属配線がデコーダ(第3デコーダ:図示せず)と接続する構成としてもよい。この場合の三次元メモリセルアレイの回路構成は図2と等価であり、三次元メモリセルアレイ内の動作対象のメモリセルの選択方法についても、第1実施形態と同様となる。   Alternatively, the first electrodes 15 having the same position in the Z direction may be connected to the same metal wiring, and the metal wiring may be connected to a decoder (third decoder: not shown). The circuit configuration of the three-dimensional memory cell array in this case is equivalent to that in FIG. 2, and the method for selecting the memory cell to be operated in the three-dimensional memory cell array is the same as in the first embodiment.

図12に、本発明装置2の三次元メモリセルアレイとデコーダと接続する金属配線との接続の一例を示す。なお、図12は、図9のB−B’方向の構造断面図であり、本発明装置2の三次元メモリセルアレイの周辺回路との接続がされる周縁部の様子を示している。第1電極15は、下層にいくほどY方向の延伸範囲が長くなるように、階段状にパターニングされており、第1電極15の各層が、コンタクトプラグ37a〜37dを介してX方向に延伸する金属配線38a〜38dと各別に接続している。金属配線38a〜38dの夫々は、Y方向に延伸し、同一層の(Z方向の位置が同じ)第1電極15同士をコンタクトプラグを介して接続すると共に、第3デコーダ(図示せず)と接続する。   FIG. 12 shows an example of connection between the three-dimensional memory cell array of the device 2 of the present invention and metal wiring connected to the decoder. FIG. 12 is a structural cross-sectional view in the B-B ′ direction of FIG. 9, and shows a state of a peripheral portion connected to a peripheral circuit of the three-dimensional memory cell array of the device 2 of the present invention. The first electrode 15 is patterned stepwise so that the extending range in the Y direction becomes longer toward the lower layer, and each layer of the first electrode 15 extends in the X direction via the contact plugs 37a to 37d. It is connected to the metal wirings 38a to 38d separately. Each of the metal wirings 38a to 38d extends in the Y direction, connects the first electrodes 15 of the same layer (the same position in the Z direction) through contact plugs, and a third decoder (not shown). Connecting.

本実施形態の製造方法は、第1実施形態に係る本発明装置1の製造方法において、第1電極材料を選択的にエッチングして凹部を形成する(図3(b))のが難しい場合に有用であり、層間絶縁膜16とエッチングの選択性が高い材料をダミー膜として堆積することで凹部の形成を容易とし、以て第3方向に分離された中間電極(第3電極)13の形成を容易とすることができる。   The manufacturing method of this embodiment is the manufacturing method of the device 1 of the present invention according to the first embodiment when it is difficult to selectively etch the first electrode material to form a recess (FIG. 3B). The formation of the intermediate electrode (third electrode) 13 separated in the third direction is facilitated by depositing the interlayer insulating film 16 and a material having high etching selectivity as a dummy film to facilitate formation of the recess. Can be made easy.

なお、上記実施形態では、凹部形成後(図6(b))、非線形トンネル膜となる双方向整流性膜14と中間電極材料13の両方を、貫通孔31の凹部を含む側壁面を覆うように堆積し(図7(a))、その後、貫通孔31の凹部を除く側壁面に形成された中間電極13を除去して、凹部のみに中間電極を第3方向に分離して形成している(図7(b))。しかしながらここで、凹部形成後(図6(b))、中間電極材料としての金属膜13のみを、貫通孔31の凹部を含む側壁面を覆うように堆積し、その後、凹部を除く側壁面に形成された金属膜13を除去することとし、双方向整流性膜14については、ダミー膜32の除去後(図10)に、ダミー膜32が除去された領域に第1電極材料15を堆積するのに先立って、双方向整流性膜14を堆積することとしてもよい。この場合、3次元メモリセルアレイの構造は、後述する第3実施形態に係る不揮発性半導体記憶装置(図13参照)とほぼ同様となる。   In the above embodiment, after forming the recesses (FIG. 6B), both the bidirectional rectifying film 14 and the intermediate electrode material 13 serving as the nonlinear tunnel film are covered with the side wall surface including the recesses of the through holes 31. Then, the intermediate electrode 13 formed on the side wall surface excluding the concave portion of the through hole 31 is removed, and the intermediate electrode is formed only in the concave portion in the third direction. (FIG. 7B). However, here, after forming the recesses (FIG. 6B), only the metal film 13 as the intermediate electrode material is deposited so as to cover the side wall surface including the recesses of the through holes 31, and then on the side wall surfaces excluding the recesses. The formed metal film 13 is removed, and for the bidirectional rectifying film 14, the first electrode material 15 is deposited in the region where the dummy film 32 is removed after the dummy film 32 is removed (FIG. 10). Prior to this, the bidirectional rectifying film 14 may be deposited. In this case, the structure of the three-dimensional memory cell array is substantially the same as that of the nonvolatile semiconductor memory device (see FIG. 13) according to a third embodiment described later.

〈第3実施形態〉
以下において、本発明の一実施形態に係る不揮発性半導体記憶装置(以降、適宜「本発明装置3」と称す)及びその製造方法につき、図面を参照して説明する。本発明装置3の三次元メモリセルアレイの構造断面図を図13に示す。図14〜図16に、本発明装置3を製造する際の各工程における概略の構造断面図を示す。
<Third Embodiment>
Hereinafter, a nonvolatile semiconductor memory device according to an embodiment of the present invention (hereinafter, appropriately referred to as “present invention device 3”) and a manufacturing method thereof will be described with reference to the drawings. A cross-sectional view of the structure of the three-dimensional memory cell array of the device 3 of the present invention is shown in FIG. 14 to 16 show schematic structural cross-sectional views in each process when manufacturing the device 3 of the present invention.

先ず、基板に平行で互いに直交する第1方向(X方向)及び第2方向(Y方向)に2次元的に選択トランジスタ21を配置した基板上に、ダミー膜34と層間絶縁膜16を交互に堆積し、ダミー膜34と層間絶縁膜16の積層構造を形成する。層間絶縁膜16の膜厚は30nm程度、ダミー膜34の膜厚は40nm程度が好ましい。その後、選択トランジスタ21のドレイン領域24の直上に、かかる積層構造を貫通する貫通孔31を、貫通孔の底面において選択トランジスタ21のドレイン領域24が露出する深さで、エッチングにより複数形成する。この状態の構造断面図を図14(a)に示す。   First, the dummy film 34 and the interlayer insulating film 16 are alternately arranged on the substrate on which the selection transistors 21 are two-dimensionally arranged in the first direction (X direction) and the second direction (Y direction) which are parallel to the substrate and orthogonal to each other. By depositing, a laminated structure of the dummy film 34 and the interlayer insulating film 16 is formed. The film thickness of the interlayer insulating film 16 is preferably about 30 nm, and the film thickness of the dummy film 34 is preferably about 40 nm. After that, a plurality of through holes 31 penetrating the stacked structure are formed by etching directly above the drain region 24 of the select transistor 21 to a depth at which the drain region 24 of the select transistor 21 is exposed at the bottom of the through hole. A sectional view of the structure in this state is shown in FIG.

本実施形態において、ダミー膜34の材料としては多結晶シリコン、或いはニッケル、コバルト、銅、ルテニウム等の金属酸化物を用いる。これらの金属酸化物は還元雰囲気で容易に金属に還元されることが特徴である。また、多結晶シリコンについてはシリサイド化により容易に電極部分を形成できる。   In the present embodiment, the material of the dummy film 34 is polycrystalline silicon or a metal oxide such as nickel, cobalt, copper, ruthenium. These metal oxides are characterized by being easily reduced to metals in a reducing atmosphere. For polycrystalline silicon, the electrode portion can be easily formed by silicidation.

その後、貫通孔31の側壁に露出したダミー膜34の一部を中間電極に変化させる。この状態の構造断面図を図14(b)に示す。   Thereafter, a part of the dummy film 34 exposed on the side wall of the through hole 31 is changed to an intermediate electrode. A cross-sectional view of the structure in this state is shown in FIG.

ダミー膜34が多結晶シリコンであれば、公知のシリサイド化工程を用いて、露出面上に自己整合的にシリサイドを形成することができる。シリサイド材料としては、ニッケルシリサイド、コバルトシリサイドのようなSiプロセスとの整合性がよく仕事関数も大きな材料が、可変抵抗素子のスイッチング動作を安定に行うことができるため好適である。一方、ダミー膜34として金属酸化膜を用いる場合は、水素雰囲気中の加熱処理により露出面を還元させ、金属電極に変化させるか、或いは、金属とはいえないまでも金属酸化物中の酸素欠損を増加させて導電化し、電極として利用することができる。なお、ニッケル、コバルト、銅の酸化物は400℃程度で水素による還元が可能である。この処理を、ダミー膜34の露出面から10nm程度の深さの中間電極が形成されるまで行う。   If the dummy film 34 is polycrystalline silicon, silicide can be formed on the exposed surface in a self-aligned manner using a known silicidation process. As the silicide material, a material having good compatibility with the Si process such as nickel silicide and cobalt silicide and having a large work function is preferable because the switching operation of the variable resistance element can be stably performed. On the other hand, in the case where a metal oxide film is used as the dummy film 34, the exposed surface is reduced by heat treatment in a hydrogen atmosphere and changed to a metal electrode, or oxygen vacancies in the metal oxide are not necessarily metal. Can be made conductive and used as an electrode. Note that nickel, cobalt, and copper oxides can be reduced with hydrogen at about 400 ° C. This process is performed until an intermediate electrode having a depth of about 10 nm from the exposed surface of the dummy film 34 is formed.

その後、貫通孔31の側壁面を覆うように、可変抵抗体材料12を堆積する。この状態の構造断面図を図15(a)に示す。   Thereafter, the variable resistor material 12 is deposited so as to cover the side wall surface of the through hole 31. A sectional view of the structure in this state is shown in FIG.

その後、貫通孔31の底部に残存する可変抵抗体材料12を例えばRIE(反応性イオンエッチング)で除去し、選択トランジスタ21のドレイン領域24を貫通孔31の底部露出させた後、貫通孔31を第2電極材料11で充填し、柱状の第2電極を形成する。その後、層間絶縁膜16が露出するまで、上面に堆積された第2電極材料を除去する。この状態の構造断面図を図15(b)に示す。   Thereafter, the variable resistor material 12 remaining at the bottom of the through hole 31 is removed by, for example, RIE (reactive ion etching), and the drain region 24 of the selection transistor 21 is exposed at the bottom of the through hole 31. Filled with the second electrode material 11 to form a columnar second electrode. Thereafter, the second electrode material deposited on the upper surface is removed until the interlayer insulating film 16 is exposed. A structural cross-sectional view of this state is shown in FIG.

その後、貫通孔31に近接して加工用の開口部33(ここでは、溝)を、最下層のダミー膜34を貫通する深さで、積層構造のダミー膜34が残存する部分に形成し、開口部33を介して、層間絶縁膜16の間に挟まれたダミー膜34を除去する。ダミー膜34の除去には薬液によるエッチングが使用される。貫通孔31と開口部33の配置については、例えば図9と同様の配置レイアウトを利用できる。このとき金属化した中間電極13が残存するように、エッチング時間を調整する。   After that, a processing opening 33 (here, a groove) is formed in the vicinity of the through hole 31 at a depth that penetrates the lowermost dummy film 34 in a portion where the dummy film 34 of the laminated structure remains, The dummy film 34 sandwiched between the interlayer insulating films 16 is removed through the opening 33. Etching with a chemical solution is used to remove the dummy film 34. For the arrangement of the through holes 31 and the openings 33, for example, an arrangement layout similar to that shown in FIG. 9 can be used. At this time, the etching time is adjusted so that the metallized intermediate electrode 13 remains.

例えば、ダミー膜34がポリシリコンであり、層間絶縁膜16がシリコン酸化膜、中間電極(金属膜13)がシリサイドである場合、例えば、公知のXeFガスによるエッチング、或いはNF、SFのプラズマエッチングによりダミー膜34を選択的に除去することができる。このときのエッチング後の状態の構造断面図を図16に示す。なお、図16は、図9のA−A’方向の断面図である。 For example, when the dummy film 34 is polysilicon, the interlayer insulating film 16 is a silicon oxide film, and the intermediate electrode (metal film 13) is silicide, for example, etching with a known XeF 2 gas or NF 3 , SF 6 is used. The dummy film 34 can be selectively removed by plasma etching. FIG. 16 shows a cross-sectional view of the structure after etching at this time. FIG. 16 is a cross-sectional view in the AA ′ direction of FIG.

その後、開口部33を介して、ダミー膜34が除去された領域に双方向整流性材料14を堆積する。その後、さらに第1電極材料15を堆積するとともに、ダミー膜が除去された領域を第1電極材料15で埋め込む。その後、開口部33の側壁面上を少なくとも双方向整流性材料14が露出するまで、開口部33の側壁に堆積された第1電極材料15を除去し、除去後、開口部33を絶縁膜で充填する。これにより、三次元メモリセルアレイが製造される。   Thereafter, the bidirectional rectifying material 14 is deposited through the opening 33 in the region where the dummy film 34 has been removed. Thereafter, the first electrode material 15 is further deposited, and the region from which the dummy film has been removed is filled with the first electrode material 15. Thereafter, the first electrode material 15 deposited on the side wall of the opening 33 is removed until at least the bidirectional rectifying material 14 is exposed on the side wall surface of the opening 33. After the removal, the opening 33 is formed of an insulating film. Fill. Thereby, a three-dimensional memory cell array is manufactured.

その後、三次元メモリセルアレイの周辺回路を形成することで、図13に示す本発明装置3が製造される。本発明装置3の製造後、別途フォーミング工程を行っておくことが好ましい。   Thereafter, by forming peripheral circuits of the three-dimensional memory cell array, the inventive device 3 shown in FIG. 13 is manufactured. It is preferable to perform a separate forming step after the production of the device 3 of the present invention.

上記の本発明装置3の製造方法では、エッチングにより貫通孔31に凹部を形成する代わりに、加工用の開口部33を介して、自己整合的に第3方向に分離された中間電極13を形成することができる。   In the manufacturing method of the device 3 of the present invention, the intermediate electrode 13 separated in the third direction in a self-aligned manner is formed through the processing opening 33 instead of forming the recess in the through hole 31 by etching. can do.

〈第4実施形態〉
以下において、本発明の一実施形態に係る不揮発性半導体記憶装置(以降、適宜「本発明装置4」と称す)及びその製造方法につき、図面を参照して説明する。図17〜図20に、本発明装置4を製造する際の各工程における概略の構造断面図を示す。
<Fourth embodiment>
Hereinafter, a nonvolatile semiconductor memory device according to an embodiment of the present invention (hereinafter, appropriately referred to as “present invention device 4”) and a manufacturing method thereof will be described with reference to the drawings. 17 to 20 are schematic structural cross-sectional views in each step when manufacturing the device 4 of the present invention.

先ず、基板に平行で互いに直交する第1方向(X方向)及び第2方向(Y方向)に2次元的に選択トランジスタ21を配置した基板上に、ダミー膜35と層間絶縁膜16を交互に堆積し、ダミー膜35と層間絶縁膜16の積層構造を形成する。層間絶縁膜16の膜厚は30nm程度、ダミー膜35の膜厚は60nm程度が好ましい。ダミー膜35としては、例えば多結晶シリコンを用いることができる。その後、選択トランジスタ21のドレイン領域24の直上に、かかる積層構造を貫通する貫通孔31を、貫通孔の底面において選択トランジスタ21のドレイン領域24が露出する深さで、エッチングにより複数形成する。この状態の構造断面図を図17(a)に示す。   First, the dummy film 35 and the interlayer insulating film 16 are alternately arranged on the substrate on which the selection transistors 21 are two-dimensionally arranged in the first direction (X direction) and the second direction (Y direction) which are parallel to the substrate and orthogonal to each other. The stacked structure of the dummy film 35 and the interlayer insulating film 16 is formed. The film thickness of the interlayer insulating film 16 is preferably about 30 nm, and the film thickness of the dummy film 35 is preferably about 60 nm. As the dummy film 35, for example, polycrystalline silicon can be used. After that, a plurality of through holes 31 penetrating the stacked structure are formed by etching directly above the drain region 24 of the select transistor 21 to a depth at which the drain region 24 of the select transistor 21 is exposed at the bottom of the through hole. A sectional view of the structure in this state is shown in FIG.

その後、形成した貫通孔31を第2のダミー材料36で充填する。かかるダミー材料36としては、例えば窒化シリコン膜を用いることができる。この状態の構造断面図を図17(b)に示す。   Thereafter, the formed through hole 31 is filled with the second dummy material 36. As the dummy material 36, for example, a silicon nitride film can be used. A structural sectional view of this state is shown in FIG.

その後、貫通孔31に近接して加工用の開口部33(ここでは、溝)を、最下層のダミー膜35を貫通する深さで、積層構造のダミー膜35が残存する部分に形成し、開口部33を介して、層間絶縁膜16の間に挟まれたダミー膜35を除去する。ダミー膜35の除去には薬液によるエッチングが使用される。貫通孔31と開口部33の配置については、例えば図9と同様の配置レイアウトを利用できる。これにより貫通孔31の外周側壁にダミー材料36が露出する。エッチング後の状態の構造断面図を図18に示す。なお、図18は図9のA−A’方向の断面図である。   Thereafter, a processing opening 33 (here, a groove) is formed in the vicinity of the through hole 31 at a depth that penetrates the lowermost dummy film 35 in a portion where the dummy film 35 of the stacked structure remains, The dummy film 35 sandwiched between the interlayer insulating films 16 is removed through the opening 33. Etching with a chemical solution is used to remove the dummy film 35. For the arrangement of the through holes 31 and the openings 33, for example, an arrangement layout similar to that shown in FIG. 9 can be used. As a result, the dummy material 36 is exposed on the outer peripheral side wall of the through hole 31. FIG. 18 shows a structural cross-sectional view after the etching. FIG. 18 is a cross-sectional view in the A-A ′ direction of FIG. 9.

その後、開口部33を介して、ダミー膜35が除去された領域に中間電極の前駆体材料19、双方向整流性膜14を順に堆積する。前駆体材料19の膜厚は10nm程度、双方向整流性膜14の膜厚は1〜5nm程度が好ましい。その後、さらに第1電極材料15を堆積し、ダミー膜35が除去された領域を第1電極材料15で埋め込む。この状態の構造断面図を図19(a)に示す。前駆体材料19としては、多結晶シリコン、或いはニッケル、コバルト、銅、ルテニウム等の金属酸化物を用いる。これらの金属酸化物は還元雰囲気で容易に金属に還元されることが特徴である。また、多結晶シリコンについてはシリサイド化により容易に電極部分を形成できる。   Thereafter, the precursor material 19 of the intermediate electrode and the bidirectional rectifying film 14 are sequentially deposited in the region where the dummy film 35 has been removed through the opening 33. The film thickness of the precursor material 19 is preferably about 10 nm, and the film thickness of the bidirectional rectifying film 14 is preferably about 1 to 5 nm. Thereafter, the first electrode material 15 is further deposited, and the region where the dummy film 35 is removed is embedded with the first electrode material 15. FIG. 19A shows a structural cross-sectional view in this state. As the precursor material 19, polycrystalline silicon or a metal oxide such as nickel, cobalt, copper, ruthenium or the like is used. These metal oxides are characterized by being easily reduced to metals in a reducing atmosphere. For polycrystalline silicon, the electrode portion can be easily formed by silicidation.

その後、開口部33の側壁面上に双方向整流性膜14が露出するまで、開口部33の側壁に堆積された第1電極材料15を除去する。さらに、開口部33の側壁面上に層間絶縁膜16が露出するまで、開口部33の側壁に堆積された双方向整流性膜14、及び前駆体膜19を除去することが好ましい。しかしながら、双方向整流性膜14、及び、前駆体材料19が絶縁性材料であれば、必ずしも除去する必要はない。少なくとも開口部33の側壁上の第1電極材料15を除去した後、開口部33を絶縁膜で充填する。さらに、貫通孔31を充填しているダミー材料36を除去し、貫通孔の側壁面上に前駆体材料19を露出させる。この状態の構造断面図を図19(b)に示す。   Thereafter, the first electrode material 15 deposited on the side wall of the opening 33 is removed until the bidirectional rectifying film 14 is exposed on the side wall surface of the opening 33. Furthermore, it is preferable to remove the bidirectional rectifying film 14 and the precursor film 19 deposited on the side wall of the opening 33 until the interlayer insulating film 16 is exposed on the side wall surface of the opening 33. However, if the bidirectional rectifying film 14 and the precursor material 19 are insulating materials, it is not always necessary to remove them. After removing at least the first electrode material 15 on the side wall of the opening 33, the opening 33 is filled with an insulating film. Further, the dummy material 36 filling the through hole 31 is removed, and the precursor material 19 is exposed on the side wall surface of the through hole. A structural sectional view of this state is shown in FIG.

その後、貫通孔31の側壁に露出した前駆体材料19を中間電極13に変化させる。この状態の構造断面図を図20(a)に示す。   Thereafter, the precursor material 19 exposed on the side wall of the through hole 31 is changed to the intermediate electrode 13. A sectional view of the structure in this state is shown in FIG.

前駆体材料19が多結晶シリコンであれば、公知のシリサイド化工程を用いて、露出面上似に自己整合的にシリサイドを形成することができる。シリサイド材料としては、ニッケルシリサイド、コバルトシリサイドのようなSiプロセスとの整合性がよく仕事関数も大きな材料が、可変抵抗素子のスイッチング動作を安定に行うことができるため好適である。一方、前駆体材料19として金属酸化膜を用いる場合は、水素雰囲気中の加熱処理により露出面を還元させ、金属電極に変化させるか、或いは、金属とはいえないまでも金属酸化物中の酸素欠損を増加させて導電化し、電極として利用することができる。なお、ニッケル、コバルト、銅の酸化物は400℃程度で水素による還元が可能である。この処理を、前駆体材料19の露出面から10nm程度の深さの中間電極が形成されるまで行う。   If the precursor material 19 is polycrystalline silicon, silicide can be formed in a self-aligned manner similar to the exposed surface using a known silicidation process. As the silicide material, a material having good compatibility with the Si process such as nickel silicide and cobalt silicide and having a large work function is preferable because the switching operation of the variable resistance element can be stably performed. On the other hand, when a metal oxide film is used as the precursor material 19, the exposed surface is reduced by heat treatment in a hydrogen atmosphere and changed to a metal electrode, or oxygen in the metal oxide is not necessarily a metal. Defects can be increased to make it conductive and used as an electrode. Note that nickel, cobalt, and copper oxides can be reduced with hydrogen at about 400 ° C. This process is performed until an intermediate electrode having a depth of about 10 nm from the exposed surface of the precursor material 19 is formed.

その後、貫通孔31の側壁面を覆うように、可変抵抗体材料12を堆積する。この状態の構造断面図を図20(b)に示す。   Thereafter, the variable resistor material 12 is deposited so as to cover the side wall surface of the through hole 31. A structural cross-sectional view in this state is shown in FIG.

その後、貫通孔31の底部に残存する可変抵抗体材料12を例えばRIE(反応性イオンエッチング)で除去し、選択トランジスタ21のドレイン領域24を貫通孔31の底部に露出させた後、貫通孔31を第2電極材料11で充填し、柱状の第2電極を形成する。その後、層間絶縁膜16が露出するまで、上面に堆積された第2電極材料を除去する。これにより、三次元メモリセルアレイが製造される。   Thereafter, the variable resistor material 12 remaining at the bottom of the through hole 31 is removed by, for example, RIE (reactive ion etching), and the drain region 24 of the selection transistor 21 is exposed at the bottom of the through hole 31. Is filled with the second electrode material 11 to form a columnar second electrode. Thereafter, the second electrode material deposited on the upper surface is removed until the interlayer insulating film 16 is exposed. Thereby, a three-dimensional memory cell array is manufactured.

その後、三次元メモリセルアレイの周辺回路を形成することで、図21に示す本発明装置4が製造される。本発明装置4の製造後、別途フォーミング工程を行っておくことが好ましい。   Thereafter, the peripheral circuit of the three-dimensional memory cell array is formed to manufacture the device 4 of the present invention shown in FIG. It is preferable to perform a separate forming step after the manufacture of the device 4 of the present invention.

上記の本発明装置4の製造方法では、エッチングにより貫通孔31に凹部を形成する代わりに、開口部33を介して、自己整合的に第3方向に分離された中間電極13を形成することができる。   In the manufacturing method of the device 4 of the present invention described above, the intermediate electrode 13 separated in the third direction in a self-aligning manner can be formed through the opening 33 instead of forming the recess in the through hole 31 by etching. it can.

以上、本発明装置1〜4とその製造方法によれば、双方向整流素子と可変抵抗素子を一体化した単純な構造のメモリセルを3次元的に集積することが可能となり、不揮発性半導体記憶装置の製造コストを大幅に低減することができる。本発明において、双方向整流素子は、第3方向に分離形成された中間電極13と接続しているため、安定で均一な双方向整流特性を有している。これにより、大容量で安価であり、かつ信頼性の高い不揮発性半導体記憶装置を実現することができる。   As described above, according to the devices 1 to 4 of the present invention and the manufacturing method thereof, it is possible to three-dimensionally integrate memory cells having a simple structure in which a bidirectional rectifying element and a variable resistance element are integrated. The manufacturing cost of the apparatus can be greatly reduced. In the present invention, since the bidirectional rectifying element is connected to the intermediate electrode 13 formed separately in the third direction, it has a stable and uniform bidirectional rectifying characteristic. As a result, a nonvolatile semiconductor memory device that has a large capacity, is inexpensive, and has high reliability can be realized.

〈別実施形態〉
以下に、別実施形態について説明する。
<Another embodiment>
Another embodiment will be described below.

〈1〉上記第1〜第4実施形態に示す本発明装置1〜3では、双方向整流素子と可変抵抗素子とを直列に接続してなる環状のメモリセル13において、双方向整流性膜14が可変抵抗体材料12よりも外周側にあり、双方向整流素子の外周側の一端が平板電極(第1電極)15と接続し、可変抵抗素子の内周側の一端が柱状電極(第2電極)11と接続する構成であるが、これは逆であっても構わない。つまり、双方向整流性膜14を可変抵抗体より内周側に配置し、双方向整流素子の内周側の一端が柱状電極(第2電極)11と接続し、可変抵抗素子の一端が平板電極(第1電極)15と接続する構成としてもよい。その場合、上記第1〜第4実施形態において、可変抵抗体(可変抵抗体材料)12を双方向整流性膜14と、双方向整流性膜14を可変抵抗体(可変抵抗体材料)12と、夫々、読み替えて本発明を適用すればよい。平板電極(第1電極)15と柱状電極(第2電極)11の材料についても、これに応じて、適宜変更することができる。   <1> In the devices 1 to 3 of the present invention shown in the first to fourth embodiments, the bidirectional rectifying film 14 in the annular memory cell 13 formed by connecting the bidirectional rectifying element and the variable resistance element in series. Is on the outer peripheral side of the variable resistor material 12, one end on the outer peripheral side of the bidirectional rectifying element is connected to the plate electrode (first electrode) 15, and one end on the inner peripheral side of the variable resistive element is the columnar electrode (second electrode). The electrode is connected to the electrode 11, but this may be reversed. That is, the bidirectional rectifying film 14 is disposed on the inner peripheral side of the variable resistor, one end on the inner peripheral side of the bidirectional rectifying element is connected to the columnar electrode (second electrode) 11, and one end of the variable resistive element is a flat plate. It is good also as a structure connected with the electrode (1st electrode) 15. FIG. In that case, in the first to fourth embodiments, the variable resistor (variable resistor material) 12 is the bidirectional rectifying film 14, and the bidirectional rectifying film 14 is the variable resistor (variable resistor material) 12. The present invention may be applied with different readings. The materials of the plate electrode (first electrode) 15 and the columnar electrode (second electrode) 11 can also be appropriately changed according to this.

〈2〉上記実施形態では、貫通孔の下に縦型トランジスタが配置され、柱状電極(第2電極)11が縦型トランジスタのドレインと接続するように構成されているが、本発明はこれに限られるものではなく、従来構成のMOSトランジスタのドレイン領域と接続させても構わない。
〈3〉上記第1及び第2実施形態において、貫通孔31の凹部に中間電極13を分離形成後(図4(b)、図7(b))、底部に残存する双方向整流性膜14を除去してから、可変抵抗体材料12の堆積を行っている(図5、図8)が、双方向整流性膜14については、図5又は図8において可変抵抗体材料12を堆積後、貫通孔31の底部に残存する可変抵抗体材料12を除去するのに併せて、同じく底部に残存する双方向整流性膜14を除去するようにしても構わない。
<2> In the above embodiment, the vertical transistor is disposed under the through hole, and the columnar electrode (second electrode) 11 is configured to be connected to the drain of the vertical transistor. It is not limited, and it may be connected to the drain region of a conventional MOS transistor.
<3> In the first and second embodiments, after the intermediate electrode 13 is separately formed in the recess of the through hole 31 (FIGS. 4B and 7B), the bidirectional rectifying film 14 remaining at the bottom The variable resistor material 12 is deposited after removing (FIGS. 5 and 8), but the bidirectional rectifying film 14 is deposited after the variable resistor material 12 is deposited in FIG. 5 or FIG. In addition to removing the variable resistor material 12 remaining at the bottom of the through hole 31, the bidirectional rectifying film 14 also remaining at the bottom may be removed.

〈4〉上記第2〜第4実施形態において、加工用の開口部33の形成によりダミー膜32(34、35)を除去するに際し、図9に示すレイアウトを用い、開口部33としてX方向に延伸する溝を形成してダミー膜を除去している。この結果として、第1電極15はY方向に分離形成され、X方向に延伸する線状に形成される。しかしながら、本発明は上記のレイアウトに示す構成に限定されるものではない。例えば、図22のレイアウトに示すように、加工用の開口部33として孔を形成することも可能である。   <4> In the second to fourth embodiments, when the dummy film 32 (34, 35) is removed by forming the processing opening 33, the layout shown in FIG. An extending groove is formed to remove the dummy film. As a result, the first electrode 15 is separated and formed in the Y direction and is formed in a linear shape extending in the X direction. However, the present invention is not limited to the configuration shown in the above layout. For example, as shown in the layout of FIG. 22, a hole can be formed as the opening 33 for processing.

この場合、ダミー膜32(34、35)が加工用のかかる孔33の端部からの距離Rまでエッチングされるように、エッチング時間を調整することで、ダミー膜を除去することができる。この結果、第1電極15はX方向およびY方向に2次元的にメモリセル間を接続することができ、製造される不揮発性半導体記憶装置は、第1実施形態の本発明装置1と同様の構成となる。   In this case, the dummy film can be removed by adjusting the etching time so that the dummy film 32 (34, 35) is etched to the distance R from the end of the hole 33 for processing. As a result, the first electrode 15 can two-dimensionally connect the memory cells in the X direction and the Y direction, and the manufactured nonvolatile semiconductor memory device is the same as the inventive device 1 of the first embodiment. It becomes composition.

或いは、図9において、開口部33としてX方向に延伸する溝を形成する代わりに、開口部33としてY方向に延伸する溝を形成することもできる。   Alternatively, in FIG. 9, instead of forming a groove extending in the X direction as the opening 33, a groove extending in the Y direction can be formed as the opening 33.

〈5〉上記第1〜第4実施形態において、製造工程の説明で示した各材料膜の膜厚、開口部の寸法等の数値はあくまで例示であり、実施形態で例示した値に限定されるものではない。   <5> In the first to fourth embodiments, the numerical values such as the film thickness of each material film and the dimension of the opening shown in the description of the manufacturing process are merely examples, and are limited to the values exemplified in the embodiment. It is not a thing.

本発明は、半導体記憶装置に利用可能であり、特に電圧印加によって抵抗状態が遷移し、かかる遷移後の抵抗状態によって情報が保持される可変抵抗素子を備えてなる不揮発性の半導体記憶装置に利用可能である。   INDUSTRIAL APPLICABILITY The present invention is applicable to a semiconductor memory device, and in particular, to a nonvolatile semiconductor memory device including a variable resistance element in which a resistance state transitions due to voltage application and information is held by the resistance state after the transition. Is possible.

1〜4: 本発明の一実施形態にかかる不揮発性半導体記憶装置(本発明装置)
11、41a,41b: 柱状電極(第2電極)
11a: 周辺電極
11b: 内部電極
12、42: 可変抵抗体材料(可変抵抗体)
13、43: 中間電極(第3電極)
14: 双方向整流性膜
15、45: 平板電極(第1電極)
16、46: 層間絶縁膜
17、47: メモリセル
18: 2次元メモリセルアレイ
19: 中間電極の前駆体
20: 半導体基板
21: 選択トランジスタ
22: ゲート電極
23: ソース領域
24: ドレイン領域
25: チャネル領域
31: 貫通孔
32、34〜36: ダミー膜(ダミー材料)
33: 加工用の開口部
37a〜37d: コンタクトプラグ
38a〜38d: 配線層
48: フィラメント
1-4: Nonvolatile semiconductor memory device according to one embodiment of the present invention (device of the present invention)
11, 41a, 41b: Columnar electrode (second electrode)
11a: Peripheral electrode 11b: Internal electrode 12, 42: Variable resistor material (variable resistor)
13, 43: Intermediate electrode (third electrode)
14: Bidirectional rectifying film 15, 45: Flat plate electrode (first electrode)
16, 46: Interlayer insulating film 17, 47: Memory cell 18: Two-dimensional memory cell array 19: Precursor of intermediate electrode 20: Semiconductor substrate 21: Select transistor 22: Gate electrode 23: Source region 24: Drain region 25: Channel region 31: Through-hole 32, 34-36: Dummy film (dummy material)
33: Openings for processing 37a to 37d: Contact plugs 38a to 38d: Wiring layer 48: Filament

Claims (13)

電圧の印加により抵抗特性が変化する不揮発性の可変抵抗素子を備えた2端子型のメモリセルが、互いに直交する第1方向、第2方向、及び、第3方向に夫々複数、3次元マトリクス状に配置された3次元メモリセルアレイを有する不揮発性半導体記憶装置であって、
前記3次元メモリセルアレイが、
前記第1方向および前記第2方向のうち少なくとも何れかの方向に延伸する第1電極を備え、前記第1電極が層間絶縁膜を介して2層以上、前記第3方向に積層され、
前記積層された2層以上の前記第1電極とその間の前記層間絶縁膜を前記第3方向に貫通する複数の貫通孔を備え、前記貫通孔が前記第1方向および前記第2方向に2次元的に配列され、
前記第3方向に延伸する柱状の導電体で構成された、前記貫通孔内を前記第1電極と接触せずに充填する複数の第2電極を備え、
前記メモリセルが、
環状の第3電極と、
前記第3電極の内周側面および外周側面の何れか一方と接触する環状の可変抵抗体と、
前記第3電極の内周側面および外周側面の何れか他方と接触する環状の絶縁膜と、を備え、
前記第1電極が、前記可変抵抗体および前記環状の絶縁膜の夫々の外周側面のうち前記第3電極と接触しない方の外周側面と電気的に接続し、
前記第2電極が、前記可変抵抗体および前記環状の絶縁膜の夫々の内周側面のうち前記第3電極と接触しない方の内周側面と電気的に接続して、環状のメモリセルが形成されてなり、
前記第3電極が、同じ前記第2電極と接続する前記メモリセル間で前記第3方向に分離形成されており、
前記可変抵抗体が、同じ前記第2電極と接続する前記メモリセル間で前記第3方向に電気的に分離されていることを特徴とする不揮発性半導体記憶装置。
A plurality of two-terminal memory cells each including a nonvolatile variable resistance element whose resistance characteristics are changed by application of a voltage in a first direction, a second direction, and a third direction orthogonal to each other, in a three-dimensional matrix shape A non-volatile semiconductor memory device having a three-dimensional memory cell array arranged in
The three-dimensional memory cell array
A first electrode extending in at least one of the first direction and the second direction, wherein the first electrode is laminated in the third direction by two or more layers through an interlayer insulating film;
A plurality of through holes penetrating in the third direction through the stacked two or more first electrodes and the interlayer insulating film therebetween, the through holes being two-dimensional in the first direction and the second direction; Arranged
A plurality of second electrodes configured by columnar conductors extending in the third direction and filling the through holes without contacting the first electrodes;
The memory cell is
An annular third electrode;
An annular variable resistor in contact with either the inner peripheral side surface or the outer peripheral side surface of the third electrode;
An annular insulating film that contacts either the inner peripheral side surface or the outer peripheral side surface of the third electrode;
The first electrode is electrically connected to an outer peripheral side surface of the variable resistor and the annular insulating film that is not in contact with the third electrode,
The second electrode is electrically connected to the inner peripheral side of the variable resistor and the annular insulating film that is not in contact with the third electrode, thereby forming an annular memory cell. Being
The third electrode is separately formed in the third direction between the memory cells connected to the same second electrode ;
The nonvolatile semiconductor memory device , wherein the variable resistor is electrically separated in the third direction between the memory cells connected to the same second electrode .
前記第1電極が、前記環状の絶縁膜の外周側面と電気的に接続し、
前記第2電極が、前記可変抵抗体の内周側面と電気的に接続していることを特徴とする請求項1に記載の不揮発性半導体記憶装置。
The first electrode is electrically connected to an outer peripheral side surface of the annular insulating film;
The nonvolatile semiconductor memory device according to claim 1, wherein the second electrode is electrically connected to an inner peripheral side surface of the variable resistor.
前記可変抵抗体、前記第3電極、及び、前記第1電極と前記第2電極のうち前記可変抵抗体と接続する一方の電極が、前記可変抵抗素子を構成し、
前記環状の絶縁膜、前記第3電極、及び、前記第1電極と前記第2電極のうち前記環状の絶縁膜と接続する他方の電極が、2端子の双方向整流素子を構成することを特徴とする請求項1又は2に記載の不揮発性半導体記憶装置。
The variable resistor, the third electrode, and one electrode connected to the variable resistor among the first electrode and the second electrode constitutes the variable resistor element,
The annular insulating film, the third electrode, and the other electrode connected to the annular insulating film among the first electrode and the second electrode constitute a two-terminal bidirectional rectifier. The nonvolatile semiconductor memory device according to claim 1 or 2.
選択トランジスタが前記第1方向と前記第2方向に夫々複数2次元マトリクス状に、前記3次元メモリセルの配置領域に対して前記第3方向に隣接して配置され、
前記第2電極が、その頂面または底面において前記選択トランジスタの入出力端子対の1つと接続していることを特徴とする請求項1〜の何れか一項に記載の不揮発性半導体記憶装置。
Select transistors are arranged in a plurality of two-dimensional matrices in the first direction and the second direction, respectively, adjacent to the arrangement direction of the three-dimensional memory cells in the third direction,
Wherein the second electrode, the non-volatile semiconductor memory device according to any one of claim 1 to 3, wherein the connecting one of the input and output terminal pair of said selection transistor in its top or bottom surface .
前記可変抵抗体が、遷移金属酸化物もしくはアルミニウム酸化物、又は、遷移金属の酸窒化物で構成されることを特徴とする請求項1〜の何れか一項に記載の不揮発性半導体記憶装置。 The variable resistor is a transition metal oxide or aluminum oxide, or, non-volatile semiconductor memory device according to any one of claims 1-4, characterized in that it is composed of an oxynitride of a transition metal . 揮発性半導体記憶装置を製造する方法であって、
前記不揮発性半導体記憶装置が、電圧の印加により抵抗特性が変化する不揮発性の可変抵抗素子を備えた2端子型のメモリセルが、互いに直交する第1方向、第2方向、及び、第3方向に夫々複数、3次元マトリクス状に配置された3次元メモリセルアレイを有し、
前記3次元メモリセルアレイが、
前記第1方向および前記第2方向のうち少なくとも何れかの方向に延伸する第1電極を備え、前記第1電極が層間絶縁膜を介して2層以上、前記第3方向に積層され、
前記積層された2層以上の前記第1電極とその間の前記層間絶縁膜を前記第3方向に貫通する複数の貫通孔を備え、前記貫通孔が前記第1方向および前記第2方向に2次元的に配列され、
前記第3方向に延伸する柱状の導電体で構成された、前記貫通孔内を前記第1電極と接触せずに充填する複数の第2電極を備え、
前記メモリセルが、
環状の第3電極と、
前記第3電極の内周側面および外周側面の何れか一方と接触する環状の可変抵抗体と、
前記第3電極の内周側面および外周側面の何れか他方と接触する環状の絶縁膜と、を備え、
前記第1電極が、前記可変抵抗体および前記環状の絶縁膜の夫々の外周側面のうち前記第3電極と接触しない方の外周側面と電気的に接続し、
前記第2電極が、前記可変抵抗体および前記環状の絶縁膜の夫々の内周側面のうち前記第3電極と接触しない方の内周側面と電気的に接続して、環状のメモリセルが形成されてなり、
前記第3電極が、同じ前記第2電極と接続する前記メモリセル間で前記第3方向に分離形成されており、
前記方法が、
基板上に、第1電極材料と層間絶縁膜を交互に堆積し、前記第1電極材料と前記層間絶縁膜の積層構造を形成する工程と、
前記積層構造に、前記積層構造を貫通する複数の貫通孔を、前記基板面に平行で互いに直交する第1方向および第2方向に2次元的に配置されるように形成する工程と、
前記貫通孔の側壁に露出した前記第1電極材料を所定の膜厚分エッチング除去し、前記貫通孔の側壁に凹部を形成する工程と、
非線形トンネル膜となる絶縁膜材料と第3電極材料を、夫々、前記貫通孔の前記凹部を含む側壁面を覆うように堆積する工程と、
前記貫通孔の前記凹部を除く側壁面に形成された前記第3電極材料を除去し、前記貫通孔の前記凹部に前記第3電極材料を残存させる工程と、
可変抵抗体材料を、前記貫通孔の側壁面を覆うように堆積する工程と、
前記貫通孔を第2電極材料で充填する工程と、を有することを特徴とする不揮発性半導体記憶装置の製造方法。
A method of manufacturing a nonvolatile semiconductor memory device,
In the nonvolatile semiconductor memory device, a two-terminal type memory cell having a nonvolatile variable resistance element whose resistance characteristics are changed by application of voltage includes a first direction, a second direction, and a third direction orthogonal to each other. Each having a plurality of three-dimensional memory cell arrays arranged in a three-dimensional matrix,
The three-dimensional memory cell array
A first electrode extending in at least one of the first direction and the second direction, wherein the first electrode is laminated in the third direction by two or more layers through an interlayer insulating film;
A plurality of through holes penetrating in the third direction through the stacked two or more first electrodes and the interlayer insulating film therebetween, the through holes being two-dimensional in the first direction and the second direction; Arranged
A plurality of second electrodes configured by columnar conductors extending in the third direction and filling the through holes without contacting the first electrodes;
The memory cell is
An annular third electrode;
An annular variable resistor in contact with either the inner peripheral side surface or the outer peripheral side surface of the third electrode;
An annular insulating film that contacts either the inner peripheral side surface or the outer peripheral side surface of the third electrode;
The first electrode is electrically connected to an outer peripheral side surface of the variable resistor and the annular insulating film that is not in contact with the third electrode,
The second electrode is electrically connected to the inner peripheral side of the variable resistor and the annular insulating film that is not in contact with the third electrode, thereby forming an annular memory cell. Being
The third electrode is separately formed in the third direction between the memory cells connected to the same second electrode;
Said method comprises
A step of alternately depositing a first electrode material and an interlayer insulating film on a substrate to form a laminated structure of the first electrode material and the interlayer insulating film;
Forming a plurality of through holes penetrating the laminated structure in the laminated structure so as to be two-dimensionally arranged in a first direction and a second direction parallel to the substrate surface and orthogonal to each other;
Etching and removing the first electrode material exposed on the side wall of the through hole by a predetermined thickness, and forming a recess on the side wall of the through hole;
Depositing an insulating film material to be a nonlinear tunnel film and a third electrode material so as to cover the side wall surface including the concave portion of the through hole, respectively;
Removing the third electrode material formed on the side wall surface excluding the concave portion of the through hole, and leaving the third electrode material in the concave portion of the through hole;
Depositing a variable resistor material so as to cover a side wall surface of the through hole;
Filling the through hole with a second electrode material. A method for manufacturing a nonvolatile semiconductor memory device, comprising:
揮発性半導体記憶装置を製造する方法であって、
前記不揮発性半導体記憶装置が、電圧の印加により抵抗特性が変化する不揮発性の可変抵抗素子を備えた2端子型のメモリセルが、互いに直交する第1方向、第2方向、及び、第3方向に夫々複数、3次元マトリクス状に配置された3次元メモリセルアレイを有し、
前記3次元メモリセルアレイが、
前記第1方向および前記第2方向のうち少なくとも何れかの方向に延伸する第1電極を備え、前記第1電極が層間絶縁膜を介して2層以上、前記第3方向に積層され、
前記積層された2層以上の前記第1電極とその間の前記層間絶縁膜を前記第3方向に貫通する複数の貫通孔を備え、前記貫通孔が前記第1方向および前記第2方向に2次元的に配列され、
前記第3方向に延伸する柱状の導電体で構成された、前記貫通孔内を前記第1電極と接触せずに充填する複数の第2電極を備え、
前記メモリセルが、
環状の第3電極と、
前記第3電極の内周側面および外周側面の何れか一方と接触する環状の可変抵抗体と、
前記第3電極の内周側面および外周側面の何れか他方と接触する環状の絶縁膜と、を備え、
前記第1電極が、前記可変抵抗体および前記環状の絶縁膜の夫々の外周側面のうち前記第3電極と接触しない方の外周側面と電気的に接続し、
前記第2電極が、前記可変抵抗体および前記環状の絶縁膜の夫々の内周側面のうち前記第3電極と接触しない方の内周側面と電気的に接続して、環状のメモリセルが形成されてなり、
前記第3電極が、同じ前記第2電極と接続する前記メモリセル間で前記第3方向に分離形成されており、
前記方法が、
基板上に、ダミー膜と層間絶縁膜を交互に堆積し、前記ダミー膜と前記層間絶縁膜の積層構造を形成する工程と、
前記積層構造に、前記積層構造を貫通する複数の貫通孔を、前記基板面に平行で互いに直交する第1方向および第2方向に2次元的に配置されるように形成する工程と、
前記貫通孔の側壁に露出した前記ダミー膜を所定の膜厚分エッチング除去し、前記貫通孔の側壁に凹部を形成する工程と、
非線形トンネル膜となる絶縁膜材料と第3電極材料を、夫々、前記貫通孔の前記凹部を含む側壁面を覆うように順に堆積する工程と、
前記貫通孔の前記凹部を除く側壁面に形成された前記第3電極材料を除去し、前記貫通孔の前記凹部に前記第3電極材料を残存させる工程と、
可変抵抗体材料を、前記貫通孔の側壁面を覆うように堆積する工程と、
前記貫通孔を第2電極材料で充填する工程と、
前記貫通孔に近接して加工用の開口部を、前記積層構造の前記ダミー膜が残存する部分に形成する工程と、
前記開口部を介して、前記層間絶縁膜の間に挟まれた前記ダミー膜を除去する工程と、
前記ダミー膜が除去された領域に、第1電極材料を堆積して埋め込む工程と、
前記開口部の側壁面上に前記層間絶縁膜が露出するまで、前記開口部の側壁に堆積された前記第1電極材料を除去後、前記開口部を絶縁膜で充填する工程と、を有することを特徴とする不揮発性半導体記憶装置の製造方法。
A method of manufacturing a nonvolatile semiconductor memory device,
In the nonvolatile semiconductor memory device, a two-terminal type memory cell having a nonvolatile variable resistance element whose resistance characteristics are changed by application of voltage includes a first direction, a second direction, and a third direction orthogonal to each other. Each having a plurality of three-dimensional memory cell arrays arranged in a three-dimensional matrix,
The three-dimensional memory cell array
A first electrode extending in at least one of the first direction and the second direction, wherein the first electrode is laminated in the third direction by two or more layers through an interlayer insulating film;
A plurality of through holes penetrating in the third direction through the stacked two or more first electrodes and the interlayer insulating film therebetween, the through holes being two-dimensional in the first direction and the second direction; Arranged
A plurality of second electrodes configured by columnar conductors extending in the third direction and filling the through holes without contacting the first electrodes;
The memory cell is
An annular third electrode;
An annular variable resistor in contact with either the inner peripheral side surface or the outer peripheral side surface of the third electrode;
An annular insulating film that contacts either the inner peripheral side surface or the outer peripheral side surface of the third electrode;
The first electrode is electrically connected to an outer peripheral side surface of the variable resistor and the annular insulating film that is not in contact with the third electrode,
The second electrode is electrically connected to the inner peripheral side of the variable resistor and the annular insulating film that is not in contact with the third electrode, thereby forming an annular memory cell. Being
The third electrode is separately formed in the third direction between the memory cells connected to the same second electrode;
Said method comprises
A step of alternately depositing dummy films and interlayer insulating films on the substrate to form a laminated structure of the dummy films and the interlayer insulating films;
Forming a plurality of through holes penetrating the laminated structure in the laminated structure so as to be two-dimensionally arranged in a first direction and a second direction parallel to the substrate surface and orthogonal to each other;
Etching the dummy film exposed on the side wall of the through hole by a predetermined thickness and forming a recess on the side wall of the through hole;
A step of sequentially depositing an insulating film material and a third electrode material to be a nonlinear tunnel film so as to cover a side wall surface including the concave portion of the through hole;
Removing the third electrode material formed on the side wall surface excluding the concave portion of the through hole, and leaving the third electrode material in the concave portion of the through hole;
Depositing a variable resistor material so as to cover a side wall surface of the through hole;
Filling the through hole with a second electrode material;
Forming an opening for processing adjacent to the through hole in a portion where the dummy film of the stacked structure remains;
Removing the dummy film sandwiched between the interlayer insulating films through the opening;
Depositing and embedding a first electrode material in the region where the dummy film has been removed;
Filling the opening with an insulating film after removing the first electrode material deposited on the side wall of the opening until the interlayer insulating film is exposed on the side wall surface of the opening. A method for manufacturing a nonvolatile semiconductor memory device.
揮発性半導体記憶装置を製造する方法であって、
前記不揮発性半導体記憶装置が、電圧の印加により抵抗特性が変化する不揮発性の可変抵抗素子を備えた2端子型のメモリセルが、互いに直交する第1方向、第2方向、及び、第3方向に夫々複数、3次元マトリクス状に配置された3次元メモリセルアレイを有し、
前記3次元メモリセルアレイが、
前記第1方向および前記第2方向のうち少なくとも何れかの方向に延伸する第1電極を備え、前記第1電極が層間絶縁膜を介して2層以上、前記第3方向に積層され、
前記積層された2層以上の前記第1電極とその間の前記層間絶縁膜を前記第3方向に貫通する複数の貫通孔を備え、前記貫通孔が前記第1方向および前記第2方向に2次元的に配列され、
前記第3方向に延伸する柱状の導電体で構成された、前記貫通孔内を前記第1電極と接触せずに充填する複数の第2電極を備え、
前記メモリセルが、
環状の第3電極と、
前記第3電極の内周側面および外周側面の何れか一方と接触する環状の可変抵抗体と、
前記第3電極の内周側面および外周側面の何れか他方と接触する環状の絶縁膜と、を備え、
前記第1電極が、前記可変抵抗体および前記環状の絶縁膜の夫々の外周側面のうち前記第3電極と接触しない方の外周側面と電気的に接続し、
前記第2電極が、前記可変抵抗体および前記環状の絶縁膜の夫々の内周側面のうち前記第3電極と接触しない方の内周側面と電気的に接続して、環状のメモリセルが形成されてなり、
前記第3電極が、同じ前記第2電極と接続する前記メモリセル間で前記第3方向に分離形成されており、
前記方法が、
基板上に、ダミー膜と層間絶縁膜を交互に堆積し、前記ダミー膜と前記層間絶縁膜の積層構造を形成する工程と、
前記積層構造に、前記積層構造を貫通する複数の貫通孔を、前記基板面に平行で互いに直交する第1方向および第2方向に2次元的に配置されるように形成する工程と、
前記貫通孔の側壁に露出した前記ダミー膜を所定の膜厚分エッチング除去し、前記貫通孔の側壁に凹部を形成する工程と、
第3電極材料を、前記貫通孔の前記凹部を含む側壁面を覆うように堆積する工程と、
前記貫通孔の前記凹部を除く側壁面に形成された前記第3電極材料を除去し、前記貫通孔の前記凹部に前記第3電極材料を残存させる工程と、
可変抵抗体材料を、前記貫通孔の側壁面を覆うように堆積する工程と、
前記貫通孔を第2電極材料で充填する工程と、
前記貫通孔に近接して加工用の開口部を、前記積層構造の前記ダミー膜が残存する部分に形成する工程と、
前記開口部を介して、前記層間絶縁膜の間に挟まれた前記ダミー膜を除去する工程と、
前記ダミー膜が除去された領域に、非線形トンネル膜となる絶縁膜材料と第1電極材料を順に堆積し、前記ダミー膜が除去された領域を前記第1電極材料で埋め込む工程と、
前記開口部の側壁面上に前記絶縁膜材料が露出するまで、前記開口部の側壁に堆積された前記第1電極材料を除去後、前記開口部を絶縁膜で充填する工程と、を有することを特徴とする不揮発性半導体記憶装置の製造方法。
A method of manufacturing a nonvolatile semiconductor memory device,
In the nonvolatile semiconductor memory device, a two-terminal type memory cell having a nonvolatile variable resistance element whose resistance characteristics are changed by application of voltage includes a first direction, a second direction, and a third direction orthogonal to each other. Each having a plurality of three-dimensional memory cell arrays arranged in a three-dimensional matrix,
The three-dimensional memory cell array
A first electrode extending in at least one of the first direction and the second direction, wherein the first electrode is laminated in the third direction by two or more layers through an interlayer insulating film;
A plurality of through holes penetrating in the third direction through the stacked two or more first electrodes and the interlayer insulating film therebetween, the through holes being two-dimensional in the first direction and the second direction; Arranged
A plurality of second electrodes configured by columnar conductors extending in the third direction and filling the through holes without contacting the first electrodes;
The memory cell is
An annular third electrode;
An annular variable resistor in contact with either the inner peripheral side surface or the outer peripheral side surface of the third electrode;
An annular insulating film that contacts either the inner peripheral side surface or the outer peripheral side surface of the third electrode;
The first electrode is electrically connected to an outer peripheral side surface of the variable resistor and the annular insulating film that is not in contact with the third electrode,
The second electrode is electrically connected to the inner peripheral side of the variable resistor and the annular insulating film that is not in contact with the third electrode, thereby forming an annular memory cell. Being
The third electrode is separately formed in the third direction between the memory cells connected to the same second electrode;
Said method comprises
A step of alternately depositing dummy films and interlayer insulating films on the substrate to form a laminated structure of the dummy films and the interlayer insulating films;
Forming a plurality of through holes penetrating the laminated structure in the laminated structure so as to be two-dimensionally arranged in a first direction and a second direction parallel to the substrate surface and orthogonal to each other;
Etching the dummy film exposed on the side wall of the through hole by a predetermined thickness and forming a recess on the side wall of the through hole;
Depositing a third electrode material so as to cover a side wall surface including the concave portion of the through hole;
Removing the third electrode material formed on the side wall surface excluding the concave portion of the through hole, and leaving the third electrode material in the concave portion of the through hole;
Depositing a variable resistor material so as to cover a side wall surface of the through hole;
Filling the through hole with a second electrode material;
Forming an opening for processing adjacent to the through hole in a portion where the dummy film of the stacked structure remains;
Removing the dummy film sandwiched between the interlayer insulating films through the opening;
Depositing an insulating film material to be a nonlinear tunnel film and a first electrode material in order in the region from which the dummy film has been removed, and filling the region from which the dummy film has been removed with the first electrode material;
Filling the opening with an insulating film after removing the first electrode material deposited on the side wall of the opening until the insulating film material is exposed on the side wall surface of the opening. A method for manufacturing a nonvolatile semiconductor memory device.
揮発性半導体記憶装置を製造する方法であって、
前記不揮発性半導体記憶装置が、電圧の印加により抵抗特性が変化する不揮発性の可変抵抗素子を備えた2端子型のメモリセルが、互いに直交する第1方向、第2方向、及び、第3方向に夫々複数、3次元マトリクス状に配置された3次元メモリセルアレイを有し、
前記3次元メモリセルアレイが、
前記第1方向および前記第2方向のうち少なくとも何れかの方向に延伸する第1電極を備え、前記第1電極が層間絶縁膜を介して2層以上、前記第3方向に積層され、
前記積層された2層以上の前記第1電極とその間の前記層間絶縁膜を前記第3方向に貫通する複数の貫通孔を備え、前記貫通孔が前記第1方向および前記第2方向に2次元的に配列され、
前記第3方向に延伸する柱状の導電体で構成された、前記貫通孔内を前記第1電極と接触せずに充填する複数の第2電極を備え、
前記メモリセルが、
環状の第3電極と、
前記第3電極の内周側面および外周側面の何れか一方と接触する環状の可変抵抗体と、
前記第3電極の内周側面および外周側面の何れか他方と接触する環状の絶縁膜と、を備え、
前記第1電極が、前記可変抵抗体および前記環状の絶縁膜の夫々の外周側面のうち前記第3電極と接触しない方の外周側面と電気的に接続し、
前記第2電極が、前記可変抵抗体および前記環状の絶縁膜の夫々の内周側面のうち前記第3電極と接触しない方の内周側面と電気的に接続して、環状のメモリセルが形成されてなり、
前記第3電極が、同じ前記第2電極と接続する前記メモリセル間で前記第3方向に分離形成されており、
前記方法が、
基板上に、第1ダミー膜と層間絶縁膜を交互に堆積し、前記第1ダミー膜と前記層間絶縁膜の積層構造を形成する工程と、
前記積層構造に、前記積層構造を貫通する複数の貫通孔を、前記基板面に平行で互いに直交する第1方向および第2方向に2次元的に配置されるように形成する工程と、
前記貫通孔を第2ダミー膜で充填する工程と、
前記貫通孔に近接して加工用の開口部を、前記積層構造の前記第1ダミー膜が残存する部分に形成する工程と、
前記開口部を介して、前記層間絶縁膜の間に挟まれた前記第1ダミー膜を、前記第2ダミー膜が露出するまで除去する工程と、
前記第1ダミー膜が除去された領域に、第3電極材料の前駆体である前駆体材料、非線形トンネル膜となる絶縁膜材料、及び、第1電極材料を順に堆積し、前記第1ダミー膜が除去された領域を前記第1電極材料で埋め込む工程と、
前記開口部の側壁面上に前記絶縁膜材料が露出するまで、前記開口部の側壁に堆積された前記第1電極材料を除去後、前記開口部を絶縁膜で充填する工程と、
前記貫通孔を充填する前記第2ダミー膜を除去する工程と、
前記貫通孔の側壁に露出した前記前駆体材料の一部を、前記第3電極材料に変化させる工程と、
可変抵抗体材料を、前記貫通孔の側壁面を覆うように堆積する工程と、
前記貫通孔を第2電極材料で充填する工程と、を有することを特徴とする不揮発性半導体記憶装置の製造方法。
A method of manufacturing a nonvolatile semiconductor memory device,
In the nonvolatile semiconductor memory device, a two-terminal type memory cell having a nonvolatile variable resistance element whose resistance characteristics are changed by application of voltage includes a first direction, a second direction, and a third direction orthogonal to each other. Each having a plurality of three-dimensional memory cell arrays arranged in a three-dimensional matrix,
The three-dimensional memory cell array
A first electrode extending in at least one of the first direction and the second direction, wherein the first electrode is laminated in the third direction by two or more layers through an interlayer insulating film;
A plurality of through holes penetrating in the third direction through the stacked two or more first electrodes and the interlayer insulating film therebetween, the through holes being two-dimensional in the first direction and the second direction; Arranged
A plurality of second electrodes configured by columnar conductors extending in the third direction and filling the through holes without contacting the first electrodes;
The memory cell is
An annular third electrode;
An annular variable resistor in contact with either the inner peripheral side surface or the outer peripheral side surface of the third electrode;
An annular insulating film that contacts either the inner peripheral side surface or the outer peripheral side surface of the third electrode;
The first electrode is electrically connected to an outer peripheral side surface of the variable resistor and the annular insulating film that is not in contact with the third electrode,
The second electrode is electrically connected to the inner peripheral side of the variable resistor and the annular insulating film that is not in contact with the third electrode, thereby forming an annular memory cell. Being
The third electrode is separately formed in the third direction between the memory cells connected to the same second electrode;
Said method comprises
A step of alternately depositing a first dummy film and an interlayer insulating film on a substrate to form a laminated structure of the first dummy film and the interlayer insulating film;
Forming a plurality of through holes penetrating the laminated structure in the laminated structure so as to be two-dimensionally arranged in a first direction and a second direction parallel to the substrate surface and orthogonal to each other;
Filling the through hole with a second dummy film;
Forming an opening for processing in the vicinity of the through hole in a portion where the first dummy film of the stacked structure remains;
Removing the first dummy film sandwiched between the interlayer insulating films through the opening until the second dummy film is exposed;
In the region from which the first dummy film has been removed, a precursor material that is a precursor of a third electrode material, an insulating film material that becomes a nonlinear tunnel film, and a first electrode material are sequentially deposited, and the first dummy film Filling the region from which the first electrode material is removed with the first electrode material;
Filling the opening with an insulating film after removing the first electrode material deposited on the side wall of the opening until the insulating film material is exposed on the side wall surface of the opening; and
Removing the second dummy film filling the through hole;
Changing a part of the precursor material exposed on the side wall of the through hole to the third electrode material;
Depositing a variable resistor material so as to cover a side wall surface of the through hole;
Filling the through hole with a second electrode material. A method for manufacturing a nonvolatile semiconductor memory device, comprising:
前記前駆体材料が、多結晶シリコンであり、
前記前駆体材料の一部を前記第3電極材料に変化させる工程が、前記貫通孔の側壁に露出した前記多結晶シリコンをシリサイド化する工程であることを特徴とする請求項に記載の不揮発性半導体記憶装置の製造方法。
The precursor material is polycrystalline silicon;
The nonvolatile process according to claim 9 , wherein the step of changing a part of the precursor material to the third electrode material is a step of siliciding the polycrystalline silicon exposed on a sidewall of the through hole. For manufacturing a conductive semiconductor memory device.
前記前駆体材料が、被酸化金属の金属酸化物膜であり、
前記前駆体材料の一部を前記第3電極材料に変化させる工程が、前記貫通孔の側壁に露出した前記金属酸化物膜を還元処理により前記被酸化金属に変化させる、または酸素欠損の多い導電性膜に変化させる工程であることを特徴とする請求項に記載の不揮発性半導体記憶装置の製造方法。
The precursor material is a metal oxide film of an oxidizable metal;
The step of changing a part of the precursor material to the third electrode material changes the metal oxide film exposed on the side wall of the through hole to the metal to be oxidized by reduction treatment, or is a conductive material having many oxygen vacancies. The method of manufacturing a nonvolatile semiconductor memory device according to claim 9 , wherein the method is a step of changing to a conductive film.
前記基板上に、選択トランジスタをマトリクス状に形成する工程を有し、
前記貫通孔を形成する工程が、底面において前記選択トランジスタのソース領域またはドレイン領域が露出する前記貫通孔を形成する工程である請求項11の何れか一項に記載の不揮発性半導体記憶装置の製造方法。
Forming a selection transistor in a matrix on the substrate;
Said step of forming a through hole, the non-volatile semiconductor memory device according to any one of claims 7 to 11, which is a step of the source or drain region to form the through-holes exposing the selection transistor on the bottom surface Manufacturing method.
前記層間絶縁膜の間に形成された前記第1電極材料、及び、前記貫通孔内に形成された前記第2電極材料との間に電圧を印加するフォーミング工程を有し、
前記フォーミング工程において、前記可変抵抗体材料の前記第3電極材料と接触する部分の抵抗状態を低抵抗化し、初期高抵抗状態から電圧の印加により抵抗特性が変化する可変抵抗状態に変化させ、前記可変抵抗体材料の前記可変抵抗状態に変化した部分を可変抵抗体として機能させるとともに、前記可変抵抗体材料の前記層間絶縁膜と接触する部分が前記初期高抵抗状態のままであることにより、前記可変抵抗体が前記第3方向に電気的に分離形成されることを特徴とする請求項12の何れか一項に記載の不揮発性半導体記憶装置の製造方法。
A forming step of applying a voltage between the first electrode material formed between the interlayer insulating films and the second electrode material formed in the through hole;
In the forming step, the resistance state of the portion of the variable resistor material that contacts the third electrode material is reduced, and the resistance state is changed from an initial high resistance state to a variable resistance state that changes due to voltage application, The portion of the variable resistor material that has changed to the variable resistance state functions as a variable resistor, and the portion of the variable resistor material that contacts the interlayer insulating film remains in the initial high resistance state. method of manufacturing a nonvolatile semiconductor memory device according to any one of claims 7 to 12, variable resistor, characterized in that it is electrically separated form the third direction.
JP2012174797A 2012-08-07 2012-08-07 Nonvolatile semiconductor memory device and manufacturing method thereof Expired - Fee Related JP5996324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012174797A JP5996324B2 (en) 2012-08-07 2012-08-07 Nonvolatile semiconductor memory device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012174797A JP5996324B2 (en) 2012-08-07 2012-08-07 Nonvolatile semiconductor memory device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014036034A JP2014036034A (en) 2014-02-24
JP5996324B2 true JP5996324B2 (en) 2016-09-21

Family

ID=50284863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012174797A Expired - Fee Related JP5996324B2 (en) 2012-08-07 2012-08-07 Nonvolatile semiconductor memory device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5996324B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904118B (en) * 2014-03-10 2016-08-31 北京大学 There is the field-effect transistor of memory function and three-dimensionally integrated method thereof
US9425237B2 (en) 2014-03-11 2016-08-23 Crossbar, Inc. Selector device for two-terminal memory
US9768234B2 (en) * 2014-05-20 2017-09-19 Crossbar, Inc. Resistive memory architecture and devices
JP2016015397A (en) * 2014-07-02 2016-01-28 ルネサスエレクトロニクス株式会社 Semiconductor memory and manufacturing method thereof
US9633724B2 (en) 2014-07-07 2017-04-25 Crossbar, Inc. Sensing a non-volatile memory device utilizing selector device holding characteristics
US10211397B1 (en) 2014-07-07 2019-02-19 Crossbar, Inc. Threshold voltage tuning for a volatile selection device
US9460788B2 (en) 2014-07-09 2016-10-04 Crossbar, Inc. Non-volatile memory cell utilizing volatile switching two terminal device and a MOS transistor
US9698201B2 (en) 2014-07-09 2017-07-04 Crossbar, Inc. High density selector-based non volatile memory cell and fabrication
US10115819B2 (en) 2015-05-29 2018-10-30 Crossbar, Inc. Recessed high voltage metal oxide semiconductor transistor for RRAM cell
US9685483B2 (en) 2014-07-09 2017-06-20 Crossbar, Inc. Selector-based non-volatile cell fabrication utilizing IC-foundry compatible process
CN106575655B (en) * 2014-09-25 2022-08-09 英特尔公司 Rare earth metal to metal oxide electrode bonding for oxide memory elements in resistive random access memory cells
KR102085044B1 (en) * 2015-05-22 2020-03-05 가부시키가이샤 히다치 하이테크놀로지즈 Plasma processing device and plasma processing method using same
US10074694B2 (en) 2015-07-24 2018-09-11 Toshiba Memory Corporation Memory device and method for manufacturing the same
CN107358254A (en) * 2016-03-07 2017-11-17 杭州海存信息技术有限公司 Processor for image recognition
US9947722B2 (en) 2016-03-16 2018-04-17 Toshiba Memory Corporation Semiconductor memory device
JP6775349B2 (en) * 2016-08-09 2020-10-28 東京エレクトロン株式会社 Manufacturing method of non-volatile storage device
JP2018157114A (en) 2017-03-17 2018-10-04 東芝メモリ株式会社 Storage device
US10096362B1 (en) 2017-03-24 2018-10-09 Crossbar, Inc. Switching block configuration bit comprising a non-volatile memory cell
JP2019169577A (en) 2018-03-23 2019-10-03 東芝メモリ株式会社 Semiconductor storage device
KR102650424B1 (en) * 2019-02-25 2024-03-25 에스케이하이닉스 주식회사 Semiconductor memory device
JP2020155643A (en) 2019-03-20 2020-09-24 キオクシア株式会社 Storage device
CN117912505A (en) * 2022-10-11 2024-04-19 华为技术有限公司 Memory chip, memory device and electronic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101226685B1 (en) * 2007-11-08 2013-01-25 삼성전자주식회사 Vertical type semiconductor device and Method of manufacturing the same
KR101576033B1 (en) * 2008-08-19 2015-12-11 삼성전자주식회사 A precursor composition method of forming a layer method of manufacturing a gate structure and method of manufacturing a capacitor
JP4956598B2 (en) * 2009-02-27 2012-06-20 シャープ株式会社 Nonvolatile semiconductor memory device and manufacturing method thereof
KR20120104992A (en) * 2009-11-06 2012-09-24 램버스 인코포레이티드 Three-dimensional memory array stacking structure
JP5016699B2 (en) * 2009-12-16 2012-09-05 シャープ株式会社 Nonvolatile semiconductor memory device and manufacturing method thereof
JP5186634B2 (en) * 2010-06-29 2013-04-17 シャープ株式会社 Nonvolatile semiconductor memory device

Also Published As

Publication number Publication date
JP2014036034A (en) 2014-02-24

Similar Documents

Publication Publication Date Title
JP5996324B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
US9773844B2 (en) Memory cell array structures and methods of forming the same
US9257644B1 (en) 3D variable resistance memory device and method of manufacturing the same
JP5468087B2 (en) Nonvolatile memory element and nonvolatile memory device
JP6180700B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JP4948688B2 (en) Resistance variable nonvolatile memory element, variable resistance nonvolatile memory device, and method of manufacturing variable resistance nonvolatile memory element
JP5427982B2 (en) Nonvolatile memory device and manufacturing method thereof
JP5329987B2 (en) Semiconductor memory device and manufacturing method thereof
US8471235B2 (en) Nonvolatile memory element having a resistance variable layer and manufacturing method thereof
US8916847B2 (en) Variable resistance memory device and method for fabricating the same
JP5291269B2 (en) Nonvolatile semiconductor memory element, nonvolatile semiconductor memory device, and manufacturing method thereof
JPWO2010058569A1 (en) Nonvolatile memory element and nonvolatile memory device
JP2011040483A (en) Resistance-change memory
US20200194667A1 (en) Variable resistance semiconductor device having oxidation-resistant electrode
US10804322B2 (en) Cross-point array device and method of manufacturing the same
JP5367198B1 (en) Variable resistance nonvolatile memory device
TWI733520B (en) Memory cell, memory device and method of amplifying data using selector element of memory cell
JP2014033094A (en) Variable resistive element and manufacturing method therefor, and nonvolatile semiconductor memory device
KR20150087063A (en) Nonvolatile memory device and method for fabricating the same
JP2013062327A (en) Nonvolatile memory element, nonvolatile memory device, and manufacturing methods of nonvolatile memory element and nonvolatile memory device
JP5291270B1 (en) Nonvolatile memory element, nonvolatile memory device, and method of writing nonvolatile memory element
US20230157187A1 (en) Resistive memory device with enhanced local electric field and methods of forming the same
TW202336762A (en) Resistive memory device and methods of fabricating the same
CN103999218B (en) Non-volatile memory device, Nonvolatile memory devices, the manufacture method of non-volatile memory device and the manufacture method of Nonvolatile memory devices
CN103999218A (en) Nonvolatile memory element, nonvolatile memory device, nonvolatile memory element manufacturing method, and nonvolatile memory device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160824

R150 Certificate of patent or registration of utility model

Ref document number: 5996324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees