JP5986402B2 - Gel-like polymer device showing electro-optic effect - Google Patents

Gel-like polymer device showing electro-optic effect Download PDF

Info

Publication number
JP5986402B2
JP5986402B2 JP2012055891A JP2012055891A JP5986402B2 JP 5986402 B2 JP5986402 B2 JP 5986402B2 JP 2012055891 A JP2012055891 A JP 2012055891A JP 2012055891 A JP2012055891 A JP 2012055891A JP 5986402 B2 JP5986402 B2 JP 5986402B2
Authority
JP
Japan
Prior art keywords
gel
polymer
polymer material
electric field
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012055891A
Other languages
Japanese (ja)
Other versions
JP2013190547A (en
Inventor
利博 平井
利博 平井
崇充 植木
崇充 植木
洸 佐藤
洸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2012055891A priority Critical patent/JP5986402B2/en
Publication of JP2013190547A publication Critical patent/JP2013190547A/en
Application granted granted Critical
Publication of JP5986402B2 publication Critical patent/JP5986402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、電気光学効果を示すゲル状ポリマーデバイス(高分子素子)及びその製造方法に関し、更に詳しくは、電場制御型薄膜フレネルレンズ、電場制御型光導波路スイッチ、変形を伴わない電場による屈折率制御素子、電場感応型光応答センサー等に利用できるゲル状ポリマーデバイス及びその製造方法に関する。   The present invention relates to a gel polymer device (polymer element) exhibiting an electro-optic effect and a manufacturing method thereof, and more specifically, an electric field control type thin film Fresnel lens, an electric field control type optical waveguide switch, and a refractive index by an electric field without deformation. The present invention relates to a gel polymer device that can be used for a control element, an electric field sensitive photoresponsive sensor, and the like, and a manufacturing method thereof.

ポリ塩化ビニル(PVC)は、低誘電性の絶縁高分子樹脂として広く使われている。また、PVCに可塑剤を添加した柔軟な高分子材料であるPVC可塑化柔軟体(以下「可塑化PVC」という。)も、テープ、チューブ、壁紙等、広範な分野で多様な用途に利用されている。可塑剤もまた、低誘電率の化学物質である。PVC樹脂及び可塑化PVCのいずれも、低誘電率材料として優れた性能を持ち、多くの用途展開が図られてきた。そして、これらの材料は、電場印加に対して安定した絶縁性等を持つことが期待さている材料である。一方、これらの材料は、外部からの電場等の刺激に対して自律的に応答することは全く期待されていない。   Polyvinyl chloride (PVC) is widely used as a low dielectric insulating polymer resin. PVC plasticized flexible bodies (hereinafter referred to as “plasticized PVC”), which is a flexible polymer material in which a plasticizer is added to PVC, are also used in various fields such as tapes, tubes, and wallpaper. ing. Plasticizers are also low dielectric constant chemicals. Both PVC resin and plasticized PVC have excellent performance as a low dielectric constant material, and many applications have been developed. These materials are materials that are expected to have a stable insulation property against electric field application. On the other hand, these materials are not expected to respond autonomously to stimuli such as an external electric field.

電場に応答して自律的に駆動する素材としては、一般に、イオン伝導性高分子(高分子電解質)等のように、電場に応答することが自明の素材が知られている。しかし、イオン伝導性高分子を用いた駆動素子は、低電場で駆動するものの、変形の様式(主に屈曲変形)が限定される上、電流によるエネルギー損失が大きいために充分な性能(応力、速度等)を得ることが困難である。   As a material that autonomously drives in response to an electric field, a material that is obvious to respond to an electric field, such as an ion conductive polymer (polymer electrolyte), is generally known. However, although the driving element using the ion conductive polymer is driven by a low electric field, the deformation mode (mainly bending deformation) is limited and the energy loss due to the current is large, so that sufficient performance (stress, Speed etc.) is difficult to obtain.

また、導電性高分子も駆動素子の材料として応用されている。この導電性高分子も電場に応答することが知られており、非対称な媒質の吸着等を活用した駆動素子も開発され、注目を集めている。しかし、イオン伝導性高分子の場合と同様、電流による発熱等のエネルギー損失等が避けられず、耐久性等で実用的な駆動素子にはなり得ていない。   Conductive polymers are also used as materials for drive elements. This conductive polymer is also known to respond to an electric field, and a driving element utilizing asymmetric medium adsorption has been developed and attracting attention. However, as in the case of the ion conductive polymer, energy loss such as heat generation due to current cannot be avoided, and it cannot be a practical driving element in terms of durability.

本発明者は、低誘電率の可塑化PVCが、常識に反して、極めて特異的な大変形を電場印加により生じることを見出し、駆動素子への応用を検討している(特許文献1及び非特許文献1を参照)。   The present inventor has found that plasticizing PVC having a low dielectric constant causes extremely specific large deformation by applying an electric field, contrary to common sense, and is considering application to a driving element (Patent Document 1 and Non-Patent Document 1). (See Patent Document 1).

特開2010−191048号公報JP 2010-191048 A

米国特許7,933,081号US Patent 7,933,081

本発明の目的は、エネルギー損失が小さく、新しい用途に応用できる電気光学効果を示すゲル状ポリマーデバイス及びその製造方法を提供することにある。   An object of the present invention is to provide a gel-like polymer device having a small energy loss and exhibiting an electro-optic effect that can be applied to new applications, and a method for producing the same.

低誘電性の汎用高分子材料であるPVCは、電場に対する応答性が期待できないために注目されることはなかったが、上記のように、本発明者は、低誘電率の可塑化PVCに電場を印加することで極めて特異的な大変形を起こすことを見出した。さらに、本発明者は、可塑化PVCが変形する原理として、可塑化PVCが電気レオロジー的に特異的な特性を持つことがなければならないとして、その実態の解明に注力してきた。   PVC, which is a low dielectric general-purpose polymer material, has not been noticed because it cannot be expected to be responsive to an electric field. However, as described above, the present inventors have applied an electric field to plasticized PVC having a low dielectric constant. It was found that a very specific large deformation was caused by applying. Furthermore, the present inventor has focused on elucidating the actual state that plasticized PVC must have electrorheologically specific characteristics as a principle of deformation of plasticized PVC.

そして、本発明者は、可塑化PVCのようなゲル状高分子材料の原理解明の過程で、特定の可塑化PVCの誘電率が直流電場領域で著しく上昇することを見出した。その誘電率の値は、強誘電体で電気光学効果を示すタンタル酸ニオブ酸カリウムと同程度であったことから、可塑化PVCも同様の電気光学効果を示すのではないかと期待し、さらに研究を重ねて本発明を完成させた。   The present inventor has found that the dielectric constant of a specific plasticized PVC significantly increases in the DC electric field region in the process of elucidating the principle of a gel-like polymer material such as plasticized PVC. The dielectric constant value was similar to that of potassium niobate tantalate niobate, which is a ferroelectric material and exhibits an electro-optic effect. Therefore, it is expected that plasticized PVC will also exhibit the same electro-optic effect, and further research The present invention was completed by repeating the above.

すなわち、上記課題を解決するための本発明に係るゲル状ポリマーデバイスは、電気光学効果を示す高誘電性ゲル状高分子材料と、該ゲル状高分子材料にバイアス電圧を印加する電極とを有し、前記ゲル状高分子材料の比誘電率が0.01Hzで1×10以上であることを特徴とする。 That is, a gel polymer device according to the present invention for solving the above-described problems has a high dielectric gel polymer material exhibiting an electro-optic effect and an electrode for applying a bias voltage to the gel polymer material. The gel-like polymer material has a relative dielectric constant of 1 × 10 4 or more at 0.01 Hz.

この発明によれば、電気光学効果を示す高誘電性ゲル状高分子材料と、バイアス電圧を印加する電極とを有するので、そのゲル状高分子材料がイオン伝導性高分子材料や導電性高分子材料でなくても、印加されたバイアス電圧によって誘起される超常誘電特性が電気光学効果をもたらす。その結果、その電気光学効果を示すゲル状ポリマーデバイスは、光学駆動素子に応用したり、電場による屈折率制御材料に応用したりすることができる。そして、こうしたゲル状ポリマーデバイスは、エネルギー損失が小さく、新用途に期待できる機能素子として利用できる。   According to this invention, since it has a high dielectric gel-like polymer material exhibiting an electro-optic effect and an electrode to which a bias voltage is applied, the gel-like polymer material is an ion conductive polymer material or a conductive polymer. Even if it is not a material, the superparaelectric properties induced by the applied bias voltage provide an electro-optic effect. As a result, the gel polymer device exhibiting the electro-optic effect can be applied to an optical driving element or a refractive index control material by an electric field. And such a gel-like polymer device has a small energy loss, and can be utilized as a functional element expected for a new application.

本発明に係るゲル状ポリマーデバイスにおいて、前記ゲル状高分子材料の比誘電率が、0.001Hzで1×10以上であることが好ましい。 In the gel polymer device according to the present invention, the dielectric constant of the gel polymer material is preferably 1 × 10 5 or more at 0.001 Hz.

本発明に係るゲル状ポリマーデバイスにおいて、前記ゲル状高分子材料を構成する絶縁性高分子化合物が、ポリ塩化ビニル(PVC)、ポリアクリロニトリル(PAN)、ナイロン(Nylon)、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリケトン(PK)、ポリビニルアルコール(PVA)、ポリ酢酸ビニル(PVAc)、ポリメチルメタクリレート(PMMA)、ポリnブチルアクリレート(PnBA)、セルロース、羊毛等の群から選ばれるいずれか1又は2以上の高分子化合物である。   In the gel polymer device according to the present invention, the insulating polymer compound constituting the gel polymer material is polyvinyl chloride (PVC), polyacrylonitrile (PAN), nylon (Nylon), polyethylene terephthalate (PET), From the group of polypropylene (PP), polyethylene (PE), polyketone (PK), polyvinyl alcohol (PVA), polyvinyl acetate (PVAc), polymethyl methacrylate (PMMA), poly nbutyl acrylate (PnBA), cellulose, wool, etc. Any one or two or more polymer compounds selected.

上記課題を解決するための本発明に係るゲル状ポリマーデバイスの製造方法は、上記本発明に係るゲル状ポリマーデバイスを製造する方法であって、絶縁性高分子化合物をゲル状にして電気光学効果を示す高誘電性ゲル状高分子材料を準備する工程と、該ゲル状高分子材料にバイアス電圧を印加するための電極を形成する工程と、を有することを特徴とする。   The method for producing a gel polymer device according to the present invention for solving the above-described problem is a method for producing the gel polymer device according to the present invention, wherein an electro-optic effect is obtained by forming an insulating polymer compound in a gel form. And a step of preparing an electrode for applying a bias voltage to the gel-like polymer material.

本発明に係るゲル状ポリマーデバイス及びその製造方法によれば、ゲル状ポリマーデバイスを構成するゲル状高分子材料がイオン伝導性高分子材料や導電性高分子材料でなくても、印加されたバイアス電圧によって誘起される超常誘電特性が電気光学効果をもたらす。その結果、その電気光学効果を示すゲル状ポリマーデバイスは、光学駆動素子に応用したり、電場による屈折率制御材料に応用したりすることができる。そして、こうしたゲル状ポリマーデバイスは、エネルギー損失が小さく、新用途に期待できる機能素子として利用できる。   According to the gel polymer device and the manufacturing method thereof according to the present invention, the bias applied even if the gel polymer material constituting the gel polymer device is not an ion conductive polymer material or a conductive polymer material. Superparaelectric properties induced by voltage provide an electro-optic effect. As a result, the gel polymer device exhibiting the electro-optic effect can be applied to an optical driving element or a refractive index control material by an electric field. And such a gel-like polymer device has a small energy loss, and can be utilized as a functional element expected for a new application.

本発明に係るゲル状ポリマーデバイスの一例を示す模式的な構成図である。It is a typical block diagram which shows an example of the gel-like polymer device which concerns on this invention. PVC:DBAの質量比を1:5として作製したゲル状ポリマーデバイスに電場を印加した際のレーザースポット位置のx軸方向の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the laser spot position at the time of the x-axis direction at the time of applying an electric field to the gel-like polymer device produced by making mass ratio of PVC: DBA 1: 5. x軸方向へのレーザーの屈折角の電場依存性を示すグラフである。It is a graph which shows the electric field dependence of the refraction angle of the laser to a x-axis direction. ゲル状ポリマーデバイスの他の一例を示す模式的な構成図である。It is a typical block diagram which shows another example of a gel-like polymer device. 電場のON/OFFそれぞれでのレンズの焦点変化を示す模式図である。It is a schematic diagram which shows the focus change of the lens in each ON / OFF of an electric field. 電場のON/OFFそれぞれでのレンズの平面写真(a)(b)及び正面写真(c)(b)である。It is the plane | planar photograph (a) (b) and front photograph (c) (b) of a lens in each ON / OFF of an electric field.

以下、本発明に係るゲル状ポリマーデバイス及びその製造方法について説明するが、本発明は下記の説明及び図面に記載された内容のみに限定されない。   Hereinafter, although the gel-like polymer device concerning the present invention and its manufacturing method are explained, the present invention is not limited only to the contents indicated in the following explanation and drawings.

本発明に係るゲル状ポリマーデバイス1は、図1に示すように、電気光学効果を示す高誘電性ゲル状高分子材料2と、そのゲル状高分子材料2にバイアス電圧を印加するための電極3,3とを有し、そのゲル状高分子材料2の比誘電率が0.01Hzで1×10以上であることを特徴とする。「電気光学効果」とは、電場によって物質の屈折率や吸光度等の光学特性が変化する現象であり、特に電場の二乗に比例して物質の屈折率が変化する現象はカー効果と呼ばれているが、本発明では、こうした電気光学効果及びそれに類似する効果を奏し、具体的には、電場印加時に極めて特異的な大変形を起こすことに起因したて光学要素に変化が起こるという効果を見出した。 As shown in FIG. 1, a gel polymer device 1 according to the present invention includes a high dielectric gel polymer material 2 exhibiting an electro-optic effect, and an electrode for applying a bias voltage to the gel polymer material 2. 3 and 3, and the specific dielectric constant of the gel polymer material 2 is 1 × 10 4 or more at 0.01 Hz. The “electro-optic effect” is a phenomenon in which the optical properties such as the refractive index and absorbance of the substance change depending on the electric field, and the phenomenon in which the refractive index of the substance changes in proportion to the square of the electric field is called the Kerr effect. However, the present invention provides such an electro-optic effect and similar effects, and specifically finds an effect that changes occur in the optical element due to a very specific large deformation when an electric field is applied. It was.

以下、各構成要素について説明する。   Hereinafter, each component will be described.

(ゲル状高分子材料)
ゲル状高分子材料2は、直流電場領域で高誘電性(コロッサル誘電性)を持つゲルである。直流電場領域とは、0.001Hz〜0.01Hzの範囲程度の周波数領域のことであり、その高誘電性は、0.01Hzで1×10以上の比誘電率を持つものである。また、好ましくは0.001Hzで1×10以上の比誘電率を持つものである。
(Gel polymer material)
The gel-like polymer material 2 is a gel having a high dielectric property (Corrosal dielectric property) in a DC electric field region. The DC electric field region is a frequency region in the range of about 0.001 Hz to 0.01 Hz, and its high dielectric property has a relative dielectric constant of 1 × 10 4 or more at 0.01 Hz. Further, it preferably has a relative dielectric constant of 1 × 10 5 or more at 0.001 Hz.

ゲル状高分子材料2は、イオン性材料や導電性材料を含まず、それらのイオン性材料や導電性材料に基づいたイオン伝導性や電気導電性を示さない。にもかかわらず、直流電場領域のバイアス電圧を印加した場合に、そのゲル状高分子材料2を主に構成する絶縁性高分子化合物の誘電率からは想像できない高い誘電率を示す。その誘電率は、ゲル状高分子材料2の種類やゲル化の程度にもよるので一概には言えないが、例えば、後述の実施例1で示すように、比誘電率が10程度のゲル状高分子材料2に0.001Hzのバイアス電圧を印加すると、ゲル状高分子材料2の比誘電率を1×10以上、顕著な場合には1×10程度に増加させることができる。また、低周波である100Hzのバイアス電圧を印加した場合も、100以上の高い比誘電率を示す。 The gel-like polymer material 2 does not include an ionic material or a conductive material, and does not exhibit ionic conductivity or electrical conductivity based on the ionic material or conductive material. Nevertheless, when a bias voltage in the DC electric field region is applied, a high dielectric constant that cannot be imagined from the dielectric constant of the insulating polymer compound mainly constituting the gel polymer material 2 is exhibited. The dielectric constant depends on the type of gel-like polymer material 2 and the degree of gelation, and thus cannot be generally stated. For example, as shown in Example 1 described later, a gel-like dielectric having a relative dielectric constant of about 10 When a bias voltage of 0.001 Hz is applied to the polymer material 2, the relative dielectric constant of the gel polymer material 2 can be increased to 1 × 10 5 or more, and in the case of remarkable, about 1 × 10 6 . Further, even when a bias voltage of 100 Hz, which is a low frequency, is applied, a high relative dielectric constant of 100 or more is exhibited.

このような高い誘電性(超常誘電性)は、タンタル酸ニオブ酸カリウム等の無機材料では知られているが、低誘電率材料である汎用高分子では知られておらず、本発明で初めて実現できる超常誘電性であるということができる。ゲル状高分子材料2は超常誘電性を示すが、一方で高抵抗材料であることから、電流のリーク(0.1μA)によるエネルギー損失が従来の高分子電解質系(数mA)に比べて無視できる程に小さい。そのため、超省エネルギー、超高効率デバイスに応用できるという利点がある。   Such high dielectric properties (superparaelectricity) are known for inorganic materials such as potassium niobate tantalate, but are not known for general-purpose polymers that are low dielectric constant materials. It can be said that it is superparaelectric. Gel polymer material 2 exhibits superparaelectricity, but on the other hand, it is a high-resistance material, so energy loss due to current leakage (0.1 μA) is negligible compared to conventional polymer electrolyte systems (several mA). As small as possible. Therefore, there is an advantage that it can be applied to a super energy saving and ultra high efficiency device.

(絶縁性高分子化合物)
ゲル状高分子材料2は、絶縁性高分子化合物を主に含む。すなわち、絶縁性高分子化合物はゲル状高分子材料2を構成する化合物であり、イオン性材料や導電性材料を含まず、且つそれ自体がイオン伝導性や電気導電性を示さない絶縁材料である。この絶縁性高分子化合物に後述の可塑化剤や有機溶媒等のゲル化剤を配合してゲル状にする前では、一般的な絶縁性の高分子化合物である。こうした絶縁性高分子化合物は、誘電率が小さく、通常、比誘電率として2〜9程度の範囲である。しかし、絶縁性高分子化合物をゲル化したゲル状高分子材料2は、イオン性材料や導電性材料を含まないので、それらイオン性材料や導電性材料に基づいて流れる電流による発熱等のエネルギー損失が極めて小さい。
(Insulating polymer compound)
The gel-like polymer material 2 mainly contains an insulating polymer compound. That is, the insulating polymer compound is a compound constituting the gel polymer material 2 and does not include an ionic material or a conductive material, and is an insulating material that does not exhibit ionic conductivity or electrical conductivity. . Before this insulating polymer compound is mixed with a gelling agent such as a plasticizer or an organic solvent described later to form a gel, it is a general insulating polymer compound. Such an insulating polymer compound has a low dielectric constant, and usually has a relative dielectric constant of about 2 to 9. However, since the gel polymer material 2 obtained by gelling the insulating polymer compound does not include an ionic material or a conductive material, energy loss such as heat generation due to a current flowing based on the ionic material or the conductive material. Is extremely small.

絶縁性高分子化合物としては、例えば、ポリ塩化ビニル(PVC)、ポリアクリロニトリル(PAN)、ナイロン(Nylon)、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリケトン(PK)、ポリビニルアルコール(PVA)、ポリ酢酸ビニル(PVAc)、ポリメチルメタクリレート(PMMA)、ポリnブチルアクリレート(PnBA)、セルロース、羊毛等の群から選ばれるいずれか1又は2以上の高分子化合物を用いることができる。   Examples of the insulating polymer compound include polyvinyl chloride (PVC), polyacrylonitrile (PAN), nylon (Nylon), polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), polyketone (PK), polyvinyl It is possible to use any one or two or more polymer compounds selected from the group consisting of alcohol (PVA), polyvinyl acetate (PVAc), polymethyl methacrylate (PMMA), poly nbutyl acrylate (PnBA), cellulose, wool and the like. it can.

(ゲル化)
ゲル状高分子材料2は、上記絶縁性高分子化合物をゲル化したものである。ゲル化は、絶縁性高分子化合物にゲル化剤を付与して行うことができる。ゲル化剤は、絶縁性高分子化合物の種類にもよるが、例えば、可塑化剤、有機溶媒等を用いることができる。可塑化剤や有機溶媒等のゲル化剤は、所望のゲル強度となるようにその配合量が決められる。
(Gelation)
The gel polymer material 2 is obtained by gelling the insulating polymer compound. Gelation can be performed by adding a gelling agent to the insulating polymer compound. For example, a plasticizer or an organic solvent can be used as the gelling agent, although it depends on the type of the insulating polymer compound. The amount of the gelling agent such as a plasticizer or an organic solvent is determined so as to obtain a desired gel strength.

ゲル強度としては、2kg/cm以上5kg/cm以下の範囲内であることが好ましく、ゲル強度をこの範囲にすることにより、ゲル状ポリマーデバイス1として多様な用途に適用できる。ゲル強度が2kg/cm未満では、軟らかすぎて測定できず、場合によってはゾル化してゲル状ポリマーデバイス1として用いることができないことがある。一方、ゲル強度が5kg/cmを超えると、硬くなってしまい、ゲル状ポリマーデバイス1として用いることができないことがある。なお、ゲル強度は、引張試験機を用い、ゲル状高分子材料2を測定用の試料形状に成形して測定できる。 The gel strength is preferably in a range of 2 kg / cm 2 or more 5 kg / cm 2 or less, the gel strength by this range can be applied to various applications as gel polymer device 1. When the gel strength is less than 2 kg / cm 2, the gel strength is too soft to be measured, and in some cases, the gel strength may not be used as the gel polymer device 1. On the other hand, when the gel strength exceeds 5 kg / cm 2 , the gel strength becomes hard and may not be used as the gel polymer device 1. The gel strength can be measured by forming the gel polymer material 2 into a sample shape for measurement using a tensile tester.

ゲル化のために配合する可塑剤としては、公知の絶縁性の可塑剤を用いることができる。例えば、フタル酸ジオクチル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジブチル(フタル酸ジ−n−ブチル)等のフタル酸エステル;アジピン酸ジオクチル、アジピン酸ジイソノニル等のアジピン酸エステル;トリメリット酸トリオクチル等のトリメリット酸エステル;ポリエステル;リン酸トリクレシル等のリン酸エステル;アセチルクエン酸トリブチル等のクエン酸エステル;エポキシ化大豆油、エポキシ化亜麻仁油等のエポキシ化植物油;セバシン酸エステル;アゼライン酸エステル;マレイン酸エステル;安息香酸エステル等を挙げることができる。   As a plasticizer blended for gelation, a known insulating plasticizer can be used. For example, dioctyl phthalate, diisononyl phthalate, diisodecyl phthalate, dibutyl phthalate (di-n-butyl phthalate); adipic acid esters such as dioctyl adipate, diisononyl adipate; trioctyl trimellitic acid, etc. Polyester; Phosphate ester such as tricresyl phosphate; Citric acid ester such as acetyltributyl citrate; Epoxidized vegetable oil such as epoxidized soybean oil and epoxidized linseed oil; Sebacic acid ester; Azelaic acid ester; Maleic acid ester; benzoic acid ester and the like.

いずれの可塑剤を用いるかは絶縁性高分子化合物の種類によって選択される。また、その可塑剤の配合割合も絶縁性高分子化合物の種類によって設定されるが、通常、可塑剤を多く配合することが好ましい。配合割合は、絶縁性高分子化合物:可塑剤(質量比)=1:2〜1:20の範囲内とすることが好ましい。このように、可塑剤の配合量を一般的な可塑剤の配合量の数倍〜20倍に高めて可塑剤の配合比を高めることで、従来のものとは事情が一変し、超常誘電性を持ち、電気光学効果を示すゲル状高分子材料2とすることができる。   Which plasticizer is used is selected depending on the type of the insulating polymer compound. Further, the blending ratio of the plasticizer is set depending on the type of the insulating polymer compound, but it is usually preferable to blend a large amount of the plasticizer. The blending ratio is preferably in the range of insulating polymer compound: plasticizer (mass ratio) = 1: 2 to 1:20. Thus, by increasing the blending amount of the plasticizer to several to 20 times the blending amount of a general plasticizer and increasing the blending ratio of the plasticizer, the situation is completely changed from the conventional one, and superparaelectricity The gel-like polymer material 2 having an electro-optic effect can be obtained.

ゲル化のために配合する有機溶媒として、ベンゼン、トルエン等の低誘電率(ε=2〜8)の有機溶媒を用いてもよいし、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)等の高誘電率(ε=20〜40)の有機溶媒を用いてもよい。   As an organic solvent blended for gelation, an organic solvent having a low dielectric constant (ε = 2 to 8) such as benzene or toluene may be used, or a high solvent such as dimethyl sulfoxide (DMSO) or dimethylformamide (DMF). An organic solvent having a dielectric constant (ε = 20 to 40) may be used.

いずれの有機溶媒を用いるかは絶縁性高分子化合物の種類によって選択される。また、その有機溶媒の配合割合も絶縁性高分子化合物の種類によって設定されるが、通常、有機溶媒は上記した可塑剤ほどは配合しない。配合割合は、絶縁性高分子化合物:有機溶媒(質量比)=1:2〜1:8の範囲内とすることが好ましい。このように、有機溶媒の配合量を一般的な有機溶媒の配合量よりも多くすることで、従来のものとは事情が一変し、コロッサル誘電性を持つゲル状高分子材料2とすることができる。   Which organic solvent is used is selected depending on the type of the insulating polymer compound. Further, the blending ratio of the organic solvent is also set depending on the type of the insulating polymer compound, but usually the organic solvent is not blended as much as the plasticizer described above. The blending ratio is preferably in the range of insulating polymer compound: organic solvent (mass ratio) = 1: 2 to 1: 8. Thus, by making the blending amount of the organic solvent larger than the blending amount of the general organic solvent, the situation is completely changed from that of the conventional one, and the gel-like polymer material 2 having a colossal dielectric property can be obtained. it can.

なお、可塑剤や有機溶媒の配合割合を多くすると力学物性が低下し、ゲル状からゾル状に変化するために使用に耐えない状態となるが、多量の可塑剤や有機溶媒を配合させてもゲル状態を維持できるように絶縁性高分子化合物の分子量等を調整することで、巨大な誘電率を有したゲル状高分子材料2とすることができる。具体的には、上記したゲル強度の範囲になるように、分子量(重量平均分子量)が調整された絶縁性高分子化合物を用いる。   If the blending ratio of the plasticizer and organic solvent is increased, the mechanical properties decrease, and the gel form changes to the sol form, so that it cannot be used. However, even if a large amount of plasticizer or organic solvent is blended, By adjusting the molecular weight or the like of the insulating polymer compound so that the gel state can be maintained, the gel polymer material 2 having a huge dielectric constant can be obtained. Specifically, an insulating polymer compound whose molecular weight (weight average molecular weight) is adjusted so as to be in the above-described gel strength range is used.

そうした絶縁性高分子化合物の分子量としては、例えば、1×10以上1×10以下とすることができ、この範囲で分子量を調整して用いることができる。例えば、軟らかくなりすぎる場合には、分子量が大きめの絶縁性高分子化合物を用い、硬くなりすぎる場合には、分子量が小さめの絶縁性高分子化合物を用いることが好ましい。 The molecular weight of such an insulating polymer compound can be, for example, 1 × 10 4 or more and 1 × 10 6 or less, and the molecular weight can be adjusted and used within this range. For example, it is preferable to use an insulating polymer compound having a large molecular weight when it is too soft, and to use an insulating polymer compound having a small molecular weight when it is too hard.

(電極)
電極3は、ゲル状高分子材料2に直流電圧又は低周波のバイアス電圧(0.001Hz、0.01Hz、等)を印加するために設けられる。電極3の配置は特に限定されないが、例えば、図1に示すように、ゲル状高分子材料2を挟むように設けられる。電極3を構成する材料も特に限定されず、アルミニウム、銅、チタン等の金属材料、インジウム錫オキサイド、カーボン材料等の導電性無機材料、導電性有機材料等、公知の電極材料を選択して用いることができる。電極の形状も特に限定されず、シート状、フィルム状等、ゲル状ポリマーデバイス1の形状に応じた任意の形状であればよい。
(electrode)
The electrode 3 is provided for applying a DC voltage or a low-frequency bias voltage (0.001 Hz, 0.01 Hz, etc.) to the gel polymer material 2. Although arrangement | positioning of the electrode 3 is not specifically limited, For example, as shown in FIG. 1, it is provided so that the gel-like polymer material 2 may be pinched | interposed. The material constituting the electrode 3 is not particularly limited, and a known electrode material such as a metal material such as aluminum, copper or titanium, a conductive inorganic material such as indium tin oxide or carbon material, or a conductive organic material is selected and used. be able to. The shape of the electrode is not particularly limited, and may be any shape according to the shape of the gel-like polymer device 1 such as a sheet shape or a film shape.

電極3は電源に接続され、その電源から直流電圧又は低周波のバイアス電圧が供給される。   The electrode 3 is connected to a power source, and a DC voltage or a low-frequency bias voltage is supplied from the power source.

以上説明したように、本発明に係るゲル状ポリマーデバイス1及びその製造方法によれば、ゲル状ポリマーデバイス1を構成するゲル状高分子材料2がイオン伝導性高分子材料や導電性高分子材料でなくても、印加されたバイアス電圧によって誘起される超常誘電特性が電気光学効果をもたらす。その結果、その電気光学効果を示すゲル状ポリマーデバイス1は、光学駆動素子に応用したり、電場による屈折率制御材料に応用したりすることができる。そして、こうしたゲル状ポリマーデバイス1は、エネルギー損失が小さく、新用途に期待できる機能素子として利用できる。   As described above, according to the gel polymer device 1 and the manufacturing method thereof according to the present invention, the gel polymer material 2 constituting the gel polymer device 1 is an ion conductive polymer material or a conductive polymer material. If not, the superparaelectric properties induced by the applied bias voltage provide an electro-optic effect. As a result, the gel polymer device 1 showing the electro-optic effect can be applied to an optical driving element or a refractive index control material by an electric field. And such a gel-like polymer device 1 has a small energy loss, and can be utilized as a functional element expected for new applications.

特に、電場制御型薄膜フレネルレンズ、電場制御型光導波路スイッチ、変形を伴わない電場による屈折率制御素子、電場感応型光応答センサー等を挙げることができる。   In particular, an electric field control type thin film Fresnel lens, an electric field control type optical waveguide switch, a refractive index control element using an electric field without deformation, an electric field sensitive photoresponse sensor, and the like can be given.

以下の実験例により、本発明を具体的に説明する。   The present invention will be specifically described by the following experimental examples.

[実験例1]
重合度が1140のポリ塩化ビニル(PVC)とアジピン酸ジブチル(DBA)とを1:2、1:5、1:8の質量比で配合し、十分に撹拌した。各溶液を150℃で予熱したガラスセルに注いだ。ガラスセルの対向する壁面には、予めアルミニウム電極を配置しておき、注入した溶液を150℃で20〜30分間加熱して、電極間にゲル状の可塑化PVCを作製した。こうして3種類のゲル状ポリマーデバイス1を得た。
[Experiment 1]
Polyvinyl chloride (PVC) having a polymerization degree of 1140 and dibutyl adipate (DBA) were blended at a mass ratio of 1: 2, 1: 5, 1: 8, and sufficiently stirred. Each solution was poured into a glass cell preheated at 150 ° C. An aluminum electrode was previously placed on the opposing wall surface of the glass cell, and the injected solution was heated at 150 ° C. for 20 to 30 minutes to produce a gel-like plasticized PVC between the electrodes. Thus, three types of gel polymer devices 1 were obtained.

(測定)
作製したゲル状ポリマーデバイス1に、He−Neレーザー(波長633nm、出力5mW)を照射し、一定周期で電場を250V/mmとなるように印加した。透過したレーザーをスクリーンに投影し、レーザースポットの動きをビデオカメラで撮影した。レーザースポット位置の経時変化を動画解析によりグラフ化し、図2に示した。また、質量比1:5のゲル状ポリマーデバイス1に関し、電場印加時のレーザースポットの変位量を求め、レーザーの屈折角を算出した。また、ゲル状ポリマーデバイス1の誘電率は、インピーダンス測定装置を用い、全測定周波数で測定した。
(Measurement)
The produced gel-like polymer device 1 was irradiated with a He—Ne laser (wavelength 633 nm, output 5 mW), and an electric field was applied at a constant period to be 250 V / mm. The transmitted laser was projected onto the screen, and the movement of the laser spot was photographed with a video camera. The time-dependent change of the laser spot position was graphed by moving image analysis and shown in FIG. Further, regarding the gel polymer device 1 having a mass ratio of 1: 5, the displacement amount of the laser spot when an electric field was applied was determined, and the refraction angle of the laser was calculated. Moreover, the dielectric constant of the gel-like polymer device 1 was measured at all measurement frequencies using an impedance measuring apparatus.

(結果)
図2は、PVC:DBAの質量比を1:5として作製したゲル状ポリマーデバイス1に電場を印加した際のレーザースポット位置のx軸方向の経時変化を示している。図2では、電場を印加する前のスポット位置を0とし、1分ごとのスポット位置をプロットしている。図2の結果より、スポット位置は電場のON/OFFに応じて変化しているのがわかる。また、その変位量は、1サイクル目は±15mm程度の大きな値を示すものの、2サイクル目以降は±5mm〜±7mm程度でほぼ一定の値を示した。
(result)
FIG. 2 shows the change with time in the x-axis direction of the laser spot position when an electric field is applied to the gel polymer device 1 manufactured with a PVC: DBA mass ratio of 1: 5. In FIG. 2, the spot position before applying an electric field is set to 0, and the spot position for every minute is plotted. From the result of FIG. 2, it can be seen that the spot position changes according to the ON / OFF of the electric field. Further, the displacement amount showed a large value of about ± 15 mm in the first cycle, but a substantially constant value of about ± 5 mm to ± 7 mm after the second cycle.

レーザースポット位置の変位量を各質量比のゲル状ポリマーデバイス1について検討した。その結果、変位量の大きさは、1:5>1:8>1:2となった。実験に使用したゲル状ポリマーデバイス1の誘電率は、直流電場域である0.01Hzで、質量比1:5のゲル状ポリマーデバイス1が1×10以上で1×10近くの最も高い値となり、質量比1:8のゲル状ポリマーデバイス1が1×10であり、質量比1:2のゲル状ポリマーデバイス1が1×10であった。この結果から、好ましい質量比を1:5〜1:8とすることができる。また、質量比1:5〜1:8では、100Hzのバイアス電圧でも、100を超えていた。スポット位置の変位量とゲル状ポリマーデバイス1の誘電率の大小は一致しており、レーザースポット位置の変位量はゲル状ポリマーデバイス1の誘電率に比例することがわかった。 The amount of displacement of the laser spot position was examined for the gel polymer device 1 with each mass ratio. As a result, the magnitude of the displacement amount was 1: 5> 1: 8> 1: 2. The dielectric constant of the gel-like polymer device 1 used in the experiment is 0.01 Hz which is a DC electric field region, and the gel-like polymer device 1 having a mass ratio of 1: 5 is the highest at 1 × 10 5 or more and close to 1 × 10 6. The gel polymer device 1 having a mass ratio of 1: 8 was 1 × 10 4 , and the gel polymer device 1 having a mass ratio of 1: 2 was 1 × 10 3 . From this result, a preferable mass ratio can be set to 1: 5 to 1: 8. Further, at a mass ratio of 1: 5 to 1: 8, it exceeded 100 even with a bias voltage of 100 Hz. It was found that the displacement amount of the spot position and the dielectric constant of the gel-like polymer device 1 coincided, and the displacement amount of the laser spot position is proportional to the dielectric constant of the gel-like polymer device 1.

図3は、x軸方向へのレーザーの屈折角の電場依存性を示すグラフである。カー効果の場合、レーザーの屈折率は電場の二乗に比例していることから、ゲル状ポリマーデバイス1もカー効果を示すことを確認した。具体的な屈折角は、250V/mmで0.5°、200V/mmで0.3°、150V/mmで0.15°、100V/mmで0.05°であった。電圧を変化させることによって、所望の屈折角とすることができる。   FIG. 3 is a graph showing the electric field dependence of the laser refraction angle in the x-axis direction. In the case of the Kerr effect, since the refractive index of the laser is proportional to the square of the electric field, it was confirmed that the gel polymer device 1 also exhibits the Kerr effect. Specific refraction angles were 0.5 ° at 250 V / mm, 0.3 ° at 200 V / mm, 0.15 ° at 150 V / mm, and 0.05 ° at 100 V / mm. A desired refraction angle can be obtained by changing the voltage.

以上のように、直流電場の印加下のゲル状ポリマーデバイス1を透過したレーザーのスポット位置の変位量と誘電率との関係、及びレーザーの屈折角と電場強度との関係から、ゲル状ポリマーデバイス1のカー効果を確認できた。   As described above, from the relationship between the displacement of the spot position of the laser beam that has passed through the gel polymer device 1 under the application of a DC electric field and the dielectric constant, and the relationship between the refraction angle of the laser and the electric field strength, the gel polymer device. The car effect of 1 was confirmed.

[実験例2]
ゲル状ポリマーデバイス1の応用実験として、実施例1のゲル状高分子材料2(PVC:DBA=1:5)を用いて電場制御型薄膜レンズを作製した。図4は、その構成図であり、レンズ状のゲル状高分子材料2の下にはカソード電極3(ITO付きガラス)を設け、レンズ状のゲル状高分子材料2を平面視で挟むようにアノード電極3(ITO付きガラス)を設けた。なお、直流電圧をカソード電極3とアノード電極3との間に印加し、カソード電極3とアノード電極3とが接触しないように両電極が重なる箇所には絶縁フィルムを設けた。図5は、レンズ状のゲル状高分子材料2に電圧をON又はOFFしたときの、レンズの焦点変化を示す模式図であり、図6は、そのときの実際の平面写真(a)(b)及び正面写真(c)(b)である。
[Experiment 2]
As an application experiment of the gel polymer device 1, an electric field control type thin film lens was produced using the gel polymer material 2 of Example 1 (PVC: DBA = 1: 5). FIG. 4 is a configuration diagram thereof, in which a cathode electrode 3 (glass with ITO) is provided under the lens-like gel-like polymer material 2 so that the lens-like gel-like polymer material 2 is sandwiched in plan view. An anode electrode 3 (glass with ITO) was provided. A DC voltage was applied between the cathode electrode 3 and the anode electrode 3, and an insulating film was provided at a location where both electrodes overlapped so that the cathode electrode 3 and the anode electrode 3 did not contact each other. FIG. 5 is a schematic diagram showing a change in focus of the lens when the voltage is applied to the lens-like gel-like polymer material 2, and FIG. 6 is an actual plan photograph (a) (b) at that time. ) And front photographs (c) and (b).

図6の結果からわかるように、レンズ状のゲル状高分子材料2に直流電圧を印加することにより、ゲル状高分子材料2は大きく変形し、図5に示すような焦点変化を起こしていた。このように、本発明では、電場を印加してゲル状ポリマーデバイス1に大変形を生じさせることにより、焦点等の光学要素を変化させることができた。   As can be seen from the results of FIG. 6, by applying a DC voltage to the lens-like gel-like polymer material 2, the gel-like polymer material 2 was greatly deformed and caused a focus change as shown in FIG. . As described above, in the present invention, an optical element such as a focal point can be changed by applying an electric field to cause a large deformation in the gel polymer device 1.

1 ゲル状ポリマーデバイス
2 ゲル状高分子材料
3 電極
1 Gel Polymer Device 2 Gel Polymer Material 3 Electrode

Claims (3)

電気光学効果を示す高誘電性ゲル状高分子材料と、該ゲル状高分子材料にバイアス電圧を印加する電極とを有し、前記ゲル状高分子材料の比誘電率が0.01Hzで1×10以上であることを特徴とするゲル状ポリマーデバイス。 A high dielectric gel-like polymer material exhibiting an electro-optic effect; and an electrode for applying a bias voltage to the gel-like polymer material, wherein the dielectric constant of the gel-like polymer material is 1 × at 0.01 Hz. A gel-like polymer device, characterized in that it is 10 4 or more. 前記ゲル状高分子材料の比誘電率が、0.001Hzで1×10以上である、請求項1に記載のゲル状ポリマーデバイス。 2. The gel polymer device according to claim 1, wherein a relative dielectric constant of the gel polymer material is 1 × 10 5 or more at 0.001 Hz. 前記ゲル状高分子材料を構成する絶縁性高分子化合物が、ポリ塩化ビニル、ポリアクリロニトリル、ナイロン、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリケトン、ポリビニルアルコール、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリnブチルアクリレート、セルロース及び羊毛の群から選ばれるいずれか1又は2以上の高分子化合物である、請求項1又は2に記載のゲル状ポリマーデバイス。   The insulating polymer compound constituting the gel polymer material is polyvinyl chloride, polyacrylonitrile, nylon, polyethylene terephthalate, polypropylene, polyethylene, polyketone, polyvinyl alcohol, polyvinyl acetate, polymethyl methacrylate, poly nbutyl acrylate, The gel-like polymer device according to claim 1 or 2, which is any one or two or more polymer compounds selected from the group consisting of cellulose and wool.
JP2012055891A 2012-03-13 2012-03-13 Gel-like polymer device showing electro-optic effect Active JP5986402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012055891A JP5986402B2 (en) 2012-03-13 2012-03-13 Gel-like polymer device showing electro-optic effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012055891A JP5986402B2 (en) 2012-03-13 2012-03-13 Gel-like polymer device showing electro-optic effect

Publications (2)

Publication Number Publication Date
JP2013190547A JP2013190547A (en) 2013-09-26
JP5986402B2 true JP5986402B2 (en) 2016-09-06

Family

ID=49390885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012055891A Active JP5986402B2 (en) 2012-03-13 2012-03-13 Gel-like polymer device showing electro-optic effect

Country Status (1)

Country Link
JP (1) JP5986402B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012225355A1 (en) * 2011-03-09 2013-10-10 Bayer Intellectual Property Gmbh Electroactive polymer energy converter
JP5946299B2 (en) * 2012-03-13 2016-07-06 国立大学法人信州大学 Gel-like polymer device having colossal dielectric property and manufacturing method thereof
KR101922098B1 (en) 2017-04-10 2018-11-26 한국기술교육대학교 산학협력단 Variable focus double convex lens
CN107870380B (en) * 2017-12-22 2019-11-26 合肥工业大学 A kind of preparation method and its product of optical film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1272590A2 (en) * 2000-04-05 2003-01-08 California Institute Of Technology Polymers for control of orientation and stability of liquid crystals
JP3876602B2 (en) * 2000-09-28 2007-02-07 富士ゼロックス株式会社 Polymer gel composition, production method thereof, and optical element using the same
JP4720079B2 (en) * 2003-11-19 2011-07-13 富士ゼロックス株式会社 Manufacturing method of light control device
JP2007011120A (en) * 2005-07-01 2007-01-18 Konica Minolta Holdings Inc Optical element

Also Published As

Publication number Publication date
JP2013190547A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5986402B2 (en) Gel-like polymer device showing electro-optic effect
JP5392669B2 (en) Polymer flexible actuator
KR102183001B1 (en) Electronically switchable privacy device
Kim et al. Functional ion gels: versatile electrolyte platforms for electrochemical applications
US20220396672A1 (en) Organic ionic conductive polymer gel elastomer and method for preparing same
JP2016507082A (en) Electrochromic device including a solid or quasi-solid electrolyte layer and method for manufacturing the same
Ganesh et al. A pragmatic approach to methyl methacrylate based solid polymer electrolyte processing: A case study for electrochromism
Zhu et al. Polyelectrolytes exceeding ITO flexibility in electrochromic devices
Lan et al. Fast-response microlens array fabricated using polyvinyl chloride gel
JP2024009802A (en) Improved hydrophilic compositions
Zhou et al. High-strength, stretchable, and self-recoverable copolymer-supported deep eutectic solvent gels based on dense and dynamic hydrogen bonding for high-voltage and safe flexible supercapacitors
JP2007298713A (en) Electrochromic display
Furuse et al. Development of novel textile and yarn actuators using plasticized PVC gel
Tungkavet et al. Improvements of electromechanical properties of gelatin hydrogels by blending with nanowire polypyrrole: effects of electric field and temperature
JP5946299B2 (en) Gel-like polymer device having colossal dielectric property and manufacturing method thereof
CN105121538A (en) Method for manufacturing composite material which is polarizable under the action of a weak electric field
JP6447989B2 (en) Mechanical stimulus response element
Sundar et al. Synthesis and characterization of transparent and flexible polymer clay substrate for OLEDs
Hirai et al. The effects of adding ionic liquids to plasticized PVC gel actuators
JP2007011120A (en) Optical element
KR102022784B1 (en) Electrochromic device and fabricating method of the same, and electrolyte of the same
JPH0220586A (en) Mechanochemical material
US20190048168A1 (en) Multilayer structure, polymer actuator element, sensor element, and device
JP2020106836A (en) Electric displacement material, optical element using the same, microlens array and production method of optical element
KR102637291B1 (en) Electrochromism element composite having light- light transmissibility, high flexibility and high resistance to moisture, and manufacturing method of electrochromism member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160805

R150 Certificate of patent or registration of utility model

Ref document number: 5986402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250