JPH0220586A - Mechanochemical material - Google Patents

Mechanochemical material

Info

Publication number
JPH0220586A
JPH0220586A JP16907888A JP16907888A JPH0220586A JP H0220586 A JPH0220586 A JP H0220586A JP 16907888 A JP16907888 A JP 16907888A JP 16907888 A JP16907888 A JP 16907888A JP H0220586 A JPH0220586 A JP H0220586A
Authority
JP
Japan
Prior art keywords
mechanochemical
conductive polymer
polyanion
voltage
contraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16907888A
Other languages
Japanese (ja)
Inventor
Junji Hosokawa
順二 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP16907888A priority Critical patent/JPH0220586A/en
Publication of JPH0220586A publication Critical patent/JPH0220586A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title material capable of expanding or shrinking in relatively quick response to the application of a voltage by doping a conductive polymer with a polyamion. CONSTITUTION:A conductive polymer, such as a polypyrrole or polythiophene, is doped with a polyanion comprising, e.g., a polyacrylic acid or polystyrenesulfonic acid to give a mechanochemical material. This material can be shrunk or elongated at will in relatively quick response to the application of a voltage or a change in the polarity of electrodes in contact therewith from positive to negative or vice versa therefore, the use of this material for an actuator, a sensor, etc. can be expected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、メカノケミカル材料及びその使用方法乃至操
作方法に関し、さらに詳しくは電圧の印加という非常に
簡易な信号付加により収縮、伸張現象を発現するメカノ
ケミカル材料及びその使用方法に関する。このような特
性を有する本発明のメカノケミカル材料は、アクチュエ
ータ、センサー、フィルター膜など種々の分野に用いる
ことができる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to mechanochemical materials and methods of using and operating the same, and more specifically, the present invention relates to mechanochemical materials and methods of using and operating the same. This invention relates to mechanochemical materials and methods for their use. The mechanochemical material of the present invention having such characteristics can be used in various fields such as actuators, sensors, and filter membranes.

〔従来の技術〕[Conventional technology]

物質が種々の要因により収縮、伸張現象を発現すること
は知られており、例えば、下記のような種々の材料及び
方法によって収縮、伸張現象を発揮させることが行なわ
れている。
It is known that substances exhibit contraction and expansion phenomena due to various factors, and for example, various materials and methods have been used to induce contraction and expansion phenomena as described below.

(イ)アセトンと水を溶媒とし、それを交換することに
よりアクリルアミドゲルを相転位させ、この相転位に伴
なってアクリルアミドゲルを収縮、伸張させる。
(a) Acetone and water are used as solvents, and by exchanging them, the acrylamide gel undergoes a phase transition, and the acrylamide gel contracts and expands as a result of this phase transition.

(ロ)酸性とアルカリ性の溶液を交換することにより、
架橋ポリアクリル酸を収縮、伸張させる。
(b) By exchanging acidic and alkaline solutions,
Contract and expand cross-linked polyacrylic acid.

(ハ)ポリエチレングリコール含有溶液中で、その温度
を変えることにより、高温と低温の温度変化によってポ
リアクリル酸が収縮、伸張する。
(c) By changing the temperature in a polyethylene glycol-containing solution, polyacrylic acid contracts and expands due to temperature changes between high and low temperatures.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ある物質に収縮、伸張現象を発現させようとする場合、
前記(イ)及び(ロ)による方法では、溶液の交換とい
う非常に煩雑な操作により伸縮、伸張の信号(発現因子
)を与えなければならないという不便がある。また、同
じ溶液を繰り返し使用すると、それぞれの溶液の濃度が
低下してしまい、遂には収縮、伸張を起こさなくなるの
で、常にフレッシュな溶液を使用しなければならないと
いう問題がある。一方、前記(ハ)の方法によれば、水
溶液の温度コントロールという難しい操作をしなければ
ならない。
When trying to cause contraction or expansion phenomena in a certain substance,
The methods (a) and (b) above have the inconvenience of having to give signals for stretching and stretching (expression factors) through a very complicated operation of exchanging solutions. Furthermore, if the same solution is repeatedly used, the concentration of each solution decreases, and eventually shrinkage and expansion no longer occur, so there is a problem that a fresh solution must always be used. On the other hand, according to the method (c), a difficult operation of controlling the temperature of the aqueous solution is required.

また、水溶液という熱伝導率の低いものを媒体とするた
め、昇温、降温に長時間を要するという問題がある。
Furthermore, since the medium is an aqueous solution, which has a low thermal conductivity, there is a problem in that it takes a long time to raise and lower the temperature.

従って、本発明の目的は、上記のような従来の方法の欠
点を解消し、電圧の印加という非常に簡易な信号付加に
より材料の収縮、伸張を行なえ、しかもその応答速度も
比較的早い材料及びその使用方法を提供することにある
Therefore, an object of the present invention is to eliminate the drawbacks of the conventional methods as described above, and to provide a material and a material that can contract and expand materials by applying a very simple signal such as applying a voltage, and that has a relatively fast response speed. The purpose is to provide a method for using it.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、前記目的を達成するため、ドーパント
としてポリアニオンをドーピングした導電性高分子から
成るメカノケミカル材料が提供される。
According to the present invention, in order to achieve the above object, a mechanochemical material comprising a conductive polymer doped with a polyanion as a dopant is provided.

このようなメカノケミカル材料は、1組の電極のうちの
一方の電極に接触させ、上記両電極間に電圧をプラスと
マイナスの方向を交互に任意に変えて印加することによ
り、画電極の極性変換に応じて収縮、伸張現象を発現さ
せることができる。
Such a mechanochemical material can be brought into contact with one electrode of a pair of electrodes, and the polarity of the image electrode can be changed by applying a voltage between the two electrodes in alternating positive and negative directions. Depending on the transformation, contraction and expansion phenomena can occur.

ここで、ポリアニオンとは高分子鎖中あるいは側鎖に−
COO−−803−などの陰イオンを有するものあるい
は有し得るものなどをいう。
Here, polyanion means - in the polymer chain or side chain.
It refers to something that has or can have an anion such as COO--803-.

〔発明の作用〕[Action of the invention]

物質に機械的エネルギーを与えることによって誘起され
る化学反応はメカノケミカル反応として知られているが
、本発明は前記材料に電気エネルギーを与えることによ
って酸化還元反応を起こさせ、この反応を通じて収縮、
伸張現象を起こさせるものである。以下、添附図面を参
照しながら上記作用について説明する。
A chemical reaction induced by applying mechanical energy to a material is known as a mechanochemical reaction, and the present invention causes a redox reaction to occur by applying electrical energy to the material, and through this reaction, contraction,
This causes a stretching phenomenon. The above operation will be explained below with reference to the accompanying drawings.

第1図は本発明によるメカノケミカル材料の収縮時、伸
張時の状態を模式的に示す。第1図(a)は導電性高分
子CP(例えばポリピロール、ポリアニリン、ポリチオ
フェン、等)にポリアニオンPA(例えばポリアクリル
酸、ポリビニル硫酸、ポリスチレンスルホン酸、ポリメ
タクリル酸、等)をドーピングした状態を示し、導電性
高分子とポリアニオンはイオン結合(例えば、ポリピロ
ールのN”とポリアクリル酸のCOO−との間のイオン
結合であり、破線で示す)している為に分子鎖が収縮し
ている状態にある。一方、第1図(c)は、第1(a)
の導電性高分子を還元した状態を示す。すなわち、導電
性高分子が脱ドープされた状態である。導電性高分子は
還元(電子授与)によりカチオン性能を失い、ポリアニ
オンとのイオン結合は切れる。すると、ポリアニオンは
自身の有するアニオン(例えばポリアクリル酸の000
 )が解離状態となり分子鎖が伸びる。このように、還
元により材料は伸張する。一方、第1図(c)の状態の
導電性高分子を酸化すると、上記と全く逆の現象が生じ
、導電性高分子のカチオン性能が復活し、第1図、(a
)の状態に戻り、収縮を行なう。第1図(b)は第1図
(a)と(c)の中間状態であり、前記イオン結合が部
分的に切れている。
FIG. 1 schematically shows the contracted and expanded states of the mechanochemical material according to the present invention. Figure 1(a) shows a state in which a conductive polymer CP (e.g. polypyrrole, polyaniline, polythiophene, etc.) is doped with a polyanion PA (e.g. polyacrylic acid, polyvinyl sulfate, polystyrene sulfonic acid, polymethacrylic acid, etc.). , the conductive polymer and the polyanion have an ionic bond (for example, the ionic bond between N'' of polypyrrole and COO- of polyacrylic acid, shown by the broken line), so the molecular chain is contracted. On the other hand, Fig. 1(c) shows Fig. 1(a)
This shows the reduced state of the conductive polymer. That is, the conductive polymer is in a dedoped state. Conductive polymers lose their cationic properties due to reduction (donation of electrons), and their ionic bonds with polyanions are broken. Then, the polyanion has its own anion (for example, 000 of polyacrylic acid
) enters a dissociated state and the molecular chain stretches. Thus, reduction causes the material to stretch. On the other hand, when the conductive polymer in the state shown in Figure 1(c) is oxidized, a phenomenon completely opposite to that described above occurs, and the cationic performance of the conductive polymer is restored, and as shown in Figure 1(a), the cationic performance of the conductive polymer is restored.
) and perform contractions. FIG. 1(b) is an intermediate state between FIGS. 1(a) and 1(c), in which the ionic bonds are partially broken.

このような現象は、本発明による材料を第2図に示すよ
うに一方の電極に接触させ、上記酸化還元反応を電圧の
印加により行なうことにより簡単に生じさせることがで
きる。すなわち、本発明によるメカノケミカル材料Pを
接触させた電極E1を第2図(a)のように(+)側に
接続すれば第1図(a)の状態に、第2図(b)のよう
に(−)側に接続すれば第1図(C)の状態となり、こ
のように逆電圧を交互に印加することによりそれに応じ
て任意に収縮、伸張現象を行なわせることができる。な
お、第2図において、2は電解槽1内に収容された電解
液、3は電源を示す。
Such a phenomenon can be easily caused by bringing the material according to the present invention into contact with one electrode as shown in FIG. 2, and performing the above-mentioned redox reaction by applying a voltage. That is, if the electrode E1 in contact with the mechanochemical material P according to the present invention is connected to the (+) side as shown in FIG. 2(a), the state shown in FIG. 1(a) will be obtained, and the state shown in FIG. 2(b) will be obtained. When connected to the (-) side, the state shown in FIG. 1(C) is obtained, and by alternately applying a reverse voltage in this way, contraction and expansion phenomena can be performed as desired. In addition, in FIG. 2, 2 indicates an electrolyte contained in the electrolytic cell 1, and 3 indicates a power source.

なお、第1図(c)の伸張状態において導電性高分子と
ポリアニオンとの間のイオン結合は切れているが、この
ような状態でも、ポリアニオンは通常、溶液に溶解する
ことはない。すなわち、導電性高分子とポリアニオンの
分子鎖同志は複雑にからみ合っているので、ポリアニオ
ンの重合度が高ければ、すなわちポリアニオンの分子鎖
が十分長ければ、導電性高分子鎖間の隙間をぬって電解
液中に溶出してゆくことはなく、第1図(c)の状態で
も安定な状態を保つことができる。
Although the ionic bond between the conductive polymer and the polyanion is broken in the stretched state shown in FIG. 1(c), the polyanion does not normally dissolve in the solution even in this state. In other words, the molecular chains of the conductive polymer and polyanion are intricately intertwined with each other, so if the degree of polymerization of the polyanion is high, that is, if the molecular chain of the polyanion is long enough, it will be able to cross the gaps between the conductive polymer chains. It does not dissolve into the electrolytic solution and can maintain a stable state even in the state shown in FIG. 1(c).

〔実 施 例〕〔Example〕

以下、実施例を示して本発明について具体的に説明する
The present invention will be specifically described below with reference to Examples.

実  施  例  1 導電性高分子としてポリピロール、ポリアニオンとして
ポリアクリル酸を用いた。
Example 1 Polypyrrole was used as the conductive polymer and polyacrylic acid was used as the polyanion.

〔重 合〕[Overlapping]

ピロールを0.25モル/D、ポリアクリル酸(東亜合
成化学工業■製、商品名Al0−8L)を1モル/gの
割合に調整した溶液に2枚のNi板(電極)を入れ、直
流電圧2.3Vを1゜分間流した。(+)電極表面に厚
さ約0.2m+gのポリピロール膜が重合された。
Two Ni plates (electrodes) were placed in a solution containing 0.25 mol/D of pyrrole and 1 mol/g of polyacrylic acid (manufactured by Toagosei Kagaku Kogyo ■, trade name Al0-8L), and A voltage of 2.3V was applied for 1°. A polypyrrole film with a thickness of about 0.2 m+g was polymerized on the (+) electrode surface.

〔メカノケミカル材料の伸縮〕[Expansion and contraction of mechanochemical materials]

上記のようにポリアクリル酸がドーピングされたポリピ
ロール膜が析出しているNi板を水洗した後、0.3モ
ル/fNac1水溶液中に浸漬した。これを<−> f
li極とし、(+)電極にNi板を使用し、直流電圧1
.Ovを2分間流すと、ポリピロール膜が伸張し、しわ
が生じた。さらに、ポリピロール膜が析出している旧電
極を(+)側にし、直流電圧2.3vを2分間流すと収
縮し、生じたしわが消えた。
The Ni plate on which the polypyrrole film doped with polyacrylic acid was deposited as described above was washed with water and then immersed in an aqueous solution of 0.3 mol/fNac1. This is <-> f
A li pole is used, a Ni plate is used as the (+) electrode, and a DC voltage of 1
.. When Ov was flowed for 2 minutes, the polypyrrole film was stretched and wrinkled. Furthermore, when the old electrode on which the polypyrrole film was deposited was turned to the (+) side and a DC voltage of 2.3 V was applied for 2 minutes, the film contracted and the wrinkles that had formed disappeared.

実  施  例  2 実施例1にて重合したポリピロール膜PをNi板から剥
してフリーの膜(55X5X0.05龍t)を得、その
一端aをNi板°(電極)に固定し、もう一端に3gの
重りWを付けて吊し、第3図に示す様にセットした。
Example 2 The polypyrrole film P polymerized in Example 1 was peeled off from the Ni plate to obtain a free film (55 x 5 x 0.05 mm), one end a of which was fixed to the Ni plate (electrode), and the other end was It was hung with a 3g weight W attached and set as shown in FIG.

直流(−) @圧1.OVを2C1flEt、!:、l
I’Hは1.5mm伸張した。その後、直流(+)電圧
2.3Vを5分間流すと膜はほぼ元の長さに戻った。
DC (-) @Pressure 1. OV2C1flEt,! :,l
I'H was extended by 1.5 mm. Thereafter, when a direct current (+) voltage of 2.3 V was applied for 5 minutes, the membrane returned to almost its original length.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明のメカノケミカル材料は、ドーパ
ントとしてポリアニオンをドーピングした導電性高分子
から成るため、電圧の印加という非常に簡易な信号付加
により、またメカノケミカル材料に接触する電極のプラ
スとマイナスの極性切換えにより、これに応じて収縮、
伸張を任意に行なうことができ、しかもその応答速度も
比較的早い。従って、このような収縮、伸張現象を利用
して、アクチュエータ、センサー等への実用化が期待で
きる。
As described above, since the mechanochemical material of the present invention is composed of a conductive polymer doped with a polyanion as a dopant, it is possible to easily apply a signal by applying a voltage to the positive electrode of the electrode in contact with the mechanochemical material. By switching the negative polarity, the contraction occurs accordingly.
Expansion can be performed arbitrarily, and the response speed is relatively fast. Therefore, utilizing such contraction and expansion phenomena, it is expected that the material will be put to practical use in actuators, sensors, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるメカノケミカル材料の収縮、伸張
現象を説明するための模式図、第2図は本発明によるメ
カノケミカル材料に収縮、伸張現象を生起させるための
電気配線の2つの態様を示す概略図、第3図は実施例2
で用いた電解装置の概略図である。 1は電解槽、2は電解液、CPは導電性高分子、PAは
ポリアニオン、Pはメカノケミカル材料。
FIG. 1 is a schematic diagram for explaining the contraction and expansion phenomena of the mechanochemical material according to the present invention, and FIG. 2 shows two embodiments of electrical wiring for causing contraction and expansion phenomena in the mechanochemical material according to the present invention. Schematic diagram shown in Figure 3 is Example 2
FIG. 2 is a schematic diagram of the electrolysis device used in 1 is an electrolytic cell, 2 is an electrolytic solution, CP is a conductive polymer, PA is a polyanion, and P is a mechanochemical material.

Claims (2)

【特許請求の範囲】[Claims] (1)ドーパントとしてポリアニオンをドーピングした
導電性高分子から成ることを特徴とするメカノケミカル
材料。
(1) A mechanochemical material comprising a conductive polymer doped with a polyanion as a dopant.
(2)請求項1に記載のメカノケミカル材料を、1組の
電極のうちの一方の電極に接触させ、上記両電極間に電
圧をプラスとマイナスの方向を交互に任意に変えて印加
することにより、上記メカノケミカル材料に収縮と伸張
を発現させることを特徴とする請求項1に記載のメカノ
ケミカル材料の使用方法。
(2) Bringing the mechanochemical material according to claim 1 into contact with one electrode of a set of electrodes, and applying a voltage between the two electrodes in alternating positive and negative directions. 2. The method of using a mechanochemical material according to claim 1, wherein the mechanochemical material is caused to contract and expand.
JP16907888A 1988-07-08 1988-07-08 Mechanochemical material Pending JPH0220586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16907888A JPH0220586A (en) 1988-07-08 1988-07-08 Mechanochemical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16907888A JPH0220586A (en) 1988-07-08 1988-07-08 Mechanochemical material

Publications (1)

Publication Number Publication Date
JPH0220586A true JPH0220586A (en) 1990-01-24

Family

ID=15879918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16907888A Pending JPH0220586A (en) 1988-07-08 1988-07-08 Mechanochemical material

Country Status (1)

Country Link
JP (1) JPH0220586A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262991A (en) * 1991-08-16 1993-10-12 Internatl Business Mach Corp <Ibm> Electrically conductive polymeric material and use thereof
EP0773975A1 (en) * 1994-08-04 1997-05-21 WALLACE, Gordon George Conducting electroactive biomaterials
US6982514B1 (en) * 2000-05-22 2006-01-03 Santa Fe Science And Technology, Inc. Electrochemical devices incorporating high-conductivity conjugated polymers
US7064473B2 (en) 2003-12-08 2006-06-20 Hitachi, Ltd. Actuator film material, actuator film and actuator using the same
US7327067B2 (en) 2005-04-26 2008-02-05 Hitachi, Ltd. Actuator modules
US7692361B2 (en) 2005-05-19 2010-04-06 Hitachi, Ltd. Actuator and material for the actuator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262991A (en) * 1991-08-16 1993-10-12 Internatl Business Mach Corp <Ibm> Electrically conductive polymeric material and use thereof
EP0773975A1 (en) * 1994-08-04 1997-05-21 WALLACE, Gordon George Conducting electroactive biomaterials
EP0773975A4 (en) * 1994-08-04 1998-06-10 Gordon George Wallace Conducting electroactive biomaterials
US6982514B1 (en) * 2000-05-22 2006-01-03 Santa Fe Science And Technology, Inc. Electrochemical devices incorporating high-conductivity conjugated polymers
US7064473B2 (en) 2003-12-08 2006-06-20 Hitachi, Ltd. Actuator film material, actuator film and actuator using the same
US7327067B2 (en) 2005-04-26 2008-02-05 Hitachi, Ltd. Actuator modules
US7692361B2 (en) 2005-05-19 2010-04-06 Hitachi, Ltd. Actuator and material for the actuator

Similar Documents

Publication Publication Date Title
Osada et al. Electrically activated mechanochemical devices using polyelectrolyte gels
US5250167A (en) Electrically controlled polymeric gel actuators
JP4287504B1 (en) Conductive polymer actuator and manufacturing method thereof
Zhou et al. Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes
JP4256470B1 (en) Conductive polymer actuator, manufacturing method thereof, and driving method thereof
Hara et al. Free-standing gel-like polypyrrole actuators doped with bis (perfluoroalkylsulfonyl) imide exhibiting extremely large strain
US8487505B2 (en) Polymer actuator
JPWO2009150697A1 (en) Conductive polymer actuator and manufacturing method thereof
Mazzoldi et al. Conducting polymer actuators: Properties and modeling
WO2006025399A1 (en) Method of deforming polymer film or fiber and polymeric actuator
Cortés et al. Artificial muscles based on conducting polymers
Otero et al. Nucleation and nonstoichiometry in electrochromic conducting polymers
Ismail et al. Conducting polymer/hydrogel systems as soft actuators
JPH0220586A (en) Mechanochemical material
JP2010161870A (en) Conductive polymer actuator and method of producing the same
Hisamatsu et al. Double-side coated electrochemical actuator based on changes in volume of poly (acrylic acid) gel
Osada et al. Synthesis, mechanism, and application of an electro-driven chemomechanical system using polymer gels
JP3131180B2 (en) Highly sensitive electric deformation method of pyrrole polymer film or fiber
Calvert et al. Electrically stimulated bilayer hydrogels as muscles
Cao et al. Ionic electroactive PEDOT: PSS/liquid-crystalline polymer electrolyte actuators: photopolymerization of zwitterionic columnar liquid crystals complexed with a protic ionic liquid
EP1161482A1 (en) Composite capable of rapid volume change
US6936955B1 (en) Conjugated polymer actuator responsive to electrical stimulation
JP2006241422A (en) Electroconductive polymer actuator
Amura et al. Stimuli-responsive materials for membrane fabrication
Otero et al. Attempting a classification for electrical polymeric actuators