JP5980630B2 - Steam heating system - Google Patents

Steam heating system Download PDF

Info

Publication number
JP5980630B2
JP5980630B2 JP2012199944A JP2012199944A JP5980630B2 JP 5980630 B2 JP5980630 B2 JP 5980630B2 JP 2012199944 A JP2012199944 A JP 2012199944A JP 2012199944 A JP2012199944 A JP 2012199944A JP 5980630 B2 JP5980630 B2 JP 5980630B2
Authority
JP
Japan
Prior art keywords
steam
superheater
water
boiler
saturated steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012199944A
Other languages
Japanese (ja)
Other versions
JP2014055696A (en
Inventor
佐藤 利春
利春 佐藤
聡 永山
聡 永山
哲男 河村
哲男 河村
享昇 ▲高▼橋
享昇 ▲高▼橋
恭輔 大久保
恭輔 大久保
大下 悟
悟 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Miura Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd, Tokyo Gas Co Ltd filed Critical Miura Co Ltd
Priority to JP2012199944A priority Critical patent/JP5980630B2/en
Publication of JP2014055696A publication Critical patent/JP2014055696A/en
Application granted granted Critical
Publication of JP5980630B2 publication Critical patent/JP5980630B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

本発明は、蒸気過熱システムに関する。   The present invention relates to a steam superheating system.

飽和蒸気は、温度の制御が簡単であり、熱の輸送も容易であるといった理由から熱源として広く利用されている。飽和蒸気の温度は蒸気圧力によって定まっているため、飽和蒸気の圧力を調節することで飽和蒸気の温度を制御することができる。   Saturated steam is widely used as a heat source because of its simple temperature control and easy heat transport. Since the temperature of the saturated steam is determined by the steam pressure, the temperature of the saturated steam can be controlled by adjusting the pressure of the saturated steam.

従来より、ボイラから排出される飽和蒸気を過熱器を用いて過熱した後、蒸気使用機器に送気する蒸気供給システムが提案されている(例えば、特許文献1、2参照)。   Conventionally, a steam supply system has been proposed in which saturated steam discharged from a boiler is heated using a superheater and then sent to a steam-using device (see, for example, Patent Documents 1 and 2).

特許文献1では、バーナにより加熱して飽和蒸気を発生させる蒸気ボイラと、蒸気ボイラで発生した飽和蒸気を蒸気ボイラから排出される排出ガスによって過熱蒸気にする過熱器とを備えた過熱蒸気発生装置が開示されている。   In patent document 1, the superheated steam generator provided with the steam boiler which heats with a burner and generate | occur | produces saturated steam, and the superheater which makes the saturated steam generated with the steam boiler superheated steam by the exhaust gas discharged | emitted from a steam boiler Is disclosed.

特許文献2では、多数の伝熱管群で構成された管群構造を有するボイラにおいて、上流側缶体と下流側缶体との間に伝熱蒸気管を持った蒸気過熱器を設けて伝熱蒸気管内を通る飽和蒸気を過熱蒸気にするボイラが開示されている。   In Patent Document 2, in a boiler having a tube group structure composed of a large number of heat transfer tube groups, a steam superheater having a heat transfer steam tube is provided between the upstream can body and the downstream can body to transfer heat. A boiler that makes saturated steam passing through a steam pipe into superheated steam is disclosed.

特開2008−32235号公報JP 2008-32235 A 特開2000−193205号公報JP 2000-193205 A

特許文献1のような過熱蒸気発生装置、特許文献2のようなボイラは、いずれもボイラから発生する飽和蒸気を過熱器に導入して過熱し、過熱蒸気にするものである。しかし、ボイラから発生する飽和蒸気はいくらかの水を含んでいる。また、ボイラに供給される水中にはナトリウムイオン、塩化物イオンといったイオンなどの不純物が存在している場合がある。そのため、ある程度の湿りを持つ飽和蒸気を過熱器に送気して過熱器で過熱すると、過熱器内の飽和蒸気が通る流通管(伝熱管)の内面にはボイラに供給される水中に含まれる不純物が蒸発残渣として付着する可能性がある。伝熱管の内面に蒸発残渣が付着すると、過熱器は飽和蒸気を過熱する熱源から過熱器の伝熱管を通る飽和蒸気への伝熱量が低下し、過熱器で飽和蒸気を安定して過熱することができない可能性がある。   The superheated steam generator as in Patent Document 1 and the boiler as in Patent Document 2 both introduce saturated steam generated from the boiler into the superheater and superheat it to form superheated steam. However, the saturated steam generated from the boiler contains some water. Moreover, impurities such as ions such as sodium ions and chloride ions may be present in the water supplied to the boiler. Therefore, when saturated steam with a certain level of moisture is sent to the superheater and heated by the superheater, the inner surface of the flow pipe (heat transfer pipe) through which the saturated steam in the superheater passes is contained in the water supplied to the boiler Impurities may adhere as evaporation residues. If evaporation residue adheres to the inner surface of the heat transfer tube, the amount of heat transfer from the heat source that superheats the saturated steam to the saturated steam that passes through the heat transfer tube of the superheater decreases, and the superheater stably superheats the saturated steam. May not be possible.

本発明は、上記に鑑みてなされたものであって、過熱器で飽和蒸気を過熱する際の飽和蒸気への伝熱量が低下することを抑制し、飽和蒸気を安定して過熱することができる蒸気過熱システムを提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It suppresses that the amount of heat transfer to saturated steam at the time of superheated saturated steam with a superheater can suppress, and can overheat saturated steam stably. An object is to provide a steam superheating system.

本発明に係る蒸気過熱システムは、水を加熱して蒸気を発生させる蒸気発生装置と、前記蒸気発生装置で発生した前記蒸気を過熱する蒸気過熱装置と、前記蒸気を前記蒸気発生装置から前記蒸気過熱装置に送気する飽和蒸気供給経路と、前記蒸気過熱装置で前記蒸気を過熱した過熱蒸気を蒸気使用設備に送気する過熱蒸気供給経路と、を有し、前記蒸気過熱装置の運転を停止している時に、前記蒸気過熱装置内の前記蒸気が通過する流路に洗浄媒体を供給して、前記蒸気過熱装置内の洗浄を行うことを特徴とする。   The steam superheating system according to the present invention includes a steam generator that heats water to generate steam, a steam superheater that superheats the steam generated by the steam generator, and the steam from the steam generator to the steam. A saturated steam supply path for sending air to the superheater; and a superheated steam supply path for sending superheated steam superheated by the steam superheater to a steam-using facility, and stopping the operation of the steam superheater In this case, a cleaning medium is supplied to a flow path through which the steam passes in the steam superheater to clean the steam superheater.

本発明の好ましい態様として、前記蒸気発生装置の運転時間を計測する運転計測手段を設け、前記蒸気発生装置に供給される水の水質と、前記運転計測手段で計測された前記蒸気発生装置の運転時間とから前記蒸気発生装置内の水の濃縮度を求め、前記濃縮度から前記蒸気発生装置で発生する前記蒸気の乾き度を推定し、前記蒸気の乾き度と、前記蒸気発生装置の運転時間から得られる前記水の蒸発量とから、前記蒸気過熱装置内の蒸発残渣の発生量を算出し、前記蒸発残渣の発生量が設定値を超えた場合は、前記蒸気過熱装置の前記蒸気が通過する流路に前記洗浄媒体を供給することが好ましい。   As a preferred aspect of the present invention, an operation measuring means for measuring the operation time of the steam generator is provided, the quality of water supplied to the steam generator, and the operation of the steam generator measured by the operation measuring means The concentration of water in the steam generator is determined from the time, the dryness of the steam generated in the steam generator is estimated from the concentration, the dryness of the steam, and the operation time of the steam generator The amount of evaporation residue generated in the steam superheater is calculated from the amount of evaporation of the water obtained from the above. If the amount of evaporation residue generated exceeds a set value, the steam of the steam superheater passes through It is preferable to supply the cleaning medium to the flow path.

本発明の好ましい態様として、前記蒸気発生装置の運転時間を計測する運転計測手段と、前記蒸気発生装置内の前記水の濃縮度を検出する濃縮度検出手段とを設け、前記濃縮度検出手段で検出された前記濃縮度から前記蒸気発生装置で発生する前記蒸気の乾き度を推定し、前記蒸気の乾き度と、前記運転計測手段で計測された前記蒸気発生装置の運転時間から得られる前記水の蒸発量とから、前記蒸気過熱装置内の蒸発残渣の発生量を算出し、前記蒸発残渣の発生量が設定値を超えた場合は、前記蒸気過熱装置の前記蒸気が通過する流路に前記洗浄媒体を供給することが好ましい。   As a preferred aspect of the present invention, there is provided an operation measuring means for measuring an operation time of the steam generating device, and a concentration detecting means for detecting the concentration of the water in the steam generating device, and the concentration detecting means The dryness of the steam generated in the steam generator is estimated from the detected concentration, and the water obtained from the dryness of the steam and the operation time of the steam generator measured by the operation measuring means The amount of evaporation residue generated in the steam superheater is calculated from the amount of evaporation of the steam, and when the amount of evaporation residue generated exceeds a set value, the steam of the steam superheater passes through the flow path through the steam. It is preferred to supply a cleaning medium.

本発明の好ましい態様として、前記蒸気発生装置または前記蒸気過熱装置の運転時間が所定時間経過した後、前記蒸気過熱装置内に前記洗浄媒体を供給することが好ましい。   As a preferred aspect of the present invention, it is preferable that the cleaning medium is supplied into the steam superheater after a predetermined time has elapsed for the steam generator or the steam superheater.

本発明の好ましい態様として、前記洗浄媒体は、蒸気または水であることが好ましい。   As a preferred embodiment of the present invention, the cleaning medium is preferably steam or water.

本発明によれば、蒸気過熱装置の運転を停止している時に、蒸気過熱装置内の蒸気が通過する流路に洗浄媒体を供給して、蒸気過熱装置内の洗浄を行っているため、過熱器で飽和蒸気を過熱する際の飽和蒸気への伝熱量が低下することを抑制し、飽和蒸気を安定して過熱することができる。   According to the present invention, when the operation of the steam superheater is stopped, the cleaning medium is supplied to the flow path through which the steam in the steam superheater passes and the steam superheater is cleaned. It can suppress that the amount of heat transfer to saturated steam at the time of superheated saturated steam with a vessel decreases, and can stably superheat saturated steam.

本発明の第1の実施形態に係る蒸気過熱システムの概略構成を示す図である。It is a figure showing a schematic structure of a steam superheating system concerning a 1st embodiment of the present invention. 本発明の第2の実施形態に係る蒸気過熱システムの概略構成を示す図である。It is a figure which shows schematic structure of the steam superheating system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る蒸気過熱システムの概略構成を示す図である。It is a figure which shows schematic structure of the steam superheating system which concerns on the 3rd Embodiment of this invention. 蒸気過熱システムの他の構成の一例を示す図である。It is a figure which shows an example of the other structure of a steam superheating system.

以下、本発明を好適に実施するための形態(以下、実施形態という。)につき、詳細に説明する。尚、本発明は以下の実施形態に記載した内容により限定されるものではない。また、以下に記載した実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。   DESCRIPTION OF EMBODIMENTS Hereinafter, modes for suitably carrying out the present invention (hereinafter referred to as embodiments) will be described in detail. In addition, this invention is not limited by the content described in the following embodiment. In addition, constituent elements in the embodiments described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments described below may be appropriately combined, or may be appropriately selected and used.

[第1の実施形態]
<蒸気過熱システム>
本発明の第1の実施形態に係る蒸気過熱システムについて説明する。図1は、本発明の第1の実施形態に係る蒸気過熱システムの概略構成を示す図である。なお、図1では、飽和蒸気を過熱器で過熱している時および過熱器の伝熱管の内面を洗浄している時の飽和蒸気と過熱蒸気とを同時に示す。図1に示すように、本実施形態に係る蒸気過熱システム10は、加熱源、動力源などとして蒸気を使用して作動する蒸気使用機器(負荷機器)11に蒸気を供給するシステムである。本実施形態に係る蒸気過熱システム10は、ボイラ(蒸気発生装置)12と、蒸気供給経路L11と、過熱器(蒸気過熱装置)13と、制御装置14とを備える。
[First Embodiment]
<Steam superheating system>
A steam superheating system according to a first embodiment of the present invention will be described. FIG. 1 is a diagram showing a schematic configuration of a steam superheating system according to the first embodiment of the present invention. In FIG. 1, the saturated steam and the superheated steam are simultaneously shown when the saturated steam is superheated by the superheater and when the inner surface of the heat transfer tube of the superheater is cleaned. As shown in FIG. 1, a steam superheating system 10 according to the present embodiment is a system that supplies steam to a steam-using device (load device) 11 that operates using steam as a heating source, a power source, and the like. The steam superheating system 10 according to the present embodiment includes a boiler (steam generating device) 12, a steam supply path L11, a superheater (steam superheating device) 13, and a control device 14.

(ボイラ)
ボイラ12は、種々の熱源方式によって飽和蒸気St1を発生させるものである。ボイラ12は、燃焼式のボイラ、電気式のボイラなど種々の形式のものを用いることができる。ボイラ12は、燃焼式の場合、燃料を燃焼させた際の燃焼熱を熱源として、缶体内の缶水を蒸発させ、飽和蒸気St1を発生させる。この場合、燃料としては、例えば、都市ガス、プロパンガス、バイオガスなどの気体燃料、重油、灯油などの液体燃料などが用いられる。ボイラ12は、燃焼式の場合、例えば、貫流ボイラ、炉筒煙管ボイラ、水管ボイラなどが挙げられる。ボイラ12は、電気式の場合、電気ヒータなどを熱源として缶体内の缶水を蒸発させ飽和蒸気St1を発生させる。
(boiler)
The boiler 12 generates saturated steam St1 by various heat source methods. As the boiler 12, various types such as a combustion boiler and an electric boiler can be used. In the case of the combustion type, the boiler 12 evaporates can water in the can body using combustion heat generated when the fuel is burned as a heat source, and generates saturated steam St1. In this case, as the fuel, for example, a gas fuel such as city gas, propane gas, or biogas, or a liquid fuel such as heavy oil or kerosene is used. In the case of the combustion type, the boiler 12 includes, for example, a once-through boiler, a furnace tube fired boiler, a water tube boiler, and the like. In the case of an electric type, the boiler 12 evaporates can water in the can body using an electric heater or the like as a heat source to generate saturated steam St1.

なお、本実施形態において、飽和蒸気St1とは、わずかに液体の水を含む蒸気から100%乾き蒸気までの範囲の蒸気である。   In the present embodiment, the saturated steam St1 is a steam in a range from a steam containing slightly liquid water to a 100% dry steam.

(蒸気供給経路)
蒸気供給経路L11は、ボイラ12で発生した飽和蒸気St1をボイラ12から蒸気使用機器11に送気するための蒸気供給ラインである。本実施形態においては、蒸気供給経路L11は、飽和蒸気配管(飽和蒸気供給経路)L12と過熱蒸気配管(過熱蒸気供給経路)L13とを含む。また、蒸気供給経路L11は、経路内を流れる蒸気の流量を調節するための流量調節弁などを含んでいてもよい。
(Steam supply route)
The steam supply path L <b> 11 is a steam supply line for sending saturated steam St <b> 1 generated in the boiler 12 from the boiler 12 to the steam using device 11. In the present embodiment, the steam supply path L11 includes a saturated steam pipe (saturated steam supply path) L12 and a superheated steam pipe (superheated steam supply path) L13. The steam supply path L11 may include a flow rate adjusting valve for adjusting the flow rate of the steam flowing in the path.

飽和蒸気配管L12は、ボイラ12の蒸気流出口と過熱器13の蒸気流入口とを接続し、飽和蒸気St1を過熱器13に送気する。   The saturated steam pipe L12 connects the steam outlet of the boiler 12 and the steam inlet of the superheater 13 and supplies the saturated steam St1 to the superheater 13.

過熱蒸気配管L13は、過熱器13の蒸気流出口と蒸気使用機器11の蒸気流入口とを接続し、過熱蒸気St2を蒸気使用機器11に送気する。   The superheated steam pipe L <b> 13 connects the steam outlet of the superheater 13 and the steam inlet of the steam using device 11, and supplies superheated steam St <b> 2 to the steam using device 11.

(過熱器)
過熱器13は、ボイラ12によって発生させた飽和蒸気St1を過熱して過熱蒸気St2にするものである。過熱器13は、シェルアンドチューブ式熱交換器(多管式熱交換器)である。過熱器13は、過熱器13のシェル(胴体)側を1次側として、胴体内に過熱媒体21を流通させ、チューブ(伝熱管)23側を2次側として、伝熱管23内に被過熱蒸気である飽和蒸気St1を流通させる。過熱媒体21としては、例えば、熱媒ボイラからの高温の熱媒油、ボイラ12から排出される燃焼ガスなどが用いられる。また、過熱媒体21として、他のボイラから供給される飽和蒸気St1よりも温度が高い高圧蒸気を用いる場合は、過熱器13は、伝熱管23側を1次側として、伝熱管23内に過熱媒体21を流通させ、胴体側を2次側として、胴体内に飽和蒸気St1を流通させる。すなわち、圧力の高い側を伝熱管23側に流通させるようにする。また、過熱器13内に過熱媒体21を供給する通路はその途中に流量調節弁V11を設けており、過熱器13内に供給する過熱媒体21の供給量は流量調節弁V11により調節される。
(Superheater)
The superheater 13 superheats the saturated steam St1 generated by the boiler 12 to form superheated steam St2. The superheater 13 is a shell and tube heat exchanger (multi-tubular heat exchanger). The superheater 13 has the shell (body) side of the superheater 13 as the primary side, the superheat medium 21 is circulated through the body, and the tube (heat transfer tube) 23 side is the secondary side. Saturated steam St1, which is steam, is circulated. As the superheating medium 21, for example, high-temperature heat medium oil from the heat medium boiler, combustion gas discharged from the boiler 12, or the like is used. Moreover, when using the high pressure steam whose temperature is higher than the saturated steam St1 supplied from other boilers as the superheat medium 21, the superheater 13 superheats the heat transfer pipe 23 with the heat transfer pipe 23 side as the primary side. The medium 21 is circulated, and the saturated steam St1 is circulated in the body with the body side as the secondary side. That is, the high pressure side is circulated to the heat transfer tube 23 side. The passage for supplying the superheating medium 21 into the superheater 13 is provided with a flow rate adjusting valve V11 in the middle thereof, and the supply amount of the superheating medium 21 supplied into the superheater 13 is adjusted by the flow rate adjusting valve V11.

過熱器13は、胴体側に供給される過熱媒体21を熱源として用い、飽和蒸気配管L12から送気される飽和蒸気St1を伝熱管23内に流通させて、伝熱管23の内面(被過熱面)を蒸発面として飽和蒸気St1を過熱し、過熱蒸気St2を得る。   The superheater 13 uses the superheated medium 21 supplied to the fuselage side as a heat source, and circulates the saturated steam St1 fed from the saturated steam pipe L12 in the heat transfer pipe 23 so that the inner surface of the heat transfer pipe 23 (superheated surface). ) To evaporate the saturated steam St1 to obtain superheated steam St2.

過熱器13は蒸気排出配管L14と連結されている。蒸気排出配管L14は、過熱器13内の洗浄に用いる飽和蒸気St1を排出するためのラインである。蒸気排出配管L14はその途中に排出弁24を設けている。また、蒸気排出配管L14は、後述するように、過熱蒸気配管L13を通る飽和蒸気St1を排出する洗浄媒体排出配管L15と連結されている。なお、本実施形態においては、蒸気排出配管L14は洗浄媒体排出配管L15と連結されているが、蒸気排出配管L14は洗浄媒体排出配管L15と連結せず、蒸気排出配管L14内を通る飽和蒸気St1をそのまま排出してもよい。   The superheater 13 is connected to the steam discharge pipe L14. The steam discharge pipe L <b> 14 is a line for discharging the saturated steam St <b> 1 used for cleaning the superheater 13. The steam discharge pipe L14 is provided with a discharge valve 24 in the middle thereof. Further, as will be described later, the steam discharge pipe L14 is connected to a cleaning medium discharge pipe L15 that discharges the saturated steam St1 passing through the superheated steam pipe L13. In the present embodiment, the steam discharge pipe L14 is connected to the cleaning medium discharge pipe L15, but the steam discharge pipe L14 is not connected to the cleaning medium discharge pipe L15, and the saturated steam St1 passing through the steam discharge pipe L14. May be discharged as it is.

過熱器13は、制御装置14によって加熱量が制御される。過熱器13における加熱量は、過熱器13内を通過する飽和蒸気St1に付与される熱量に相当する。過熱器13における加熱量は、制御装置14が過熱器13内に供給される過熱媒体21の供給量(流量)、温度などを調節することで増減することができる。過熱器13における加熱量が大きくなるほど、飽和蒸気St1に付与する熱量が大きくなるため、過熱蒸気St2の過熱度は高くなる。   The heating amount of the superheater 13 is controlled by the control device 14. The amount of heating in the superheater 13 corresponds to the amount of heat given to the saturated steam St1 passing through the superheater 13. The amount of heating in the superheater 13 can be increased or decreased by adjusting the supply amount (flow rate), temperature, and the like of the superheating medium 21 supplied into the superheater 13 by the control device 14. As the amount of heating in the superheater 13 increases, the amount of heat imparted to the saturated steam St1 increases, so the degree of superheat of the superheated steam St2 increases.

(センサ等)
本実施形態に係る蒸気過熱システム10は、ボイラ12、蒸気供給経路L11などに種々のセンサなどを含んでいる。これらのセンサは、制御装置14と電気的に接続されている。本実施形態に係る蒸気過熱システム10は、蒸気供給経路L11に、圧力センサ25、蒸気温度センサ26を有し、ボイラ12の内部に、濃縮度センサ(濃縮度検出手段)27、缶体内用圧力センサ(圧力検出手段)28を有している。
(Sensor etc.)
The steam superheating system 10 according to the present embodiment includes various sensors in the boiler 12, the steam supply path L11, and the like. These sensors are electrically connected to the control device 14. The steam superheating system 10 according to the present embodiment includes a pressure sensor 25 and a steam temperature sensor 26 in the steam supply path L11, and a concentration sensor (concentration detection means) 27 and a pressure inside the can inside the boiler 12. A sensor (pressure detection means) 28 is provided.

圧力センサ25は、飽和蒸気配管L12に設けられ、飽和蒸気配管L12内の圧力を検出するものである。   The pressure sensor 25 is provided in the saturated steam pipe L12 and detects the pressure in the saturated steam pipe L12.

蒸気温度センサ26は、過熱蒸気配管L13に設けられ、過熱蒸気配管L13内を通る過熱蒸気St2の温度を検出するものである。   The steam temperature sensor 26 is provided in the superheated steam pipe L13 and detects the temperature of the superheated steam St2 passing through the superheated steam pipe L13.

濃縮度センサ27は、ボイラ12に設けられ、ボイラ12の缶体内の缶水の濃縮倍数(濃縮度)を検出するものである。なお、缶水の濃縮度とは、ボイラ12を所定時間運転したときの缶水中の不純物が濃縮される割合をいう。濃縮度センサ27は、例えば、缶水の電気伝導度(1/缶水の電気抵抗)[mS/m(ミリジーメンス毎メートル)]を検出する。ボイラ12内の缶水は、缶水の濃縮度が高くなるほどイオン分が多くなり電気を通し易くなるため、電気伝導度が大きくなる。濃縮度センサ27は、この原理を利用してボイラ12内の缶水の濃縮度を検出する。   The concentration sensor 27 is provided in the boiler 12 and detects the concentration multiple (concentration) of the can water in the boiler body of the boiler 12. In addition, the concentration of can water means the ratio by which the impurities in the can water are concentrated when the boiler 12 is operated for a predetermined time. The concentration sensor 27 detects, for example, electric conductivity of can water (1 / electric resistance of can water) [mS / m (milli Siemens per meter)]. Since the can water in the boiler 12 has higher ion content and becomes easier to conduct electricity as the concentration of the can water increases, the electric conductivity increases. The concentration sensor 27 detects the concentration of the can water in the boiler 12 using this principle.

缶体内用圧力センサ28は、ボイラ12の缶体に設けられ、ボイラ12の缶体の内部の圧力を測定するものである。   The can body pressure sensor 28 is provided in the boiler body of the boiler 12 and measures the pressure inside the boiler body of the boiler 12.

圧力センサ25、蒸気温度センサ26、濃縮度センサ27および缶体内用圧力センサ28は、それぞれ検出結果に対応した電気信号を制御装置14に送信する。   The pressure sensor 25, the vapor temperature sensor 26, the concentration sensor 27, and the can body pressure sensor 28 each transmit an electrical signal corresponding to the detection result to the control device 14.

本実施形態に係る蒸気過熱システム10は、過熱蒸気配管L13に三方弁29を設けている。三方弁29は、洗浄媒体排出配管L15と連結されている。三方弁29は、制御装置14により制御され、過熱蒸気配管L13内を通る過熱蒸気St2を蒸気使用機器11に送気するか、後述するように、飽和蒸気St1を洗浄媒体排出配管L15を通して排出するように蒸気の流路を切替える。   The steam superheating system 10 according to the present embodiment is provided with a three-way valve 29 in the superheated steam pipe L13. The three-way valve 29 is connected to the cleaning medium discharge pipe L15. The three-way valve 29 is controlled by the control device 14, and sends superheated steam St2 passing through the superheated steam pipe L13 to the steam using device 11, or discharges saturated steam St1 through the cleaning medium discharge pipe L15 as described later. Switch the steam flow path.

(制御装置)
制御装置14は、本実施形態に係る蒸気過熱システム10の各部を制御するものである。制御装置14は、例えば、圧力センサ25、蒸気温度センサ26、濃縮度センサ27、缶体内用圧力センサ28などの本実施形態に係る蒸気過熱システム10の各所に取り付けられた種々のセンサが電気的に接続され、検出結果に対応した電気信号が入力される。また、制御装置14は、各種センサから入力された各種入力信号に基づいて、過熱器13などの各部に制御信号を出力し、これらを制御する。また、制御装置14は、ボイラ12、過熱器13などの運転時間を計測する計測器(運転計測手段)30を有する。
(Control device)
The control device 14 controls each part of the steam superheating system 10 according to the present embodiment. The control device 14 includes, for example, various sensors attached to various portions of the steam superheating system 10 according to the present embodiment, such as a pressure sensor 25, a steam temperature sensor 26, a concentration sensor 27, and a can body pressure sensor 28. And an electrical signal corresponding to the detection result is input. Moreover, the control apparatus 14 outputs a control signal to each part, such as the superheater 13, based on the various input signals input from various sensors, and controls these. Moreover, the control apparatus 14 has the measuring device (operation measurement means) 30 which measures operation time, such as the boiler 12 and the superheater 13. FIG.

ところで、過熱器13に送気される飽和蒸気St1の乾き度は、一般的に99.5%程度であるため、飽和蒸気St1はいくらかの水を含んでおり、ある程度の湿りを持っている。また、ボイラ12には、通常、軟水器によりカルシウム、マグネシウムなどの硬度分を除去した軟水が供給されていることから、ボイラ12に供給される水(以下、ボイラ12への給水という。)にはナトリウムイオン、塩化物イオンなどが存在している(以下、これを「不純物」と称する。)。なお、ボイラ12への給水中に含まれるナトリウムイオンは、軟水器で除去されるカルシウム、マグネシウムなどの陽イオンに対して給水中に放出されるものである。軟水器は陽イオン交換樹脂のみで構成されている。ボイラ12への給水用として用いられる水(以下、原水という。)を軟水器に通水すると、陽イオン交換樹脂は通水中のカルシウムイオン、マグネシウムイオンなどの陽イオンを取り込む。そして、陽イオン交換樹脂は取り込んだ陽イオンの代わりにナトリウムイオンを通水中に排出する。缶水に含まれるこうした不純物が飽和蒸気St1に含まれると、飽和蒸気St1に同伴してボイラ12から排出されて過熱器13に供給される。ある程度の湿りを持つ飽和蒸気St1を過熱器13で過熱すると、伝熱管23の蒸発面側には塩化ナトリウムなどが結晶化して蒸発残渣として付着する。   By the way, since the dryness of the saturated steam St1 sent to the superheater 13 is generally about 99.5%, the saturated steam St1 contains some water and has some moisture. Moreover, since the soft water from which hardness, such as calcium and magnesium, was normally removed by the water softener is supplied to the boiler 12, the water supplied to the boiler 12 (hereinafter referred to as water supply to the boiler 12). Contains sodium ions, chloride ions and the like (hereinafter referred to as “impurities”). In addition, the sodium ion contained in the water supply to the boiler 12 is discharge | released in water supply with respect to cations, such as calcium and magnesium removed by a water softener. The water softener is composed only of cation exchange resin. When water used for water supply to the boiler 12 (hereinafter referred to as raw water) is passed through a water softener, the cation exchange resin takes in cations such as calcium ions and magnesium ions in the water. Then, the cation exchange resin discharges sodium ions into the water instead of the incorporated cations. When such impurities contained in the can water are contained in the saturated steam St1, they are discharged from the boiler 12 along with the saturated steam St1 and supplied to the superheater 13. When the saturated steam St1 having a certain degree of wetness is heated by the superheater 13, sodium chloride or the like is crystallized on the evaporation surface side of the heat transfer tube 23 and adheres as an evaporation residue.

伝熱管23の内面に蒸発残渣が付着すると、過熱器13は飽和蒸気St1を過熱する熱源から伝熱管23内を通る飽和蒸気St1への伝熱量が低下し、飽和蒸気St1を安定して過熱することができない可能性がある。そこで、制御装置14は、過熱器13への過熱媒体21の供給を停止して過熱器13の運転を停止している時に、伝熱管23に洗浄媒体を供給する。   When the evaporation residue adheres to the inner surface of the heat transfer tube 23, the superheater 13 reduces the amount of heat transfer from the heat source that superheats the saturated steam St1 to the saturated steam St1 that passes through the heat transfer tube 23, and stably heats the saturated steam St1. It may not be possible. Therefore, the control device 14 supplies the cleaning medium to the heat transfer tube 23 when the supply of the superheater 21 to the superheater 13 is stopped and the operation of the superheater 13 is stopped.

制御装置14は、飽和蒸気St1の乾き度を推定して、推定された飽和蒸気St1の乾き度の値を用いてボイラ12から排出される飽和蒸気St1に含まれる不純物に起因して生じる蒸発残渣の発生量を算出し、蒸発残渣の発生量に応じて洗浄媒体を過熱器13内に供給してもよい。また、制御装置14は、飽和蒸気St1の乾き度を推定せず、ボイラ12または過熱器13の運転時間に応じて洗浄媒体を過熱器13内に供給してもよい。   The control device 14 estimates the dryness of the saturated steam St1, and uses the estimated dryness value of the saturated steam St1, and uses the estimated value of the dryness of the saturated steam St1 to cause evaporation residue caused by impurities contained in the saturated steam St1. May be calculated, and the cleaning medium may be supplied into the superheater 13 in accordance with the amount of evaporation residue generated. Further, the control device 14 may supply the cleaning medium into the superheater 13 according to the operation time of the boiler 12 or the superheater 13 without estimating the dryness of the saturated steam St1.

ボイラ12は、運転時間が長くなると、蒸発を繰り返すことで缶水中の不純物の濃度が高くなり、缶体内の缶水の泡立ちが大きくなる傾向にある。ボイラ12は、缶水の泡立ちが大きくなると、缶水の一部が蒸気に混入する、いわゆるキャリーオーバーと呼ばれる現象が起こり、飽和蒸気St1の乾き度は低下する。このため、ボイラ12は、缶水の濃縮度が許容値を超えた場合、運転時間が設定時間を超えた場合などに、ボイラ12の運転終了時にボイラ12内の缶水を全て排出する全ブローを行い、全ての缶水を新水に入れ替え、飽和蒸気St1の乾き度を許容される範囲内に保つようにする。また、一般的には、ボイラ12の運転中は、缶水の濃縮度が許容値以下で維持されるよう、ボイラ12の運転を行いながら、缶水の一部を排出し、新水と入れ替える濃縮ブロー(間欠ブロー)操作を自動で行い、飽和蒸気St1の乾き度を許容される範囲内に保つようにしている。   As the operation time of the boiler 12 becomes longer, the concentration of impurities in the can water increases due to repeated evaporation, and the bubbling of the can water in the can tends to increase. In the boiler 12, when the foaming of the can water increases, a phenomenon called so-called carry-over occurs in which part of the can water is mixed into the steam, and the dryness of the saturated steam St1 is reduced. For this reason, the boiler 12 discharges all the can water in the boiler 12 when the operation of the boiler 12 is finished, for example, when the concentration of the can water exceeds the allowable value or the operation time exceeds the set time. Then, all the can water is replaced with fresh water, and the dryness of the saturated steam St1 is kept within an allowable range. In general, during operation of the boiler 12, a portion of the can water is discharged and replaced with fresh water while the boiler 12 is operated so that the concentration of the can water is maintained at or below an allowable value. Concentration blow (intermittent blow) operation is automatically performed to keep the dryness of the saturated steam St1 within an allowable range.

ボイラ12の運転時間が長くなると缶水の濃縮が進み、飽和蒸気St1の乾き度は低くなるが、同じ濃縮度まで缶水が濃縮する場合のボイラ12の運転時間は、ボイラ12への給水の水質によって変わる。原水がマグネシウム、カルシウムなどの硬度分を多く含む、例えば地下水のような水、原水が塩化物イオンを多く含む水などである場合は、初期の給水に含まれる不純物の量が多くなる(電気伝導度が高くなる)。そのため、ボイラ12の運転時間が短くても缶水の濃縮が進み、飽和蒸気St1の乾き度が低下する。よって、ボイラ12への給水の水質(電気伝導度)は、飽和蒸気St1の乾き度を推定するために予め検査し取得して把握しておくか、濃縮度センサ27などを用いて計測する必要がある。なお、ボイラ12の運転時間は、典型的には、前回の全ブローからの総運転時間を用いればよい。この場合、ボイラ12の運転時間は、例えば、100%負荷で1時間作動させた場合を1時間とし、50%負荷で1時間作動させた場合を0.5時間とし、前回の全ブローからの時間を積算していけばよい。   When the operation time of the boiler 12 becomes longer, the concentration of the can water proceeds and the dryness of the saturated steam St1 decreases. However, the operation time of the boiler 12 when the can water is concentrated to the same concentration, the water supply to the boiler 12 It depends on the water quality. When the raw water contains a large amount of hardness such as magnesium and calcium, for example, water such as ground water, and the raw water contains water containing a large amount of chloride ions, the amount of impurities contained in the initial water supply increases (electric conduction) Higher degree). Therefore, even if the operation time of the boiler 12 is short, the concentration of the can water proceeds and the dryness of the saturated steam St1 decreases. Therefore, the water quality (electrical conductivity) of water supplied to the boiler 12 needs to be inspected and acquired in advance in order to estimate the dryness of the saturated steam St1, or measured using the concentration sensor 27 or the like. There is. In addition, what is necessary is just to use the total operation time from the last all blows typically as the operation time of the boiler 12. In this case, the operation time of the boiler 12 is, for example, 1 hour when operated at 100% load for 1 hour, 0.5 hour when operated at 50% load for 1 hour, Just add up the time.

このように、飽和蒸気St1の乾き度は、ボイラ12の内部の缶水の濃縮度が高いほど、低くなる傾向にある。特に、飽和蒸気St1の乾き度は、ボイラ12の運転時間が長いほどボイラ12の内部の缶水の濃縮度が高くなるため、低くなる傾向にある。そのため、飽和蒸気St1の乾き度は、ボイラ12への給水の水質とボイラ12の運転時間、または濃縮度センサ27で検出された缶水の濃縮度を用いて求められる。また、ボイラ12の運転時間は、制御装置14の計測器30によって計測されるボイラ12の運転時間を用いることができる。   Thus, the dryness of the saturated steam St1 tends to be lower as the concentration of the can water inside the boiler 12 is higher. In particular, the degree of dryness of the saturated steam St1 tends to decrease because the concentration of the can water inside the boiler 12 increases as the operating time of the boiler 12 increases. Therefore, the dryness of the saturated steam St1 is obtained using the quality of water supplied to the boiler 12 and the operation time of the boiler 12 or the concentration of can water detected by the concentration sensor 27. Moreover, the operation time of the boiler 12 measured with the measuring device 30 of the control apparatus 14 can be used for the operation time of the boiler 12. FIG.

そこで、一例として、制御装置14が、ボイラ12への給水の水質とボイラ12の運転時間とから飽和蒸気St1の乾き度を推定して、推定された飽和蒸気St1の乾き度を用いて伝熱管23の内面に付着した蒸発残渣の発生量を算出する場合について説明する。   Therefore, as an example, the control device 14 estimates the dryness of the saturated steam St1 from the quality of the water supplied to the boiler 12 and the operation time of the boiler 12, and uses the estimated dryness of the saturated steam St1 to heat transfer tubes. A case where the amount of evaporation residue generated on the inner surface of 23 is calculated will be described.

制御装置14は、ボイラ12への給水の水質とボイラ12の運転時間とを、飽和蒸気St1の乾き度のパラメータとして用い、ボイラ12への給水の水質とボイラ12の運転時間とから缶体内の缶水の濃縮度を求める。制御装置14は、ボイラ12を作動させた際の負荷を考慮しつつボイラ12の運転時間を求める。そして、制御装置14は、ボイラ12への給水の水質と、得られた缶水の濃縮度とから飽和蒸気St1の乾き度を推定する。   The control device 14 uses the water quality of the water supplied to the boiler 12 and the operation time of the boiler 12 as parameters of the dryness of the saturated steam St1, and from the water quality of the water supplied to the boiler 12 and the operation time of the boiler 12 Obtain the concentration of canned water. The control device 14 obtains the operation time of the boiler 12 in consideration of the load when the boiler 12 is operated. And the control apparatus 14 estimates the dryness of saturated steam St1 from the quality of the water supply to the boiler 12, and the concentration of the obtained can water.

制御装置14は、ボイラ12への給水の水質と、上記のようにボイラ12の運転時間から推定される缶水の濃縮度と、これらから推定される飽和蒸気St1の乾き度との相関を示す情報をマップにして記憶している。制御装置14は、予め記憶しているマップを用いて、ボイラ12への給水の水質と、ボイラ12の運転時間から推定される缶水の濃縮度とから、飽和蒸気St1の乾き度を推定する。   The control device 14 shows the correlation between the quality of the water supplied to the boiler 12, the concentration of the can water estimated from the operation time of the boiler 12 as described above, and the dryness of the saturated steam St1 estimated from these. Information is stored as a map. The control device 14 estimates the dryness of the saturated steam St1 from the quality of the water supplied to the boiler 12 and the concentration of the can water estimated from the operation time of the boiler 12, using a map stored in advance. .

このようにして算出された飽和蒸気St1中の水の割合と、算出された飽和蒸気St1中の水分に含まれる不純物の濃度とから、制御装置14は、伝熱管23の内面に付着した蒸発残渣の発生量を算出することができる。   Based on the ratio of the water in the saturated steam St1 thus calculated and the concentration of impurities contained in the moisture in the saturated steam St1 calculated as described above, the control device 14 uses the evaporation residue attached to the inner surface of the heat transfer tube 23. The generation amount of can be calculated.

さらに、飽和蒸気St1の乾き度を精度良く推定する方法として、濃縮度センサ27で実際に検出された缶水の濃縮度を用いてもよい。次に、制御装置14が、濃縮度センサ27で実際に検出された缶水の濃縮度から飽和蒸気St1の乾き度を推定して、推定された飽和蒸気St1の乾き度を用いて伝熱管23の内面に付着した蒸発残渣の発生量を算出する場合について説明する。   Further, as a method for accurately estimating the dryness of the saturated steam St1, the concentration of the can water actually detected by the concentration sensor 27 may be used. Next, the control device 14 estimates the dryness of the saturated steam St1 from the concentration of the can water actually detected by the enrichment sensor 27, and uses the estimated dryness of the saturated steam St1 to use the heat transfer tube 23. The case where the generation amount of the evaporation residue adhering to the inner surface is calculated will be described.

制御装置14は、上述のように、缶水の濃縮度と、缶水の濃縮度から推定される飽和蒸気St1の乾き度との相関を示す情報をマップにして記憶している。制御装置14は、このマップを用いて、濃縮度センサ27で検出された缶水の濃縮度から、ボイラ12で発生した飽和蒸気St1の乾き度を推定する。制御装置14は、飽和蒸気St1の乾き度を推定した後、上述と同様にして、飽和蒸気St1の乾き度と、ボイラ12の運転時間から得られる缶水の蒸発量とから、過熱器13の伝熱管23の内面に付着した蒸発残渣の発生量を算出することができる。   As described above, the control device 14 stores, as a map, information indicating the correlation between the concentration of the can water and the dryness of the saturated steam St1 estimated from the concentration of the can water. The controller 14 uses this map to estimate the dryness of the saturated steam St1 generated in the boiler 12 from the enrichment of the can water detected by the enrichment sensor 27. After estimating the dryness of the saturated steam St1, the controller 14 determines the degree of dryness of the superheater 13 from the dryness of the saturated steam St1 and the amount of evaporation of can water obtained from the operation time of the boiler 12 in the same manner as described above. The amount of evaporation residue attached to the inner surface of the heat transfer tube 23 can be calculated.

また、飽和蒸気St1の乾き度は、ボイラ12の缶体内の圧力により缶体内の沸騰状況が変わるため、ボイラ12の缶体内の圧力が低く、かつ燃焼負荷が高いほど、低くなる傾向にある。そのため、制御装置14は、飽和蒸気St1の乾き度を推定する際、さらに飽和蒸気St1の乾き度の推定の精度を上げるために、飽和蒸気St1の乾き度のパラメータとして、ボイラ12の缶水の濃縮度のほかに、ボイラ12の缶体内の圧力、ボイラ12の燃焼量なども用いて推定してもよい。なお、このとき、ボイラ12の運転時間はボイラ12の燃焼量の検出結果などに基づいて算出してもよい。   Further, the degree of dryness of the saturated steam St <b> 1 tends to decrease as the pressure in the boiler body of the boiler 12 decreases and the combustion load increases because the boiling state of the boiler body changes depending on the pressure in the boiler body of the boiler 12. Therefore, when estimating the dryness of the saturated steam St1, the control device 14 further increases the accuracy of the estimation of the dryness of the saturated steam St1, as a parameter of the dryness of the saturated steam St1, the boiler water of the boiler 12 In addition to the degree of enrichment, the pressure in the boiler of the boiler 12, the combustion amount of the boiler 12, etc. may be used for estimation. At this time, the operation time of the boiler 12 may be calculated based on the detection result of the combustion amount of the boiler 12 or the like.

制御装置14は、上記のように算出された蒸発残渣の発生量に応じて、過熱器13の伝熱管23の被過熱面である内面の洗浄を行うように流量調節弁V11等を制御する。なお、本実施形態においては、洗浄媒体として飽和蒸気St1を用いる。具体的には、制御装置14は、蒸発残渣の発生量が所定の設定値を超えたと判断した場合、それ以降で蒸気使用機器11の運転が停止したときまたは蒸気使用機器11が過熱蒸気St2を使用しなくなったとき、流量調節弁V11を閉じて過熱器13への過熱媒体21の供給を停止する。つぎに、制御装置14は、三方弁29を操作して過熱器13から送気される飽和蒸気St1が洗浄媒体排出配管L15へ流れる方向に流路を切替えると共に、蒸気排出配管L14に設けた排出弁24を開く。ボイラ12から伝熱管23内に送気された飽和蒸気St1は、過熱器13の伝熱管23の内面に付着している蒸発残渣を溶かしつつ流れる。過熱器13から過熱蒸気配管L13に排出された飽和蒸気St1は洗浄媒体排出配管L15を通って外部に排出される。また、過熱器13内の飽和蒸気St1の一部は蒸気排出配管L14および洗浄媒体排出配管L15を通って過熱器13から外部に排出される。過熱器13の伝熱管23の内面の洗浄は、所定時間行う。所定時間は、伝熱管23の内面に付着した蒸発残渣の発生量に基づき予め設定しておく。所定時間が経過した後、制御装置14は排出弁24を閉止すると共に、三方弁29を操作して飽和蒸気St1がボイラ12から蒸気使用機器11へ流れる方向に流路を切替える。その後、制御装置14は流量調節弁V11を開いて、過熱器13への過熱媒体21の供給を開始し、過熱器13は飽和蒸気St1がボイラ12から送気されるのに備える。   The control device 14 controls the flow rate control valve V11 and the like so as to clean the inner surface, which is the superheated surface of the heat transfer tube 23 of the superheater 13, according to the amount of evaporation residue calculated as described above. In the present embodiment, saturated steam St1 is used as the cleaning medium. Specifically, when the controller 14 determines that the amount of evaporation residue generated exceeds a predetermined set value, the operation of the steam using device 11 is stopped thereafter, or the steam using device 11 generates the superheated steam St2. When it is no longer used, the flow control valve V11 is closed and the supply of the superheat medium 21 to the superheater 13 is stopped. Next, the control device 14 operates the three-way valve 29 to switch the flow path in the direction in which the saturated steam St1 fed from the superheater 13 flows to the cleaning medium discharge pipe L15, and the discharge provided in the steam discharge pipe L14. Open the valve 24. The saturated steam St1 sent from the boiler 12 into the heat transfer tube 23 flows while dissolving the evaporation residue adhering to the inner surface of the heat transfer tube 23 of the superheater 13. The saturated steam St1 discharged from the superheater 13 to the superheated steam pipe L13 is discharged to the outside through the cleaning medium discharge pipe L15. A part of the saturated steam St1 in the superheater 13 is discharged from the superheater 13 through the steam discharge pipe L14 and the cleaning medium discharge pipe L15. Cleaning of the inner surface of the heat transfer tube 23 of the superheater 13 is performed for a predetermined time. The predetermined time is set in advance based on the amount of evaporation residue generated on the inner surface of the heat transfer tube 23. After the predetermined time has elapsed, the control device 14 closes the discharge valve 24 and operates the three-way valve 29 to switch the flow path in the direction in which the saturated steam St1 flows from the boiler 12 to the steam using device 11. Thereafter, the control device 14 opens the flow rate control valve V11 and starts supplying the superheating medium 21 to the superheater 13, and the superheater 13 prepares for the saturated steam St1 to be supplied from the boiler 12.

伝熱管23の内面の洗浄は、ボイラ12の運転開始時または蒸気使用機器11の運転開始時に行ってもよい。制御装置14は、伝熱管23の内面に付着した蒸発残渣の発生量が所定の設定値を超えたと判断した場合、その次のボイラ12の運転開始時または蒸気使用機器11の運転開始時に伝熱管23の内面の洗浄を行うようにすればよい。   The inner surface of the heat transfer tube 23 may be cleaned when the boiler 12 starts operating or when the steam using device 11 starts operating. When the controller 14 determines that the amount of evaporation residue generated on the inner surface of the heat transfer tube 23 exceeds a predetermined set value, the heat transfer tube at the start of the operation of the next boiler 12 or the operation of the steam using device 11. What is necessary is just to wash | clean the inner surface of 23. FIG.

なお、本実施形態では、伝熱管23の被過熱面が内面であるため、伝熱管23の内面を洗浄する場合について説明したが、過熱器13内の過熱媒体21と被過熱媒体である飽和蒸気St1との流路が逆の場合は、被過熱面は伝熱管23の外面となる。そのため、過熱媒体21と飽和蒸気St1との流路が逆の場合には、飽和蒸気St1は伝熱管23の外面側を流れるようにして伝熱管23の外面を洗浄するようにする。また、過熱器13の蒸気排出配管L14との連結箇所は、蒸発残渣を含んだ飽和蒸気St1を過熱器13内から抜き出しやすくするため、胴体の底面に設けるようにする。   In addition, in this embodiment, since the to-be-heated surface of the heat exchanger tube 23 is an inner surface, the case where the inner surface of the heat exchanger tube 23 was cleaned was demonstrated, However, The superheated medium 21 in the superheater 13 and the saturated steam which is a to-be-heated medium When the flow path to St1 is opposite, the superheated surface is the outer surface of the heat transfer tube 23. Therefore, when the flow path of the superheating medium 21 and the saturated steam St1 is reversed, the saturated steam St1 flows on the outer surface side of the heat transfer tube 23 so as to clean the outer surface of the heat transfer tube 23. In addition, the connection portion of the superheater 13 with the steam discharge pipe L14 is provided on the bottom surface of the trunk so that the saturated steam St1 including evaporation residue can be easily extracted from the superheater 13.

また、ボイラ12への給水の水質を予め求め、ボイラ12への給水の水質に基づいて許容される缶水の濃縮度の最大値が所定の閾値として設定される場合には、制御装置14は、濃縮度センサ27で検出される缶水の濃縮度が所定の閾値を超えているか否かのみを検出するようにしてもよい。制御装置14は、濃縮度センサ27で検出された缶水の濃縮度が所定の閾値を超えたと判断した場合には、過熱器13への過熱媒体21の供給を停止して過熱器13の運転を停止し、洗浄媒体として飽和蒸気St1を過熱器13内に供給し、伝熱管23の内面を洗浄する。   In addition, when the quality of the water supplied to the boiler 12 is obtained in advance, and the maximum value of the concentration of can water allowed based on the quality of the water supplied to the boiler 12 is set as a predetermined threshold, the control device 14 Alternatively, it may be detected only whether or not the concentration of the can water detected by the concentration sensor 27 exceeds a predetermined threshold value. When the controller 14 determines that the concentration of the can water detected by the concentration sensor 27 exceeds a predetermined threshold, the controller 14 stops the supply of the superheat medium 21 to the superheater 13 and operates the superheater 13. Is stopped, saturated steam St1 is supplied into the superheater 13 as a cleaning medium, and the inner surface of the heat transfer tube 23 is cleaned.

ここまでは、制御装置14が、飽和蒸気St1の乾き度を推定し、この推定された飽和蒸気St1の乾き度を用いて伝熱管23の内面に付着した蒸発残渣の発生量を算出する場合について説明したが、制御装置14は、飽和蒸気St1の乾き度を推定せず、ボイラ12または過熱器13の運転時間に応じて、過熱器13への過熱媒体21の供給を停止して洗浄媒体として飽和蒸気St1を過熱器13内に供給するようにしてもよい。具体的には、制御装置14は、ボイラ12または過熱器13の運転時間が所定の設定時間を経過した後、過熱器13への過熱媒体21の供給を停止し、過熱器13内に、洗浄媒体として飽和蒸気St1を送気する。これにより、伝熱管23の内面に付着した蒸発残渣は飽和蒸気St1中の水分に溶解され、伝熱管23の内面が洗浄される。   Up to this point, the control device 14 estimates the dryness of the saturated steam St1, and uses the estimated dryness of the saturated steam St1 to calculate the generation amount of evaporation residue attached to the inner surface of the heat transfer tube 23. Although demonstrated, the control apparatus 14 does not estimate the dryness of saturated steam St1, and stops supply of the superheat medium 21 to the superheater 13 according to the operation time of the boiler 12 or the superheater 13, and serves as a cleaning medium. The saturated steam St1 may be supplied into the superheater 13. Specifically, the control device 14 stops the supply of the superheating medium 21 to the superheater 13 after the operation time of the boiler 12 or the superheater 13 has passed a predetermined set time, and performs cleaning in the superheater 13. Saturated steam St1 is supplied as a medium. Thereby, the evaporation residue adhering to the inner surface of the heat transfer tube 23 is dissolved in moisture in the saturated steam St1, and the inner surface of the heat transfer tube 23 is cleaned.

所定の設定時間とは、過熱器13内に洗浄媒体として飽和蒸気St1を供給して伝熱管23の内面を洗浄してから、過熱器13で飽和蒸気St1を過熱している運転時間が所定の時間を経過するまでである。このとき、伝熱管23内に洗浄媒体を供給するタイミングは、過熱器13に過熱媒体21を供給して過熱器13の運転を開始する前で過熱器13で飽和蒸気St1を過熱する前とする。   The predetermined set time is a period of time during which the saturated steam St1 is superheated by the superheater 13 after supplying the saturated steam St1 as a cleaning medium into the superheater 13 to clean the inner surface of the heat transfer tube 23. Until time passes. At this time, the timing at which the cleaning medium is supplied into the heat transfer tube 23 is before the superheater 13 is superheated with the superheater 13 before the superheater 13 is supplied and the operation of the superheater 13 is started. .

このように、本実施形態に係る蒸気過熱システム10は、過熱器13への過熱媒体21の供給を停止しているときに、洗浄媒体として飽和蒸気St1を伝熱管23内に供給し、伝熱管23の内面に付着した蒸発残渣を除去して伝熱管23の内面の洗浄を行なうものである。これにより、本実施形態に係る蒸気過熱システム10は、飽和蒸気St1を過熱器13で過熱する際の飽和蒸気St1への伝熱効率が低下するのを抑制し、飽和蒸気St1を安定して過熱することができる。   As described above, the steam superheating system 10 according to the present embodiment supplies the saturated steam St1 as the cleaning medium into the heat transfer pipe 23 when the supply of the superheat medium 21 to the superheater 13 is stopped, and the heat transfer pipe The evaporation residue adhering to the inner surface of the heat transfer tube 23 is removed to clean the inner surface of the heat transfer tube 23. Thereby, the steam superheating system 10 which concerns on this embodiment suppresses that the heat transfer efficiency to saturated steam St1 at the time of superheating saturated steam St1 with the superheater 13 suppresses, and superheats saturated steam St1 stably. be able to.

なお、本発明は、上記実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において、種々の変更をすることが可能である。例えば、本実施形態に係る蒸気過熱システム10では、洗浄媒体として、ボイラ12で発生した飽和蒸気St1を用いる場合について説明したが、洗浄媒体は、飽和蒸気St1に限定されるものではない。洗浄媒体は、飽和蒸気St1以外に、例えば外部から送気される蒸気なども同様に用いることができる。   In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the meaning of invention. For example, in the steam superheating system 10 according to the present embodiment, the case where the saturated steam St1 generated in the boiler 12 is used as the cleaning medium has been described, but the cleaning medium is not limited to the saturated steam St1. As the cleaning medium, in addition to the saturated steam St1, for example, steam sent from the outside can be used as well.

また、本実施形態においては、1つのボイラ12で発生させた飽和蒸気St1を飽和蒸気配管L12を介して過熱器13に送気するようにしているが、これに限定されるものではなく、複数のボイラ12で発生させた飽和蒸気St1を過熱器13に送気するようにしてもよい。   In the present embodiment, the saturated steam St1 generated in one boiler 12 is supplied to the superheater 13 via the saturated steam pipe L12. However, the present invention is not limited to this. The saturated steam St1 generated in the boiler 12 may be supplied to the superheater 13.

[第2の実施形態]
本発明の第2の実施形態に係る蒸気過熱システムについて説明する。本実施形態に係る蒸気過熱システムは、図1に示す第1の実施形態に係る蒸気過熱システム10で用いた洗浄媒体を、飽和蒸気St1から水に変更したこと以外は第1の実施形態に係る蒸気過熱システムと同様であるため、重複した説明は省略する。
[Second Embodiment]
A steam superheating system according to a second embodiment of the present invention will be described. The steam superheating system according to this embodiment relates to the first embodiment except that the cleaning medium used in the steam superheating system 10 according to the first embodiment shown in FIG. 1 is changed from saturated steam St1 to water. Since it is the same as that of a steam superheating system, the overlapping description is omitted.

図2は、本発明の第2の実施形態に係る蒸気過熱システムの概略構成を示す図である。なお、図2では、飽和蒸気St1を過熱器13で過熱している時および伝熱管23の内面を洗浄している時の飽和蒸気St1、過熱蒸気St2、過熱媒体21および洗浄媒体として用いる水を同時に示す。図2に示すように、本実施形態に係る蒸気過熱システム40は、上記第1の実施形態に係る蒸気過熱システム10(図1参照)に、三方弁41と、洗浄媒体供給配管L21とを備えたものである。三方弁41は、飽和蒸気配管L12に設けられ、洗浄媒体供給配管L21と接続されている。洗浄媒体供給配管L21は、外部から飽和蒸気配管L12に水42を供給するためのラインである。   FIG. 2 is a diagram showing a schematic configuration of a steam superheating system according to the second embodiment of the present invention. In FIG. 2, when the saturated steam St1 is superheated by the superheater 13 and when the inner surface of the heat transfer tube 23 is cleaned, the saturated steam St1, the superheated steam St2, the superheated medium 21 and water used as the cleaning medium are used. Show at the same time. As shown in FIG. 2, the steam superheating system 40 according to the present embodiment includes a three-way valve 41 and a cleaning medium supply pipe L21 in the steam superheating system 10 (see FIG. 1) according to the first embodiment. It is a thing. The three-way valve 41 is provided in the saturated steam pipe L12 and is connected to the cleaning medium supply pipe L21. The cleaning medium supply pipe L21 is a line for supplying water 42 to the saturated steam pipe L12 from the outside.

洗浄媒体として水42を用いる場合、水42としては、例えば、水道水、地下水などの水のほかに、ボイラ12へ給水する軟水、ボイラ12のブロー水、蒸留水、純水といった水を用いることができる。   When water 42 is used as the cleaning medium, for example, water such as tap water or ground water, soft water supplied to the boiler 12, blow water of the boiler 12, distilled water, or pure water is used as the water 42. Can do.

三方弁41は、制御装置14により制御される。制御装置14は三方弁41を操作して、飽和蒸気配管L12内を通る飽和蒸気St1または洗浄媒体供給配管L21から供給される水42を過熱器13に供給するように調節している。   The three-way valve 41 is controlled by the control device 14. The control device 14 operates the three-way valve 41 to adjust the saturated steam St1 passing through the saturated steam pipe L12 or the water 42 supplied from the cleaning medium supply pipe L21 to the superheater 13.

制御装置14は、蒸発残渣の発生量が所定の設定値を超えたと判断し、過熱器13の伝熱管23の内面の洗浄を行う場合、それ以降で蒸気使用機器11の運転が停止したときまたは蒸気使用機器11が過熱蒸気St2を使用しなくなったとき、流量調節弁V11を閉じて過熱器13への過熱媒体21の供給を停止する。つぎに、制御装置14は、三方弁29を操作して過熱器13から送気される飽和蒸気St1が洗浄媒体排出配管L15へ流れる方向に流路を切替えると共に、蒸気排出配管L14に設けた排出弁24を開く。その後、三方弁41を操作して洗浄媒体供給配管L21から供給される水42が過熱器13へ流れる方向に流路を切替える。洗浄媒体供給配管L21から供給される水42は、過熱器13の伝熱管23の内面に付着している蒸発残渣を溶かしつつ流れる。過熱器13から過熱蒸気配管L13に排出された水42は洗浄媒体排出配管L15を通って外部に排出される。また、過熱器13内の水42の一部は蒸気排出配管L14および洗浄媒体排出配管L15を通って過熱器13から外部に排出される。伝熱管23の内面の洗浄は、所定時間行う。所定時間が経過した後、制御装置14は、三方弁41を操作して飽和蒸気St1がボイラ12から過熱器13へ流れる方向に流路を切替える。そして、制御装置14は、排出弁24を閉止すると共に、三方弁29を操作して飽和蒸気St1がボイラ12から蒸気使用機器11へ流れる方向に流路を切替える。その後、制御装置14は流量調節弁V11を開いて過熱器13への過熱媒体21の供給を開始し、過熱器13は飽和蒸気St1がボイラ12から送気されるのに備える。   When the controller 14 determines that the amount of evaporation residue generated exceeds a predetermined set value and cleans the inner surface of the heat transfer tube 23 of the superheater 13, when the operation of the steam using device 11 stops thereafter, or When the steam using device 11 stops using the superheated steam St2, the flow control valve V11 is closed and the supply of the superheat medium 21 to the superheater 13 is stopped. Next, the control device 14 operates the three-way valve 29 to switch the flow path in the direction in which the saturated steam St1 fed from the superheater 13 flows to the cleaning medium discharge pipe L15, and the discharge provided in the steam discharge pipe L14. Open the valve 24. Thereafter, the three-way valve 41 is operated to switch the flow path in the direction in which the water 42 supplied from the cleaning medium supply pipe L21 flows to the superheater 13. The water 42 supplied from the cleaning medium supply pipe L21 flows while melting the evaporation residue adhering to the inner surface of the heat transfer tube 23 of the superheater 13. The water 42 discharged from the superheater 13 to the superheated steam pipe L13 is discharged to the outside through the cleaning medium discharge pipe L15. A part of the water 42 in the superheater 13 is discharged from the superheater 13 to the outside through the steam discharge pipe L14 and the cleaning medium discharge pipe L15. The inner surface of the heat transfer tube 23 is cleaned for a predetermined time. After the predetermined time has elapsed, the control device 14 operates the three-way valve 41 to switch the flow path in the direction in which the saturated steam St1 flows from the boiler 12 to the superheater 13. Then, the control device 14 closes the discharge valve 24 and operates the three-way valve 29 to switch the flow path in the direction in which the saturated steam St1 flows from the boiler 12 to the steam using device 11. Thereafter, the control device 14 opens the flow rate adjustment valve V11 and starts supplying the superheat medium 21 to the superheater 13, and the superheater 13 prepares for the saturated steam St1 to be supplied from the boiler 12.

なお、本実施形態では、伝熱管23の内面の洗浄を行う際、三方弁29を操作して流路を切替えた後、三方弁41を操作して流路を切替えるようにしているが、これに限定されるものではなく、三方弁29、41は同時に操作して流路を切替えるようにしてもよい。   In this embodiment, when the inner surface of the heat transfer tube 23 is cleaned, the flow path is switched by operating the three-way valve 29, and then the flow path is switched by operating the three-way valve 41. However, the three-way valves 29 and 41 may be operated simultaneously to switch the flow path.

また、伝熱管23の内面を洗浄した後、制御装置14は三方弁41を操作して飽和蒸気St1がボイラ12から過熱器13へ流れる方向に流路を切替えた後、三方弁29を操作して飽和蒸気St1の流路を切替える前に、所定時間、飽和蒸気St1を過熱器13に供給して、伝熱管23内に残る水42を除去することが好ましい。伝熱管23内に水42が残ったまま過熱器13に過熱媒体21を供給すると伝熱管23内の水42が蒸発して伝熱管23内に残った水42に含まれる不純物に起因して蒸発残渣が発生する可能性がある。そのため、伝熱管23内に水42を供給した後は飽和蒸気St1を伝熱管23内に送気して伝熱管23内に残留する水42を除去しておくようにする。また、飽和蒸気St1は洗浄媒体として用いることができるため、伝熱管23の内面に残留した蒸発残渣を除去することができる。なお、伝熱管23内に残る水42を除去する際には、飽和蒸気St1以外に空気などを用いてもよい。   Further, after cleaning the inner surface of the heat transfer tube 23, the control device 14 operates the three-way valve 41 to switch the flow path in the direction in which the saturated steam St 1 flows from the boiler 12 to the superheater 13, and then operates the three-way valve 29. Before switching the flow path of the saturated steam St1, it is preferable to supply the saturated steam St1 to the superheater 13 for a predetermined time to remove the water 42 remaining in the heat transfer tube 23. When the superheating medium 21 is supplied to the superheater 13 with the water 42 remaining in the heat transfer tube 23, the water 42 in the heat transfer tube 23 evaporates and evaporates due to impurities contained in the water 42 remaining in the heat transfer tube 23. Residues may be generated. Therefore, after supplying the water 42 into the heat transfer tube 23, the saturated steam St1 is sent into the heat transfer tube 23 to remove the water 42 remaining in the heat transfer tube 23. Further, since the saturated steam St1 can be used as a cleaning medium, the evaporation residue remaining on the inner surface of the heat transfer tube 23 can be removed. In addition, when removing the water 42 remaining in the heat transfer tube 23, air or the like may be used in addition to the saturated steam St1.

また、飽和蒸気St1も洗浄媒体として用いることができるため、飽和蒸気St1または水42のどちらか一方を過熱器13に供給した後、他方を過熱器13に供給して洗浄してもよい。   Moreover, since saturated steam St1 can also be used as a cleaning medium, after supplying either saturated steam St1 or water 42 to the superheater 13, the other may be supplied to the superheater 13 for cleaning.

このように、本実施形態に係る蒸気過熱システム40によれば、洗浄媒体として水42を用いる場合であっても、伝熱管23の内面に付着した蒸発残渣などを除去して伝熱管23の内面を洗浄することができる。このため、本実施形態に係る蒸気過熱システム40でも、第1の実施形態に係る蒸気過熱システム10と同様、飽和蒸気St1の過熱効率が低下するのを抑制し、飽和蒸気St1を安定して過熱することができる。   Thus, according to the steam superheating system 40 according to the present embodiment, even when water 42 is used as the cleaning medium, the evaporation residue attached to the inner surface of the heat transfer tube 23 is removed to remove the inner surface of the heat transfer tube 23. Can be washed. For this reason, also in the steam superheating system 40 according to the present embodiment, similarly to the steam superheating system 10 according to the first embodiment, the reduction of the superheating efficiency of the saturated steam St1 is suppressed, and the saturated steam St1 is stably heated. can do.

[第3の実施形態]
本発明の第3の実施形態に係る蒸気過熱システムについて説明する。本実施形態に係る蒸気過熱システムは、図1に示す第1の実施形態に係る蒸気過熱システムの過熱器を熱交換式の過熱器から電気式の過熱器に代えたこと以外は第1の実施形態に係る蒸気過熱システムと同様であるため、重複した説明は省略する。
[Third Embodiment]
A steam superheating system according to a third embodiment of the present invention will be described. The steam superheating system according to the present embodiment is the first embodiment except that the superheater of the steam superheating system according to the first embodiment shown in FIG. 1 is changed from a heat exchange type superheater to an electric superheater. Since it is the same as that of the steam superheating system which concerns on a form, the overlapping description is abbreviate | omitted.

図3は、本発明の第3の実施形態に係る蒸気過熱システムの概略構成を示す図である。なお、図3では、飽和蒸気St1を過熱器で過熱している時および過熱器内を洗浄している時の飽和蒸気St1と過熱蒸気St2とを同時に示す。図3に示すように、本実施形態に係る蒸気過熱システム50Aは、上記第1の実施形態に係る蒸気過熱システム10(図1参照)の構成の熱交換式の過熱器13に代えて電気式の過熱器51を備えたものである。過熱器51は、本体の内部に電気ヒータ52を含んでいる。この電気ヒータ52に電流を流した際に生じる熱が飽和蒸気St1を過熱して過熱蒸気St2とするための熱源として用いられている。電気ヒータ52の加熱量は電源53により調整される。この電源53は本体の外部に設けられており、制御装置14により制御される。制御装置14は、電源53の電圧を制御することで、過熱器51における加熱量を調節し、過熱蒸気St2の過熱度を所定の過熱度に調節することができる。なお、本実施形態においては、飽和蒸気St1を過熱するための過熱手段として、電気ヒータ52を用いているが、これに限定されるものではなく、例えば発熱コイル、電磁誘導により発熱する発熱体などを用いてもよい。   FIG. 3 is a diagram showing a schematic configuration of a steam superheating system according to the third embodiment of the present invention. FIG. 3 shows the saturated steam St1 and the superheated steam St2 simultaneously when the saturated steam St1 is superheated by the superheater and when the superheater is cleaned. As shown in FIG. 3, the steam superheating system 50A according to the present embodiment is an electric type instead of the heat exchange type superheater 13 having the configuration of the steam superheating system 10 (see FIG. 1) according to the first embodiment. The superheater 51 is provided. The superheater 51 includes an electric heater 52 inside the main body. Heat generated when an electric current is passed through the electric heater 52 is used as a heat source for heating the saturated steam St1 to superheated steam St2. The heating amount of the electric heater 52 is adjusted by the power source 53. The power supply 53 is provided outside the main body and is controlled by the control device 14. The control device 14 can adjust the amount of heating in the superheater 51 by controlling the voltage of the power supply 53, and can adjust the degree of superheat of the superheated steam St2 to a predetermined degree of superheat. In the present embodiment, the electric heater 52 is used as the heating means for heating the saturated steam St1, but the present invention is not limited to this. For example, a heating coil, a heating element that generates heat by electromagnetic induction, and the like. May be used.

制御装置14は、過熱器51内の電気ヒータ52の被過熱面である表面に付着した蒸発残渣の発生量が所定の設定値を超えたと判断し、電気ヒータ52の表面の洗浄を行う場合、それ以降で蒸気使用機器11の運転が停止したときまたは蒸気使用機器11が過熱蒸気St2を使用しなくなったとき、電気ヒータ52への通電を停止する。つぎに、制御装置14は、三方弁29を操作して過熱器51から送気される飽和蒸気St1が洗浄媒体排出配管L15へ流れる方向に流路を切替えると共に、蒸気排出配管L14に設けた排出弁24を開く。ボイラ12から過熱器51内に送気された飽和蒸気St1は、過熱器51の電気ヒータ52の表面に付着している蒸発残渣を溶かしつつ流れる。過熱器51から過熱蒸気配管L13に排出された飽和蒸気St1は洗浄媒体排出配管L15を通って外部に排出される。また、過熱器51内の飽和蒸気St1の一部は蒸気排出配管L14および洗浄媒体排出配管L15を通って過熱器51から外部に排出される。電気ヒータ52の表面の洗浄は、所定時間行う。所定時間が経過した後、制御装置14は排出弁24を閉止すると共に、三方弁29を操作して飽和蒸気St1がボイラ12から蒸気使用機器11へ流れる方向に流路を切替え、電気ヒータ52に通電し、過熱器51は飽和蒸気St1がボイラ12から送気されるのに備える。   When the controller 14 determines that the amount of evaporation residue adhering to the superheated surface of the electric heater 52 in the superheater 51 exceeds a predetermined set value, and cleaning the surface of the electric heater 52, Thereafter, when the operation of the steam using device 11 is stopped or when the steam using device 11 stops using the superheated steam St2, the energization to the electric heater 52 is stopped. Next, the control device 14 operates the three-way valve 29 to switch the flow path in the direction in which the saturated steam St1 sent from the superheater 51 flows to the cleaning medium discharge pipe L15, and the discharge provided in the steam discharge pipe L14. Open the valve 24. The saturated steam St <b> 1 sent from the boiler 12 into the superheater 51 flows while melting the evaporation residue adhering to the surface of the electric heater 52 of the superheater 51. The saturated steam St1 discharged from the superheater 51 to the superheated steam pipe L13 is discharged to the outside through the cleaning medium discharge pipe L15. A part of the saturated steam St1 in the superheater 51 is discharged from the superheater 51 to the outside through the steam discharge pipe L14 and the cleaning medium discharge pipe L15. The surface of the electric heater 52 is cleaned for a predetermined time. After a predetermined time has elapsed, the control device 14 closes the discharge valve 24 and operates the three-way valve 29 to switch the flow path in the direction in which the saturated steam St1 flows from the boiler 12 to the steam using device 11, The superheater 51 is energized to prepare for the saturated steam St1 being fed from the boiler 12.

電気ヒータ52の表面の洗浄は、第1の実施形態に係る蒸気過熱システム10と同様、ボイラ12の運転開始時または蒸気使用機器11の運転開始時に行ってもよい。制御装置14は、電気ヒータ52の表面に付着した蒸発残渣の発生量が所定の設定値を超えたと判断した場合、その次のボイラ12の運転開始時または蒸気使用機器11の運転開始時に電気ヒータ52の表面の洗浄を行うようにすればよい。   The cleaning of the surface of the electric heater 52 may be performed at the start of the operation of the boiler 12 or the start of the operation of the steam using device 11 as in the steam superheating system 10 according to the first embodiment. When it is determined that the amount of evaporation residue generated on the surface of the electric heater 52 exceeds a predetermined set value, the control device 14 starts the operation of the next boiler 12 or starts the operation of the steam using device 11. The surface of 52 may be cleaned.

よって、本実施形態に係る蒸気過熱システム50Aによれば、過熱器が電気式の過熱器51の場合であっても、電気ヒータ52の表面に付着した蒸発残渣などを除去して過熱器51内を洗浄することができる。このため、本実施形態に係る蒸気過熱システム50Aでも、第1の実施形態に係る蒸気過熱システム10と同様、飽和蒸気St1の過熱効率が低下するのを抑制し、飽和蒸気St1を安定して過熱することができる。   Therefore, according to the steam superheating system 50A according to the present embodiment, even if the superheater is the electric superheater 51, the evaporation residue or the like attached to the surface of the electric heater 52 is removed, and the inside of the superheater 51 is removed. Can be washed. For this reason, also in the steam superheating system 50A according to the present embodiment, similarly to the steam superheating system 10 according to the first embodiment, the reduction of the superheating efficiency of the saturated steam St1 is suppressed, and the saturated steam St1 is stably heated. can do.

なお、本実施形態においては、洗浄媒体として、ボイラ12で発生した飽和蒸気St1を用いた場合について説明したが、図2の第2の実施形態に係る蒸気過熱システム40のように洗浄媒体として水42を用いてもよい。   In the present embodiment, the case where the saturated steam St1 generated in the boiler 12 is used as the cleaning medium has been described, but water is used as the cleaning medium as in the steam superheating system 40 according to the second embodiment of FIG. 42 may be used.

特に、洗浄媒体として水42を用いる場合、水42を過熱器51の内部に効率良く供給できるようにしておくのが好ましい。洗浄媒体として水42を用いる場合の蒸気過熱システムの他の構成の一例を図4に示す。図4に示すように、本実施形態に係る蒸気過熱システム50Bは、洗浄媒体供給配管L22と、ノズル55とを備える。洗浄媒体供給配管L22は、その先端の水流出口が過熱器51の内部に挿入して設けられ、外部から水42を供給するための洗浄媒体供給ラインである。ノズル55は、洗浄媒体供給配管L22の先端に設けられ、水42を過熱器51の内部に噴射する。なお、水42はポンプ56により供給され、水42の供給量は、流量調節弁V12で調節される。洗浄媒体供給配管L22内を通る水42をノズル55から過熱器51の内部に噴射することで、過熱器51内に効率良く広範囲に水42を供給することができる。これにより、電気ヒータ52の表面に付着した蒸発残渣を効率よく水42に溶かすことができるため、過熱器51内の洗浄効率を向上させることができる。   In particular, when water 42 is used as the cleaning medium, it is preferable that the water 42 be efficiently supplied into the superheater 51. An example of another configuration of the steam superheating system when water 42 is used as the cleaning medium is shown in FIG. As shown in FIG. 4, the steam superheating system 50 </ b> B according to this embodiment includes a cleaning medium supply pipe L <b> 22 and a nozzle 55. The cleaning medium supply pipe L22 is a cleaning medium supply line for supplying water 42 from the outside, with the water outlet at the tip thereof being inserted into the superheater 51. The nozzle 55 is provided at the tip of the cleaning medium supply pipe L <b> 22 and injects water 42 into the superheater 51. The water 42 is supplied by the pump 56, and the supply amount of the water 42 is adjusted by the flow rate adjusting valve V12. By injecting the water 42 passing through the cleaning medium supply pipe L22 into the superheater 51 from the nozzle 55, the water 42 can be efficiently and widely supplied into the superheater 51. Thereby, since the evaporation residue adhering to the surface of the electric heater 52 can be efficiently dissolved in the water 42, the cleaning efficiency in the superheater 51 can be improved.

また、本実施形態に係る蒸気過熱システム50Bは、洗浄媒体として水42と飽和蒸気St1とを過熱器51の内部に供給して、過熱器51内を洗浄するようにしてもよい。ノズル55から噴射された水42が過熱器51内に供給された飽和蒸気St1に同伴されて過熱器51内のより更に広範囲に供給されることで、過熱器51内の洗浄効率を更に向上させることができる。   Further, the steam superheating system 50B according to the present embodiment may clean the interior of the superheater 51 by supplying water 42 and saturated steam St1 as cleaning media into the superheater 51. The water 42 sprayed from the nozzle 55 is accompanied by the saturated steam St1 supplied into the superheater 51 and supplied to a wider range in the superheater 51, thereby further improving the cleaning efficiency in the superheater 51. be able to.

また、本実施形態に係る蒸気過熱システム50Bは、水42と飽和蒸気St1とを過熱器51の内部にそれぞれ別々に供給しているが、これに限定されるものではなく、飽和蒸気配管L12で水42を飽和蒸気St1に混合してから過熱器13に供給するようにしてもよい。   In addition, the steam superheating system 50B according to the present embodiment supplies the water 42 and the saturated steam St1 separately to the inside of the superheater 51, but is not limited to this, and the saturated steam pipe L12 is used. The water 42 may be mixed with the saturated steam St1 and then supplied to the superheater 13.

また、本実施形態においては、過熱器51が電気ヒータ52を本体の内部に備えている場合について説明したが、これに限定されるものではなく、例えば、電気ヒータ52を本体の外部に設けるようにしてもよい。   Moreover, in this embodiment, although the case where the superheater 51 was equipped with the electric heater 52 inside the main body was demonstrated, it is not limited to this, For example, it may provide the electric heater 52 outside the main body. It may be.

以上、上記各実施形態に係る蒸気過熱システム10、40、50A、50Bの各構成はこれに限定されるものではなく、上記各実施形態のいずれかの構成を適宜組み合わせるようにしてもよい。また、上記各実施形態に係る蒸気過熱システム10、40、50A、50Bの各構成では、過熱器が熱交換式の過熱器または電気式の過熱器の場合について説明したが、これに限定されるものではなく、熱交換式または電気式以外の種々の形式のものを同様に用いることができる。   As mentioned above, each structure of the steam superheating system 10, 40, 50A, 50B which concerns on said each embodiment is not limited to this, You may make it combine the structure in any one of said each embodiment suitably. Moreover, in each structure of the steam superheating system 10, 40, 50A, 50B which concerns on said each embodiment, although the superheater demonstrated the case of a heat exchange type superheater or an electrical superheater, it is limited to this. Various types other than the heat exchange type or the electric type can be used similarly.

10、40、50A、50B 蒸気過熱システム
11 蒸気使用機器
12 ボイラ(蒸気発生装置)
13、51 過熱器(蒸気過熱装置)
14 制御装置
21 過熱媒体
23 伝熱管
24 排出弁
25 圧力センサ
26 蒸気温度センサ
27 濃縮度センサ(濃縮度検出手段)
28 缶体内用圧力センサ(圧力検出手段)
29、41 三方弁
30 計測器(運転計測手段)
42 水
52 電気ヒータ
53 電源
55 ノズル
56 ポンプ
L11 蒸気供給経路
L12 飽和蒸気配管(飽和蒸気供給経路)
L13 過熱蒸気配管(過熱蒸気供給経路)
L14 蒸気排出配管
L15 洗浄媒体排出配管
L21、L22 洗浄媒体供給配管
St1 飽和蒸気
St2 過熱蒸気
V11、V12 流量調節弁
10, 40, 50A, 50B Steam superheating system 11 Steam use equipment 12 Boiler (steam generator)
13, 51 Superheater (steam superheater)
DESCRIPTION OF SYMBOLS 14 Control apparatus 21 Superheated medium 23 Heat exchanger tube 24 Discharge valve 25 Pressure sensor 26 Steam temperature sensor 27 Concentration sensor (concentration detection means)
28 Can body pressure sensor (pressure detection means)
29, 41 Three-way valve 30 Measuring instrument (operation measuring means)
42 Water 52 Electric heater 53 Power supply 55 Nozzle 56 Pump L11 Steam supply path L12 Saturated steam piping (saturated steam supply path)
L13 Superheated steam piping (superheated steam supply route)
L14 Steam discharge pipe L15 Cleaning medium discharge pipe L21, L22 Cleaning medium supply pipe St1 Saturated steam St2 Superheated steam V11, V12 Flow control valve

Claims (3)

水を加熱して蒸気を発生させる蒸気発生装置と、
前記蒸気発生装置で発生した前記蒸気を過熱する蒸気過熱装置と、
前記蒸気を前記蒸気発生装置から前記蒸気過熱装置に送気する飽和蒸気供給経路と、
前記蒸気過熱装置で前記蒸気を過熱した過熱蒸気を蒸気使用設備に送気する過熱蒸気供給経路と、
を有し、
前記蒸気発生装置の運転時間を計測する運転計測手段を設け、
前記蒸気発生装置に供給される水の水質と、前記運転計測手段で計測された前記蒸気発生装置の運転時間とから前記蒸気発生装置内の水の濃縮度を求め、
前記濃縮度から前記蒸気発生装置で発生する前記蒸気の乾き度を推定し、
前記蒸気の乾き度と、前記蒸気発生装置の運転時間から得られる前記水の蒸発量とから、前記蒸気過熱装置内の蒸発残渣の発生量を算出し、
前記蒸発残渣の発生量が設定値を超えた後、前記蒸気過熱装置の運転を停止している場合は、前記蒸気過熱装置内の前記蒸気が通過する流路に洗浄媒体を供給して、前記蒸気過熱装置内の洗浄を行うことを特徴とする蒸気過熱システム。
A steam generator for heating water to generate steam;
A steam superheater that superheats the steam generated by the steam generator;
A saturated steam supply path for sending the steam from the steam generator to the steam superheater;
A superheated steam supply path for sending superheated steam superheated by the steam superheater to a steam using facility;
Have
An operation measuring means for measuring the operation time of the steam generator is provided,
Obtaining the concentration of water in the steam generator from the quality of the water supplied to the steam generator and the operation time of the steam generator measured by the operation measuring means,
Estimating the dryness of the steam generated in the steam generator from the concentration,
From the degree of dryness of the steam and the amount of evaporation of the water obtained from the operating time of the steam generator, the amount of evaporation residue generated in the steam superheater is calculated,
When the operation of the steam superheater is stopped after the generation amount of the evaporation residue exceeds a set value , a cleaning medium is supplied to a flow path through which the steam in the steam superheater passes, A steam superheating system characterized in that the steam superheater is cleaned .
水を加熱して蒸気を発生させる蒸気発生装置と、
前記蒸気発生装置で発生した前記蒸気を過熱する蒸気過熱装置と、
前記蒸気を前記蒸気発生装置から前記蒸気過熱装置に送気する飽和蒸気供給経路と、
前記蒸気過熱装置で前記蒸気を過熱した過熱蒸気を蒸気使用設備に送気する過熱蒸気供給経路と、
を有し、
前記蒸気発生装置の運転時間を計測する運転計測手段と、
前記蒸気発生装置内の前記水の濃縮度を検出する濃縮度検出手段とを設け、
前記濃縮度検出手段で検出された前記濃縮度から前記蒸気発生装置で発生する前記蒸気の乾き度を推定し、
前記蒸気の乾き度と、前記運転計測手段で計測された前記蒸気発生装置の運転時間から得られる前記水の蒸発量とから、前記蒸気過熱装置内の蒸発残渣の発生量を算出し、
前記蒸発残渣の発生量が設定値を超えた後、前記蒸気過熱装置の運転を停止している場合は、前記蒸気過熱装置内の前記蒸気が通過する流路に洗浄媒体を供給して、前記蒸気過熱装置内の洗浄を行うことを特徴とする蒸気過熱システム。
A steam generator for heating water to generate steam;
A steam superheater that superheats the steam generated by the steam generator;
A saturated steam supply path for sending the steam from the steam generator to the steam superheater;
A superheated steam supply path for sending superheated steam superheated by the steam superheater to a steam using facility;
Have
Operation measuring means for measuring the operation time of the steam generator;
A concentration detection means for detecting the concentration of the water in the steam generator; and
Estimating the dryness of the steam generated in the steam generator from the enrichment detected by the enrichment detection means,
From the degree of dryness of the steam and the amount of evaporation of the water obtained from the operation time of the steam generator measured by the operation measuring means, the amount of evaporation residue generated in the steam superheater is calculated,
When the operation of the steam superheater is stopped after the generation amount of the evaporation residue exceeds a set value , a cleaning medium is supplied to a flow path through which the steam in the steam superheater passes, A steam superheating system characterized in that the steam superheater is cleaned .
請求項1または2において、
前記洗浄媒体は、蒸気または水であることを特徴とする蒸気過熱システム。
In claim 1 or 2 ,
The steam heating system, wherein the cleaning medium is steam or water.
JP2012199944A 2012-09-11 2012-09-11 Steam heating system Expired - Fee Related JP5980630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012199944A JP5980630B2 (en) 2012-09-11 2012-09-11 Steam heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012199944A JP5980630B2 (en) 2012-09-11 2012-09-11 Steam heating system

Publications (2)

Publication Number Publication Date
JP2014055696A JP2014055696A (en) 2014-03-27
JP5980630B2 true JP5980630B2 (en) 2016-08-31

Family

ID=50613174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012199944A Expired - Fee Related JP5980630B2 (en) 2012-09-11 2012-09-11 Steam heating system

Country Status (1)

Country Link
JP (1) JP5980630B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5663107B1 (en) * 2014-06-03 2015-02-04 株式会社井沢鉄工所 Small once-through boiler control device and small once-through boiler control method
JP6938110B2 (en) * 2015-08-25 2021-09-22 中部電力株式会社 High temperature fluid generator
JP6623859B2 (en) * 2016-03-14 2019-12-25 三浦工業株式会社 Steam heating system
JP7369557B2 (en) * 2019-07-18 2023-10-26 猪野 貴行 economizer
CN114396610B (en) * 2021-12-28 2023-07-21 东方电气集团东方锅炉股份有限公司 System and method for heating external steam of thermal power boiler

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929593U (en) * 1982-08-07 1984-02-23 大分共同火力株式会社 Boiler-superheater tube cleaning equipment
DE19721854A1 (en) * 1997-05-26 1998-12-03 Asea Brown Boveri Improvement in the degree of separation of steam contaminants in a steam-water separator
JP3397292B2 (en) * 1997-10-30 2003-04-14 株式会社サムソン Boiler economizer cleaning equipment
JP2002106803A (en) * 2000-10-02 2002-04-10 Miura Co Ltd Water-tube boiler
JP2005214546A (en) * 2004-01-30 2005-08-11 Kurita Engineering Co Ltd Cleaning method of steam pipe and the like

Also Published As

Publication number Publication date
JP2014055696A (en) 2014-03-27

Similar Documents

Publication Publication Date Title
JP5980630B2 (en) Steam heating system
KR101607722B1 (en) Method for operating a waste heat steam generator
JP2008180501A (en) Waste heat boiler and starting method for it
MY154744A (en) Method for operating a once-through steam generator and forced-flow steam generator
JP2019082314A (en) Chemical cleaning method for boiler
KR102385496B1 (en) Apparatus and method for detecting seawater leakage in water supply system and steam turbine plant
JP5936966B2 (en) Steam supply system
JP5292014B2 (en) Cross-flow type exhaust heat recovery boiler and control method thereof
JP6619256B2 (en) Chemical cleaning method and chemical cleaning apparatus
JP6516993B2 (en) Combined cycle plant and boiler steam cooling method
US20080163832A1 (en) Boiler Apparatus
CN105814370B (en) Hot-water supply
KR101031244B1 (en) Cascade tank and apparatus for supplying steam of a vessel thereof
JP2016031154A (en) Control method, boiler control device, and program
JP5935431B2 (en) boiler
JP2002349805A (en) Steam boiler device and method for operating steam boiler device
JP2016061490A (en) Boiler
JP2012255627A (en) Blow rate calculation method and blow control method for boiler
JP2007232299A (en) Boiler
JP2006292277A (en) Heat source device, heat medium control method, and heater
JP6432414B2 (en) Boiler equipment
JP6481452B2 (en) Boiler equipment
JP6256109B2 (en) boiler
KR101392461B1 (en) Boiler for Cooking of Food
JP6064731B2 (en) Steam generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160727

R150 Certificate of patent or registration of utility model

Ref document number: 5980630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees