JP5978095B2 - High corrosion resistance austenitic stainless steel - Google Patents

High corrosion resistance austenitic stainless steel Download PDF

Info

Publication number
JP5978095B2
JP5978095B2 JP2012230431A JP2012230431A JP5978095B2 JP 5978095 B2 JP5978095 B2 JP 5978095B2 JP 2012230431 A JP2012230431 A JP 2012230431A JP 2012230431 A JP2012230431 A JP 2012230431A JP 5978095 B2 JP5978095 B2 JP 5978095B2
Authority
JP
Japan
Prior art keywords
heat treatment
stainless steel
austenitic stainless
tac
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012230431A
Other languages
Japanese (ja)
Other versions
JP2014080664A (en
Inventor
金田 潤也
潤也 金田
青野 泰久
泰久 青野
ユウ 王
ユウ 王
尚登 茂中
尚登 茂中
勝 岩波
勝 岩波
中村 崇
崇 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2012230431A priority Critical patent/JP5978095B2/en
Publication of JP2014080664A publication Critical patent/JP2014080664A/en
Application granted granted Critical
Publication of JP5978095B2 publication Critical patent/JP5978095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、中性子照射環境にさらされる環境において、応力腐食割れ、照射誘起応力腐食割れ、すき間腐食などを抑制できるオーステナイト系ステンレス鋼および該オーステナイト系ステンレス鋼を使用した原子炉内構造物に関する。 The present invention relates to an austenitic stainless steel capable of suppressing stress corrosion cracking, irradiation-induced stress corrosion cracking, crevice corrosion, and the like in an environment exposed to a neutron irradiation environment, and a reactor internal structure using the austenitic stainless steel.

軽水炉炉心では、溶接熱による鋭敏化を抑制するために、含有する炭素量を低減したSUS316LやSUS304Lの低炭素オーステナイト系ステンレス鋼が使用されている。しかし、近年、中性子照射量の高い環境で使用される制御棒のSUS316L製シースやタイロッドにおいて、照射誘起によると考えられる応力腐食割れが確認されている。これは、材料が中性子照射を受けることによる硬化や照射誘起粒界偏析が原因と考えており、中性子照射損傷の抑制が必要である。   In light water reactor cores, low carbon austenitic stainless steels such as SUS316L and SUS304L with reduced carbon content are used to suppress sensitization by welding heat. However, in recent years, stress corrosion cracking, which is considered to be due to irradiation induction, has been confirmed in SUS316L sheaths and tie rods of control rods used in environments with high neutron irradiation. This is considered to be caused by hardening due to neutron irradiation of the material or segregation due to irradiation-induced grain boundary, and it is necessary to suppress neutron irradiation damage.

中性子照射損傷抑制のためにNb、Ta、Ti、Zr、Hfを添加した低炭素オーステナイト系ステンレス鋼が特許文献1で開示されている。しかし、これらは炭素濃度が低いために制御棒として要求される強度特性を達成することはできない。   Patent Document 1 discloses a low-carbon austenitic stainless steel to which Nb, Ta, Ti, Zr, and Hf are added for suppressing neutron irradiation damage. However, they cannot achieve the strength characteristics required as control rods due to the low carbon concentration.

一方、特許文献2では、0.04%以下の炭素を含有し、かつNbおよびTaを添加したオーステナイト系ステンレス鋼が開示されている。これは、NbおよびTaの添加により溶体化熱処理後でもNbおよびTaが炭素を安定化して応力腐食割れや照射誘起応力腐食割れを抑制すること、およびNb添加量を少なくしてTa添加量を多くすることで、中性子吸収により生成する長半減期のNb94に代わり短半減期のTa182として取扱を容易にする効果がある。しかし、溶体化のままでは制御棒として要求される耐食性と強度特性を満足できない可能性がある。
特許文献2と同様に炭素を安定化して耐食性を向上させる規格材料として、Type 321、Type 347、Type 348がある。Type 321はTiを、Type 347、348はNb+Taを添加している。
On the other hand, Patent Document 2 discloses an austenitic stainless steel containing 0.04% or less of carbon and containing Nb and Ta. This is because Nb and Ta stabilize the carbon even after solution heat treatment by adding Nb and Ta, thereby suppressing stress corrosion cracking and radiation-induced stress corrosion cracking, and reducing the Nb addition amount and increasing the Ta addition amount. By doing so, it has the effect of facilitating handling as Ta182 having a short half-life instead of Nb94 having a long half-life generated by neutron absorption. However, there is a possibility that the corrosion resistance and strength characteristics required as a control rod cannot be satisfied with the solution.
Similar to Patent Document 2, there are Type 321, Type 347, and Type 348 as standard materials that stabilize carbon and improve corrosion resistance. Type 321 is added with Ti, and Type 347 and 348 are added with Nb + Ta.

特開昭63-259055号公報JP 63-259055 A 特公平06-089437号公報Japanese Patent Publication No. 06-089437

原子力発電プラントの原子炉炉内では、主にオーステナイト系ステンレス鋼が構成材料として使用されている。一般に、オーステナイト系ステンレス鋼は耐食性に優れた材料であるが、高温高圧水および中性子照射環境におかれると、照射誘起応力腐食割れの発生感受性が高まることが指摘されている。また、原子炉炉内での材料劣化事象として、照射誘起応力腐食割れ事例が報告されている。   In a nuclear reactor of a nuclear power plant, austenitic stainless steel is mainly used as a constituent material. In general, austenitic stainless steel is a material with excellent corrosion resistance, but it has been pointed out that the susceptibility to irradiation-induced stress corrosion cracking increases when exposed to high-temperature and high-pressure water and neutron irradiation environments. In addition, irradiation-induced stress corrosion cracking cases have been reported as material deterioration events in nuclear reactors.

本発明の目的は、照射誘起応力腐食割れの発生感受性を低減したオーステナイト系ステンレス鋼を提供することにある。   An object of the present invention is to provide an austenitic stainless steel with reduced susceptibility to irradiation-induced stress corrosion cracking.

オーステナイト系ステンレス鋼は、Cが0.03〜0.04重量%、Mnが1.0〜2.0重量%、Niが9.0〜13.0重量%、Crが17.0〜20.0重量%、TaがCの13倍以上で0.50〜0.65重量%であり、残部がFe及び不可避の不純物からなるオーステナイト系ステンレス鋼において、Taのうち30%以上がTaCとして析出していることを特徴とする。 Austenitic stainless steel is 0.03 to 0.04% by weight for C, 1.0 to 2.0% by weight for Mn, 9.0 to 13.0% by weight for Ni, 17.0 to 20.0% by weight for Cr, 0.50 to 0.65% for Ta more than 13 times C In the austenitic stainless steel with the balance being Fe and inevitable impurities, 30% or more of Ta is precipitated as TaC.

本発明のオーステナイト系ステンレス鋼を、0.1MeV以上のエネルギーを持つ中性子が0.5×1021n/cm2以上照射される環境で使用される原子炉炉内構成機器あるいは構造物に適用することにより、照射誘起応力腐食割れの発生感受性を低減でき、原子力プラントの信頼性を向上させ、長寿命化することができる。 By applying the austenitic stainless steel of the present invention to a reactor internal component or structure used in an environment where neutrons having an energy of 0.1 MeV or more are irradiated by 0.5 × 10 21 n / cm 2 or more, It is possible to reduce the susceptibility of irradiation-induced stress corrosion cracking, improve the reliability of the nuclear power plant, and extend the life.

本発明の材料の再活性化率比較。Comparison of reactivation rates of materials of the present invention. 本発明の材料の再活性化率とTa/C比の相関。The correlation between the reactivation rate of the material of the present invention and the Ta / C ratio. 本発明の材料の100℃での引張強度比較。Comparison of tensile strength of the material of the present invention at 100 ° C. 本発明の材料の100℃での引張強度とC量の相関。Correlation between tensile strength at 100 ° C. and C content of the material of the present invention. 本発明の材料の100℃での引張強度と結晶粒度の相関。Correlation between tensile strength at 100 ° C. and grain size of the material of the present invention. すき間腐食試験片。Crevice corrosion test piece. 本発明の材料および比較材のすき間腐食による最大粒界腐食深さの比較。Comparison of maximum intergranular corrosion depth due to crevice corrosion of materials of the present invention and comparative materials. 各種熱処理を施した本発明の材料中の析出物に含まれるTa濃度。Ta concentration contained in precipitates in the material of the present invention subjected to various heat treatments. 各種熱処理を施した本発明の材料中の全Ta量に対する析出物に含まれるTa量の割合。The ratio of the amount of Ta contained in the precipitate to the total amount of Ta in the material of the present invention subjected to various heat treatments. 各種熱処理を施した本発明の材料の再活性化率。Reactivation rate of the material of the present invention after various heat treatments. 各種熱処理を施した本発明の材料中のTaC析出物の数密度。Number density of TaC precipitates in the material of the present invention subjected to various heat treatments. 本発明の材料を適用した制御棒。A control rod to which the material of the present invention is applied.

以下、本発明を詳細に説明する。
本発明は、Cが0.03〜0.04重量%、Mnが1.0〜2.0重量%、Niが9.0〜13.0重量%、Crが17.0〜20.0重量%、TaがCの13倍以上でかつ0.50〜0.65重量%で、残部がFe及び不可避の不純物からなるオーステナイト系ステンレス鋼であり、添加したTaのうち30%以上がTaCとして析出していることを特徴とするオーステナイト系ステンレス鋼である。
材料構成元素の平均原子半径に比べ、Taの原子半径が大きいことから、Taが材料中に固溶している場合、照射によって生成された原子空孔を捕獲し、格子間原子との再結合確率を上昇させ、照射損傷を抑制することができる。また、原子空孔が拡散により結晶粒界へ流入する場合、粒界近傍のCr原子が粒界から離れる方向に拡散し、粒界近傍でのCr濃度がマトリックスのCr濃度より低下する、いわゆるCr欠乏を生じるが、Taが原子空孔を捕獲する場合は、原子空孔の粒界への拡散が抑制され、粒界Cr欠乏が抑制されることになる。一方、TaがTaCとして存在する場合も、TaCとマトリックスの界面が原子空孔の消滅サイトとなるため、Taが固溶した場合と同様に、粒界Cr欠乏を抑制することができる。
このようにTaの存在は、単独で固溶している場合も、TaCとして存在する場合でも、照射誘起による粒界Cr欠乏を抑制することができ、照射誘起応力腐食割れの抑制に効果があると考えられる。ただし、Cが必要以上にマトリックス中に存在する場合、溶接熱を受けた場所では、粒界上にCr炭化物を形成してCr欠乏を生じる、いわゆる熱鋭敏化を生じ、応力腐食割れ感受性が高まる。そのため、固溶しているC濃度を低減するために、TaCを形成する必要がある。
そこで、材料中に存在するC濃度に対して所定量以上のTaCを析出させ、Cを安定化することにより、照射誘起による粒界Cr偏析と熱による粒界Cr偏析のいずれも抑制でき、応力腐食割れ感受性を低減することができる。炉内を構成する材料として、100℃での引張強度が470MPa以上であることが好ましいため、それを達成するためには、0.03重量%のCが必要であるがC量が多すぎると熱鋭敏化するため、上限を0.04重量%とした。
また、TaはC量の13倍かつ0.5重量%以上が必要で、溶接性などの特性劣化を鑑み、上限を0.65重量%とした。また、TaがCを安定化した場合、全Ta量のうち30%以上がTaCとして析出していると、耐応力腐食割れ性、強度ともに良好な特性となる。なお、TaCとして析出しているTa量の評価は、定電流電解法により採取した電解抽出残渣を定量分析することにより測定できる。
Hereinafter, the present invention will be described in detail.
In the present invention, C is 0.03 to 0.04% by weight, Mn is 1.0 to 2.0% by weight, Ni is 9.0 to 13.0% by weight, Cr is 17.0 to 20.0% by weight, Ta is 13 times or more of C, and 0.50 to 0.65% by weight. In the austenitic stainless steel, the balance is Fe and inevitable impurities, and 30% or more of the added Ta is precipitated as TaC.
Since the atomic radius of Ta is larger than the average atomic radius of the material constituent elements, when Ta is dissolved in the material, it captures atomic vacancies generated by irradiation and recombines with interstitial atoms. Probability can be increased and irradiation damage can be suppressed. In addition, when atomic vacancies flow into the grain boundary by diffusion, Cr atoms near the grain boundary diffuse away from the grain boundary, and the Cr concentration near the grain boundary is lower than the Cr concentration of the matrix. Deficiency occurs, but when Ta captures atomic vacancies, diffusion of atomic vacancies into grain boundaries is suppressed, and grain boundary Cr depletion is suppressed. On the other hand, even when Ta is present as TaC, the interface between TaC and the matrix becomes an atomic vacancy disappearance site, so that grain boundary Cr deficiency can be suppressed as in the case where Ta is dissolved.
As described above, the presence of Ta can suppress irradiation-induced grain boundary Cr deficiency, whether it is dissolved alone or as TaC, and is effective in suppressing irradiation-induced stress corrosion cracking. it is conceivable that. However, when C is present in the matrix more than necessary, in locations where it has been subjected to welding heat, Cr carbide is formed on the grain boundary, resulting in Cr deficiency, so-called thermal sensitization, and stress corrosion cracking susceptibility is increased. . Therefore, it is necessary to form TaC in order to reduce the concentration of dissolved C.
Therefore, by precipitating more than a predetermined amount of TaC with respect to the C concentration present in the material and stabilizing C, it is possible to suppress both grain-boundary Cr segregation due to irradiation induction and grain boundary Cr due to heat. Corrosion cracking sensitivity can be reduced. As a material constituting the furnace, it is preferable that the tensile strength at 100 ° C. is 470 MPa or more. To achieve this, 0.03% by weight of C is necessary, but if the amount of C is too large, heat sensitivity Therefore, the upper limit was made 0.04% by weight.
Further, Ta is required to be 13 times the amount of C and 0.5% by weight or more, and the upper limit is set to 0.65% by weight in view of deterioration of characteristics such as weldability. Further, when Ta stabilizes C, if 30% or more of the total amount of Ta is precipitated as TaC, both the stress corrosion cracking resistance and strength are good. The amount of Ta precipitated as TaC can be measured by quantitatively analyzing the electrolytic extraction residue collected by the constant current electrolysis method.

当該の材料で、さらに強度を安定的に確保するためには、結晶粒度番号が4.0以上が好ましい。また、析出したTaCの数密度が一定量以上であると強度向上の効果を得ることができるため、ステンレス鋼断面において平均粒径が10nm以上のTaC析出粒子の平均数密度は、1.0×1012個/m2以上であることが好ましい。TaC粒子の数密度は、C蒸着によるレプリカ法で採取した試験片をSTEM(Scanning Transmission Electron Microscopy)で観察することにより評価できる。
このような材料組織は、材料の板厚により条件の調整が必要ではあるが、1,050〜1,150℃で1〜60分の溶体化熱処理および850〜950℃で0.5〜6時間の時効処理を施したことにより得ることができる。上述の化学成分の材料に、上述の所定の熱処理を施し、上述の材料組織を得ることにより、材料として必要な100℃で470MPa以上の引張強度を得ることができ、さらに、電気化学的再活性化率を30%以下として、熱鋭敏化を抑制することができる。
上述の材料は、0.1MeV以上のエネルギーを持つ中性子が0.5×1021n/cm2以上照射される環境で使用される場合、照射損傷を抑制し、照射誘起応力腐食割れを抑制することができる。特に、沸騰水型原子炉炉心で使用される制御棒を構成するタイロッド、シース、ハンドルに適用することにより、照射誘起応力腐食割れを発生する可能性を低減し、制御棒の交換サイクルを長期化できるとともに、健全性、信頼性を向上することができる。
また、上述の材料は、制御棒だけでなく、炉内を構成し、かつ0.1MeV以上のエネルギーを持つ中性子が0.5×1021n/cm2以上照射される機器あるいは構造物に適用することにより、原子炉ひいては原子力プラントの信頼性を向上させ、長寿命化することができる。
In order to secure the strength more stably with the material, the crystal grain size number is preferably 4.0 or more. In addition, since the effect of improving the strength can be obtained when the number density of precipitated TaC is a certain amount or more, the average number density of TaC precipitated particles having an average particle diameter of 10 nm or more in the stainless steel cross section is 1.0 × 10 12. It is preferable that the number of particles / m 2 or more. The number density of TaC particles can be evaluated by observing a specimen collected by a replica method using C vapor deposition with STEM (Scanning Transmission Electron Microscopy).
Such a material structure needs to be adjusted depending on the thickness of the material, but was subjected to a solution heat treatment at 1,050 to 1,150 ° C. for 1 to 60 minutes and an aging treatment at 850 to 950 ° C. for 0.5 to 6 hours. Can be obtained. By applying the above-mentioned predetermined heat treatment to the above-mentioned chemical component material and obtaining the above-mentioned material structure, it is possible to obtain a tensile strength of 470 MPa or more at 100 ° C. necessary for the material, and electrochemical reactivation The thermal sensitization can be suppressed by setting the conversion rate to 30% or less.
The above materials can suppress irradiation damage and irradiation-induced stress corrosion cracking when used in an environment where neutrons with energy of 0.1 MeV or higher are irradiated by 0.5 × 10 21 n / cm 2 or higher. . In particular, by applying it to tie rods, sheaths, and handles that constitute control rods used in boiling water reactor cores, the possibility of radiation-induced stress corrosion cracking is reduced and control rod replacement cycles are extended. As well as being able to improve soundness and reliability.
In addition to the control rod, the above-mentioned materials can be applied not only to control rods but also to equipment or structures that constitute the reactor and are irradiated with neutrons with an energy of 0.1 MeV or more of 0.5 × 10 21 n / cm 2 or more. The reliability of the nuclear reactor, and hence the nuclear power plant, can be improved and the life can be extended.

以下に、本発明の材料が良好な特性を有す材料であることを確認した実施例を示す。
まず、表1に示す化学組成をもつ材料を真空溶解で作製した。
Examples in which the material of the present invention is confirmed to be a material having good characteristics are shown below.
First, a material having the chemical composition shown in Table 1 was produced by vacuum melting.

なお、No.10は比較材のSUS316Lである。いずれの材料とも、熱間圧延の後、1050℃、30分、水冷の溶体化熱処理を施した。また、材料No.1〜7の溶体化材は二つのインゴットに分け、一方に900℃、1時間、空冷の時効処理、すなわちTaCを析出させCを安定化するための安定化熱処理を施した。結果的に、材料No.1〜7の材料は、溶体化熱処理材と溶体化熱処理+安定化熱処理材を作製した。一方、比較材のNo.10は溶体化熱処理材のみ作製した。 Note that No. 10 is SUS316L as a comparative material. All the materials were subjected to a solution heat treatment with water cooling at 1050 ° C. for 30 minutes after hot rolling. Moreover, the solution material of material No. 1-7 was divided into two ingots, and one of them was subjected to air-cooled aging treatment at 900 ° C. for 1 hour, that is, stabilization heat treatment for precipitating TaC and stabilizing C. . As a result, the materials No. 1 to No. 7 produced a solution heat treatment material and a solution heat treatment + stabilization heat treatment material. On the other hand, No. 10 as a comparative material was produced only by a solution heat treatment material.

応力腐食割れ特性と相関がある熱鋭敏化特性を評価するために、材料No.1〜7の溶体化熱処理材および溶体化熱処理+安定化熱処理材にさらに700℃、30分、水冷の鋭敏化熱処理を施し、JIS G 0580「ステンレス鋼の電気化学的再活性率の測定方法」に従い再活性化率を測定した。測定は各材料とも繰り返し数3とした。また、再活性化率は式(1)により結晶粒度により補正した値を採用した。ここで、Rが粒度補正した再活性化率、Rmは再活性化率の測定値、Nは試験面の結晶粒度番号である。
・・・・(1)
各材料で測定した再活性化率の平均値を図1に示す。JIS G 0580では、再活性化率が31%未満を非鋭敏化、31%以上156%未満を軽微な鋭敏化、156%以上を鋭敏化の状態と定義している。材料No.6は、溶体化熱処理+鋭敏化熱処理で鋭敏化、溶体化熱処理+安定化熱処理+鋭敏化熱処理で軽微な鋭敏化の状態にあり、熱鋭敏化する材料と考えられ、高温高圧水中で応力腐食割れを発生する可能性が高い。材料No.1〜3は、溶体化熱処理+鋭敏化熱処理では軽微な鋭敏化の領域にあるが、安定化熱処理を施した場合は非鋭敏化状態にすることができた。また、材料No.4、5、7は、溶体化熱処理+鋭敏化熱処理、溶体化熱処理+安定化熱処理+鋭敏化熱処理ともに非鋭敏化状態であった。この結果から、材料No.1〜5および7は熱鋭敏化に対して良好な特性を持ち、その中でもNo.3、4、7が優れた特性を有した。
次に、再活性化率とTa/C比の相関を確認するために、図1に示した再活性化率の平均値とTa/C比の関係を図2に示す。この図から、Ta/C比が高い方が再活性化率を低減できる傾向にあり、Ta/C比が13以上であれば、熱鋭敏化に対して良好な特性を持ち、特に安定化熱処理を施した場合はさらに優れた特性を示した。
本発明は、原子炉炉内で使用される構造物を対象としている。一部の材料では高い強度が必要なものもあることから、少なくとも100℃の引張強度として470MPaが必要である。そこで、それぞれの材料の溶体化熱処理材および溶体化熱処理+安定化熱処理材を、JIS G 0567に従い100℃で引張試験を実施したときの、引張強度データを図3に示す。
なお、引張試験の繰り返し数は2とし、図3にはその平均値を示した。要求される100℃での引張強度は470MPa以上である。この結果、溶体化熱処理材では、材料No.4、6、7は要求強度を満たすことができた。また、No.1および3は要求強度を満たした。一方、No.2および5は要求強度を満足することができなかった。また、安定化熱処理まで施した場合、溶体化熱処理材に比べ強度が向上する傾向を示した。このことから、安定加熱処理によりTaCを分散析出させることにより、さらに高強度化が可能である。
図3に示した100℃の引張強度とC含有量の相関を図4に示す。溶体化熱処理材、溶体化熱処理+安定化熱処理材ともにC量増加に伴い強度が向上している。ここで、溶体化熱処理材では、0.03重量%以上のCを含有すると470MPaを満たすことができた。一方、溶体化熱処理+安定化熱処理材では、0.02重量%以上のC量で470MPaを満たすことができた。
なお、強度を満たすためには、加工により高強度化を図ることも可能であるが、強加工を受けた場合、応力腐食割れ感受性が上昇するため好ましくない。そこで、結晶粒微細化による高強度化について検討した。材料No.1に40%の冷間圧延を加えた後、1050℃で10分あるいは1時間の熱処理を施した後、水冷した材料と、1100℃で1時間の熱処理後、水冷した材料の計3種について結晶粒度と100℃での引張特性を測定した。
その結果を図5に示す。その結果、結晶粒度が大きくなるに従い強度が高くなることが確認された。ここで、結晶粒度が4.0以上であれば要求される470MPaを超えることがわかる。このことから、本開発の材料は、結晶粒度が4.0以上であることが好ましい。
次に、高温高圧水中でのすき間腐食特性を評価した。材料No.1、2、4、7、10の材料からそれぞれ10×50×1.5tの試験片を4枚採取し、表面を耐水研磨紙で600番まで仕上げた。
同材の試験片同士1を図6に示すように向かい合わせ、スポット溶接2で接合した。これにより、2枚の試験片間にすき間を形成した。それぞれの材料において、スポット溶接試験片を2個ずつ作製した。それらを288℃、溶存酸素濃度8ppm、導電率1.0〜1.2μS/cm2、γ線線量率20kGy/hの環境で1000時間の浸漬試験を実施した。浸漬試験後、試験片長手方向に平行に試験片中央で切断し、その断面の腐食状態を観察した。
それぞれの試験片での最大粒界腐食深さを図7に示す。いずれの材料とも試験片4個について腐食状態を観察した。その結果、No.10のSUS316Lは、試験片すべてで腐食が発生し、最大粒界腐食深さは100μmを超えた。No.1、2、4は4個の試験片のうち2個に粒界腐食が発生したが、その最大深さは、それぞれ27μm、35μm、15μmであった。No.7はいずれの試験片も粒界腐食が認められず、良好な耐すき間腐食性を有すると考えられる。
さらに、高温高圧水中での応力腐食割れ感受性を評価した。試験法として、Creviced Bent Beam(CBB)試験を採用した。材料No.1、2、4、7、10の材料からそれぞれ10×50×2tの試験片を7枚採取し、表面を耐水研磨紙で600番まで仕上げた。これらを半径100mmの円弧状の局面をもつ治具にグラファイトウールとともにセットし、1%の定ひずみを付与したすき間付試験片とした。治具にセットした試験片を、288℃、溶存酸素濃度8ppm、導電率1.0μS/cm2、で500時間の浸漬試験を実施した。浸漬試験後、試験片を治具から取り外して、試験片長手方向に平行に試験片中央で切断し、その断面上で割れ発生状態を観察し、割れた試験片の数と最大割れ深さを評価した。その結果を表2に示す。
In order to evaluate the thermal sensitization characteristics that correlate with the stress corrosion cracking characteristics, the solution heat treatment materials of material Nos. 1 to 7 and solution heat treatment + stabilization heat treatment materials were further sensitized by water cooling at 700 ° C for 30 minutes. After heat treatment, the reactivation rate was measured according to JIS G 0580 “Method for measuring electrochemical reactivation rate of stainless steel”. The measurement was repeated 3 times for each material. The reactivation rate is a value corrected by the crystal grain size according to the equation (1). Here, R is the reactivation rate corrected for particle size, Rm is a measured value of the reactivation rate, and N is the crystal grain size number of the test surface.
(1)
The average value of the reactivation rate measured for each material is shown in FIG. In JIS G 0580, a reactivation rate of less than 31% is defined as non-sensitization, 31% or less and less than 156% is defined as slight sensitization, and 156% or more is defined as sensitization. Material No. 6 is in a state of sensitization by solution heat treatment + sensitization heat treatment, slight sensitization by solution heat treatment + stabilization heat treatment + sensitization heat treatment, and is considered to be a heat sensitization material. The possibility of stress corrosion cracking is high. Material Nos. 1 to 3 were in a region of slight sensitization by solution heat treatment + sensitization heat treatment, but could be brought into a non-sensitization state when subjected to stabilization heat treatment. Material Nos. 4, 5, and 7 were in a non-sensitized state for both solution heat treatment + sensitization heat treatment and solution heat treatment + stabilization heat treatment + sensitization heat treatment. From these results, the materials No. 1 to 5 and 7 have good characteristics against thermal sensitization, and Nos. 3, 4, and 7 have excellent characteristics.
Next, in order to confirm the correlation between the reactivation rate and the Ta / C ratio, the relationship between the average value of the reactivation rate shown in FIG. 1 and the Ta / C ratio is shown in FIG. From this figure, the higher the Ta / C ratio tends to reduce the reactivation rate. If the Ta / C ratio is 13 or more, it has good characteristics for thermal sensitization, and especially the stabilization heat treatment. When it was applied, even better characteristics were exhibited.
The present invention is directed to structures used in nuclear reactors. Since some materials require high strength, a tensile strength of at least 100 ° C. is required to be 470 MPa. Accordingly, FIG. 3 shows the tensile strength data when the solution heat treatment material and the solution heat treatment + stabilization heat treatment material of each material were subjected to a tensile test at 100 ° C. in accordance with JIS G 0567.
The number of repetitions of the tensile test was 2, and the average value was shown in FIG. The required tensile strength at 100 ° C is 470 MPa or more. As a result, in the solution heat treated material, the materials No. 4, 6, and 7 were able to satisfy the required strength. No. 1 and 3 satisfied the required strength. On the other hand, Nos. 2 and 5 could not satisfy the required strength. Moreover, when it applied to stabilization heat processing, the tendency which an intensity | strength improved compared with the solution heat processing material was shown. From this, it is possible to further increase the strength by dispersing TaC by stable heat treatment.
FIG. 4 shows the correlation between the tensile strength at 100 ° C. and the C content shown in FIG. Both the solution heat treatment material and the solution heat treatment + stabilization heat treatment material have improved strength with increasing C content. Here, the solution heat-treated material was able to satisfy 470 MPa when containing 0.03% by weight or more of C. On the other hand, the solution heat treatment + stabilization heat treatment material was able to satisfy 470 MPa with a C content of 0.02 wt% or more.
In order to satisfy the strength, it is possible to increase the strength by processing. However, when subjected to strong processing, the stress corrosion cracking sensitivity is increased, which is not preferable. Therefore, high strength by crystal grain refinement was examined. Material No. 1 was subjected to 40% cold rolling, heat treated at 1050 ° C. for 10 minutes or 1 hour, then water cooled, and 1100 ° C. for 1 hour, then water cooled. The crystal grain size and tensile properties at 100 ° C. were measured for three types.
The result is shown in FIG. As a result, it was confirmed that the strength increased as the crystal grain size increased. Here, it can be seen that if the crystal grain size is 4.0 or more, it exceeds the required 470 MPa. For this reason, the material of the present development preferably has a crystal grain size of 4.0 or more.
Next, crevice corrosion characteristics in high-temperature and high-pressure water were evaluated. Four test pieces of 10 × 50 × 1.5 t were collected from each of the materials No. 1, 2, 4, 7, and 10, and the surface was finished up to 600 with water-resistant abrasive paper.
The test pieces 1 of the same material face each other as shown in FIG. Thereby, a gap was formed between the two test pieces. For each material, two spot weld specimens were prepared. They were subjected to a 1000 hour immersion test in an environment of 288 ° C., dissolved oxygen concentration of 8 ppm, conductivity of 1.0 to 1.2 μS / cm 2 and γ-ray dose rate of 20 kGy / h. After the immersion test, the specimen was cut at the center of the specimen parallel to the longitudinal direction of the specimen, and the corrosion state of the cross section was observed.
FIG. 7 shows the maximum intergranular corrosion depth in each test piece. For all materials, the corrosion state was observed for four test pieces. As a result, in No. 10 SUS316L, corrosion occurred in all the test pieces, and the maximum intergranular corrosion depth exceeded 100 μm. In Nos. 1, 2, and 4, intergranular corrosion occurred in two of the four test pieces, and the maximum depths were 27 μm, 35 μm, and 15 μm, respectively. In No. 7, no intergranular corrosion was observed in any of the test pieces, which is considered to have good crevice corrosion resistance.
Furthermore, the stress corrosion cracking susceptibility in high temperature and high pressure water was evaluated. A Creviced Bent Beam (CBB) test was adopted as the test method. Seven test pieces of 10 × 50 × 2 t were collected from each of the materials No. 1, 2, 4, 7, and 10, and the surface was finished up to 600 with water-resistant abrasive paper. These were set together with graphite wool in a jig having an arc-shaped aspect with a radius of 100 mm, to obtain a test piece with a gap provided with a constant strain of 1%. The test piece set on the jig was subjected to a 500 hour immersion test at 288 ° C., a dissolved oxygen concentration of 8 ppm, and a conductivity of 1.0 μS / cm 2. After the immersion test, remove the specimen from the jig, cut it at the center of the specimen parallel to the longitudinal direction of the specimen, observe the cracking state on the cross section, and determine the number of cracked specimens and the maximum crack depth. evaluated. The results are shown in Table 2.

No.10のSUS316Lは、7個の試験片のうち4個で割れが発生し、最大割れ深さは62μmであった。No.1、2、4、7では、いずれも割れは認められなかった。このことから、本発明の材料は、良好な耐応力腐食割れ性を有すると考えられる。
次に、TaCの析出状態について調査を行った。ここでは、材料No.1を使用した。この材料に40%の冷間圧延を施した後、1050℃、1100℃、1150℃でそれぞれ30分の熱処理と水冷により、溶体化熱処理を施した。溶体化後、安定化熱処理、鋭敏化熱処理、安定化熱処理+鋭敏化熱処理のそれぞれを施した。また、溶体化ままの材料も準備した。ここで、安定化熱処理条件は、900℃、2時間、空冷とした。また、鋭敏化熱処理は、650℃、2時間、空冷とした。まず、これらの材料の析出物中に含まれるTa量を調査した。それぞれの熱処理を施した材料から、10×50×10mmtの試験片を採取した。それを定電流電解法で電解した後、0.2μmのフィルターで残渣を採取し、発光分光分析(ICP)法でTa濃度を分析した。
析出物中のTa量と各種熱処理条件の関係を図8に示す。この図から、1050℃の溶体化ではTaが一部TaCとして析出しているが、1100℃、1150℃の溶体化ではほとんどのTaが材料中に固溶していると考えられる。安定化熱処理を施すと材料中のTaがTaCを形成して析出するため、析出物中のTa濃度が上昇する。鋭敏化熱処理では析出物中のTa濃度にほとんど変化せず、鋭敏化熱処理はCr炭化物を形成させるのみで、TaCの形成はないと考えられる。
図9に材料中に含まれるTaのうち析出物を形成したTaの割合を示す。溶体化ままおよび溶体化+鋭敏化では、1050℃溶体化で10〜20%がTaCを析出していたが、1100℃、1150℃溶体化ではほとんど析出していなかった。一方、溶体化熱処理後、安定化熱処理を施すと、溶体化温度により違いがあるものの、30%以上がTaCとして析出していた。ただし、最大でも60%弱が析出していた。このような熱処理を施した材料の鋭敏化状態を評価するために、JIS G 0580に従い再活性化率を測定した。
その結果を図10に示す。この結果から、溶体化後、鋭敏化熱処理を施すといずれの試験片とも軽微な鋭敏化状態となることがわかる。一方、溶体化後、安定化熱処理を施すと、溶体化温度の上昇に伴い再活性化率が増加するが、いずれの溶体化温度でも非鋭敏化状態であった。この再活性化率の試験結果は、析出したTaの割合と相関関係が認められ、安定化熱処理によりTaCを析出させることにより、熱鋭敏化を抑制できることがわかる。安定化熱処理を施してTaCを析出させると、熱鋭敏化を抑制できるとともに、図3、図4で示したように析出強化による強度の向上を図ることができる。そこで、安定化熱処理を施した材料のTaCの析出物数密度を溶体化熱処理材と比較した。析出物の観察は、以下の要領で行った。まず、鏡面研磨した試験片表面を軽くエッチングした後、カーボン蒸着して析出物をカーボン膜に固定化する。その後、母材を溶出させ、析出物が固定化されたカーボン膜を剥離させる。析出物が固定化されたカーボン膜を十分に洗浄、乾燥させ、析出物観察用の試験片とする。この試験片を電解放出型(FE)のSTEM(Scanning Transmission Electron Microscopy)で観察する。このようにして、析出物の状態を、特に寸法と数密度に着目して調査を行った。ここで、カーボン膜上の析出物は、試験片のある面上に存在する析出物を観察していることになる。析出物数密度の計測は、偏りがないようにFE-STEMで倍率5万倍で50視野観察し、10nm以上の析出物について評価した。
その結果を図11に示す。この結果、溶体化材については、1050℃溶体化ではある程度の数密度でTaC析出物が認められたが、1100℃、1150℃溶体化材ではほとんど認められず、数密度も極めて小さかった。一方、溶体化+安定化熱処理材は、溶体化温度が高い方が、析出物数密度が上昇する傾向が見られた。溶体化+安定化熱処理材は、熱鋭敏化しないことが図10でも示されていること、および安定化熱処理により強度の向上が見込めることから、TaC析出物の数密度は1×1012m-2以上が好ましいと考えられる。
In No. 10 SUS316L, cracks occurred in four of the seven test pieces, and the maximum crack depth was 62 μm. In Nos. 1, 2, 4, and 7, no cracks were observed. From this, it is considered that the material of the present invention has good stress corrosion cracking resistance.
Next, the precipitation state of TaC was investigated. Here, material No. 1 was used. This material was subjected to 40% cold rolling, followed by solution heat treatment by heat treatment at 1050 ° C., 1100 ° C., and 1150 ° C. for 30 minutes and water cooling. After solution treatment, each of stabilization heat treatment, sensitization heat treatment, stabilization heat treatment + sensitization heat treatment was performed. Moreover, the material as a solution was also prepared. Here, the stabilization heat treatment conditions were air cooling at 900 ° C. for 2 hours. The sensitizing heat treatment was air-cooled at 650 ° C. for 2 hours. First, the amount of Ta contained in the precipitates of these materials was investigated. A test piece of 10 × 50 × 10 mmt was taken from each heat-treated material. After electrolyzing it with a constant current electrolysis method, the residue was collected with a 0.2 μm filter, and the Ta concentration was analyzed with an emission spectroscopic analysis (ICP) method.
FIG. 8 shows the relationship between the amount of Ta in the precipitate and various heat treatment conditions. From this figure, it is considered that part of Ta is precipitated as TaC in the solution solution at 1050 ° C., but most of Ta is dissolved in the material in the solution solution at 1100 ° C. and 1150 ° C. When the stabilization heat treatment is performed, Ta in the material forms TaC and precipitates, so the Ta concentration in the precipitate increases. The sensitizing heat treatment hardly changes the Ta concentration in the precipitate, and the sensitizing heat treatment only forms Cr carbide, and it is considered that TaC is not formed.
FIG. 9 shows the proportion of Ta that forms precipitates out of Ta contained in the material. While in solution and in solution plus sensitization, 10 to 20% of TaC was precipitated at 1050 ° C., but hardly precipitated at 1100 ° C. and 1150 ° C. On the other hand, when the stabilization heat treatment was performed after the solution heat treatment, 30% or more was precipitated as TaC, although there was a difference depending on the solution temperature. However, a little less than 60% was deposited at the maximum. In order to evaluate the sensitization state of the material subjected to such heat treatment, the reactivation rate was measured according to JIS G 0580.
The result is shown in FIG. From this result, it can be seen that, after the solution treatment, when the sensitizing heat treatment is performed, all the test pieces are in a slightly sensitized state. On the other hand, when a stabilization heat treatment is performed after solution treatment, the reactivation rate increases as the solution temperature rises, but the solution was not sensitized at any solution temperature. This reactivation rate test result correlates with the proportion of precipitated Ta, and it can be seen that thermal sensitization can be suppressed by precipitating TaC by stabilizing heat treatment. When stabilizing heat treatment is performed to precipitate TaC, thermal sensitization can be suppressed and strength can be improved by precipitation strengthening as shown in FIGS. Therefore, the number density of TaC precipitates in the material subjected to the stabilization heat treatment was compared with that of the solution heat treatment material. The precipitate was observed as follows. First, after lightly etching the mirror-polished test piece surface, carbon deposition is performed to fix the precipitate to the carbon film. Thereafter, the base material is eluted, and the carbon film on which the precipitate is fixed is peeled off. The carbon film on which the precipitate is fixed is sufficiently washed and dried to obtain a specimen for observation of the precipitate. This test piece is observed with a field emission type (FE) STEM (Scanning Transmission Electron Microscopy). In this way, the state of the precipitate was investigated, particularly focusing on the size and number density. Here, the precipitate on the carbon film is observed as a precipitate existing on the surface of the test piece. In order to measure the number density of the precipitates, 50 visual fields were observed with FE-STEM at a magnification of 50,000 times so as not to be biased, and precipitates of 10 nm or more were evaluated.
The result is shown in FIG. As a result, with regard to the solution material, TaC precipitates were recognized at a certain number density in the case of 1050 ° C. solution formation, but were hardly observed in the 1100 ° C. and 1150 ° C. solution treatment material, and the number density was also extremely small. On the other hand, in the solution-treated / stabilized heat-treated material, the higher the solution temperature, the higher the number density of precipitates was observed. Since it is shown in FIG. 10 that the solution + stabilized heat treatment material is not heat-sensitized and the strength can be improved by the stabilization heat treatment, the number density of TaC precipitates is 1 × 10 12 m −2 or more. Is considered preferable.

本発明の実施形態の例として、原子炉炉内構造物および機器の中で最も中性子照射損傷速度の速い制御棒への適用例を示す。
図12は中性子吸収材にボロン・カーバイドを使用した制御棒を示す。この制御棒は、主にタイロッド10、ハンドル9、コネクター7、シース6、中性子吸収棒5を有し、これらにはいずれもオーステナイト系ステンレス鋼が用いられている。
制御棒はすき間を有すため、すき間腐食の可能性があり、かつ照射誘起応力腐食割れを発生する可能性もある。そこで、耐すき間腐食性、耐応力腐食割れ性に優れ、かつ照射損傷抑制にも効果があると考えられる本発明のオーステナイト系ステンレス鋼を使用することにより、制御棒のすき間腐食および照射誘起応力腐食割れを抑制し、長寿命かつ信頼性の高い制御棒とすることができる。また、本発明のオーステナイト系ステンレス鋼は、棒、薄板、管など様々な形状の部材として製造可能であるので、ボロン・カーバイドを使用する制御棒だけでなく、ハフニウムを中性子吸収材に使用した制御棒にも適用できる。
原子炉炉内で従来から使用されているオーステナイト系ステンレス鋼は、0.1MeV以上のエネルギーを持つ中性子が0.5×1021n/cm2以上照射されると照射誘起応力腐食割れを発生する可能性がある。そこで、制御棒に限らず、原子炉炉内構造物および機器、たとえば沸騰水型原子炉の炉心シュラウド、上部格子板、炉心支持板など、加圧水型原子炉のバッフル板、フォーマ板、バッフル・フォーマ・ボルトなどに、本発明のオーステナイト系ステンレス鋼を使用することにより、長期信頼性に優れる原子炉および原子力発電プラントとすることができる。
As an example of an embodiment of the present invention, an application example to a control rod having the fastest neutron irradiation damage speed among reactor internal structures and equipment will be shown.
FIG. 12 shows a control rod using boron carbide as a neutron absorber. This control rod mainly has a tie rod 10, a handle 9, a connector 7, a sheath 6, and a neutron absorber rod 5, all of which are made of austenitic stainless steel.
Since the control rod has a gap, there is a possibility of crevice corrosion, and there is also a possibility of generating irradiation-induced stress corrosion cracking. Therefore, by using the austenitic stainless steel of the present invention, which is considered to be excellent in crevice corrosion resistance and stress corrosion cracking resistance, and also effective in suppressing irradiation damage, control rod crevice corrosion and radiation induced stress corrosion Cracks can be suppressed, and a long-life and highly reliable control rod can be obtained. In addition, since the austenitic stainless steel of the present invention can be manufactured as members of various shapes such as rods, thin plates, and tubes, not only control rods using boron carbide but also control using hafnium as a neutron absorber. It can also be applied to bars.
Conventionally used austenitic stainless steels in nuclear reactors may cause irradiation-induced stress corrosion cracking when neutrons with energy of 0.1 MeV or more are irradiated by 0.5 × 10 21 n / cm 2 or more. is there. Therefore, not only control rods, but also reactor internal structures and equipment such as boiling water reactor core shrouds, upper lattice plates, core support plates, etc., baffle plates, former plates, baffle formers for pressurized water reactors, etc. -By using the austenitic stainless steel of the present invention for a bolt or the like, a nuclear reactor and a nuclear power plant having excellent long-term reliability can be obtained.

1:すき間腐食試験片
2:スポット溶接
3:ローラー
4:冷却孔
5:中性子吸収棒
6:シース
7:コネクター
8:コネクター・ソケット
9:ハンドル
10:タイロッド
1: Crevice corrosion test piece 2: Spot welding 3: Roller 4: Cooling hole 5: Neutron absorber rod 6: Sheath 7: Connector 8: Connector / socket 9: Handle 10: Tie rod

Claims (6)

Cが0.03〜0.04重量%、Mnが1.0〜2.0重量%、Niが9.0〜13.0重量%、Crが17.0〜20.0重量%、TaがCの13倍以上で0.50〜0.65重量%であり、残部がFe及び不可避不純物からなるオーステナイト系ステンレス鋼において、
Taのうち30%以上がTaCとして析出していることを特徴とするオーステナイト系ステンレス鋼。
C is 0.03 to 0.04% by weight, Mn is 1.0 to 2.0% by weight, Ni is 9.0 to 13.0% by weight, Cr is 17.0 to 20.0% by weight, Ta is 13 times or more of C, 0.50 to 0.65% by weight, and the balance In austenitic stainless steel consisting of Fe and inevitable impurities,
Austenitic stainless steel characterized in that more than 30% of Ta is precipitated as TaC.
請求項1において、ステンレス鋼断面において析出したTaC粒子のうち、平均粒径が10nm以上の粒子の平均数密度が1.0×1012個/m2以上であることを特徴とするオーステナイト系ステンレス鋼。 2. The austenitic stainless steel according to claim 1, wherein among TaC particles precipitated on the stainless steel cross section, the average number density of particles having an average particle diameter of 10 nm or more is 1.0 × 10 12 particles / m 2 or more. 請求項1において、結晶粒度番号が4.0以上であり、100℃での引張強度が470MPa以上であることを特徴とするオーステナイト系ステンレス鋼。   The austenitic stainless steel according to claim 1, having a grain size number of 4.0 or more and a tensile strength at 100 ° C of 470 MPa or more. 請求項1において、電気化学的再活性化率が30%以下であることを特徴とするオーステナイト系ステンレス鋼。   2. The austenitic stainless steel according to claim 1, wherein the electrochemical reactivation rate is 30% or less. 請求項1乃至4のいずれかに記載のオーステナイト系ステンレス鋼で構成され、0.1MeV以上のエネルギーをもつ中性子が0.5×1021n/cm2以上照射されることを特徴とする原子炉内構造物。A reactor internal structure comprising the austenitic stainless steel according to any one of claims 1 to 4 and irradiated with neutrons having an energy of 0.1 MeV or more of 0.5 × 10 21 n / cm 2 or more. . 請求項において、原子炉内構造物が制御棒であることを特徴とする原子炉内構造物。 6. The reactor internal structure according to claim 5, wherein the reactor internal structure is a control rod.
JP2012230431A 2012-10-18 2012-10-18 High corrosion resistance austenitic stainless steel Active JP5978095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012230431A JP5978095B2 (en) 2012-10-18 2012-10-18 High corrosion resistance austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012230431A JP5978095B2 (en) 2012-10-18 2012-10-18 High corrosion resistance austenitic stainless steel

Publications (2)

Publication Number Publication Date
JP2014080664A JP2014080664A (en) 2014-05-08
JP5978095B2 true JP5978095B2 (en) 2016-08-24

Family

ID=50785120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230431A Active JP5978095B2 (en) 2012-10-18 2012-10-18 High corrosion resistance austenitic stainless steel

Country Status (1)

Country Link
JP (1) JP5978095B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220037690A (en) * 2020-09-18 2022-03-25 한국과학기술원 Low activation austenitic stainless steel having tantalium and preparing method of the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6208049B2 (en) * 2014-03-05 2017-10-04 日立Geニュークリア・エナジー株式会社 High corrosion resistance high strength austenitic stainless steel
JP6228049B2 (en) * 2014-03-19 2017-11-08 日立Geニュークリア・エナジー株式会社 Austenitic stainless steel
EP3168317A1 (en) * 2014-07-07 2017-05-17 Hitachi, Ltd. Austenitic stainless steel and method for producing same
CN108026620B (en) * 2015-10-30 2021-02-26 株式会社日立制作所 Dispersion-strengthened austenitic stainless steel material, method for producing the stainless steel material, and product made of the stainless steel material
CN110863166B (en) * 2019-11-18 2022-09-13 和县科嘉阀门铸造有限公司 Method for improving stress corrosion resistance of austenitic stainless steel valve

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118616A (en) * 1973-03-15 1974-11-13
US4863682A (en) * 1988-03-11 1989-09-05 General Electric Company Austenitic stainless steel alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220037690A (en) * 2020-09-18 2022-03-25 한국과학기술원 Low activation austenitic stainless steel having tantalium and preparing method of the same
KR102445585B1 (en) * 2020-09-18 2022-09-21 한국과학기술원 Low activation austenitic stainless steel having tantalium and preparing method of the same

Also Published As

Publication number Publication date
JP2014080664A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5978095B2 (en) High corrosion resistance austenitic stainless steel
JP4042362B2 (en) Ni-base alloy product and manufacturing method thereof
KR100261666B1 (en) Composition of zirconium alloy having low corrosion rate and high strength
CN112195369B (en) Corrosion-resistant high-strength neutron shielding alloy material and preparation method thereof
JP2014181383A (en) High corrosion resistance high strength stainless steel, structure in atomic furnace and manufacturing method of high corrosion resistance high strength stainless steel
Yueh et al. Improved ZIRLOTM cladding performance through chemistry and process modifications
KR100261665B1 (en) Composition of zirconium alloy having high corrosion resistance and high strength
JP2011168819A (en) Austenitic stainless steel and method for manufacturing the same
WO2013150947A1 (en) Cr-containing austenitic alloy
JP5459633B1 (en) Austenitic alloy tube
JP5675958B2 (en) Heat generator tube for steam generator, steam generator and nuclear power plant
JP6208049B2 (en) High corrosion resistance high strength austenitic stainless steel
JP2010275569A (en) Austenitic stainless steel and method of manufacturing the same
KR20140058492A (en) Zirconium alloys with improved corrosion/creep resistance due to final heat treatments
JP2014005509A (en) Highly corrosion-resistant austenitic stainless steel and weld joint structure
JP2013208627A (en) HIGH CORROSION RESISTANT Ni-BASED WELD METAL, WELDED STRUCTURE USING THE SAME, AND NUCLEAR POWER PLANT
JP2007031803A (en) Highly corrosion-resistant reactor core material
JPH024945A (en) Austenitic steel exposed to high temperature and high pressure water under neutron irradiation
Isaenkova et al. Structural features of hydrogenated E110opt and E635 tubes
KR101341135B1 (en) Zirconium alloy having excellent mechanical properties and corrosion resistance for nuclear fuel rod cladding tube
JP6228049B2 (en) Austenitic stainless steel
Besch et al. Corrosion behavior of duplex and reference cladding in NPP Grohnde
KR20130116668A (en) Zirconium alloy having excellent mechanical properties and corrosion resistance for nuclear fuel rod cladding tube
JPH05171359A (en) Austenitic stainless steel markedly lowered in contents of nitrogen and boron
Couet Hydrogen Pick-Up Behavior in Zirconium Alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5978095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150