JP2007031803A - Highly corrosion-resistant reactor core material - Google Patents

Highly corrosion-resistant reactor core material Download PDF

Info

Publication number
JP2007031803A
JP2007031803A JP2005219864A JP2005219864A JP2007031803A JP 2007031803 A JP2007031803 A JP 2007031803A JP 2005219864 A JP2005219864 A JP 2005219864A JP 2005219864 A JP2005219864 A JP 2005219864A JP 2007031803 A JP2007031803 A JP 2007031803A
Authority
JP
Japan
Prior art keywords
core material
resistance
corrosion
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005219864A
Other languages
Japanese (ja)
Inventor
Shigeki Kasahara
茂樹 笠原
Jiro Kuniya
治郎 国谷
Masayoshi Matsuura
正義 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005219864A priority Critical patent/JP2007031803A/en
Publication of JP2007031803A publication Critical patent/JP2007031803A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly corrosion-resistant reactor core material having excellent corrosion resistance, swelling resistance and stress corrosion cracking resistance under radiation exposure and under a high-temperature and high-pressure water environment. <P>SOLUTION: As a member subjected to neutron irradiation in high-temperature water, austenitic steel containing at least either of Ti and Zr is used. To be concrete, the steel has a composition consisting of 0.005 to 0.04% C, ≤1% Si, ≤2% Mn, 23 to 28% Cr, 16 to 25% Ni, 0.5 to 3% Mo, 0.1 to 2% of at least either of Ti and Zr and the balance ≥50% Fe and further containing, other than the above, 1.0%, in total, of at least one or more elements among Pd, Pt and Hf. The steel is used as a constituent material for a reactor core of a nuclear reactor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はオーステナイト鋼に関わり、特に耐全面腐食性,耐スエリング性及び耐粒界応力腐食割れ性に優れたオーステナイト鋼に関する。   The present invention relates to an austenitic steel, and more particularly to an austenitic steel excellent in general corrosion resistance, swelling resistance and intergranular stress corrosion cracking resistance.

現在、軽水炉の炉心構造物や機器のための構造部材にはJIS規格の304または316Lステンレス鋼が用いられており、これらには使用環境中での耐食性や耐粒界応力腐食割れ性向上のための施策がなされている。例えば、高温水中で使用される鋼中の粒界腐食や粒界型応力腐食割れを軽減又は防止する方法として、特公平1−18143号公報に開示されているようにステンレス鋼中に含まれる炭素量を低減し、NbやTiなどのような炭化物安定元素を添加し、粒界近傍のCr枯渇現象を抑制,防止するものがある。また特開昭62−107047号公報には、中性子照射に起因する粒界腐食を防止する方法に関して、SiやPを低減し、Mo,Nb,Tiなどの安定な炭化物を生成する元素を添加し、
Cr炭化物の形成を抑制することが開示されている。さらに特開平3−72054号公報には、ステンレス鋼中において母相の平均原子体積に対するCrの原子体積の比が0.900〜1.030 となるように成分配置を調整し、照射誘起粒界Cr欠乏層の発生メカニズムを抑制することが開示されている。これらの技術は、粒界近傍のCr欠乏層の発生を抑制し、高温高圧水中における耐粒界腐食性向上を目的に開発され、特に原子炉炉心構造部品用ステンレス鋼への適用が考えられている。
Currently, JIS standard 304 or 316L stainless steel is used as the structural member for core structures and equipment of light water reactors, and these are used to improve corrosion resistance and intergranular stress corrosion cracking resistance in the environment of use. Measures are being taken. For example, as a method for reducing or preventing intergranular corrosion and intergranular stress corrosion cracking in steel used in high-temperature water, carbon contained in stainless steel as disclosed in Japanese Patent Publication No. 1-18143. Some of them reduce the amount and add a carbide stabilizing element such as Nb or Ti to suppress or prevent the Cr depletion phenomenon near the grain boundary. Japanese Patent Laid-Open No. 62-107047 discloses a method for preventing intergranular corrosion caused by neutron irradiation by adding elements that reduce Si and P and generate stable carbides such as Mo, Nb, and Ti. ,
It is disclosed to suppress the formation of Cr carbide. Further, JP-A-3-72054 discloses that the component arrangement is adjusted so that the ratio of the atomic volume of Cr to the average atomic volume of the parent phase is 0.900 to 1.030 in stainless steel, and irradiation-induced grain boundary Cr deficiency It is disclosed to suppress the generation mechanism of the layer. These technologies were developed for the purpose of suppressing the formation of Cr-depleted layers near grain boundaries and improving the intergranular corrosion resistance in high-temperature and high-pressure water, and are especially considered to be applied to stainless steel for reactor core structural parts. Yes.

以上述べた技術は、現行軽水炉の炉心構造物や機器に適用する構造部材に対するものであり、これらは冷却水温度で最高360℃、圧力で最高16MPaの高温高圧水(亜臨界水)での使用が想定されているのみである。   The technologies described above are for structural members applied to the core structure and equipment of the current light water reactor, and these are used in high-temperature and high-pressure water (subcritical water) at a maximum of 360 ° C at the cooling water temperature and a maximum of 16 MPa at the pressure. Is only assumed.

特公平1−18143号公報Japanese Patent Publication No. 1-18143 特開昭62−107047号公報JP 62-107047 A 特開平3−72054号公報JP-A-3-72054

一方近年では、現行軽水炉の高効率化を目的として、冷却水の更なる高温高圧化が図られつつあり、一部においては水の臨界点(374℃,22.1MPa)を超えた条件(超臨界水)を冷却水として使用する原子炉の開発が進められている。この原子炉炉心における冷却水は、入口で約290℃,出口で約550℃,圧力25MPa以上となるよう設計されており、現行軽水炉の炉心条件に比べて温度,圧力とも高く、炉心領域の冷却水として超臨界水を用いる。このような炉心環境で用いられる燃料被覆管や炉心構造物を構成する部材は、放射線照射下において耐全面腐食性,耐スエリング性及び耐粒界応力腐食割れ性に優れることが求められる。上記の従来技術は、現行軽水炉の使用温度及び圧力である約350℃,16MPa程度までの放射線照射下で高温高圧水に接する炉心構成材料に対する諸特性の改善にのみ着目しており、軽水炉の高効率化を目的とした冷却水の高温高圧化に対する配慮がなされていない。また現行軽水炉において燃料被覆管として用いられているジルコニウム合金は、400℃を超える領域においては機械的強度が極めて低くなるため適用は困難である。さらに、このような環境において燃料被覆管へ供されることを想定して開発された材料については、日本原子力学会2003年春の年会要旨集(要旨番号
746)に示されているが、高温高圧水中の耐食性の向上にのみ着目されており、耐スエリング性改善への配慮がない。以上のような観点より、従来技術では軽水炉の高効率化を図ることを目的として冷却水を超臨界圧水条件とする高効率軽水炉の燃料被覆管や炉内構造物構成材料に供するための材料として、耐食性,耐応力腐食割れ性,耐スエリング性のいずれにも優れた材料を提供する点で問題がある。
On the other hand, in recent years, for the purpose of increasing the efficiency of the current light water reactor, cooling water is being further increased in temperature and pressure, and in some cases, conditions exceeding the critical point of water (374 ° C, 22.1 MPa) (super Development of nuclear reactors that use critical water as cooling water is underway. Cooling water in the reactor core is designed to be about 290 ° C at the inlet, about 550 ° C at the outlet, and a pressure of 25MPa or higher. Both the temperature and pressure are higher than the core conditions of the current light water reactor, and the cooling of the core region Supercritical water is used as water. The members constituting the fuel cladding tube and the core structure used in such a core environment are required to have excellent overall corrosion resistance, swelling resistance and intergranular stress corrosion cracking resistance under irradiation of radiation. The above prior art focuses only on the improvement of various characteristics for core constituent materials that are in contact with high-temperature and high-pressure water under radiation irradiation up to about 350 ° C. and 16 MPa, which is the operating temperature and pressure of the current light water reactor. No consideration has been given to increasing the temperature and pressure of cooling water for the purpose of efficiency. In addition, zirconium alloys used as fuel cladding tubes in current light water reactors are difficult to apply because the mechanical strength is extremely low in the region exceeding 400 ° C. Furthermore, the material developed assuming that it is used for the fuel cladding tube in such an environment is shown in the Annual Meeting of the Atomic Energy Society of Japan 2003 (Summary No. 746). The focus is only on improving the corrosion resistance in water, and there is no consideration for improving the swelling resistance. In view of the above, in the prior art, for the purpose of improving the efficiency of the light water reactor, the material used for the fuel cladding tube and the internal structural component material of the high efficiency light water reactor in which the cooling water is in the supercritical pressure water condition However, there is a problem in providing a material excellent in all of corrosion resistance, stress corrosion cracking resistance, and swelling resistance.

本発明の目的は、高効率原子炉の燃料被覆管及び炉内構造物の構成材料に関して、特に耐全面腐食性、耐スエリング性及び耐粒界応力腐食割れ性に優れるオーステナイト鋼を提供することにある。   An object of the present invention is to provide an austenitic steel that is particularly excellent in overall corrosion resistance, swelling resistance, and intergranular stress corrosion cracking resistance with respect to constituent materials of fuel cladding tubes and internal structures of high-efficiency reactors. is there.

本発明の高耐食性炉心材料は、水と接触し、放射線照射下で使用される部材であって、Ti及びZrの少なくとも一つを含むオーステナイト鋼で構成され耐食性,耐スエリング性及び耐応力腐食割れ性に優れたことを特徴とするものである。   The highly corrosion-resistant core material of the present invention is a member that comes into contact with water and is used under radiation irradiation, and is composed of austenitic steel containing at least one of Ti and Zr. Corrosion resistance, swelling resistance, and stress corrosion cracking resistance It is characterized by excellent properties.

また、本発明の高耐食性炉心材料は、重量で、C:0.005%〜0.04%,Si:1%以下、P:0.02%以下,N:0.05%以下,Mn:0.5〜16% ,Cr:20〜28%,Ni:16〜25%,Mo:0.5〜3%と、Zr:0.1〜2%またはTi:
0.1 〜2%の少なくとも一種類、及び50%以上のFeと不可避な不純物を有して耐食性,耐スエリング性及び耐応力腐食割れ性に優れたことを特徴とするものである。
Further, the high corrosion resistance core material of the present invention is, by weight, C: 0.005% to 0.04%, Si: 1% or less, P: 0.02% or less, N: 0.05% or less, Mn: 0.5-16%, Cr: 20-28%, Ni: 16-25%, Mo: 0.5-3%, Zr: 0.1-2% or Ti:
It has at least one kind of 0.1 to 2%, 50% or more of Fe and inevitable impurities, and is excellent in corrosion resistance, swelling resistance and stress corrosion cracking resistance.

また、本発明の高耐食性炉心材料は、前述の鋼にPd,Pt及びHfの少なくとも一種類以上を合計で1.0% 以下含むことを特徴として耐食性,耐スエリング性及び耐応力腐食割れ性に優れたことを特徴とするものである。   Further, the high corrosion resistance core material of the present invention is characterized by containing at least one kind of Pd, Pt and Hf in the above-mentioned steel in a total of 1.0% or less in total, and having corrosion resistance, swelling resistance and stress corrosion cracking resistance. It is characterized by superiority.

また、本発明の高耐食性炉心材料は、前述の鋼において、400℃以上,25MPaの高温高圧水中に浸漬した際、減肉速度が0.05mm/年 を上回らないようにCr量を20〜28%、Ni量を16〜25%添加することを特徴とし、特に減肉速度が0.03mm/年とするのが好ましく、かつオーステナイト組織を有するようCr量を23〜28%、
Ni量を18〜23%添加することを特徴としたものである。
In addition, the high corrosion resistance core material of the present invention has a Cr content of 20 to 28 so that the metal thinning rate does not exceed 0.05 mm / year when immersed in high-temperature high-pressure water at 400 ° C. or higher and 25 MPa in the aforementioned steel. %, Ni content is added in an amount of 16 to 25%, and it is particularly preferable that the thinning rate is 0.03 mm / year, and the Cr content is 23 to 28% so as to have an austenite structure.
It is characterized by adding 18 to 23% of the amount of Ni.

また、本発明の高耐食性炉心材料は、前述の鋼において、300℃以上で温度照射損傷量10dpaまで照射後、スエリング量が1%以内となるようにZrまたはTi量を0.1〜2%添加することを特徴とするものである。   Further, the high corrosion resistance core material of the present invention has a Zr or Ti content of 0.1 to 2% so that the amount of swelling is within 1% after irradiation to a temperature irradiation damage of 10 dpa at 300 ° C. or higher in the above steel. It is characterized by adding.

また、本発明の高耐食性炉心材料は、前述の鋼において、特にスエリング量が0.5%を上回らないことが好ましく、かつ機械的性質への影響を考慮して、Zr及びTiの添加量はそれぞれ0.5〜1%とすることが好ましい。固溶化熱処理のまま使用する場合は、Zr及びTiの炭化物を形成しないようC量は0.02% 以下とすることが好ましい。加えて、ZrまたはTi量を1〜2%添加した上で650℃〜750℃の温度で熱処理し、母相中にこれらの炭化物を形成しても良い。この熱処理を実施する場合は、炭化物の析出を促進する目的で、C量は0.02〜0.03%とすることが好ましいものである。   Further, in the high corrosion resistance core material of the present invention, the amount of swelling in the steel described above is preferably not more than 0.5%, and in consideration of the influence on the mechanical properties, the addition amount of Zr and Ti is It is preferable to set it as 0.5 to 1%, respectively. When used as a solution heat treatment, the C content is preferably 0.02% or less so as not to form carbides of Zr and Ti. In addition, after adding Zr or Ti amount of 1 to 2%, heat treatment may be performed at a temperature of 650 ° C. to 750 ° C. to form these carbides in the parent phase. When this heat treatment is performed, the C content is preferably 0.02 to 0.03% for the purpose of promoting the precipitation of carbides.

また、本発明の高耐食性炉心材料は、前述の鋼において、ダブルUベンド試験片の形状に加工し、300℃以上,25MPaの高温高圧水中に浸漬した際、粒界割れが発生しないことを特徴とするものである。   In addition, the high corrosion resistance core material of the present invention is characterized in that the above-mentioned steel is processed into the shape of a double U-bend test piece, and no intergranular cracking occurs when immersed in high-temperature high-pressure water at 300 ° C. or higher and 25 MPa. It is what.

また、本発明の高耐食性炉心材料は、前述の鋼において、300℃以上で温度照射損傷量10dpa まで照射後、粒界におけるCr欠乏量が、母相のCr濃度に比べて5%以内となるようにZrまたはTi量を0.1 〜2%添加することを特徴とするものである。特に粒界でのCr欠乏量が2%を上回らないことが好ましく、かつ機械的性質への影響を考慮して、Zr及びTiの添加量はそれぞれ0.5 〜1%とすることが好ましい。固溶化熱処理のまま使用する場合は、Zr及びTiの炭化物を形成しないようC量は0.02% 以下とすることが好ましい。加えて、ZrまたはTi量を1〜2%添加した上で650℃〜
750℃の温度で熱処理し、母相中にこれらの炭化物を形成しても良い。この熱処理を実施する場合は、炭化物の析出を促進する目的で、C量は0.02〜0.04%とすることが好ましいものである。
Further, in the high corrosion resistance core material of the present invention, after the above steel is irradiated at a temperature of 300 ° C. or more to a temperature irradiation damage of 10 dpa, the Cr deficiency at the grain boundary is within 5% as compared with the Cr concentration of the parent phase. Thus, 0.1 to 2% of Zr or Ti amount is added. In particular, it is preferable that the Cr deficiency at the grain boundary does not exceed 2%, and considering the influence on the mechanical properties, the addition amounts of Zr and Ti are each preferably 0.5 to 1%. When used as a solution heat treatment, the C content is preferably 0.02% or less so as not to form carbides of Zr and Ti. In addition, after adding 1-2% of Zr or Ti amount,
These carbides may be formed in the matrix by heat treatment at a temperature of 750 ° C. When this heat treatment is performed, the C content is preferably 0.02 to 0.04% for the purpose of promoting the precipitation of carbides.

また、本発明の高耐食性炉心材料は、前述の鋼において、鍛造,熱間圧延,固溶化熱処理を経た後、650℃〜750℃で熱処理されることにより母相にZrまたはTiのいずれかを含む炭化物を形成させたことを特徴とするものである。   In addition, the high corrosion resistance core material of the present invention is subjected to forging, hot rolling, and solution heat treatment in the above steel, and then heat-treated at 650 ° C. to 750 ° C. so that either Zr or Ti is added to the parent phase. It is characterized by forming a carbide containing.

本発明によれば放射線照射下で高温高圧水に接する環境で用いられるオーステナイト鋼において、特に耐全面腐食性,耐スエリング性及び耐粒界応力腐食割れ性の点で優れた性能を示すことが期待され、例えば、高効率軽水炉の実用化に大きく寄与する高耐食性炉心材料を提供することが実現できる。   According to the present invention, an austenitic steel used in an environment exposed to high-temperature and high-pressure water under irradiation is expected to exhibit excellent performance particularly in terms of overall corrosion resistance, swelling resistance, and intergranular stress corrosion cracking resistance. For example, it is possible to provide a highly corrosion-resistant core material that greatly contributes to the practical application of a high-efficiency light water reactor.

以下、本発明の鋼について特に成分を中心として説明を行う。   Hereinafter, the steel of the present invention will be described focusing on the components.

Zr及びTiは、本発明に係わるオーステナイト鋼に添加することにより、放射線の照射によって生じる点欠陥(格子間原子及び原子空孔)の再結合を促進する。その結果、点欠陥の集積によって生じる転位ループやボイドの形成を抑制し、また点欠陥の粒界への拡散によって生じる照射誘起粒界偏析を抑制する元素である。この作用によって、放射線照射下でオーステナイト鋼に生じる粒界Cr欠乏及びボイドの発生を抑制することができる。但し多量の添加は脆い金属間化合物の形成を促進して、加工性の悪化や機械的強度の低下につながる場合がある。よって、Zr及びTiの過剰の添加は避けるべきであり、これらの問題がない範囲として、0.1〜2%とした。特に0.5〜1%が好ましい。   Zr and Ti promote recombination of point defects (interstitial atoms and atomic vacancies) caused by radiation irradiation when added to the austenitic steel according to the present invention. As a result, it is an element that suppresses the formation of dislocation loops and voids caused by accumulation of point defects, and also suppresses irradiation-induced grain boundary segregation caused by diffusion of point defects to grain boundaries. This action can suppress the generation of grain boundary Cr deficiency and voids that occur in austenitic steel under irradiation. However, addition of a large amount promotes the formation of brittle intermetallic compounds, which may lead to deterioration of workability and mechanical strength. Therefore, excessive addition of Zr and Ti should be avoided, and the range in which there is no such problem is set to 0.1 to 2%. 0.5 to 1% is particularly preferable.

Cは放射線照射及び加熱によりCrと反応して粒界近傍にCr炭化物を析出し、粒界近傍のCr濃度を低下させる。Cr濃度が低下した粒界Cr欠乏層の形成は粒界の耐食性を低め、粒界型応力腐食割れの原因ともなるのでC量はできるだけ低い方がよい。一方Cは室温及び高温での機械的強度を高めるために有益であり、0.002% 以下のC量の著しく低いものでは強度を低め、耐照射脆性が悪化するので好ましくないことを考慮し、
0.005%以上0.04%以下とすべきである。
C reacts with Cr by irradiation and heating to precipitate Cr carbide near the grain boundary, and lowers the Cr concentration near the grain boundary. The formation of a grain boundary Cr-depleted layer with a reduced Cr concentration lowers the corrosion resistance of the grain boundary and causes grain boundary type stress corrosion cracking, so the C content is preferably as low as possible. On the other hand, C is beneficial for increasing the mechanical strength at room temperature and high temperature, considering that the C content of 0.002% or less is not preferable because the strength is lowered and the irradiation brittleness is deteriorated.
It should be 0.005% or more and 0.04% or less.

上記のZr,Ti及びC量の関係においては、次の2点に配慮する必要がある。まず本発明鋼を固溶化熱処理後にZr及びTiを母相に固溶させて使用する場合には、できるだけZr及びTiの炭化物の析出を抑制するため、C量は0.005%〜0.02%とし、特に0.008〜0.02%が好ましい。次に母相内に均一に分散させたZrまたはTiの炭化物は固溶化状態のZr及びTiよりも更に点欠陥どうしの再結合を促進することから、炭化物を析出させる場合はZrまたはTiを1〜2%添加した上で650℃〜750℃の温度で熱処理し、母相中にこれらの炭化物を分散させても良い。なおこの熱処理を実施する場合は、炭化物の析出を促進する目的でC量は0.02〜0.04%とすることが好ましく、特に0.025〜0.035%であることが好ましい。   In relation to the above Zr, Ti and C amounts, the following two points need to be considered. First, when the steel of the present invention is used after solid solution heat treatment, Zr and Ti are used as a solid solution in the matrix phase, in order to suppress the precipitation of Zr and Ti carbides as much as possible, the C content is 0.005% to 0.02. %, And 0.008 to 0.02% is particularly preferable. Next, the Zr or Ti carbide uniformly dispersed in the matrix phase promotes recombination between point defects more than the solid solution Zr and Ti. After adding ˜2%, heat treatment may be performed at a temperature of 650 ° C. to 750 ° C. to disperse these carbides in the parent phase. When this heat treatment is performed, the C content is preferably 0.02 to 0.04%, particularly preferably 0.025 to 0.035% for the purpose of promoting the precipitation of carbides.

Crは高温水中において強固な酸化皮膜を形成して耐食性を向上する働きがあるが、
300℃以上,25MPaの高温高圧水中において、その耐食性を維持するためには20%未満では不十分である。一方28%を越えるとσ相を形成しやすく機械的性質が悪化するので、20%〜28%とすべきである。さらに、前述の650℃〜750℃形成熱処理の際、粒界近傍におけるCrの一部が炭化物形成に寄与し、粒界近傍の耐食性を損なう可能性があることを考慮してCr量は23%〜28%が好ましく、特に23%〜26%が好ましい。
Cr works to improve corrosion resistance by forming a strong oxide film in high-temperature water,
In order to maintain the corrosion resistance in high-temperature and high-pressure water at 300 ° C. or higher and 25 MPa, less than 20% is insufficient. On the other hand, if it exceeds 28%, the σ phase is easily formed and the mechanical properties deteriorate, so it should be 20% to 28%. Further, in the heat treatment for forming 650 ° C. to 750 ° C., a part of Cr in the vicinity of the grain boundary contributes to carbide formation, and there is a possibility that the corrosion resistance in the vicinity of the grain boundary may be impaired. -28% is preferable, and 23% -26% is particularly preferable.

本発明の鋼は放射線照射下で用いる合金は照射脆化の観点から、オーステナイト相安定であることが望ましく、NiとMnは合金中でオーステナイト組織を得るために必要な元素であることからそれぞれ添加する。特にNiは最低16%が必要であり、Mnは2%以下で添加すべきである。本発明鋼のCr当量及びNi当量に基づき、シェフラー線図等を参考に安定なオーステナイト層を形成するためには特にNi量は16%以上添加する必要がある。一方過剰のNi,Mnの添加は強度低下や脆化相の析出を誘発するため好ましくない。よって、先に述べた母材のオーステナイト組織安定の効果を満たす添加量として
Ni:16〜25%,Mn0.5 〜2%が好ましく、特にNiは20〜25%が好ましい。
In the steel of the present invention, it is desirable that the alloy used under irradiation is stable in the austenite phase from the viewpoint of irradiation embrittlement, and Ni and Mn are each added to obtain an austenitic structure in the alloy. To do. In particular, Ni should be at least 16%, and Mn should be added at 2% or less. In order to form a stable austenite layer based on the Cr equivalent and Ni equivalent of the steel of the present invention and referring to the Schaeffler diagram, etc., it is particularly necessary to add 16% or more of Ni. On the other hand, excessive addition of Ni and Mn is not preferable because it induces strength reduction and precipitation of an embrittlement phase. Therefore, Ni: 16 to 25% and Mn 0.5 to 2% are preferable as addition amounts satisfying the effect of stabilizing the austenite structure of the base material described above, and Ni is particularly preferably 20 to 25%.

Feは本合金のベースとなる元素で、今までの炉心材料の使用実績から50〜70%が好ましく、特に50〜65%、より52〜60%が好ましい。   Fe is an element which is the base of this alloy, and is preferably 50 to 70%, more preferably 50 to 65%, and more preferably 52 to 60% based on the past use record of the core material.

Moは高温水中での母相の耐食性向上の見地から、3%以下添加するとよい。しかし、3%を越えるとσ相の生成を促進して機械的性質を著しく損なったり、粒界に集積するため、1.0〜2.0%が好ましい。   Mo is preferably added in an amount of 3% or less from the viewpoint of improving the corrosion resistance of the matrix in high-temperature water. However, if it exceeds 3%, the formation of the σ phase is promoted to significantly impair the mechanical properties or accumulate at the grain boundary, so 1.0 to 2.0% is preferable.

Hfは中性子照射下での耐食性,耐照射脆性に有効である。特に微細な炭化物を形成して、Cr炭化物の析出を防止するとともに粒界近傍のCr濃度低下を防止できる。しかしHfの元素のFe−Ni−Cr合金への固溶限界を考慮し、かつ十分な添加効果が得られる添加量として1.0%以下添加することが好ましく、特に0.1〜0.5%が好ましい。   Hf is effective for corrosion resistance and irradiation brittleness under neutron irradiation. In particular, fine carbides can be formed to prevent precipitation of Cr carbides and to prevent a decrease in Cr concentration near the grain boundary. However, in consideration of the solid solubility limit of the element of Hf in the Fe—Ni—Cr alloy, it is preferable to add 1.0% or less as an addition amount with which a sufficient addition effect can be obtained, and particularly 0.1 to 0.5. % Is preferred.

Pd及びPtはFe中に全率固溶する元素で、母相中において水素を吸蔵する元素であるため、添加することにより、鋼中に発生・侵入した水素と粒内で結合して粒界への拡散を抑制,粒界型応力腐食割れの抑制に寄与する。またこれらの元素はオーステナイト相を安定化する働きがあるが、多量の添加は加工性の悪化につながる場合がある。そこで十分な添加効果が得られる添加量として、Pd及びPtの一種または二種を1.0% 以下添加することが好ましく、特に0.1〜0.6%が好ましい。   Pd and Pt are elements that are completely dissolved in Fe, and are elements that occlude hydrogen in the parent phase. Therefore, by adding Pd and Pt, they combine with the hydrogen generated and invaded in the steel and within the grain boundaries. Contributes to the suppression of intergranular stress corrosion cracking. These elements have a function of stabilizing the austenite phase, but a large amount of addition may lead to deterioration of workability. Therefore, it is preferable to add 1.0% or less of one or two of Pd and Pt as an addition amount with which a sufficient addition effect can be obtained, and 0.1 to 0.6% is particularly preferable.

NはC同様に母相中に固溶して鋼の強度を上げる成分であるため、0.003% 以下の非常に低いものでは強度を低め、耐照射脆性が悪化するので好ましくない。従って、0.05
%以下が好ましく、特に0.03%以下、より0.01〜0.02%が好ましい。
N, like C, is a component that dissolves in the matrix and raises the strength of the steel, so a very low content of 0.003% or less is not preferable because the strength is lowered and the irradiation brittleness deteriorates. Therefore, 0.05
% Or less, particularly 0.03% or less, more preferably 0.01 to 0.02%.

P,Sのこれらの元素は不可避な不純物として含有される。これらの不純物は照射誘起粒界偏析メカニズムにより粒界に集積し、粒界の耐食性を著しく損なう。よってPは0.05
%以下、Sは0.01% 以下が好ましい。Siは中性子照射,高温高圧水環境下ですき間腐食感受性を抑制する働きがあり、さらに製鋼の工程で脱酸素剤として働くため1%以下とし、特に0.1〜0.5%とすることが好ましい。以上、中性子照射による照射脆化や工業的プロセスを考慮すると、Siは0.3〜0.6%、Pは0.02%以下、Sは0.005%以下がより好ましい。
These elements of P and S are contained as inevitable impurities. These impurities are accumulated at the grain boundaries by the irradiation-induced grain boundary segregation mechanism, and the corrosion resistance of the grain boundaries is significantly impaired. Therefore, P is 0.05
% Or less and S is preferably 0.01% or less. Si acts to suppress crevice corrosion susceptibility in neutron irradiation and high-temperature and high-pressure water environments, and further acts as an oxygen scavenger in the steelmaking process, so it should be 1% or less, especially 0.1-0.5%. preferable. As described above, considering irradiation embrittlement by neutron irradiation and industrial processes, Si is more preferably 0.3 to 0.6%, P is 0.02% or less, and S is 0.005% or less.

以上のような成分を有するオーステナイト鋼は溶解,鍛造,熱間圧延及び固溶化熱処理を経て製造されるが、溶解の雰囲気は真空が好ましい。また製造の工程で粗大な析出相、例えば炭化物やσ相等が形成するため、これを抑制するために1100℃以上の温度で固溶化熱処理した後、50%以下の冷間圧延と1000〜1150℃の温度で焼鈍を一回以上繰り返すことで粗大な析出相の形成を抑制することができ、加工性の向上が計れる。本発明に係る鋼はオーステナイト相の均一な固溶体とすることが好ましい。   The austenitic steel having the above components is manufactured through melting, forging, hot rolling and solution heat treatment, and the melting atmosphere is preferably a vacuum. Further, since coarse precipitate phases such as carbides and σ phases are formed in the manufacturing process, in order to suppress this, after solution heat treatment at a temperature of 1100 ° C. or higher, cold rolling of 50% or lower and 1000 to 1150 ° C. By repeating the annealing at a temperature of 1 or more times, formation of a coarse precipitate phase can be suppressed, and workability can be improved. The steel according to the present invention is preferably a solid solution having a uniform austenite phase.

このように製造したオーステナイト鋼につき、特にZr及びTiの炭化物を母相中に分散させる場合には、650〜750℃での熱処理することが出来る。この場合、Cr炭化物の粒界への析出を極力抑制するため、熱処理温度は700〜750℃とすることが好ましい。   The austenitic steel thus manufactured can be heat-treated at 650 to 750 ° C. particularly when Zr and Ti carbides are dispersed in the matrix. In this case, the heat treatment temperature is preferably 700 to 750 ° C. in order to suppress the precipitation of Cr carbide at the grain boundaries as much as possible.

本発明の鋼は室温における耐力が18kg/mm2以上,引張強さが49kg/mm2以上,伸び率40%以上,絞り率60%以上,ヴィッカース硬さ200以下が好ましく、特に、耐力25〜50kg/mm2,引張強さ55〜80kg/mm2,伸び率40〜75%が好ましい。 The steel of the present invention preferably has a yield strength at room temperature of 18 kg / mm 2 or more, a tensile strength of 49 kg / mm 2 or more, an elongation of 40% or more, a drawing ratio of 60% or more, and a Vickers hardness of 200 or less. 50 kg / mm 2, a tensile strength 55~80kg / mm 2, elongation of 40 to 75% are preferred.

以上のようなオーステナイト鋼を、冷却水の高温高圧化によって高効率化を図る原子炉の燃料被覆管や炉内構造物,機器に適用することにより、従来のJIS304,316系ステンレス鋼に比べ、優れた耐食性を示すことが期待される。   By applying the austenitic steel as described above to the fuel cladding tube, the reactor internal structure, and the equipment of the nuclear reactor that achieves high efficiency by increasing the temperature and pressure of the cooling water, compared to the conventional JIS 304 and 316 stainless steel, It is expected to show excellent corrosion resistance.

実施例1
表1は本発明及び従来鋼に係わる合金の化学組成(重量%)を示し、これらについて
(1)〜(5)の実験を行った。これらの鋼は、真空溶解後、鍛造及び熱間圧延を施し、1100℃で固溶化熱処理後、所望の試験片厚さまで冷間圧延と焼鈍を繰り返し、最終的に1100℃で30分間固溶化熱処理を行ったものである。また、No.6と12は、固溶加熱処理後それぞれ母相中にZr及びTiの炭化物を分散させる熱処理として700℃で1時間保持した後大気中にて冷却したものである。さらにNo.17,18,19はそれぞれJIS304,310及び316Lステンレス鋼の従来材である。
(1)オーステナイト相安定性はそれぞれの供試材化学成分よりCr当量及びNi当量を求め、シェフラー線図を参照の上、相安定性を評価すると共に、それぞれの条件で熱処理をした供試材についてフェライトスコープを用いて比較した。
(2)それぞれの条件で熱処理をした供試材を、大気中550℃で5×10-3/秒のひずみ速度の引張試験により機械的強度(0.2% 耐力,引張強度,全伸び)を評価し、比較した。
(3)(2)と同様に、それぞれの条件で熱処理をした供試材より全面腐食試験片を作成し、温度400及び550℃,圧力25MPa溶存酸素量8ppm の高温高圧水(超臨界水)中に500時間浸漬し、浸漬後の重量変化を測定した。その結果に基づいて減肉速度(mm/年)に換算し、耐食性を評価した。
(4)(2)と同様に、それぞれの条件で熱処理をした供試材に1MeVの電子線を450℃及び550℃で照射して10dpa まで損傷を与え、その後の微細組織観察よりボイドスエリング量を評価し、比較した。
(5)(2)と同様に、それぞれの条件で熱処理をした供試材よりダブルUベンド試験片を作成し、温度300及び550℃,圧力25MPa,溶存酸素量8ppm の高温高圧水
(超臨界水)中に500時間浸漬し、浸漬後の応力腐食割れの発生有無を評価し、比較した。
(6)(2)と同様に、それぞれの条件で熱処理をした供試材に1MeVの電子線を300℃及び550℃で照射して10dpa まで損傷を与え、その後照射した粒界でのCr量をエネルギー分散型X線分析装置を用いて分析し、母相と粒界上でのCr濃度の差を以て欠乏量とし、比較した。
Example 1
Table 1 shows the chemical composition (% by weight) of the alloys related to the present invention and the conventional steel, and experiments (1) to (5) were conducted on these. These steels are subjected to forging and hot rolling after vacuum melting, solution heat treatment at 1100 ° C, repeated cold rolling and annealing to the desired specimen thickness, and finally solution heat treatment at 1100 ° C for 30 minutes. It is what went. Nos. 6 and 12 are those which were kept at 700 ° C. for 1 hour as a heat treatment for dispersing carbides of Zr and Ti in the matrix after the solid solution heat treatment and then cooled in the atmosphere. Further, Nos. 17, 18, and 19 are conventional materials of JIS 304, 310, and 316L stainless steel, respectively.
(1) As for austenite phase stability, Cr equivalents and Ni equivalents were determined from the chemical components of each specimen, and the phase stability was evaluated with reference to the Schaeffler diagram, and the specimens heat-treated under the respective conditions. Were compared using a ferrite scope.
(2) Mechanical strength (0.2% proof stress, tensile strength, total elongation) of specimens heat-treated under the respective conditions by a tensile test at a strain rate of 5 × 10 −3 / sec at 550 ° C. in the atmosphere. Were evaluated and compared.
(3) Similar to (2), a surface corrosion test piece was prepared from the specimens heat-treated under the respective conditions, and high temperature and high pressure water (supercritical water) at a temperature of 400 and 550 ° C. and a pressure of 25 MPa and a dissolved oxygen content of 8 ppm. It was immersed for 500 hours, and the weight change after immersion was measured. Based on the result, it was converted into a thinning rate (mm / year), and corrosion resistance was evaluated.
(4) Similarly to (2), the specimens heat-treated under the respective conditions were irradiated with 1 MeV electron beams at 450 ° C. and 550 ° C. to 10 dpa, and the amount of void swelling was observed from the subsequent microstructure observation. Were evaluated and compared.
(5) Similar to (2), double U-bend specimens were prepared from the specimens heat-treated under the respective conditions, and high-temperature and high-pressure water (supercritical) with a temperature of 300 and 550 ° C., a pressure of 25 MPa, and a dissolved oxygen content of 8 ppm. The sample was immersed in water for 500 hours, and the presence or absence of stress corrosion cracking after immersion was evaluated and compared.
(6) Similar to (2), the specimens heat-treated under the respective conditions were irradiated with 1 MeV electron beams at 300 ° C. and 550 ° C. to 10 dpa, and then the Cr content at the grain boundaries irradiated. Were analyzed using an energy dispersive X-ray analyzer, and the difference in Cr concentration between the parent phase and the grain boundary was used as a deficiency and compared.

表2は(1)〜(5)の実験の結果をまとめたものである。以下実験の結果について述べる。
(1)各供試材のオーステナイト相安定性は、SUS304(従来鋼17)と同程度かそれよりも安定であることが分かった。SUS304と同程度のものはシェフラー線図の5%フェライト領域に位置しており、準オーステナイト安定なものである。またSUS304よりも相安定性の良いものは、シェフラー線図で全オーステナイトとなる領域に位置するものであった。
(2)各供試材の高温強度は、全てSUS304(従来鋼17)よりも良好であることが分かった。本発明鋼はNiを多く含有することから、良好な高温強度が得られたものと思われる。
(3)各供試材の減肉速度は、SUS304(従来鋼17)やSUS310(従来鋼18)に比べて小さく、減肉速度はいずれも0.05mm/年を下回っていた。特にCr含有量の多い発明鋼の減肉速度は0.03mm/年を下回り、良好な耐食性であることが明らかとなった。
(4)各供試材のスエリング量は、SUS304(従来鋼17)やSUS310(従来鋼18)に比べて小さく、特にオーステナイト鋼でスエリングが顕著となる450℃においても1%を下回る値を示した。Ni添加量が多い発明鋼や、熱処理により炭化物を分散させた発明鋼においては、スエリング量は0.5% 以下を示し、良好な耐スエリング性であることが明らかとなった。
(5)各供試材の応力腐食割れ感受性は、SUS304(従来鋼17)において300℃で粒界型の応力腐食割れが発生したが、本発明鋼においては観察されなかった。
(6)各供試材の粒界における照射下Cr欠乏量は、SUS304(従来鋼17),
SUS310(従来鋼18),SUS316L(従来鋼19)においては5%以上であったのに対し、本発明鋼ではいずれも3%以下であった。照射下Cr欠乏量は、照射下でのSCC感受性評価の一指標とすることができ、本発明鋼は照射下SCC感受性の点で良好な特性を示すことが示された。
Table 2 summarizes the results of the experiments (1) to (5). The results of the experiment are described below.
(1) It was found that the austenite phase stability of each specimen was comparable to or more stable than SUS304 (conventional steel 17). The same level as SUS304 is located in the 5% ferrite region of the Schaeffler diagram and is quasi-austenite stable. Further, those having better phase stability than SUS304 were located in a region that becomes all austenite in the Schaeffler diagram.
(2) It turned out that the high temperature strength of each test material is all better than SUS304 (conventional steel 17). Since the steel of the present invention contains a large amount of Ni, it is considered that good high-temperature strength was obtained.
(3) The thinning rate of each test material was smaller than that of SUS304 (conventional steel 17) or SUS310 (conventional steel 18), and the thinning rates were both less than 0.05 mm / year. In particular, the steel thinning rate of the invention steel having a high Cr content is less than 0.03 mm / year, and it was revealed that the steel has good corrosion resistance.
(4) The amount of swelling of each test material is smaller than SUS304 (conventional steel 17) and SUS310 (conventional steel 18), and shows a value of less than 1% even at 450 ° C., where the swelling is particularly noticeable in austenitic steel. It was. Invented steel with a large amount of Ni added and invented steel in which carbides are dispersed by heat treatment, the amount of swelling was 0.5% or less, and it was revealed that the steel had good swelling resistance.
(5) The stress corrosion cracking susceptibility of each test material was observed in SUS304 (conventional steel 17) at 300 ° C., but was not observed in the steel of the present invention.
(6) The Cr deficiency under irradiation at the grain boundaries of each specimen is SUS304 (conventional steel 17),
While it was 5% or more in SUS310 (conventional steel 18) and SUS316L (conventional steel 19), it was 3% or less in the steel of the present invention. The amount of Cr deficiency under irradiation can be used as an index for evaluating SCC sensitivity under irradiation, and it was shown that the steel of the present invention exhibits good characteristics in terms of SCC sensitivity under irradiation.

以上に示したように、本発明によれば、冷却水の条件が温度で290℃以上550℃以下、圧力で25MPaとなる高効率軽水炉の炉心で使用される燃料被覆管や炉心構成材料を提供することができる。   As described above, according to the present invention, there are provided a fuel cladding tube and a core constituent material used in the core of a high-efficiency light water reactor in which the cooling water conditions are 290 ° C. or higher and 550 ° C. or lower and the pressure is 25 MPa. can do.

本発明によれば前述したオーステナイト鋼を、例えば冷却水の高温高圧化によって高効率化を図る原子炉の燃料被覆管や炉内構造物,機器に適用することが実現出来る。
表1 本発明鋼と従来鋼の化学成分と熱処理
表2 実施例(1)〜(5)に係る実験結果
According to the present invention, the above-described austenitic steel can be applied to, for example, a nuclear reactor fuel cladding tube, a reactor internal structure, and equipment that achieve high efficiency by increasing the temperature and pressure of cooling water.
Table 1 Chemical composition and heat treatment of inventive steel and conventional steel Table 2 Experimental results according to Examples (1) to (5)

Figure 2007031803
Figure 2007031803

Figure 2007031803
Figure 2007031803

Claims (9)

水と接触し、放射線照射下で使用されるジルコニウム及びチタンの少なくとも1種を含むオーステナイト鋼で構成されていることを特徴とする耐食性,耐スエリング性及び耐応力腐食割れ性に優れた高耐食性炉心材料。   High corrosion resistance core with excellent corrosion resistance, swelling resistance and stress corrosion cracking resistance, characterized by being composed of austenitic steel in contact with water and containing at least one of zirconium and titanium used under irradiation material. 重量で、C:0.005%〜0.04%,Si:1%以下,P:0.02%以下,N:
0.05%以下,Mn:2%以下,Cr:20〜28%,Ni:16〜25%,Mo:0.5〜3%と、Zr:0.1〜2%及びTi:0.1〜2%の少なくとも一種類とを含み、残部が50%以上のFeと不純物からなるオーステナイト組織を有することを特徴とする高耐食性炉心材料。
By weight, C: 0.005% to 0.04%, Si: 1% or less, P: 0.02% or less, N:
0.05% or less, Mn: 2% or less, Cr: 20 to 28%, Ni: 16 to 25%, Mo: 0.5 to 3%, Zr: 0.1 to 2% and Ti: 0.1 A highly corrosion-resistant core material comprising an austenite structure comprising at least one of ˜2% and the balance of Fe and impurities of 50% or more.
重量で、C:0.005%〜0.04%,Si:1%以下,P:0.02%以下,N:
0.05%以下,Mn:2%以下,Cr:20〜28%,Ni:16〜25%,Mo:0.5〜3%と、Zr:0.1〜2%及びTi:0.1〜2%の少なくとも一種類と、Pd,Pt及びHfの少なくとも一種類以上を合計で1.0% 以下とを含み、残部が50%以上の
Feと不純物からなるオーステナイト組織を有することを特徴とする高耐食性炉心材料。
By weight, C: 0.005% to 0.04%, Si: 1% or less, P: 0.02% or less, N:
0.05% or less, Mn: 2% or less, Cr: 20 to 28%, Ni: 16 to 25%, Mo: 0.5 to 3%, Zr: 0.1 to 2% and Ti: 0.1 It includes at least one of ˜2% and a total of at least one of Pd, Pt, and Hf of 1.0% or less, and the balance has an austenitic structure composed of 50% or more of Fe and impurities. High corrosion resistance core material.
請求項2又は3の高耐食性炉心材料において、
前記オーステナイト鋼は、鍛造,熱間圧延,固溶化熱処理を経た後、母相にZrまたはTiのいずれかを含む炭化物を形成することを特徴とする高耐食性炉心材料。
In the highly corrosion-resistant core material according to claim 2 or 3,
The austenitic steel, after undergoing forging, hot rolling, and solution heat treatment, forms a carbide containing either Zr or Ti in the matrix phase.
請求項2又は3の高耐食性炉心材料において、
前記オーステナイト鋼は、鍛造,熱間圧延,固溶化熱処理を経た後、650℃〜750℃で熱処理することを特徴とする高耐食性炉心材料。
In the highly corrosion-resistant core material according to claim 2 or 3,
The austenitic steel is subjected to forging, hot rolling, and solution heat treatment, followed by heat treatment at 650 ° C. to 750 ° C., a highly corrosion-resistant core material.
請求項2又は3の高耐食性炉心材料において、
前記オーステナイト鋼は、水と接触し、放射線照射下で使用される部材において、400℃以上,25MPaの高温高圧水中に浸漬した際、減肉速度が0.05mm/年 以下であることを特徴とする耐食性,耐スエリング性及び耐応力腐食割れ性に優れた高耐食性炉心材料。
In the highly corrosion-resistant core material according to claim 2 or 3,
The austenitic steel is characterized by having a thickness reduction rate of 0.05 mm / year or less when immersed in high-temperature and high-pressure water at 400 ° C. or higher and 25 MPa in a member that is in contact with water and used under radiation irradiation. High corrosion resistance core material with excellent corrosion resistance, swelling resistance and stress corrosion cracking resistance.
請求項2又は3の高耐食性炉心材料において、
前記オーステナイト鋼は、水と接触し、放射線照射下で使用される部材において、300℃以上で照射損傷量で10dpa まで照射後、スエリング量が1%以内であることを特徴とする耐食性,耐スエリング性及び耐応力腐食割れ性に優れた高耐食性炉心材料。
In the highly corrosion-resistant core material according to claim 2 or 3,
The austenitic steel is in contact with water, and is used under irradiation of radiation. After being irradiated to 300 dpa to 10 dpa at an irradiation damage amount, the amount of swelling is less than 1%. Core material with excellent corrosion resistance and stress corrosion cracking resistance.
請求項2又は3の高耐食性炉心材料において、
前記オーステナイト鋼は、水と接触し、放射線照射下で使用される部材において、300℃以上,25MPaの高温高圧水中においてダブルUベンド試験片を用いてSCC感受性評価試験を行った際、粒界割れが発生しないことを特徴とする耐食性,耐スエリング性及び耐応力腐食割れ性に優れた高耐食性炉心材料。
In the highly corrosion-resistant core material according to claim 2 or 3,
When the austenitic steel is in contact with water and subjected to an SCC susceptibility evaluation test using a double U-bend test piece in a high-temperature high-pressure water at 300 ° C. or higher and 25 MPa in a member used under radiation irradiation, a grain boundary crack occurs. A highly corrosion-resistant core material with excellent corrosion resistance, swelling resistance and stress corrosion cracking resistance, characterized by the absence of corrosion.
請求項2又は3の高耐食性炉心材料において、
前記オーステナイト鋼は、水と接触し、放射線照射下で使用される部材において、300℃以上の温度で照射損傷量10dpa まで照射後、粒界におけるCr濃度の減少量が母相の濃度に比べて5%以内であることを特徴とする耐食性,耐スエリング性及び耐応力腐食割れ性に優れた高耐食性炉心材料。
In the highly corrosion-resistant core material according to claim 2 or 3,
The austenitic steel is in contact with water, and after being irradiated to a radiation damage of 10 dpa at a temperature of 300 ° C. or higher in a member used under radiation irradiation, the decrease in Cr concentration at the grain boundary is compared with the concentration of the parent phase. High corrosion resistance core material with excellent corrosion resistance, swelling resistance and stress corrosion cracking resistance, characterized by being within 5%.
JP2005219864A 2005-07-29 2005-07-29 Highly corrosion-resistant reactor core material Pending JP2007031803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005219864A JP2007031803A (en) 2005-07-29 2005-07-29 Highly corrosion-resistant reactor core material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005219864A JP2007031803A (en) 2005-07-29 2005-07-29 Highly corrosion-resistant reactor core material

Publications (1)

Publication Number Publication Date
JP2007031803A true JP2007031803A (en) 2007-02-08

Family

ID=37791408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005219864A Pending JP2007031803A (en) 2005-07-29 2005-07-29 Highly corrosion-resistant reactor core material

Country Status (1)

Country Link
JP (1) JP2007031803A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023106A (en) * 2008-07-24 2010-02-04 Jfe Steel Corp Weld metal for stainless steel welded joint, and method for evaluating corrosion resistance thereof
JP2010174308A (en) * 2009-01-28 2010-08-12 Toshiba Corp Corrosion-resistant austenitic stainless steel and manufacturing method therefor
CN114657475A (en) * 2022-03-04 2022-06-24 中国科学院金属研究所 Liquid lead-bismuth corrosion resistant austenitic stainless steel for high-temperature fastener and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023106A (en) * 2008-07-24 2010-02-04 Jfe Steel Corp Weld metal for stainless steel welded joint, and method for evaluating corrosion resistance thereof
JP2010174308A (en) * 2009-01-28 2010-08-12 Toshiba Corp Corrosion-resistant austenitic stainless steel and manufacturing method therefor
CN114657475A (en) * 2022-03-04 2022-06-24 中国科学院金属研究所 Liquid lead-bismuth corrosion resistant austenitic stainless steel for high-temperature fastener and preparation method thereof
CN114657475B (en) * 2022-03-04 2023-10-10 中国科学院金属研究所 Liquid-state lead-bismuth corrosion-resistant austenitic stainless steel for high-temperature fasteners and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101884442B1 (en) High entropy alloy overcoming strength-ductility trade-off
JP4099493B2 (en) Zirconium alloy composition with excellent creep resistance
JP5704553B2 (en) Zirconium alloy resistant to shadow corrosion for components in boiling water reactor nuclear fuel assemblies
JP2020050940A (en) Method for producing austenitic fine-grained stainless steel
JP5978095B2 (en) High corrosion resistance austenitic stainless steel
TW200951988A (en) A spacer grid
KR101604103B1 (en) The composition and fabrication method of corrosion resistance zirconium alloys for nuclear fuel rod and components
Ahmedabadi et al. Stress corrosion cracking of ferritic-martensitic steels in simulated boiling water reactor environment
JP4062190B2 (en) Austenitic stainless steel pipe for nuclear power
JP2004218076A (en) Nickel base alloy and its producing method
JP2014181383A (en) High corrosion resistance high strength stainless steel, structure in atomic furnace and manufacturing method of high corrosion resistance high strength stainless steel
Pint et al. Compatibility of alumina-forming austenitic steels in static and flowing Pb
JP2007031803A (en) Highly corrosion-resistant reactor core material
JP5696271B2 (en) Austenitic high-purity iron alloy with excellent high-temperature strength characteristics
KR100754477B1 (en) Zr-based Alloys Having Excellent Creep Resistance
Pylypenko et al. Influence of iron additives on the corrosion resistance of the Zr-1% Nb alloy under operating conditions of a nuclear reactor
JP5205577B2 (en) Grain boundary control type radiation resistant SUS316 equivalent steel and method for producing the same
JP6208049B2 (en) High corrosion resistance high strength austenitic stainless steel
JPH05171359A (en) Austenitic stainless steel markedly lowered in contents of nitrogen and boron
KR101341135B1 (en) Zirconium alloy having excellent mechanical properties and corrosion resistance for nuclear fuel rod cladding tube
JPH024945A (en) Austenitic steel exposed to high temperature and high pressure water under neutron irradiation
RU2351671C2 (en) Titanium alloy for pipelines and pipe systems of heat-exchange equipment for nuclear power
JPH02115350A (en) Stainless steel excellent in seawater corrosion resistance
KR101088111B1 (en) Zirconium alloy compositions having excellent corrosion resistance and creep resistance
JP2002194466A (en) Nickel based alloy clad steel and its production method