JP5978094B2 - Heat exchanger and method for promoting convective heat transfer - Google Patents

Heat exchanger and method for promoting convective heat transfer Download PDF

Info

Publication number
JP5978094B2
JP5978094B2 JP2012230430A JP2012230430A JP5978094B2 JP 5978094 B2 JP5978094 B2 JP 5978094B2 JP 2012230430 A JP2012230430 A JP 2012230430A JP 2012230430 A JP2012230430 A JP 2012230430A JP 5978094 B2 JP5978094 B2 JP 5978094B2
Authority
JP
Japan
Prior art keywords
heat exchanger
sound wave
heat transfer
fluid
vortex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012230430A
Other languages
Japanese (ja)
Other versions
JP2014081168A (en
Inventor
明紀 田村
明紀 田村
和明 木藤
和明 木藤
高橋 志郎
志郎 高橋
久道 井上
久道 井上
大塚 雅哉
雅哉 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012230430A priority Critical patent/JP5978094B2/en
Publication of JP2014081168A publication Critical patent/JP2014081168A/en
Application granted granted Critical
Publication of JP5978094B2 publication Critical patent/JP5978094B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱交換器に関する。   The present invention relates to a heat exchanger.

シェルアンドチューブ型空冷熱交器などに代表される熱交換器において、高温と低音の両流体間での伝熱性能の促進方法としては、以下の手法がある。   In a heat exchanger represented by a shell-and-tube type air-cooled heat exchanger, there are the following methods as methods for promoting heat transfer performance between both high-temperature and low-frequency fluids.

即ち、下記各特許文献1,2に示すように、低温流体側の伝熱面にフィン状の突起を設け、突起で渦を発生させて対流熱伝達率を向上させるもの、及び下記各特許文献3に示すように、音波により誘起される振動流により対流熱伝達率を向上させるもの、並びに各特許文献4,5に示すように、熱交換器内に流体の流れで自ら振動するピアノ線などの振動片を設置して、そのピアノ線自身又はそのピアノ線を装着した片持ち支持形状のフィン部分の振動によって流体の流れを乱して対流熱伝達率を向上させるものがある。   That is, as shown in the following Patent Documents 1 and 2, a fin-like protrusion is provided on the heat transfer surface on the low-temperature fluid side, and a vortex is generated by the protrusion to improve the convective heat transfer coefficient, and each of the following Patent Documents As shown in FIG. 3, a convection heat transfer coefficient is improved by an oscillating flow induced by sound waves, and a piano wire that vibrates itself by a fluid flow in a heat exchanger as shown in Patent Documents 4 and 5 There are some which improve the convective heat transfer coefficient by disturbing the fluid flow by vibration of the piano wire itself or the fin portion of the cantilevered support shape on which the piano wire is mounted.

実開昭56−52191号公報Japanese Utility Model Publication No. 56-52191 特開2001−339113号公報JP 2001-339113 A 特開2010−210105号公報JP 2010-210105 A 特開昭54−14049号公報JP 54-14049 A 特開昭48−50341号公報JP-A-48-50341

前記各特許文献1,2に示すように、伝熱面の突起で渦を発生させて対流熱伝達率を向上させるものにあっては、対流熱伝達率を向上させるために大きな突起を設置して大きな渦を発生させようとすると、その大きな突起で熱交換内の流体の流れの圧力損失が増大する課題がある。
このように圧力損失が増大すると、同じ流速を維持するためには、より大きな流体駆動力が必要となって、流体の駆動ポンプ等の動的機器を用いる場合には、大きなポンプ動力が必要となり、流体を駆動させるために流体の温度に依存する密度差による浮力を用いる場合には、伝熱面を上下方向に長く設定する必要が生じるので、いずれの場合も、熱交換器本体や付帯する機器が大型化する。
As shown in the aforementioned Patent Documents 1 and 2, in order to improve the convective heat transfer coefficient by generating vortices at the protrusions on the heat transfer surface, install large protrusions to improve the convective heat transfer coefficient. If a large vortex is generated, there is a problem that the pressure loss of the fluid flow in the heat exchange increases due to the large protrusion.
When pressure loss increases in this way, a larger fluid driving force is required to maintain the same flow rate, and a large pump power is required when using a dynamic device such as a fluid driving pump. When using buoyancy due to the density difference depending on the temperature of the fluid to drive the fluid, it is necessary to set the heat transfer surface to be long in the vertical direction. The equipment becomes larger.

前記特許文献3に示すように、音波により誘起される振動流により伝熱面近傍に形成される高温の流体層を撹拌し対流熱伝達率を向上させるものは、圧力損失の増加は小さいが、音波によって誘起される振動流は微弱であるため、効果を発揮できる流速域が低流速(0.1m/s以下程度)に限られる課題がある。   As shown in the above-mentioned Patent Document 3, stirring the high-temperature fluid layer formed in the vicinity of the heat transfer surface by the vibration flow induced by sound waves improves the convective heat transfer coefficient, but the increase in pressure loss is small. Since the oscillating flow induced by the sound wave is weak, there is a problem that the flow velocity region where the effect can be exhibited is limited to a low flow velocity (about 0.1 m / s or less).

前記特許文献4,5に示すように、熱交換する流体の流れによって振動片を振動させるものにあっては、振動片が繰り返し荷重を受けて損傷する可能性が特許文献1に見られるような突起に比較して大きい、という課題がある。   As shown in Patent Documents 4 and 5, in the case of vibrating the vibrating piece by the flow of fluid to exchange heat, the possibility that the vibrating piece is repeatedly damaged by receiving a load is seen in Patent Document 1. There is a problem that it is larger than the protrusion.

従って、本発明の目的は、熱交換器において、圧力損失の増加や損傷が起こりにくく、広い流速域にわたって対流熱伝達率を向上させることにある。   Accordingly, an object of the present invention is to improve the convective heat transfer coefficient over a wide flow velocity range, in a heat exchanger, in which increase in pressure loss and damage are unlikely to occur.

上記課題を解決するために、本発明の熱交換器は、その熱交換器の伝熱面に熱交換対象の流体の流れの方向へ間隔を開けて突起を複数個設けて成る突起列と、前記流体に音波を入射する音波発生機構とを備える。
本発明の熱交換器は、前記突起で前記流体の渦を引き起こし易い敏感な領域として形成し、前記領域に音波振動を刺激として到達させると、その領域ではその刺激に敏感に反応して渦の発生が促進され、熱交換器の伝熱面での対流熱伝達が促進される。このように突起によって伝熱面外からの外部刺激に敏感に反応して渦が形成される領域を伝熱面に沿って複数箇所形成されているので、微小な音波振動であっても突起部近傍へ刺激として到達すると、前記突起と音波刺激とで前記流体の流れの剥離が突起のみに比較して促進されて剥離渦を確実に引き起こし、その剥離渦は流体の流れに乗って伝熱面に沿って移動しつつ前記伝熱面近傍の流れを攪拌することで対流熱伝達が促進される。
好ましくは、前記流体の流れの方向で隣接し合う各突起のうちの前記流体の流れの上流側の突起で出来た渦が、下流側に隣接する突起で出来た渦と合体できる位置に到達した時に、前記音波により前記突起列の突起に新たな渦が誘起されるように、前記音波の周波数が設定されている。
このように、前記上流側で出来た渦が前記下流側に隣接する前記突起による敏感な領域に到来したときに、その到来のタイミングで刺激が下流側の突起による剥離部に加えられるので、そこで生じた渦と前記上流側から到来した渦とがタイミングよく合体して大きな渦になる。このように、前記音波による刺激により前記突起部での渦発生タイミングを制御することで、上流側から到来した渦に下流側で発生させた渦を合体させて渦を大型化し、伝熱面から遠い領域の前記流体を大型の渦で攪拌して前記伝熱面側に寄せ、伝熱面から遠い領域の前記流体に対する熱交換に寄与させ、一層対流熱伝達が促進される。
さらに好ましくは、前記音波の周波数fと、前記間隔Lが5/f≦L≦100/fの関係を満足するように決定される。
さらに一層好ましくは、前記音波発生機構は、振動部が前記流体に接したスピーカーと、前記スピーカーを駆動するスピーカー駆動装置とを備えている構成である。
また、前記音波発生機構は、前記熱交換器のシェルに設けられたキャビティで構成されることであっても良い。
また、前記音波発生機構として、前記熱交換器のシェル内での音響共鳴現象で前記音波が発生するように前記シェルを構成しても良い。
上記課題を解決するために採用される本発明の熱交換器の対流熱伝達率向上方法は、熱交換対象の流体が接する伝熱面に、前記流体の流れ方向へ間隔を開けて列を成すように複数の突起を配置することによって、前記流れが刺激されると渦流に変化しやすい環境を作り、その環境下で前記刺激として波動を前記流体に入射する方法を採用している。
このような方法によって、突起で渦流に変化しやすい環境が、小さな刺激でも渦を引き起こしやすい敏感な領域を伝熱面近傍にもたらすので、圧力損失の少ない小さな突起を採用しても前記音波による刺激により渦を発生しやすくなり、また、その刺激の規模も刺激に敏感な前記領域に付与するので小さくて済む。このようにして発生させた渦は伝熱面に沿って前記流体の流れに乗って移動しつつ伝熱面近傍の流体を攪拌して熱交換器の対流熱伝達率を向上させる。
好ましくは、前記波動を音波で作り、前記音波の周波数fと、前記間隔Lが5/f≦L≦100/fの関係を満足するように決定される。
このように決定された前記間隔と前記周波数によって前記突起部による渦の発生タイミングを制御して前記流れの上流側で発生した渦を下流側で発生した渦と合体させて大きな渦を生成する制御が確実に成される。
さらに好ましくは、前記音波を得る方法として、スピーカー駆動装置でスピーカーを駆動させて得るようにすると良い。
また、前記音波を得る方法として、前記流体の流れを前記熱交換器のシェルに設けたキャビティの位置を通過させて、外部エネルギーを用いないで得るようにしても良い。
また、前記音波を得る方法として、前記熱交換器のシェル内での音響共鳴現象で得るようにして、外部エネルギーを用いないようにしても良い。
In order to solve the above problems, a heat exchanger according to the present invention includes a protrusion row in which a plurality of protrusions are provided on the heat transfer surface of the heat exchanger so as to be spaced apart in the direction of the flow of fluid to be heat exchanged. And a sound wave generation mechanism that makes sound waves incident on the fluid.
The heat exchanger according to the present invention is formed as a sensitive region that is likely to cause a vortex of the fluid at the protrusion, and when sonic vibration reaches the region as a stimulus, the region reacts sensitively to the stimulus in the region and Generation is promoted, and convective heat transfer at the heat transfer surface of the heat exchanger is promoted. As described above, a plurality of regions along the heat transfer surface are formed along the heat transfer surface where vortices are formed in response to the external stimulus sensitively from outside the heat transfer surface. When reaching the vicinity as a stimulus, the separation of the fluid flow is promoted by the protrusion and the sound wave stimulation as compared with the protrusion alone, and the separation vortex is surely caused. Convective heat transfer is promoted by stirring the flow in the vicinity of the heat transfer surface while moving along.
Preferably, of the protrusions adjacent to each other in the direction of fluid flow, a vortex formed by a protrusion on the upstream side of the fluid flow has reached a position where it can merge with a vortex formed by a protrusion adjacent on the downstream side. Sometimes, the frequency of the sound wave is set so that a new vortex is induced in the protrusion of the protrusion row by the sound wave.
In this way, when the vortex created on the upstream side arrives at a sensitive region by the protrusion adjacent to the downstream side, a stimulus is applied to the peeling portion by the downstream protrusion at the arrival timing, so there The generated vortex and the vortex arriving from the upstream side are merged with good timing to form a large vortex. In this way, by controlling the vortex generation timing at the protrusion by stimulation with the sound wave, the vortex generated from the downstream side is merged with the vortex coming from the upstream side to enlarge the vortex, and from the heat transfer surface The fluid in the far region is agitated with a large vortex and brought closer to the heat transfer surface side, contributing to heat exchange with the fluid in the region far from the heat transfer surface, further promoting convective heat transfer.
More preferably, the frequency f of the sound wave and the interval L are determined so as to satisfy the relationship of 5 / f ≦ L ≦ 100 / f.
More preferably, the sound wave generation mechanism is configured to include a speaker in which a vibration unit is in contact with the fluid, and a speaker driving device that drives the speaker.
Further, the sound wave generation mechanism may be configured by a cavity provided in a shell of the heat exchanger.
Further, as the sound wave generating mechanism, the shell may be configured so that the sound wave is generated by an acoustic resonance phenomenon in the shell of the heat exchanger.
The method for improving the convective heat transfer coefficient of the heat exchanger according to the present invention employed to solve the above-mentioned problems forms a row on the heat transfer surface in contact with the fluid to be heat exchanged with an interval in the fluid flow direction. By arranging a plurality of protrusions in this way, an environment that easily changes to a vortex flow is created when the flow is stimulated, and a wave is incident on the fluid as the stimulation under the environment.
By such a method, the environment that is likely to change into a vortex due to the projection brings a sensitive area near the heat transfer surface that is likely to cause a vortex even with a small stimulus. This makes it easy to generate vortices, and the scale of the stimulus is applied to the region sensitive to the stimulus, so that it is small. The vortex thus generated moves along the flow of the fluid along the heat transfer surface while stirring the fluid near the heat transfer surface to improve the convective heat transfer coefficient of the heat exchanger.
Preferably, the wave is generated by a sound wave, and the frequency f of the sound wave and the interval L are determined so as to satisfy a relationship of 5 / f ≦ L ≦ 100 / f.
Control for generating a large vortex by combining the vortex generated on the upstream side of the flow with the vortex generated on the downstream side by controlling the generation timing of the vortex by the protrusion by the interval and the frequency determined in this way Is surely made.
More preferably, as a method of obtaining the sound wave, a speaker is driven by a speaker driving device.
In addition, as a method of obtaining the sound wave, the fluid flow may be obtained without passing through the position of a cavity provided in the shell of the heat exchanger without using external energy.
In addition, as a method of obtaining the sound wave, external energy may be used without obtaining it by an acoustic resonance phenomenon in the shell of the heat exchanger.

本発明によれば、熱交換器において、流体による振動片の振動を伴うことなく、且つ圧力損失の増加を抑制しながらも、対流熱伝達率を向上させることが出来る。   According to the present invention, in the heat exchanger, it is possible to improve the convective heat transfer coefficient without accompanying vibration of the vibrating piece by the fluid and suppressing an increase in pressure loss.

本発明の実施例1に係るシェルアンドチューブ型空冷熱交換器の縦断面模式図である。It is a longitudinal cross-sectional schematic diagram of the shell and tube type air cooling heat exchanger which concerns on Example 1 of this invention. 図1の伝熱管外の流体の渦発生現象を表す模式図にして、一点鎖線の左側の図は渦の合体前の状況を説明する図であり、同じく右側の図は合体後の状況を説明する図である。FIG. 1 is a schematic diagram showing the vortex generation phenomenon of the fluid outside the heat transfer tube, and the diagram on the left side of the alternate long and short dash line is a diagram for explaining the situation before the vortex coalescence, and the right diagram explains the situation after the coalescence. It is a figure to do. 図1の熱交換器を含む各構造における伝熱管外の流体の流速と対流熱伝達率比との関係を示すグラフ図である。It is a graph which shows the relationship between the flow velocity of the fluid outside a heat exchanger tube, and the convective heat transfer coefficient ratio in each structure containing the heat exchanger of FIG. 本発明の実施例2に係るシェルアンドチューブ型空冷熱交換器の縦断面模式図である。It is a longitudinal cross-sectional schematic diagram of the shell and tube type air cooling heat exchanger which concerns on Example 2 of this invention. 本発明の実施例3に係るシェルアンドチューブ型空冷熱交換器の縦断面模式図である。It is a longitudinal cross-sectional schematic diagram of the shell and tube type air cooling heat exchanger which concerns on Example 3 of this invention.

以下に本発明の各実施例を図面を用いて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

本実施例では、通常の熱交換器で用いられる流速域においても、比較的小さい圧力損失の増加で、対流熱伝達率を向上させることが出来る熱交換器の例を説明する。
管状隔壁を伝熱面として用いる熱交換器としては、図1のようなシェルアンドチューブ型空冷熱交換器がある。その熱交換器は、円形または多角形のシェル1の上下両側に管状隔壁となる多数の伝熱管2を支えるための管板3が設置されている。管板3には伝熱管2を通すための多数の穴が正方または千鳥に配列されており、伝熱管2はこれらの管穴に挿入されて両端が管板3に固着される。伝熱管2は例えばステンレス等で構成される。伝熱管2の厚みは伝熱管内外の圧力差、伝熱管2での熱抵抗を考慮し決定する。
熱交換器の上下部分において、水室カバー6が管板3に設けられ、その水室カバー6には、熱交換対象の一方の流体である高温流体4(水等の液体もしくは空気、水蒸気等の気体)を出入りさせるためのノズル7が設けられている。シェル1の両端付近には、熱交換対象のもう一方の流体である低温流体5(空気等の気体)をシェル1の内外へ通すためのノズル8が横向きに設けられている。
高温流体4は、上部のノズル7から水室カバー6内に入り、伝熱管2の内側に分流して管内流体として下向き矢印のように流れて、下部の水室カバー6に抜けて下部のノズル7から外部に流れ出る。
低音流体5は、下部のノズル8からシェル1内に入り、伝熱管2外であってシェル1内側を管外流体として横向き及び折れ線矢印のように流れ、途中で伝熱管2に沿って上向きに流れる。このように管内外各流体を対向流となる向きに流して熱交換効率を高めている。本実施例では、低温流体5として空気等の気体を用いるが、低温流体5に水等の液体が使用される場合であっても良い。
また、本実施例では、熱交換器の伝熱管2として直管を用いたが、シェル1の温度差による熱応力の発生を緩和するためにU字型の管の両端を一方の管板3に取り付けて他方の管板を設けない形式の熱交換器であっても良い。
In this embodiment, an example of a heat exchanger that can improve the convective heat transfer coefficient with a relatively small increase in pressure loss even in a flow velocity region used in a normal heat exchanger will be described.
As a heat exchanger using a tubular partition as a heat transfer surface, there is a shell and tube type air cooling heat exchanger as shown in FIG. In the heat exchanger, tube plates 3 for supporting a large number of heat transfer tubes 2 serving as tubular partition walls are installed on both upper and lower sides of a circular or polygonal shell 1. A large number of holes for passing the heat transfer tubes 2 are arranged in a square or a staggered manner in the tube plate 3, and the heat transfer tubes 2 are inserted into these tube holes and both ends are fixed to the tube plate 3. The heat transfer tube 2 is made of, for example, stainless steel. The thickness of the heat transfer tube 2 is determined in consideration of the pressure difference inside and outside the heat transfer tube and the heat resistance in the heat transfer tube 2.
In the upper and lower portions of the heat exchanger, a water chamber cover 6 is provided on the tube plate 3, and the water chamber cover 6 has a high-temperature fluid 4 (liquid such as water or air, water vapor, etc.) that is one fluid to be heat exchanged. Nozzle 7 is provided to allow gas in / out. Near both ends of the shell 1, nozzles 8 for passing a low-temperature fluid 5 (gas such as air), which is the other fluid to be heat exchanged, into and out of the shell 1 are provided sideways.
The high-temperature fluid 4 enters the water chamber cover 6 from the upper nozzle 7, flows into the inside of the heat transfer pipe 2, flows as a pipe-inside fluid as indicated by a downward arrow, passes through the lower water chamber cover 6, and flows into the lower nozzle. It flows out from 7.
The low-frequency fluid 5 enters the shell 1 from the lower nozzle 8, flows outside the heat transfer tube 2 and flows inside the shell 1 as a fluid outside the tube, as indicated by a broken line arrow, and upward along the heat transfer tube 2 along the way. Flowing. In this way, the heat exchange efficiency is enhanced by flowing the fluid inside and outside the pipe in the direction of the opposing flow. In this embodiment, a gas such as air is used as the low temperature fluid 5, but a liquid such as water may be used for the low temperature fluid 5.
In this embodiment, a straight pipe is used as the heat transfer pipe 2 of the heat exchanger. However, in order to alleviate the generation of thermal stress due to the temperature difference of the shell 1, both ends of the U-shaped pipe are connected to one of the tube plates 3. It is also possible to use a heat exchanger that is attached to the other and does not have the other tube sheet.

伝熱管2内側を流れる高温流体4を水蒸気等の気体とし、熱交換により伝熱管2内で凝縮させる場合、伝熱管2内側の高温流体4による凝縮熱伝達率は、伝熱管2外側の低温流体5による対流熱伝達率に比べ、数百倍高くなるため、伝熱管2外側の低温流体5による対流熱伝達率が伝熱管2の表面積および本数を決める要因となる。伝熱管本数を減らすことができれば、コストを低減できるため、伝熱管2外側の低温流体5による対流熱伝達率を高めることは工学的に重要な課題である。
その対流熱伝達率を高めるために、以下に説明する構造が熱交換器に付属している。即ち、図2に示すように、伝熱管2の外表面には突起の高さH(伝熱管2の外表面からの突出寸法)の環状の突起が、上下に等間隔Lの配置で固定されて、低音流体5の流れ方向や伝熱管2に沿う方向に列を成す突起列9として装備されている。
熱交換器には、音波発生機構が装備される。音波発生機構として採用した音波発生装置10は、振動面が低温流体5に接する様にシェル1に設置したスピーカーと、そのスピーカーを駆動するスピーカー駆動装置で構成される。そのスピーカー駆動装置は、音波11の周波数を可変する調整手段を有して、特定の周波数fを発生させることが出来る。
When the high-temperature fluid 4 flowing inside the heat transfer tube 2 is made into a gas such as water vapor and condensed in the heat transfer tube 2 by heat exchange, the condensation heat transfer rate by the high-temperature fluid 4 inside the heat transfer tube 2 is the low-temperature fluid outside the heat transfer tube 2. Therefore, the convective heat transfer coefficient by the low-temperature fluid 5 outside the heat transfer tube 2 is a factor that determines the surface area and the number of the heat transfer tubes 2. If the number of heat transfer tubes can be reduced, the cost can be reduced. Therefore, increasing the convective heat transfer rate by the low-temperature fluid 5 outside the heat transfer tubes 2 is an important engineering issue.
In order to increase the convective heat transfer coefficient, the structure described below is attached to the heat exchanger. That is, as shown in FIG. 2, annular projections having a projection height H (projection dimension from the outer surface of the heat transfer tube 2) are fixed to the outer surface of the heat transfer tube 2 at regular intervals L up and down. Thus, the projections 9 are arranged in the direction of the flow of the low-frequency fluid 5 and the direction along the heat transfer tube 2.
The heat exchanger is equipped with a sound wave generating mechanism. The sound wave generator 10 employed as the sound wave generating mechanism is composed of a speaker installed on the shell 1 so that the vibration surface is in contact with the low temperature fluid 5 and a speaker driving device that drives the speaker. The speaker driving device has an adjusting means for changing the frequency of the sound wave 11 and can generate a specific frequency f.

突起列9を成す各突起の形状は、低温流体5の流れの剥離により、渦の発生位置が明確となる形状が望ましいので、例えば図2に示すように縦断面が直角三角形状のリブ形状であることが好ましい。突起列9の個々の突起の高さHは、例えば熱交換器内を流れる低温流体5の圧力損失が許容できる範囲内で最大となるように決定する。
図2のように、突起で生じた渦12は、低温流体5の流れに乗って移動する。その渦12の移動速度V、突起の間隔Lとすると、渦12が突起の間を移動するのに必要な時間T=L/V、渦12が下流側に隣接する次の突起に到達したときに音波11が入射されれば次の突起で新たな渦が生成されて下流側からの渦12と合体可能であるので、音波11の周波数f=V/L、従って、突起の間隔L=V/fとなる。本発明の各実施例で対象とする流速域は既存の例に比べて効果が顕著に現れる5m/s以上でる。そのため、下限流速は5m/sとして5/f≦Lとされる。また現実的に想定される最大流速を100m/sと設定したので、L≦100/fとされる。
The shape of each protrusion constituting the protrusion row 9 is preferably a shape in which the vortex generation position becomes clear by separation of the flow of the low-temperature fluid 5. For example, as shown in FIG. Preferably there is. The height H of each protrusion in the protrusion row 9 is determined so that the pressure loss of the low temperature fluid 5 flowing in the heat exchanger becomes maximum within an allowable range.
As shown in FIG. 2, the vortex 12 generated by the protrusion moves on the flow of the cryogenic fluid 5. When the movement speed V of the vortex 12 and the interval L between the protrusions are given, the time T = L / V required for the vortex 12 to move between the protrusions, and when the vortex 12 reaches the next protrusion adjacent to the downstream side. If the sound wave 11 is incident on the surface, a new vortex is generated at the next protrusion and can be combined with the vortex 12 from the downstream side. Therefore, the frequency f of the sound wave 11 is f = V / L, and thus the protrusion interval L = V. / F. The flow velocity region targeted in each embodiment of the present invention is 5 m / s or more, where the effect is remarkable as compared with the existing examples. Therefore, the lower limit flow velocity is 5 m / s, and 5 / f ≦ L. Moreover, since the maximum flow velocity that is actually assumed is set to 100 m / s, L ≦ 100 / f.

そのため、低音流体5の流れ方向に対する突起列9の間隔Lは、音波発生装置10によって発生する音波11の周波数fに対し、以下の(1)式を満足するように決定する。
5/f ≦ L ≦ 100/f …(1)
図3のように、流速が秒速5メートル近辺を越えた値以上で本実施例の対流熱伝達率比が他の場合に比べて顕著であることは明らかである。
Therefore, the interval L of the projection row 9 with respect to the flow direction of the bass fluid 5 is determined so as to satisfy the following expression (1) with respect to the frequency f of the sound wave 11 generated by the sound wave generator 10.
5 / f ≦ L ≦ 100 / f (1)
As shown in FIG. 3, it is obvious that the convective heat transfer coefficient ratio of this embodiment is more remarkable than the other cases when the flow velocity exceeds the value near 5 meters per second.

本実施例では、低温流体5の流れは突起列9の突起部で剥離するため、図2のように突起部下流に渦12が発生する。その渦12は低温流体5の流れにより、下流側へ移動し、隣接して下流側に位置する突起部の近傍13に到達する。   In this embodiment, since the flow of the low temperature fluid 5 is separated at the protrusions of the protrusion row 9, a vortex 12 is generated downstream of the protrusions as shown in FIG. The vortex 12 moves to the downstream side due to the flow of the low temperature fluid 5, and reaches the vicinity 13 of the protrusion located adjacent to the downstream side.

スピーカー駆動部で駆動されたスピーカーは、振動して周波数fの音波11を低温流体5に入射する。その入射によって、波動が突起部とその周りに到達する。突起列9の突起部とその周りに入射する音波11の周波数fと、突起列9を成す各突起の間隔Lが上式(1)の関係を満足している場合、間隔Lを隔てて隣接し合う各突起のうちの低温流体5の流れの上流側の突起で出来た渦12が、下流側に隣接する突起の近傍13に到達した時に、音波11により突起列9の突起部に新たな渦が誘起される。低音流体5の流れにより下流側突起部の近傍13に到達した渦と、音波11の波動により刺激されて誘起された渦が合体するため、より大きな渦14が突起部の下流に形成される。
高温流体5との熱交換により低温流体の伝熱面近傍に形成される高温の流体層と低温流体主流部の低温の流体層は、突起部後流に形成された渦により混合されるため対流熱伝達率が向上する。
伝熱管に突起列9を設けて、突起近傍に渦を発生させやすい敏感な環境を作っているので、その環境下で突起の直近又は突起及びその近傍の領域に波動を刺激として与えると渦を誘起させやく、渦の発生促進と渦の発生タイミングを音波で制御することが可能となる。
伝熱管に突起を設けただけの従来の手段に比べ、本実施例では突起部の下流に形成される渦が大きくなり、高温の流体層と低温の流体層の撹拌効果が更に得られるため、対流熱伝達率を更に向上させることが可能である。
また、伝熱管に突起を設けたものに比較して、低温流体5の流れを阻害する突起の高さを変えなくとも、波動で突起部の流れに刺激を与えて渦を誘起するので、本実施例では、圧力損失を大きくせずに、渦の大型化による対流熱伝達率の向上が可能である。
本実施例では、音波11による振動流で高温の流体層と低温の流体層を直接撹拌するわけではないので、そのような従来例に比較して、適用範囲が流速によって制限されない。したがって、通常のシェルアンドチューブ型空冷熱交換器で使用される流速域(1〜20m/s)で対流熱伝達率を向上させることが可能である。
The speaker driven by the speaker driving unit vibrates and makes the sound wave 11 having the frequency f incident on the low temperature fluid 5. Due to the incidence, the wave reaches the protrusion and the periphery thereof. When the projection f of the projection row 9 and the frequency f of the sound wave 11 incident on the projection row 9 and the interval L between the projections constituting the projection row 9 satisfy the relationship of the above equation (1), they are adjacent to each other with the interval L. When the vortex 12 formed by the protrusion on the upstream side of the flow of the low-temperature fluid 5 among the protruding protrusions reaches the vicinity 13 of the protrusion adjacent on the downstream side, a new wave is added to the protrusion of the protrusion row 9 by the sound wave 11. A vortex is induced. Since the vortex that has reached the vicinity 13 of the downstream protrusion by the flow of the low-frequency fluid 5 and the vortex induced by the wave of the sound wave 11 merge, a larger vortex 14 is formed downstream of the protrusion.
The high-temperature fluid layer formed in the vicinity of the heat transfer surface of the low-temperature fluid by heat exchange with the high-temperature fluid 5 and the low-temperature fluid layer in the main portion of the low-temperature fluid are mixed by the vortices formed in the wake of the protrusion, so that convection Heat transfer rate is improved.
The projection tube 9 is provided in the heat transfer tube to create a sensitive environment in which vortices are likely to be generated in the vicinity of the projection. Therefore, if a wave is applied as a stimulus in the vicinity of the projection or in the vicinity of the projection in that environment, the vortex is generated. It is possible to easily induce vortex generation and control the generation timing of vortices with sound waves.
Compared to the conventional means in which the projections are simply provided on the heat transfer tube, in this embodiment, the vortex formed downstream of the projections becomes larger, and the stirring effect of the high temperature fluid layer and the low temperature fluid layer can be further obtained. It is possible to further improve the convective heat transfer coefficient.
In addition, compared with a heat transfer tube provided with a protrusion, the flow of the protrusion is stimulated by the wave to induce a vortex without changing the height of the protrusion that obstructs the flow of the low-temperature fluid 5. In the embodiment, the convective heat transfer coefficient can be improved by increasing the size of the vortex without increasing the pressure loss.
In the present embodiment, the high-temperature fluid layer and the low-temperature fluid layer are not directly agitated by the oscillating flow of the sound wave 11, so that the application range is not limited by the flow velocity as compared with such a conventional example. Therefore, it is possible to improve the convective heat transfer coefficient in a flow velocity range (1 to 20 m / s) used in a normal shell and tube type air-cooled heat exchanger.

図3は、伝熱面に突起列を設けただけの構成での対流熱伝達率比(突起列および音波無しでの対流熱伝達率に対する比率)と、伝熱面に音波を入射した場合の対流熱伝達率比(突起列無しおよび音波有りでの対流熱伝達率に対する比率)と、本実施例による対流熱伝達率比を比較したものである。また、これらの比較対照を組み合わせた構成として、突起列を有する伝熱面に音波を入射した場合(ただし、音波の周波数fと突起列の突起の間隔Lは式(1)の関係を満足していないものとする。)の対流熱伝達率比も示している。
このような図3のグラフからいずれの場合に比べても、本実施例による対流熱伝達率の向上率が優れていることが分かる。このように、熱交換器を上記のような構成とすることで、突起による圧力損失の増加や、低温流体5の流れで振動する振動片の採用無く、通常の熱交換器で用いられる流速域においても対流熱伝達率を向上させることが出来る。
FIG. 3 shows the convective heat transfer coefficient ratio (ratio to the convective heat transfer coefficient without a protrusion array and sound waves) in a configuration in which only a protrusion array is provided on the heat transfer surface, and a case where sound waves are incident on the heat transfer surface. This is a comparison of the convective heat transfer coefficient ratio (ratio to the convective heat transfer coefficient with no projection row and with sound waves) and the convective heat transfer coefficient ratio according to this example. Further, as a configuration in which these comparative controls are combined, when a sound wave is incident on the heat transfer surface having the protrusion row (however, the frequency f of the sound wave and the interval L between the protrusions of the protrusion row satisfy the relationship of the expression (1)). The convective heat transfer coefficient ratio is also shown.
It can be seen from the graph of FIG. 3 that the improvement rate of the convective heat transfer coefficient according to this example is superior to any of the cases. As described above, the heat exchanger is configured as described above, so that an increase in pressure loss due to the protrusion and the adoption of a vibrating piece that vibrates in the flow of the low-temperature fluid 5 can be used. The convective heat transfer coefficient can also be improved at.

本実施例は、既述の実施例1の音波発生機構を他の機構に変更したものであり、その他の内容は実施例1と同様なので、以下に本実施例について、変更後の音波発生機構を主体にして、図4を基に説明する。   In this embodiment, the sound wave generation mechanism of the first embodiment described above is changed to another mechanism, and the other contents are the same as those in the first embodiment. Will be described based on FIG.

図4に示すシェルアンドチューブ型空冷熱交換器のシェル1のノズル8の装着部分にキャビティ15を設ける。そのキャビティ15は、シェル1の外郭壁に形成した孔であり、その孔はノズル8にのみ開口している。このようなキャビティ15は、上部と下部の各ノズル8の装着部分に設けてある。本実施例では、そのキャビティ15を、キャビティ15での流力音響共鳴現象を利用した音波発生機構として用いる。
キャビティ15の深さをLc、音速をCsとしたとき、キャビティ15内での音響共鳴により、キャビティ15から周波数f=Cs/(4Lc)の音波が発生する。音波発生機構としてキャビティ15での流力音響共鳴現象を用いるため、スピーカー等のように外部からの駆動作用なしに音波11を発生させることが可能である。
A cavity 15 is provided in a portion where the nozzle 8 of the shell 1 of the shell and tube type air-cooled heat exchanger shown in FIG. The cavity 15 is a hole formed in the outer wall of the shell 1, and the hole opens only in the nozzle 8. Such a cavity 15 is provided in the mounting portion of the upper and lower nozzles 8. In the present embodiment, the cavity 15 is used as a sound wave generation mechanism that uses the hydrodynamic resonance phenomenon in the cavity 15.
When the depth of the cavity 15 is Lc and the sound velocity is Cs, a sound wave having a frequency f = Cs / (4Lc) is generated from the cavity 15 due to acoustic resonance in the cavity 15. Since the hydroacoustic resonance phenomenon in the cavity 15 is used as the sound wave generation mechanism, the sound wave 11 can be generated without a driving action from the outside like a speaker or the like.

伝熱管2および伝熱管表面の突起列9の構成は、実施例1と同様である。低温流体5の流れ方向に対する突起列9の突起の間隔Lは、キャビティ15内での流力音響共鳴現象によって発生する音波11の周波数fに対し、式(1)を満足するように決定する。   The configurations of the heat transfer tube 2 and the projection row 9 on the surface of the heat transfer tube are the same as in the first embodiment. The protrusion interval L of the protrusion row 9 with respect to the flow direction of the low-temperature fluid 5 is determined so as to satisfy Expression (1) with respect to the frequency f of the sound wave 11 generated by the hydroacoustic resonance phenomenon in the cavity 15.

低温流体5の流れは突起部9で剥離するため、図2のように突起部後流に渦12が発生する。渦12は低温流体5の流れにより、下流側へ移動し、下流側に隣接する突起部の近傍13に到達する。突起列9の突起又は突起近傍の流体に入射するキャビティ15で発生した音波11の周波数fと、突起列の間隔Lが上式(1)の関係を満足している場合、渦12が下流側の突起部の近傍13に到達した時に、その音波により時列9の突起部に新たな渦が誘起される。
低温流体5の流れにより下流側の突起の近傍13に到達した渦と、音波11により誘起された渦が合体して、より大きな渦14が突起部後流に形成される。
このような大型の渦を形成して、実施例1と同様に、熱交換器の対流熱伝達率を向上させることが可能である。
Since the flow of the low-temperature fluid 5 is separated at the protrusion 9, the vortex 12 is generated in the wake of the protrusion as shown in FIG. The vortex 12 moves to the downstream side by the flow of the low-temperature fluid 5 and reaches the vicinity 13 of the protrusion adjacent to the downstream side. When the frequency f of the sound wave 11 generated in the cavity 15 incident on the protrusion in the protrusion row 9 or the fluid in the vicinity of the protrusion and the interval L of the protrusion row satisfy the relationship of the above equation (1), the vortex 12 is on the downstream side. When reaching the vicinity 13 of the protrusion, a new vortex is induced in the protrusion of the time train 9 by the sound wave.
The vortex that has reached the vicinity 13 of the projection on the downstream side due to the flow of the low-temperature fluid 5 and the vortex induced by the sound wave 11 merge to form a larger vortex 14 in the wake of the projection.
By forming such a large vortex, the convective heat transfer coefficient of the heat exchanger can be improved as in the first embodiment.

また、本実施例では、キャビティ15を用いた流力音響共鳴現象にて本実施例で用いる音波11を得ているので、実施例1のようにスピーカーを駆動するために外部から電力などのエネルギーを導入する必要が無く、故障の要因も低減する。   Further, in this embodiment, since the sound wave 11 used in this embodiment is obtained by the hydroacoustic resonance phenomenon using the cavity 15, in order to drive the speaker as in Embodiment 1, energy such as electric power from the outside is used. Need not be introduced, and the cause of failure is reduced.

本実施例は、既述の実施例1の音波発生機構を他の機構に変更したものであり、その他の内容は実施例1と同様なので、以下に本実施例について、変更後の音波発生機構を主体にして、図5を基に説明する。   In this embodiment, the sound wave generation mechanism of the first embodiment described above is changed to another mechanism, and the other contents are the same as those in the first embodiment. Will be described based on FIG.

本実施例における音波発生機構は、図5に示すシェルアンドチューブ型空冷熱交換器のシェル1内での音響共鳴現象を利用する。シェル1の高さをLs、音速をCs、nを自然数としたとき、シェル内で周波数f=(n/2)・(Cs/Ls)の音波11が発生する。
音波発生機構としてシェル1内での音響共鳴現象を用いるため、実施例1のようなスピーカーによる音波発生装置や実施例2のようなキャビティ15等の構造を追加すること無しに音波11を発生させることが可能である。
The sound wave generation mechanism in the present embodiment utilizes the acoustic resonance phenomenon in the shell 1 of the shell-and-tube type air-cooled heat exchanger shown in FIG. When the height of the shell 1 is Ls, the sound speed is Cs, and n is a natural number, a sound wave 11 having a frequency f = (n / 2) · (Cs / Ls) is generated in the shell.
Since the acoustic resonance phenomenon in the shell 1 is used as the sound wave generation mechanism, the sound wave 11 is generated without adding a structure such as a sound wave generator using a speaker as in the first embodiment or a cavity 15 as in the second embodiment. It is possible.

低温流体5の流れ方向に対する突起列9の突起の間隔Lは、シェル1内での音響共鳴現象によって発生する音波11の周波数fに対し、式(1)を満足するように決定する。
本実施例においても、実施例1,2と同様に、図2のように、低温流体5の流れにより下流側の突起の近傍13に到達した渦12と、音波により誘起された渦が合体して、より大きな渦14が突起部後流に形成される。
このような大型の渦を形成して、実施例1,2と同様に、熱交換器の対流熱伝達率を向上させることが可能である。
The protrusion interval L of the protrusion row 9 with respect to the flow direction of the low-temperature fluid 5 is determined so as to satisfy Expression (1) with respect to the frequency f of the sound wave 11 generated by the acoustic resonance phenomenon in the shell 1.
Also in this embodiment, as in the first and second embodiments, as shown in FIG. 2, the vortex 12 that has reached the vicinity 13 of the protrusion on the downstream side by the flow of the low temperature fluid 5 and the vortex induced by the sound wave are combined. Thus, a larger vortex 14 is formed in the wake of the protrusion.
By forming such a large vortex, it is possible to improve the convective heat transfer coefficient of the heat exchanger as in the first and second embodiments.

また、本実施例では、シェル1内での音響共鳴現象にて本実施例で用いる音波11を得ているので、外部から電力などのエネルギーの導入やキャビティ15の必要性が無い。   Further, in the present embodiment, since the sound wave 11 used in the present embodiment is obtained by the acoustic resonance phenomenon in the shell 1, there is no need to introduce energy such as electric power or the cavity 15 from the outside.

本発明は、熱交換対象の各流体が伝熱壁面を介して熱交換する形式の熱交換器に用いられる。   The present invention is used for a heat exchanger of a type in which each fluid to be heat exchanged exchanges heat through a heat transfer wall surface.

1…シェル、2…伝熱管、3…管板、4…高温流体、5…低温流体、6…水室カバー、7,8…ノズル、9…突起列、10…音波発生装置、11…音波。 DESCRIPTION OF SYMBOLS 1 ... Shell, 2 ... Heat exchanger tube, 3 ... Tube plate, 4 ... High temperature fluid, 5 ... Low temperature fluid, 6 ... Water chamber cover, 7, 8 ... Nozzle, 9 ... Projection row | line | column, 10 ... Sound wave generator, 11 ... Sound wave .

Claims (9)

熱交換器の伝熱面に熱交換対象の流体の流れの方向へ間隔を開けて突起を複数個設けて成る突起列と、前記流体に音波を入射する音波発生機構とを備える熱交換器において、
前記流体の流れの方向で隣接し合う各突起のうちの前記流体の流れの上流側の突起で出来た渦が、下流側に隣接する突起で出来た渦と合体できる位置に到達した時に、前記音波により前記突起列の突起で新たな渦が誘起されるように、前記音波の周波数が設定されていることを特徴とした熱交換器。
A projection rows formed by providing a plurality of projections spaced in the direction of the heat exchanged fluid flows through the heat transfer surface of the heat exchanger, the heat exchanger and a sound wave generating mechanism incident sound waves to the fluid ,
Of the protrusions adjacent to each other in the direction of fluid flow, when a vortex formed by a protrusion on the upstream side of the fluid flow reaches a position where it can merge with a vortex formed by a protrusion adjacent on the downstream side, The heat exchanger is characterized in that the frequency of the sound wave is set so that a new vortex is induced at the protrusion of the protrusion row by the sound wave.
請求項1において、前記音波の周波数fと、前記間隔Lが5/f≦L≦100/fの関係を満足するように決定されていることを特徴とした熱交換器。 Oite to claim 1, the frequency f of the acoustic wave, the heat exchanger is characterized in that it is determined such that the distance L satisfies the relation of 5 / f ≦ L ≦ 100 / f. 請求項1から請求項のいずれか一項において、前記音波発生機構は、振動部が前記流体に接したスピーカーと、前記スピーカーを駆動するスピーカー駆動装置とを備えている構成であることを特徴とした熱交換器。 3. The sound wave generation mechanism according to claim 1, wherein the sound wave generation mechanism includes a speaker in which a vibration unit is in contact with the fluid, and a speaker driving device that drives the speaker. Heat exchanger. 請求項1から請求項のいずれか一項において、前記音波発生機構は、前記熱交換器のシェルに設けられたキャビティで構成されることを特徴とした熱交換器。 3. The heat exchanger according to claim 1, wherein the sound wave generating mechanism includes a cavity provided in a shell of the heat exchanger. 請求項1から請求項のいずれか一項において、前記音波発生機構として、前記熱交換器のシェル内での音響共鳴現象で前記音波が発生するように前記シェルを構成してあることを特徴とした熱交換器。 3. The shell according to claim 1, wherein the sound wave is generated by the acoustic resonance phenomenon in the shell of the heat exchanger as the sound wave generating mechanism. Heat exchanger. 熱交換対象の流体が接する伝熱面に、前記流体の流れ方向へ間隔を開けて列を成すように複数の突起を配置することによって、前記流れが刺激されると渦流に変化しやすい環境を作り、その環境下で前記刺激として音波を前記流体に入射して渦を生成し、前記流体を前記渦で攪拌する熱交換器の対流熱伝達促進方法において、
前記音波の周波数fと前記間隔Lとの関係が、5/f≦L≦100/fの関係と成るように、前記音波の周波数fと前記間隔Lとの関係を設定して用いることを特徴とした熱交換器の対流熱伝達促進方法。
By arranging a plurality of protrusions on the heat transfer surface in contact with the fluid to be heat exchanged so as to form a row at intervals in the flow direction of the fluid, an environment that easily changes to a vortex when the flow is stimulated is created. In the method for promoting convection heat transfer of a heat exchanger that makes a vortex by making a sound wave incident on the fluid as the stimulus under the environment, and stirs the fluid with the vortex ,
The relationship between the frequency f of the sound wave and the interval L is set and used so that the relationship between the frequency f of the sound wave and the interval L becomes a relationship of 5 / f ≦ L ≦ 100 / f. Method for promoting convective heat transfer in a heat exchanger.
請求項において、前記音波を得る方法として、スピーカー駆動装置でスピーカーを駆動させて得ることを特徴とした熱交換器の対流熱伝達促進方法。 7. The method according to claim 6 , wherein the sound wave is obtained by driving a speaker with a speaker driving device. 請求項において、前記音波を得る方法として、前記熱交換器のシェルに設けたキャビティを用いた流力音響共鳴現象で得るようにしたことを特徴とした熱交換器の対流熱伝達促進方法。 In claim 6, a method of obtaining the sound wave, before Symbol heat exchanger method convective heat transfer accelerating which is characterized in that to obtain in flow force acoustic resonance phenomenon using a cavity provided in the heat exchanger of the shell . 請求項において、前記音波を得る方法として、前記熱交換器のシェル内での音響共鳴現象を利用して得るようにしたことを特徴とした熱交換器の対流熱伝達促進方法。 7. The method of promoting convective heat transfer in a heat exchanger according to claim 6 , wherein the sound wave is obtained by utilizing an acoustic resonance phenomenon in a shell of the heat exchanger.
JP2012230430A 2012-10-18 2012-10-18 Heat exchanger and method for promoting convective heat transfer Expired - Fee Related JP5978094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012230430A JP5978094B2 (en) 2012-10-18 2012-10-18 Heat exchanger and method for promoting convective heat transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012230430A JP5978094B2 (en) 2012-10-18 2012-10-18 Heat exchanger and method for promoting convective heat transfer

Publications (2)

Publication Number Publication Date
JP2014081168A JP2014081168A (en) 2014-05-08
JP5978094B2 true JP5978094B2 (en) 2016-08-24

Family

ID=50785505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230430A Expired - Fee Related JP5978094B2 (en) 2012-10-18 2012-10-18 Heat exchanger and method for promoting convective heat transfer

Country Status (1)

Country Link
JP (1) JP5978094B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103975222B (en) * 2011-09-08 2017-06-06 美卓(瑞典)公司 The control changed to the abrasion spacer element on frayed wall and alignment system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6492586B2 (en) * 2014-11-28 2019-04-03 三菱自動車工業株式会社 Intercooler
WO2017103650A1 (en) * 2015-12-15 2017-06-22 Technion Research & Development Foundation Limited Acoustic resonance excited heat exchange
CN111998699B8 (en) * 2020-07-24 2021-06-04 滕州潍达智能科技有限公司 Environment-friendly heat exchange device for industrial sewage waste heat recovery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0006833B1 (en) * 1978-07-03 1983-09-14 Mats Olsson Konsult Ab Low-frequency sound generator
JPS5832274U (en) * 1981-08-26 1983-03-02 株式会社クボタ Heat exchanger
US5263793A (en) * 1991-11-19 1993-11-23 Ormat Industries, Ltd. Method of and apparatus for controlling turbulence in a wall-bounded fluid flow field
JPH09264697A (en) * 1996-03-28 1997-10-07 Matsushita Electric Works Ltd Heat exchanger
JPH10242678A (en) * 1997-02-21 1998-09-11 Fujikura Ltd Structure of heat exchanging fin
JP2002022386A (en) * 2000-07-04 2002-01-23 Hitachi Ltd Heat-exchanger, combustion device and its control method
JP4501409B2 (en) * 2003-10-31 2010-07-14 ソニー株式会社 Heat dissipation device and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103975222B (en) * 2011-09-08 2017-06-06 美卓(瑞典)公司 The control changed to the abrasion spacer element on frayed wall and alignment system

Also Published As

Publication number Publication date
JP2014081168A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5978094B2 (en) Heat exchanger and method for promoting convective heat transfer
Zhu et al. Wake-induced vibration of a circular cylinder at a low Reynolds number of 100
Pavlova et al. Electronic cooling using synthetic jet impingement
JP2013515890A (en) Wave energy extraction system using oscillating water column along offshore platform column
Su et al. A study of the vortex-induced lateral vibration and heat transfer characteristics of elastic supported single tubes with different cross-sectional shapes
JP2015010749A (en) Heat transfer device
Hafizh et al. Vortex induced vibration energy harvesting using magnetically coupled broadband circular-array piezoelectric patch: Modelling, parametric study, and experiments
JP2008011669A (en) Oscillation generation set by fluid
JP5964286B2 (en) Heat exchanger
Li et al. Air-side heat transfer enhancement in plate-fin channel with an airfoil-based self-agitator
JP5807302B2 (en) Power generator
KR101312563B1 (en) Floating breakwater and power generating apparatus with the same
Jebelli et al. Interaction of two parallel free oscillating flat plates and VIV of an upstream circular cylinder in laminar flow
JP6261533B2 (en) Heat exchanger and boiler
JP5896640B2 (en) Wave energy converter
CN107623391B (en) Motor cooling pipeline and forced air cooling motor
CN101644545B (en) Air-cooled condenser
JP5069499B2 (en) Device for suppressing entrainment of cover gas in liquid metal and method for suppressing entrainment of cover gas in liquid metal
Inada et al. An experimental study on the fluidelastic forces acting on a square tube bundle in two-phase cross-flow
KR101150023B1 (en) Piezoelectric cantilever fluid energy harvester
JPH03134491A (en) Heat exchanger
EP2715235B1 (en) A boiler, and a silencer for a flue gas duct in a boiler
RU84957U1 (en) SPRAY POOL
Hamakawa et al. Effect of arrangement of tube banks on acoustic resonance
CN106482565B (en) Heat exchange tube and shell-and-tube heat exchanger adopting same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R151 Written notification of patent or utility model registration

Ref document number: 5978094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees