JP5974152B2 - Bonded body of ceramic member and metal member and manufacturing method thereof - Google Patents

Bonded body of ceramic member and metal member and manufacturing method thereof Download PDF

Info

Publication number
JP5974152B2
JP5974152B2 JP2015198243A JP2015198243A JP5974152B2 JP 5974152 B2 JP5974152 B2 JP 5974152B2 JP 2015198243 A JP2015198243 A JP 2015198243A JP 2015198243 A JP2015198243 A JP 2015198243A JP 5974152 B2 JP5974152 B2 JP 5974152B2
Authority
JP
Japan
Prior art keywords
metallized layer
brazing material
flatness
ceramic member
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015198243A
Other languages
Japanese (ja)
Other versions
JP2016011254A (en
Inventor
文吉 羅
文吉 羅
川尻 哲也
哲也 川尻
南 智之
智之 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2015198243A priority Critical patent/JP5974152B2/en
Publication of JP2016011254A publication Critical patent/JP2016011254A/en
Application granted granted Critical
Publication of JP5974152B2 publication Critical patent/JP5974152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

本発明は、セラミックス部材と金属部材との接合体及びその製法に関する。   The present invention relates to a joined body of a ceramic member and a metal member and a manufacturing method thereof.

従来、セラミックス部材と金属部材との接合体としては、金属部材の端部とセラミックス部材とが接合部を介して接合されたものが知られている(特許文献1)。この接合体では、接合部が、セラミックス部材上に形成されているメタライズ層と、メタライズ層と金属部材の端部との間に介在しているロウ接合層とを備えている。こうした接合体は、以下のようにして製造される。すなわち、まず、AlN焼結体製で円盤状のセラミックス部材の接合面上に、Cu−Al−Si−Tiを含むリング状の第1ロウ材を設置する。続いて、この第1ロウ材を1050℃で5分間真空雰囲気で加熱し、メタライズ層を形成する。続いて、メタライズ層上にAg−Cuを含むリング状の第2ロウ材を設置し、その上に筒状の金属部材の端面を設置し、金属部材上におもりを設置する。これを800℃で5分間真空雰囲気で加熱し、ロウ接合層を形成する。こうすることにより得られた接合体は、ヘリウムリーク量がほとんどなく、熱サイクル後においても、クラックはなくヘリウムリーク量はほとんどない。   Conventionally, as a joined body of a ceramic member and a metal member, one in which an end portion of a metal member and a ceramic member are joined via a joint portion is known (Patent Document 1). In this bonded body, the bonding portion includes a metallized layer formed on the ceramic member, and a brazing bonding layer interposed between the metallized layer and the end of the metal member. Such a joined body is manufactured as follows. That is, first, a ring-shaped first brazing material containing Cu—Al—Si—Ti is placed on a joining surface of a disc-shaped ceramic member made of an AlN sintered body. Subsequently, the first brazing material is heated in a vacuum atmosphere at 1050 ° C. for 5 minutes to form a metallized layer. Subsequently, a ring-shaped second brazing material containing Ag—Cu is disposed on the metallized layer, an end surface of a cylindrical metal member is disposed thereon, and a weight is disposed on the metal member. This is heated in a vacuum atmosphere at 800 ° C. for 5 minutes to form a solder bonding layer. The joined body obtained in this way has almost no helium leak amount, and there is no crack and no helium leak amount even after thermal cycling.

特開2000−219578号公報JP 2000-219578 A

しかしながら、こうした接合体では、残留応力が大きいため、十分大きな引張破断荷重が得られないという問題があった。   However, such a bonded body has a problem that a sufficiently large tensile breaking load cannot be obtained because of a large residual stress.

本発明はこのような課題を解決するためになされたものであり、セラミックス部材と金属部材とを接合した接合体の引張破断荷重を十分大きくすることを主目的とする。   The present invention has been made to solve such a problem, and a main object of the present invention is to sufficiently increase the tensile breaking load of a joined body obtained by joining a ceramic member and a metal member.

本発明の接合体は、上述の主目的を達成するために以下の手段を採った。   The joined body of the present invention employs the following means in order to achieve the main object described above.

本発明の接合体は、
セラミックス部材と金属部材とを接合した接合体であって、
前記セラミックス部材上に形成され、活性金属を含有するメタライズ層と、
該メタライズ層と前記金属部材との間に形成され、融点が前記メタライズ層より低いロウ接合層と、
を有し、
前記メタライズ層の平面度は22μm以下である
ものである。
The joined body of the present invention comprises:
A joined body obtained by joining a ceramic member and a metal member,
A metallized layer formed on the ceramic member and containing an active metal;
A brazing layer formed between the metallized layer and the metal member and having a melting point lower than that of the metallized layer;
Have
The flatness of the metallized layer is 22 μm or less.

この接合体によれば、引張破断荷重が十分大きくなる。その理由は定かではないが、以下のように推察される。メタライズ層は、中心部が厚く外周部が薄く形成される。その中心部の厚みと外周部の厚みとの差が平面度である。メタライズ層を構成する物質とロウ接合層を形成する物質の濡れ性が充分良くない場合、ロウ材がメタライズ層全面に濡れ広がるためには荷重をかける必要がある。平面度が22μmを超えると、メタライズ層の外周部と金属部材との距離が離れすぎているため、荷重が伝わりにくくなり、両者の間のロウ
接合層の結合力が弱まり、その結果、引張破断荷重が十分大きくならないと考えられる。これに対して、メタライズ層の平面度が22μm以下であれば、メタライズ層の外周部にも荷重が伝わり、両者の間のロウ接合層の結合力が弱まることがなく、その結果、引張破断荷重が十分大きくなったと考えられる。
According to this joined body, the tensile breaking load becomes sufficiently large. The reason is not clear, but it is presumed as follows. The metallized layer is formed with a thick central part and a thin outer peripheral part. The difference between the thickness of the central part and the thickness of the outer peripheral part is the flatness. When the wettability of the material constituting the metallized layer and the material forming the brazing layer is not sufficiently good, it is necessary to apply a load in order for the brazing material to spread over the entire surface of the metallized layer. When the flatness exceeds 22 μm, the distance between the outer peripheral portion of the metallized layer and the metal member is too far away, so that the load is difficult to be transmitted and the bonding strength of the brazing layer between the two is weakened. It is considered that the load is not large enough. On the other hand, if the flatness of the metallized layer is 22 μm or less, the load is also transmitted to the outer peripheral portion of the metallized layer, and the bonding force of the braze bonding layer between them is not weakened. Is considered to be large enough.

本発明の接合体において、セラミックス部材の材質としては、例えば、窒化アルミ焼結体、アルミナ焼結体、ジルコニア焼結体などが挙げられる。また、セラミックス部材は、抵抗発熱体、静電チャック用電極、プラズマ発生用電極などの機能性部品が埋設されていてもよい。   In the joined body of the present invention, examples of the material of the ceramic member include an aluminum nitride sintered body, an alumina sintered body, and a zirconia sintered body. The ceramic member may be embedded with functional parts such as a resistance heating element, an electrostatic chuck electrode, and a plasma generating electrode.

本発明の接合体において、金属部材は、例えば、モリブデン、チタン、銅タングステン複合体などからなるセラミックと熱膨張係数が近い芯材の表面をニッケル、銅、金などで被覆した部材とした方がよく、このうち、モリブデン製の芯材の表面をニッケルで被覆した部材が好ましい。   In the joined body of the present invention, for example, the metal member should be a member in which the surface of a core material having a thermal expansion coefficient close to that of a ceramic made of molybdenum, titanium, copper-tungsten composite or the like is coated with nickel, copper, gold, or the like. Of these, a member in which the surface of a molybdenum core is coated with nickel is preferable.

本発明の接合体において、メタライズ層は、メタライズ層用のロウ材(以下、第1ロウ材という)を用いて形成されたものである。第1ロウ材としては、例えば、銀ロウや銅ロウ、ニッケルロウ、金ロウ、パラジウムロウなどに活性金属を含有させたものが挙げられる。活性金属としては、例えば、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、ベリリウムなどが挙げられる。特に、セラミックス部材の材質がアルミナ焼結体や窒化アルミ焼結体の場合には、活性金属としてチタンやジルコニウムを用いるのが好ましく、セラミックス部材の材質がジルコニア焼結体の場合には、活性金属としてチタンを用いるのが好ましい。第1ロウ材の具体例としては、Ag−Cu−Tiロウ材、Ag−Cu−Ti−Snロウ材などが挙げられる。これらの第1ロウ材は700℃以上で処理されるため、セラミックス部材と第1ロウ材との界面で化学反応が起こって反応層が形成されている可能性がある。こうした反応層は、セラミックス部材とメタライズ層との接合強度を高める役割を果たすと考えられる。   In the joined body of the present invention, the metallized layer is formed using a brazing material for the metallized layer (hereinafter referred to as a first brazing material). As the first brazing material, for example, a silver brazing material, a copper brazing material, a nickel brazing material, a gold brazing material, a palladium brazing material, or the like may be used. Examples of the active metal include titanium, zirconium, hafnium, vanadium, niobium, and beryllium. In particular, when the material of the ceramic member is an alumina sintered body or an aluminum nitride sintered body, it is preferable to use titanium or zirconium as the active metal, and when the material of the ceramic member is a zirconia sintered body, the active metal As titanium, it is preferable to use titanium. Specific examples of the first brazing material include an Ag—Cu—Ti brazing material and an Ag—Cu—Ti—Sn brazing material. Since these first brazing materials are processed at 700 ° C. or higher, there is a possibility that a chemical reaction occurs at the interface between the ceramic member and the first brazing material to form a reaction layer. Such a reaction layer is considered to play a role of increasing the bonding strength between the ceramic member and the metallized layer.

本発明の接合体において、ロウ接合層は、ロウ接合層用のロウ材(以下、第2ロウ材という)によって形成されたものである。第2ロウ材としては、第1ロウ材よりも融点が低いロウ材を用いるが、例えば、金系のロウ、アルミニウム系のロウ、亜鉛系のロウなどが挙げられる。第2ロウ材を溶融させるときには、メタライズ層(第1ロウ材)が溶融しないように溶融温度を設定する。第2ロウ材の具体例としては、例えば、共晶組成により低融点化させたAuSn系合金(例えばSnの含有率が15〜37wt%)、AuGe系合金(例えばGeの含有率が10〜17wt%)やAuSi系合金(例えばSiの含有率が3〜4wt%)などが挙げられる。   In the joined body of the present invention, the brazing layer is formed of a brazing material for the brazing layer (hereinafter referred to as a second brazing material). As the second brazing material, a brazing material having a melting point lower than that of the first brazing material is used, and examples thereof include a gold-based brazing material, an aluminum-based brazing material, and a zinc-based brazing material. When the second brazing material is melted, the melting temperature is set so that the metallized layer (first brazing material) does not melt. Specific examples of the second brazing material include, for example, an AuSn alloy (for example, Sn content of 15 to 37 wt%) and an AuGe alloy (for example, Ge content of 10 to 17 wt. %) And AuSi-based alloys (for example, the Si content is 3 to 4 wt%).

本発明の接合体の製法は、セラミックス部材上に第1ロウ材を設置してこの第1ロウ材を溶融させることによってメタライズ層を生成させ、次いで前記メタライズ層と前記金属部材との間に第2ロウ材を介在させ、前記第1ロウ材の融点よりも低い温度で前記第2ロウ材を溶融させることによって、前記メタライズ層と前記金属部材との間に前記ロウ接合層を生成させる、セラミックス部材と金属部材とを接合した接合体の製法であって、前記メタライズ層と前記金属部材との間に前記第2ロウ材を介在させる前の前記メタライズ層の平面度を22μm以下(好ましくは10μm以下、更に好ましくは5μm以下)とするものである。   According to the method of manufacturing the joined body of the present invention, a first brazing material is placed on a ceramic member, and the first brazing material is melted to form a metallized layer. Then, a first brazing material is formed between the metallized layer and the metal member. A ceramic that interposes two brazing materials and melts the second brazing material at a temperature lower than the melting point of the first brazing material, thereby forming the brazing bonding layer between the metallized layer and the metal member. A method of manufacturing a joined body in which a member and a metal member are joined, and the flatness of the metallized layer before the second brazing material is interposed between the metallized layer and the metal member is 22 μm or less (preferably 10 μm). Hereinafter, more preferably 5 μm or less.

この接合体の製法によれば、得られる接合体の引張破断荷重が十分大きくなる。その理由は、上述したとおりである。また、第1ロウ材、第2ロウ材の具体例についても、上述したとおりである。   According to this method for manufacturing a joined body, the tensile fracture load of the obtained joined body becomes sufficiently large. The reason is as described above. The specific examples of the first brazing material and the second brazing material are also as described above.

本発明の接合体の製法において、セラミックス部材上に第1ロウ材を設置する際の第1ロウ材の厚みは20〜30μmであることが好ましい。こうすれば、第1ロウ材を溶融させることによってメタライズ層を生成させたときのメタライズ層の平面度は22μm以下になる。このため、研磨等によって平面度を向上させる作業が不要となる。また、第1ロ
ウ材を20μm未満まで圧延すると、箔状になってしまい、取り扱いにくくなり、メタライズの歩留まりが悪くなる。
In the manufacturing method of the joined body of the present invention, the thickness of the first brazing material when the first brazing material is installed on the ceramic member is preferably 20 to 30 μm. In this way, the flatness of the metallized layer when the metallized layer is generated by melting the first brazing material is 22 μm or less. For this reason, the work which improves flatness by grinding | polishing etc. becomes unnecessary. In addition, when the first brazing material is rolled to less than 20 μm, it becomes foil-like, making it difficult to handle, and the yield of metallization deteriorates.

接合体10の概略断面図である。1 is a schematic sectional view of a joined body 10. 接合体10の製造工程図である。FIG. 6 is a manufacturing process diagram of the joined body 10.

以下に、本発明の好適な一実施形態について、図面を参照しながら説明する。図1は、本実施形態の接合体10の概略断面図である。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a joined body 10 of the present embodiment.

本実施形態の接合体10は、セラミックス部材12と金属部材14とを接合部16で接合したものである。セラミックス部材12は、アルミナ焼結体で形成されている。金属部材14は、円柱状のモリブデン芯材14aの底面にニッケル被膜14bが形成されている。接合部16は、金属部材14の底面とセラミックス部材12とを接合している。この接合部16は、セラミックス部材12の上に形成されたメタライズ層16aと、このメタライズ層16aと金属部材14のニッケル被膜14bとの間に形成されたロウ接合層16bとで構成されている。メタライズ層16aは、中心部の厚みの方が外周部の厚みよりも厚くなっている。このメタライズ層16aの中心部の厚みと外周部の厚みとの差を平面度と定義すると、平面度は22μm以下となっている。   The joined body 10 of the present embodiment is obtained by joining a ceramic member 12 and a metal member 14 at a joint portion 16. The ceramic member 12 is formed of an alumina sintered body. The metal member 14 has a nickel coating 14b formed on the bottom surface of a cylindrical molybdenum core material 14a. The joining portion 16 joins the bottom surface of the metal member 14 and the ceramic member 12. The joint portion 16 includes a metallized layer 16 a formed on the ceramic member 12, and a solder joint layer 16 b formed between the metallized layer 16 a and the nickel coating 14 b of the metal member 14. The metallized layer 16a is thicker at the center than at the outer periphery. When the difference between the thickness of the central portion of the metallized layer 16a and the thickness of the outer peripheral portion is defined as flatness, the flatness is 22 μm or less.

こうした接合体10は、例えば、次のようにして製造することができる。図2は、接合体10の製造工程図である。まず、セラミックス部材12を用意し、そのセラミックス部材12の表面に、第1ロウ材のシート32を載せる(図2(a)参照)。第1ロウ材としては、Agロウに活性金属であるTiを含有させたもの(例えばAg−Cu−TiやAg−Cu−Ti−Sn,Ag−Cu−Ti)などを用いることができる。そして、加熱炉にて真空雰囲気で第1ロウ材の溶融温度まで昇温し、所定時間キープした後、降温することにより、セラミックス部材12上にメタライズ層16aを形成する(図2(b)参照)。このとき、セラミックス部材12と第1ロウ材との界面で化学反応が起こって反応層が形成されている可能性がある。こうした反応層は、セラミックス部材12とメタライズ層16aとの接合強度を高める役割を果たすと考えられる。メタライズ層16aは、シート32が溶融したときの表面張力によって中心部の厚みの方が外周部の厚みよりも厚くなる。このとき、平面度が22μm以下であれば、そのまま次工程に進むが、22μmを超えている場合には、次工程に進む前に例えば研磨等により平面度が22μm以下になるようにする。続いて、メタライズ層16aの上に第2ロウ材のシート34を載せ、その上に金属部材14のニッケル被膜14bがシート34と接するように金属部材14をセットする(図2(c)参照)。第2ロウ材としては、第1ロウ材よりも融点の低いもの(例えばAu−Sn,Au−Ge,Au−Si)などを用いることができる。そして、セットした金属部材14に荷重をかけ、加熱炉にて窒素雰囲気で第2ロウ材の溶融温度(例えば200〜500℃)まで昇温し、所定時間キープした後、降温する(図2(d)参照)。このときの溶融温度は、第2ロウ材のシート34は溶融するがメタライズ層16aは溶融しない温度に設定する。こうすることにより、メタライズ層16aと金属部材14のニッケル被膜14bとの間にロウ接合層16bが形成され、接合体10が完成する。   Such a joined body 10 can be manufactured as follows, for example. FIG. 2 is a manufacturing process diagram of the joined body 10. First, a ceramic member 12 is prepared, and a first brazing material sheet 32 is placed on the surface of the ceramic member 12 (see FIG. 2A). As the first brazing material, an Ag brazing material containing Ti as an active metal (for example, Ag-Cu-Ti, Ag-Cu-Ti-Sn, Ag-Cu-Ti) or the like can be used. Then, the metallized layer 16a is formed on the ceramic member 12 by raising the temperature to the melting temperature of the first brazing material in a vacuum atmosphere in a heating furnace, keeping it for a predetermined time, and lowering the temperature (see FIG. 2B). ). At this time, there is a possibility that a chemical reaction occurs at the interface between the ceramic member 12 and the first brazing material and a reaction layer is formed. Such a reaction layer is considered to play a role of increasing the bonding strength between the ceramic member 12 and the metallized layer 16a. The metallized layer 16a has a thicker central portion than a peripheral portion due to surface tension when the sheet 32 is melted. At this time, if the flatness is 22 μm or less, the process proceeds to the next process as it is. If it exceeds 22 μm, the flatness is set to 22 μm or less by, for example, polishing before proceeding to the next process. Subsequently, the second brazing material sheet 34 is placed on the metallized layer 16a, and the metal member 14 is set so that the nickel coating 14b of the metal member 14 is in contact with the sheet 34 (see FIG. 2C). . As the second brazing material, a material having a melting point lower than that of the first brazing material (for example, Au—Sn, Au—Ge, Au—Si) or the like can be used. Then, a load is applied to the set metal member 14, the temperature is raised to the melting temperature (for example, 200 to 500 ° C.) of the second brazing material in a nitrogen atmosphere in a heating furnace, the temperature is kept for a predetermined time, and then the temperature is lowered (FIG. 2 ( d)). The melting temperature at this time is set to a temperature at which the second brazing material sheet 34 melts but the metallized layer 16a does not melt. By doing so, the brazing layer 16b is formed between the metallized layer 16a and the nickel coating 14b of the metal member 14, and the joined body 10 is completed.

以上説明した接合体10によれば、引張破断荷重が十分大きくなる。その理由は定かではないが、以下のように推察される。メタライズ層を構成する物質の中で、TiとAuG
eと濡れ性が悪い。また、AgとAuGeは濡れ性が充分良くない。そのため、AuGeロウ材がメタライズ層全面に濡れ広がるためには荷重をかける必要がある。メタライズ層16aは、平面度が22μmを超えると、メタライズ層16aの外周部と金属部材14との距離が離れすぎているため両者の間に荷重が伝わりにくく、ロウ接合層16bの結合力が弱まり、その結果、引張破断荷重が十分大きくならないと考えられる。これに対して、平面度が22μm以下であれば、メタライズ層16bの外周部と金属部材14との距離が比較的近いため両者の間のロウ接合層16bの結合力が弱まることがなく、その結果、引張破断荷重が十分大きくなったと考えられる。
According to the joined body 10 described above, the tensile breaking load becomes sufficiently large. The reason is not clear, but it is presumed as follows. Among the materials composing the metallized layer, Ti and AuG
e and poor wettability. Moreover, Ag and AuGe do not have good wettability. Therefore, it is necessary to apply a load in order for the AuGe brazing material to spread over the entire surface of the metallized layer. When the flatness of the metallized layer 16a exceeds 22 μm, the distance between the outer periphery of the metallized layer 16a and the metal member 14 is too far away, so that the load is not easily transmitted between them, and the bonding strength of the brazing layer 16b is weakened. As a result, it is considered that the tensile breaking load is not sufficiently large. On the other hand, if the flatness is 22 μm or less, since the distance between the outer peripheral portion of the metallized layer 16b and the metal member 14 is relatively short, the bonding force of the brazing bonding layer 16b between the two is not weakened. As a result, it is considered that the tensile breaking load has become sufficiently large.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、セラミックス部材12の表面(金属部材14を取り付ける面)は平面としたが、必ずしも平面である必要はない。例えば、セラミックス部材12に円形の窪みを設け、その窪みの底面にメタライズ層16aとロウ接合層16bとを積層した接合部16を介してセラミックス部材12と金属部材14とを接合してもよい。その場合、セラミックス部材12として内部に電極を埋設したものを用い、窪みの底面にその電極と接続された端子を露出させておき、その窪みの底面に接合部16を介してセラミックス部材12と金属部材14とを接合してもよい。この場合、金属部材14は、電極への給電のために用いられる。なお、電極としては、例えばヒーター電極(抵抗発熱体)や静電チャック用電極、プラズマ発生用電極などが挙げられる。   For example, in the above-described embodiment, the surface of the ceramic member 12 (the surface on which the metal member 14 is attached) is a flat surface, but is not necessarily a flat surface. For example, the ceramic member 12 and the metal member 14 may be bonded via a bonding portion 16 in which a circular depression is provided in the ceramic member 12 and a metallized layer 16a and a brazing bonding layer 16b are laminated on the bottom surface of the depression. In this case, a ceramic member 12 having an electrode embedded therein is used, a terminal connected to the electrode is exposed on the bottom surface of the recess, and the ceramic member 12 and the metal are connected to the bottom surface of the recess via a joint portion 16. The member 14 may be joined. In this case, the metal member 14 is used for supplying power to the electrode. Examples of the electrode include a heater electrode (resistance heating element), an electrostatic chuck electrode, and a plasma generating electrode.

上述した実施形態では、セラミックス部材12の材質をアルミナ焼結体としたが、特にこれに限定されるものではなく、例えば窒化アルミ焼結体やジルコニア焼結体などでもよい。活性金属は、セラミックス部材12の材質に応じて決定するのが好ましく、例えば、アルミナ焼結体や窒化アルミ焼結体の場合には、チタンやジルコニウムが好ましく、ジルコニア焼結体の場合には、チタンが好ましい。   In the embodiment described above, the ceramic member 12 is made of an alumina sintered body, but is not particularly limited to this, and may be, for example, an aluminum nitride sintered body or a zirconia sintered body. The active metal is preferably determined according to the material of the ceramic member 12. For example, in the case of an alumina sintered body or an aluminum nitride sintered body, titanium or zirconium is preferable, and in the case of a zirconia sintered body, Titanium is preferred.

上述した実施形態では、金属部材14は、モリブデン芯材14aの底面のみならず側面や表面もニッケル被膜で覆われていてもよい。また、芯材の材質は、モリブデンに限定されるものではなく、例えば、チタン、銅タングステン複合材などでもよい。被膜の材質も、ニッケルに限定されるものではなく、銅、金などでもよい。   In the embodiment described above, the metal member 14 may be covered not only with the bottom surface of the molybdenum core material 14a but also with the nickel coating on the side surfaces and the surface. Further, the material of the core material is not limited to molybdenum, and may be, for example, titanium, a copper tungsten composite material, or the like. The material of the coating is not limited to nickel, but may be copper, gold or the like.

[実験例1〜5]
直径6mm、深さ0.3mmの窪みが設けられたアルミナセラミックス部材を用意した。このアルミナセラミックス部材の窪みに、その窪みの底面とほぼ同じ形状となるように切り出したAg−Cu−Tiシート(田中貴金属製、TKC−711)を1枚セットした。実験例1〜5で用いたシートの厚みは、それぞれ100μm,50μm,25μmであった。そして、加熱炉にて真空雰囲気で850℃まで昇温し、10分間キープした後、降温することにより、窪みにメタライズ層を形成した。このメタライズ層の中心部の厚みと外周部の厚みをインジケーター(mitutoyo製、デジマチックインジケーター)で計測した。なお、計測は、メタライズ層を研磨することなく行った。中心部の厚みと外周部の厚みとの差を平面度と定義し、平面度を算出した。実験例1〜5の平面度を表1に示す。
[Experimental Examples 1-5]
An alumina ceramic member provided with a recess having a diameter of 6 mm and a depth of 0.3 mm was prepared. One Ag-Cu-Ti sheet (manufactured by Tanaka Kikinzoku, TKC-711) cut out so as to have substantially the same shape as the bottom surface of the recess was set in the recess of the alumina ceramic member. The thicknesses of the sheets used in Experimental Examples 1 to 5 were 100 μm, 50 μm, and 25 μm, respectively. Then, the temperature was raised to 850 ° C. in a vacuum atmosphere in a heating furnace, kept for 10 minutes, and then lowered to form a metallized layer in the depression. The thickness of the central part and the outer peripheral part of the metallized layer were measured with an indicator (manufactured by mitutoyo, Digimatic Indicator). The measurement was performed without polishing the metallized layer. The difference between the thickness of the central portion and the thickness of the outer peripheral portion was defined as flatness, and the flatness was calculated. Table 1 shows the flatness of Experimental Examples 1 to 5.

続いて、メタライズ層を形成した窪みに、その窪みの底面とほぼ同じ形状となるように切り出したAu−Geロウ材(田中貴金属製、AuGe12%板(Auに12〜13wt%のGeが含まれている板))を1枚セットし、その上に直径5.95mm、高さ6mmの金属端子をセットした。金属端子は、モリブデン製の芯材の表面にニッケル被膜を有するものを用いた。そして、セットした金属端子に荷重をかけ、加熱炉にて窒素雰囲気で4
00℃まで昇温し、10分間キープした後、降温することにより、アルミナセラミックス部材と金属端子とが接合された接合体を得た。
Subsequently, an Au—Ge brazing material (made by Takanaka Tanaka, AuGe 12% plate (Au contains 12 to 13 wt% Ge) is formed in the dent in which the metallized layer is formed, so as to have substantially the same shape as the bottom surface of the dent. 1), and a metal terminal having a diameter of 5.95 mm and a height of 6 mm was set thereon. A metal terminal having a nickel coating on the surface of a molybdenum core was used. Then, a load was applied to the set metal terminal, and a nitrogen atmosphere was applied in the heating furnace.
The temperature was raised to 00 ° C., kept for 10 minutes, and then lowered to obtain a joined body in which the alumina ceramic member and the metal terminal were joined.

得られた接合体の破断荷重を、引張強度試験機(島津製作所製、オートグラフ)を用いて測定した。結果を表1に示す。実験例1,2のようにメタライズ層の平面度が65μm,36μmの場合には、引張破断荷重は低い値しか得られなかったが、実験例3〜5のようにメタライズ層の平面度が22μm,20μm,18μmの場合には、引張破断荷重は十分高い値が得られた。   The breaking load of the obtained joined body was measured using a tensile strength tester (manufactured by Shimadzu Corporation, Autograph). The results are shown in Table 1. When the flatness of the metallized layer was 65 μm and 36 μm as in Experimental Examples 1 and 2, only a low value was obtained for the tensile breaking load, but the flatness of the metallized layer was 22 μm as in Experimental Examples 3-5. , 20 μm, and 18 μm, sufficiently high values were obtained for the tensile breaking load.

Figure 0005974152
Figure 0005974152

[実験例6〜9]
窪みのないアルミナセラミックス部材を用意した。このアルミナセラミックス部材の表面に、実験例1〜5と同じ形状となるように切り出したAg−Cu−Tiシート(田中貴金属製、TKC−711)を1枚セットした。実験例6〜9で用いたシートの厚みは、それぞれ100μm,50μm,25μm,50μmであった。そして、加熱炉にて真空雰囲気で850℃まで昇温し、10分間キープした後、降温することにより、メタライズ層を形成した。このメタライズ層の平面度を実験例1〜5と同様にして算出した。なお、実験例6〜8では、メタライズ層を研磨することなく、平面度を算出したが、実験例9では、メタライズ層を研磨し、研磨後に平面度を算出した。実験例6〜9の平面度を表2に示す。
[Experimental Examples 6 to 9]
An alumina ceramic member having no depression was prepared. On the surface of this alumina ceramic member, one sheet of Ag—Cu—Ti sheet (manufactured by Takanaka Tanaka, TKC-711) cut out to have the same shape as in Experimental Examples 1 to 5 was set. The thicknesses of the sheets used in Experimental Examples 6 to 9 were 100 μm, 50 μm, 25 μm, and 50 μm, respectively. Then, the temperature was raised to 850 ° C. in a vacuum atmosphere in a heating furnace, kept for 10 minutes, and then lowered to form a metallized layer. The flatness of this metallized layer was calculated in the same manner as in Experimental Examples 1-5. In Experimental Examples 6 to 8, the flatness was calculated without polishing the metallized layer, but in Experimental Example 9, the metallized layer was polished and the flatness was calculated after polishing. Table 2 shows the flatness of Experimental Examples 6 to 9.

続いて、メタライズ層の上に、そのメタライズ層とほぼ同形状となるように切り出したAu−Geロウ材(田中貴金属製、AuGe12%板)を1枚セットし、その上に実験例1〜5と同様の金属端子をセットした。そして、セットした金属端子に荷重をかけ、加熱炉にて窒素雰囲気で400℃まで昇温し、10分間キープした後、降温することにより、アルミナセラミックス部材と金属端子とが接合された接合体を得た。   Subsequently, one Au—Ge brazing material (Tanaka Kikinzoku, AuGe 12% plate) cut out so as to have substantially the same shape as the metallized layer is set on the metallized layer, and Experimental Examples 1 to 5 are formed thereon. The same metal terminal was set. Then, a load is applied to the set metal terminal, the temperature is raised to 400 ° C. in a nitrogen atmosphere in a heating furnace, the temperature is kept for 10 minutes, and the temperature is lowered to obtain a joined body in which the alumina ceramic member and the metal terminal are joined. Obtained.

得られた接合体の破断荷重を、実験例1〜5と同様にして測定した。結果を表2に示す。実験例6,7のようにメタライズ層の平面度が63μm,32μmの場合には、引張破断荷重は低い値しか得られなかったが、実験例8のように平面度が17μmの場合には、引張破断荷重は十分高い値が得られ、実験例9のように平面度が3μmの場合には、引張破断荷重は格段に高い値が得られた。   The breaking load of the obtained joined body was measured in the same manner as in Experimental Examples 1-5. The results are shown in Table 2. When the flatness of the metallized layer was 63 μm and 32 μm as in Experimental Examples 6 and 7, the tensile breaking load was only low, but when the flatness was 17 μm as in Experimental Example 8, A sufficiently high value was obtained for the tensile rupture load. When the flatness was 3 μm as in Experimental Example 9, an extremely high value was obtained for the tensile rupture load.

Figure 0005974152
Figure 0005974152

[実験例10〜12]
直径6mm、深さ0.3mmの窪みが設けられたアルミナセラミックス部材を用意した。このアルミナセラミックス部材の窪みの底面に、Ag−Cu−Tiペースト(福田金属製、ACT−2A)を筆あるいは綿棒を用いて薄く塗布した。塗布してからおおよそ30分放置した後、120℃の恒温槽に入れ、1時間乾燥した。乾燥後のセラミックス部材を加熱炉にて真空雰囲気で850℃まで昇温し、10分間キープした後、降温することにより、窪みにメタライズ層を形成した。このメタライズ層の平面度を実験例1〜5と同様にして算出した。実験例10〜12の平面度を表3に示す。
[Experimental Examples 10 to 12]
An alumina ceramic member provided with a recess having a diameter of 6 mm and a depth of 0.3 mm was prepared. An Ag-Cu-Ti paste (manufactured by Fukuda Metals, ACT-2A) was thinly applied to the bottom surface of the depression of this alumina ceramic member using a brush or a cotton swab. After coating, the mixture was allowed to stand for about 30 minutes, then placed in a constant temperature bath at 120 ° C. and dried for 1 hour. The dried ceramic member was heated to 850 ° C. in a vacuum atmosphere in a heating furnace, kept for 10 minutes, and then cooled to form a metallized layer in the recess. The flatness of this metallized layer was calculated in the same manner as in Experimental Examples 1-5. Table 3 shows the flatness of Experimental Examples 10 to 12.

続いて、メタライズ層を形成した窪みに、その窪みの底面と同形状となるように切り出したAu−Geロウ材(田中貴金属製、AuGe12%板)を1枚セットし、その上に実験例1〜5と同様の金属端子をセットした。そして、セットした金属端子に荷重をかけ、加熱炉にて窒素雰囲気で400℃まで昇温し、10分間キープした後、降温することにより、アルミナセラミックス部材と金属端子とが接合された接合体を得た。   Subsequently, an Au—Ge brazing material (Tanaka Kikinzoku, AuGe 12% plate) cut out so as to have the same shape as the bottom surface of the dent was set in the dent in which the metallized layer was formed. The metal terminal similar to ~ 5 was set. Then, a load is applied to the set metal terminal, the temperature is raised to 400 ° C. in a nitrogen atmosphere in a heating furnace, the temperature is kept for 10 minutes, and the temperature is lowered to obtain a joined body in which the alumina ceramic member and the metal terminal are joined. Obtained.

得られた接合体の破断荷重を、実験例1〜5と同様にして測定した。結果を表3に示す。実験例10〜12のようにメタライズ層の平面度が14〜15μmの場合には、引張破断荷重は十分高い値が得られた。   The breaking load of the obtained joined body was measured in the same manner as in Experimental Examples 1-5. The results are shown in Table 3. When the flatness of the metallized layer was 14 to 15 μm as in Experimental Examples 10 to 12, a sufficiently high value for the tensile breaking load was obtained.

Figure 0005974152
Figure 0005974152

以上の実験例1〜12の結果から、メタライズ層の平面度が22μm以下の場合には、引張破断荷重は35kgf以上という十分に高い値になることがわかった。また、実験例1〜9の結果から、メタライズ層に使用するシート又はペーストの元の厚みが薄いほど(具体的には20〜30μm)、メタライズ層の平面度が改善されることが確認された。なお、実験例3〜5,8〜12が本発明の実施例に相当し、実験例1,2,6,7が本発明の比較例に相当する。   From the results of the above Experimental Examples 1 to 12, it was found that when the flatness of the metallized layer is 22 μm or less, the tensile breaking load is a sufficiently high value of 35 kgf or more. Moreover, from the results of Experimental Examples 1 to 9, it was confirmed that the flatness of the metallized layer was improved as the original thickness of the sheet or paste used for the metallized layer was thinner (specifically, 20 to 30 μm). . Experimental examples 3 to 5, 8 to 12 correspond to examples of the present invention, and experimental examples 1, 2, 6, and 7 correspond to comparative examples of the present invention.

本発明は、例えば、静電チャックやセラミックスヒーターなどのようにセラミックス部材と金属部材との接合部位を有するものに利用可能である。   The present invention can be used for, for example, an apparatus having a bonding portion between a ceramic member and a metal member such as an electrostatic chuck or a ceramic heater.

10 接合体、12 セラミックス部材、14 金属部材、14a モリブデン芯材、1
4b ニッケル被膜、16 接合部、16a メタライズ層、16b ロウ接合層、32,34 シート
10 Bonded body, 12 Ceramic member, 14 Metal member, 14a Molybdenum core material, 1
4b Nickel coating, 16 joints, 16a metallized layer, 16b solder joint layer, 32, 34 sheets

Claims (9)

セラミックス部材と金属部材とを接合した接合体であって、
前記セラミックス部材上に形成され、活性金属を含有するメタライズ層と、
該メタライズ層と前記金属部材との間に形成され、融点が前記メタライズ層より低いロウ接合層と、
を有し、
前記活性金属はTiであり、
前記ロウ接合層はAuGeロウの接合層であり、
前記メタライズ層の平面度は22μm以下である、
接合体。
A joined body obtained by joining a ceramic member and a metal member,
A metallized layer formed on the ceramic member and containing an active metal;
A brazing layer formed between the metallized layer and the metal member and having a melting point lower than that of the metallized layer;
Have
The active metal is Ti;
The brazing layer is an AuGe brazing layer,
The flatness of the metallized layer is 22 μm or less.
Joined body.
前記メタライズ層の平面度は10μm以下である、  The flatness of the metallized layer is 10 μm or less.
請求項1に記載の接合体。  The joined body according to claim 1.
前記メタライズ層の平面度は5μm以下である、  The flatness of the metallized layer is 5 μm or less.
請求項1又は2に記載の接合体。  The joined body according to claim 1 or 2.
前記メタライズ層の外周部の厚みはゼロより大きい、  The thickness of the outer peripheral portion of the metallized layer is greater than zero,
請求項1〜3のいずれか1項に記載の接合体。  The joined body according to any one of claims 1 to 3.
セラミックス部材上に第1ロウ材を設置してこの第1ロウ材を溶融させることによってメタライズ層を生成させ、次いで前記メタライズ層と前記金属部材との間に第2ロウ材を介在させ、前記第1ロウ材の融点よりも低い温度で前記第2ロウ材を溶融させることによって、前記メタライズ層と前記金属部材との間に前記ロウ接合層を生成させる、セラミックス部材と金属部材とを接合した接合体の製法であって、
前記第1ロウ材はTiを含有し、
前記第2ロウ材はAuGeロウであり、
前記メタライズ層と前記金属部材との間に前記第2ロウ材を介在させる前の前記メタライズ層の平面度は22μm以下である、
接合体の製法。
A first brazing material is placed on the ceramic member, and the first brazing material is melted to form a metallized layer. Then, a second brazing material is interposed between the metallized layer and the metal member, and the first brazing material is disposed. Bonding between a ceramic member and a metal member, wherein the second brazing material is melted at a temperature lower than the melting point of the brazing material to form the brazing layer between the metallized layer and the metal member. The body manufacturing method,
The first brazing material contains Ti,
The second brazing material is AuGe brazing,
The flatness of the metallized layer before interposing the second brazing material between the metallized layer and the metal member is 22 μm or less.
Manufacturing method of the joined body.
前記メタライズ層の平面度は10μm以下である、  The flatness of the metallized layer is 10 μm or less.
請求項5に記載の接合体の製法。  The manufacturing method of the conjugate | zygote of Claim 5.
前記メタライズ層の平面度は5μm以下である、  The flatness of the metallized layer is 5 μm or less.
請求項5又は6に記載の接合体の製法。  The manufacturing method of the conjugate | zygote of Claim 5 or 6.
前記メタライズ層と前記金属部材との間に前記第2ロウ材を介在させる前の前記メタライズ層の外周部の厚みはゼロより大きい、  The thickness of the outer peripheral portion of the metallized layer before interposing the second brazing material between the metallized layer and the metal member is greater than zero.
請求項5〜7のいずれか1項に記載の接合体の製法。  The manufacturing method of the conjugate | zygote of any one of Claims 5-7.
前記セラミックス部材上に前記第1ロウ材を設置する際の該第1ロウ材の厚みは20〜30μmである、
請求項5〜8のいずれか1項に記載の接合体の製法。
The thickness of the first brazing material when installing the first brazing material on the ceramic member is 20 to 30 μm.
The manufacturing method of the conjugate | zygote of any one of Claims 5-8 .
JP2015198243A 2015-10-06 2015-10-06 Bonded body of ceramic member and metal member and manufacturing method thereof Active JP5974152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015198243A JP5974152B2 (en) 2015-10-06 2015-10-06 Bonded body of ceramic member and metal member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015198243A JP5974152B2 (en) 2015-10-06 2015-10-06 Bonded body of ceramic member and metal member and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012064194A Division JP6082524B2 (en) 2012-03-21 2012-03-21 Bonded body of ceramic member and metal member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016011254A JP2016011254A (en) 2016-01-21
JP5974152B2 true JP5974152B2 (en) 2016-08-23

Family

ID=55228204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015198243A Active JP5974152B2 (en) 2015-10-06 2015-10-06 Bonded body of ceramic member and metal member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5974152B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351662A (en) * 1986-08-21 1988-03-04 Toshiba Corp Aluminum nitride substrate and manufacture thereof
JPH02304958A (en) * 1989-05-19 1990-12-18 Hitachi Ltd Electronic circuit device
JP4021575B2 (en) * 1999-01-28 2007-12-12 日本碍子株式会社 Bonded body of ceramic member and metal member and manufacturing method thereof
JP3607552B2 (en) * 2000-02-14 2005-01-05 日本特殊陶業株式会社 Metal-ceramic bonded body and manufacturing method thereof
JP3989254B2 (en) * 2002-01-25 2007-10-10 日本碍子株式会社 Dissimilar material joined body and manufacturing method thereof

Also Published As

Publication number Publication date
JP2016011254A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP5968651B2 (en) Components for semiconductor manufacturing equipment
JP6082524B2 (en) Bonded body of ceramic member and metal member and manufacturing method thereof
EP3629370A1 (en) Circuit substrate and semiconductor device
JP2003212669A (en) Joined product of different kinds of materials and its manufacturing process
JP2001010874A (en) Production of composite material of inorganic material with metal containing aluminum and product related to the same
WO2015166789A1 (en) Assembly of ceramic member and metallic member, and method for producing same
JP4136648B2 (en) Dissimilar material joined body and manufacturing method thereof
JP3949459B2 (en) Joined body of different materials and manufacturing method thereof
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JP6084915B2 (en) Bonded body of ceramic member and metal member and manufacturing method thereof
JP6546953B2 (en) Sputtering target-backing plate assembly and method for manufacturing the same
JP5974152B2 (en) Bonded body of ceramic member and metal member and manufacturing method thereof
JPS59232692A (en) Brazing filler metal for joining ceramics and metal or the like and composite body composed of ceramics and metal or the like using said brazing filler metal
JP6685121B2 (en) Method for joining metal member and ceramic member
JP3681824B2 (en) Ceramic bonded body and ceramic bonding method
CN110734297A (en) Method for connecting ceramic and metal and joint structure
JP2020107671A (en) Insulation circuit board manufacturing method and insulation circuit board manufactured using the method
JPWO2020065700A1 (en) Metal joints and methods for manufacturing metal joints, semiconductor devices and waveguides
JP2003335585A (en) Process for joining ceramics through active metal soldering
JPH07172948A (en) Adhesion of metallic material to ceramic material
JP3292767B2 (en) Joining method of silicon carbide ceramics and silicon
JP2002035930A (en) Heater tip for thermocompression bonding
JP6344605B2 (en) Manufacturing method of semiconductor device
JPH08217559A (en) Production of ceramic member-aluminum member joined body
JPH01224279A (en) Bonding of ceramic to metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160715

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5974152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150