JP5973304B2 - Drill and drilling method - Google Patents

Drill and drilling method Download PDF

Info

Publication number
JP5973304B2
JP5973304B2 JP2012214943A JP2012214943A JP5973304B2 JP 5973304 B2 JP5973304 B2 JP 5973304B2 JP 2012214943 A JP2012214943 A JP 2012214943A JP 2012214943 A JP2012214943 A JP 2012214943A JP 5973304 B2 JP5973304 B2 JP 5973304B2
Authority
JP
Japan
Prior art keywords
drill
tip
hole
pilot
drilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012214943A
Other languages
Japanese (ja)
Other versions
JP2014069246A (en
Inventor
英樹 小栗
英樹 小栗
高田 明
明 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuritakoki Co Ltd
Original Assignee
Kuritakoki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuritakoki Co Ltd filed Critical Kuritakoki Co Ltd
Priority to JP2012214943A priority Critical patent/JP5973304B2/en
Publication of JP2014069246A publication Critical patent/JP2014069246A/en
Application granted granted Critical
Publication of JP5973304B2 publication Critical patent/JP5973304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)

Description

本発明は、厚い板材の深穴加工や合わせ板材の穴明け加工に適するドリルに関する。   The present invention relates to a drill suitable for deep hole processing of a thick plate material and drilling processing of a laminated plate material.

例えば、航空機製造の現場では、航空機用の高硬度アルミニウム合金からなる構造材や厚い合わせ板材に手作業によって多数の穴明け加工を施す。この場合、ドリルとしては、二枚刃の段付きダブルマージンドリルが使用されている。二枚刃のダブルマージンドリルは例えば特許文献1に示すような構造で、2カ所のマージンの存在により、穴の内周面の平滑性が高く、優れた穴加工精度が得られるという利点が知られている。また、先端に径小なドリルを突設した段付きタイプとするのは、特に航空機用材料においてワークに切削歪みが残留することは厳格に排除されねばならず、そのために1回の穴明け加工による切削代(段付きドリルにおける先端側径小部の外形寸法と、基端側径大部の外形寸法との差に相当する)を小さく抑えて徐々に穴径を拡大してゆく必要があるためである。   For example, at the site of aircraft manufacturing, a number of holes are drilled manually on a structural material or a thick laminated plate material made of a high-hardness aluminum alloy for aircraft. In this case, a double-edged double margin drill with two blades is used as the drill. The double-blade double margin drill has a structure as shown in Patent Document 1, for example, and has the advantage that the presence of two margins provides high smoothness of the inner peripheral surface of the hole and excellent hole machining accuracy. It has been. In addition, the stepped type with a small diameter drill projecting at the tip must strictly eliminate the remaining cutting strain on the workpiece, especially in aircraft materials. It is necessary to gradually increase the hole diameter while reducing the cutting allowance (corresponding to the difference between the outer dimension of the small diameter part on the tip side and the outer dimension of the large diameter part on the base side) in the step drill. Because.

しかしながら、段付き二枚刃ダブルマージンドリルは、本来的に二枚の切り刃のみで切削を行ってゆくから、切削抵抗が高く、1回の穴明け加工の切削代を大きくすることができない。このため、最終的に所望の穴径に達するまでに多くの加工ステップ数を必要とする。また、切削抵抗が大きいことは、切り刃の摩耗量が大きいことにもなるから、工具寿命が短く、ドリル1本当たりの加工穴数を多くすることができない。   However, since the stepped two-blade double margin drill inherently performs cutting with only two cutting blades, the cutting resistance is high and the cutting allowance for one drilling process cannot be increased. For this reason, many processing steps are required to finally reach a desired hole diameter. In addition, since a large cutting resistance also means a large amount of wear on the cutting blade, the tool life is short and the number of processed holes per drill cannot be increased.

さらには、二枚刃ドリルは、切り屑を排出するためのねじれ溝は2本であり、所定体積の切り屑を排出するためにねじれ溝は比較的深くしなくてはならず、実質的な軸径が細くなる。このことは、ドリルの剛性が低くなることを意味し、深穴加工時にドリルが撓んで、穴が途中で僅かに曲がってしまう可能性が高くなる。しかも、二枚刃ドリルは、アルミニウム合金を加工する場合には、切り屑が長く連なってねじれ溝内で詰まり、穴の内周面やワークの表面に傷を付けたり、ワークに比較的大きなバリを発生させるという問題があり、穴加工精度を低下させるという問題もあった。   Furthermore, the double-edged drill has two twisted grooves for discharging chips, and the twisted grooves must be relatively deep to discharge chips of a predetermined volume. The shaft diameter becomes thinner. This means that the rigidity of the drill is lowered, and the drill is bent at the time of deep hole machining, and the possibility that the hole is slightly bent in the middle is increased. In addition, when machining an aluminum alloy, the double-edged drill has a long continuous chip and clogs in the torsion groove, scratches the inner peripheral surface of the hole and the surface of the workpiece, and relatively large burrs on the workpiece. There is also a problem that the hole machining accuracy is lowered.

これらの問題を解決するには、三枚刃ドリルとすることも考えられるが、そもそも高硬度のアルミニウム合金のワークに対して三枚刃ドリルを使用することは、当業者における工具選択の常識に反する。なぜなら、三枚刃ドリルは、切り刃を設けられない先端のチゼルが二枚刃ドリルに比べて大きくなるため、ワークに対する食い付きが悪く、高硬度のアルミニウム合金では孔加工の位置精度が低下したり、ドリルが傾いて進入したりすることが懸念される。また、アルミニウム合金は鉄鋼に比べて熱膨張率が大きいため、切り屑の円滑な排出が必須であるところ、三枚刃ドリルはで切り屑排出用のねじれ溝の深さが十分にとれず、切り屑の排出性が劣ることが知られているからである。   In order to solve these problems, it is conceivable to use a three-blade drill. However, using a three-blade drill for a workpiece of aluminum alloy with high hardness is a common sense for those skilled in the art in selecting a tool. Contrary. This is because a three-edged drill has a larger chisel at the tip where no cutting blade is provided, compared to a two-edged drill, so it does not bite against the workpiece, and a high-hardness aluminum alloy reduces the positional accuracy of drilling. There is a concern that the drill may tilt and enter. In addition, since aluminum alloys have a larger coefficient of thermal expansion than steel, smooth chip evacuation is essential.Three-blade drills do not have sufficient depth of twisted grooves for chip evacuation. This is because it is known that chip discharge is poor.

特開2006−205272公報JP 2006-205272 A

本発明は上記のような事情に基づいて完成されたものであって、重ね板や厚い材料の穴明け加工に適用できながら、所要の穴径に達するまでの加工ステップ数を少なくでき、また工具寿命が長く、加工精度にも優れるドリルを提供することを目的とする。   The present invention has been completed based on the above-described circumstances, and can be applied to drilling of a laminated plate or a thick material while reducing the number of processing steps until a required hole diameter is reached. An object is to provide a drill having a long life and excellent machining accuracy.

本発明のドリルは、ボディーの先端に前記ボディよりも径小で同心に突設されたパイロット軸部を有する。そのパイロット軸部は軸主体部と、その軸主体部の先端に位置する先端平坦面と、軸主体部の外周面及び先端平坦面との間に位置する所定の先端角の先端テーパー面とを備える。一方、前記ボディには、外周面に奇数本のねじれ溝と、外周面から前記パイロット軸部に至る領域に所定の先端角で形成されたボディ先端面に前記ねじれ溝に隣接する奇数枚の切り刃とが設けられている。そして、前記パイロット軸部には、軸主体部の外周面から先端テーパー面にかけてねじれ溝に連なった補助ねじれ溝と、先端テーパー面に補助ねじれ溝に隣接する補助切り刃とが形成されている。   The drill according to the present invention has a pilot shaft portion that is concentrically provided with a diameter smaller than that of the body at the tip of the body. The pilot shaft portion includes a shaft main portion, a tip flat surface located at the tip of the shaft main portion, and a tip tapered surface having a predetermined tip angle located between the outer peripheral surface and the tip flat surface of the shaft main portion. Prepare. On the other hand, the body has an odd number of twisted grooves on the outer peripheral surface and an odd number of adjacent grooves adjacent to the twisted groove on the front end surface of the body formed at a predetermined tip angle in the region extending from the outer peripheral surface to the pilot shaft portion. A blade is provided. The pilot shaft portion is formed with an auxiliary torsion groove connected to the torsion groove from the outer peripheral surface of the shaft main portion to the tip tapered surface, and an auxiliary cutting blade adjacent to the auxiliary torsion groove on the tip taper surface.

本発明のドリルによれば、3或いは5枚等の奇数枚の切り刃と、それに対応した奇数本のねじれ溝を有するドリルとなり、そのドリルの先端にパイロット軸部が設けられ、かつ、そのパイロット軸部の先端テーパー面に補助切り刃が設けられていることになる。奇数枚数の切り刃のドリルでは、例えば3枚刃ではマージンの位置が120°の角度間隔で配置されることになり、二枚刃等の偶数刃ドリルに比べて振れが少なく、より真円に近く高精度な穴明け加工を行うことができる。また、切り屑の排出路となるねじれ溝の本数も多くなるから、そのねじれ溝の深さを浅くでき、結局、ドリルの軸剛性が高くなり、撓みが減少してドリルの直進性が向上し、ひいては深穴でも直線性が良い穴明け加工が可能である。また、ワークが高硬度アルミニウム合金であっても、従来の二枚刃ダブルマージンドリルのように切り屑が一連に連なることがなく、粉々に分断されて排出されるから、切り屑による穴内周面の傷付きが少なく、その面からも穴明け精度の向上が可能になる。   According to the drill of the present invention, the drill has an odd number of cutting blades such as three or five and an odd number of twisted grooves corresponding thereto, a pilot shaft portion is provided at the tip of the drill, and the pilot The auxiliary cutting edge is provided on the tip tapered surface of the shaft portion. With a drill with an odd number of cutting blades, for example, with three blades, the margin positions are arranged at an angular interval of 120 °, and there is less fluctuation compared to an even blade drill with two blades, etc. A high-precision drilling process can be performed nearby. Also, since the number of torsion grooves that serve as chip discharge paths increases, the depth of the torsion grooves can be reduced, eventually increasing the axial rigidity of the drill, reducing the deflection and improving the straightness of the drill. As a result, drilling with good linearity is possible even in deep holes. Also, even if the workpiece is a high-hardness aluminum alloy, the chips are not separated into a series like conventional double-edged double margin drills, but are divided into pieces and discharged. It is possible to improve the drilling accuracy from the surface.

さらには、従来の二枚刃ダブルマージンドリルに比べて切り刃が多い分、効率的に切削を行うことができるから、下穴からの穴径の拡大代をより大きくすることができ、それにより所要の穴径に達するまでの加工ステップ数を少なくでき、その上に、切り刃の1回当たりの摩耗量が少なくなるから、ドリル1本当たりの穴加工数を格段に増加させることができる。   Furthermore, since there are more cutting blades compared to the conventional two-blade double margin drill, cutting can be performed efficiently, so that the expansion diameter of the hole diameter from the pilot hole can be increased, thereby Since the number of machining steps required to reach a required hole diameter can be reduced, and the amount of wear per cutting blade is reduced, the number of holes drilled per drill can be remarkably increased.

上記のように本発明のドリルは、二枚刃ダブルマージンドリルに比べて優れた切削性能を発揮する一方で、三枚刃以上の多数刃ドリルでは、高硬度ワークへの食い付きが悪くなって穴明け加工の位置精度が低下することが懸念される。しかし、本発明のドリルは、先端部がパイロット軸部の平坦面部となっているから、段付きドリルとは全く相違して自ら第1回目の穴明けを行うことができず、下穴を必要とする。このことは、かえって下穴形成用のドリルには、食い付きが良い二枚刃ドリルを使用することになり、高い位置精度で下穴を形成できることになる。そして、本発明のドリルでは先端にパイロット軸部を有するから、あらかじめ高精度で形成した下穴にパイロット軸部を挿入してドリル作業を行うことになるため、結局、最終的に形成される穴の位置精度は高く維持することができる。   As described above, the drill of the present invention exhibits superior cutting performance as compared to a double-edged double margin drill, while a multi-edged drill of three or more blades has a poor bite on a high-hardness workpiece. There is a concern that the position accuracy of the drilling process is lowered. However, since the tip of the drill of the present invention is a flat surface portion of the pilot shaft portion, it is completely different from a step drill and cannot perform the first drilling by itself, and a pilot hole is necessary. And This means that a double-edged drill with good biting is used for the pilot hole forming drill, and the pilot hole can be formed with high positional accuracy. Since the drill of the present invention has the pilot shaft portion at the tip, the pilot shaft portion is inserted into the pilot hole formed in advance with high precision, so that the drilling work is performed. The position accuracy can be kept high.

この発明において、パイロット軸部における先端角は、ボディにおける先端角と同程度に設定されることが好ましい。そのようにすると、ドリルの製造が容易になるからである。なお、パイロット軸部における先端テーパー面の先端角は60°以上であることが最も好ましい。   In the present invention, it is preferable that the tip angle in the pilot shaft is set to be approximately the same as the tip angle in the body. This is because the drill can be easily manufactured. The tip angle of the tip tapered surface in the pilot shaft is most preferably 60 ° or more.

一方、複数枚の単位板を重ね合わせてなる重ね板に穴明け加工を行う場合、上記の本発明のドリルを使って次のように作業を行うことができる。まず、ワークである重ね板に所定の径寸法の下穴を形成する(下穴形成工程)。この場合には、本発明のドリルではなく、下穴を高い位置精度で形成できるドリルを使うことが好ましい。この下穴形成工程では、各単位板のドリル貫通先側の面にバリが発生することがあるため、重ね板を分離して単位板のバリを除去するバリ取り工程を行う。そして、バリ取り後の単位板を再組立して形成した下穴が繋がった重ね板を構成し(再重ね工程)、再組立した重ね板の下穴に本発明のドリルのパイロット軸部を挿入してボディーに形成されている切り刃によって穴を空け進める(穴拡張工程)。このとき、再重ね工程における組立誤差によって各単位板の位置がずれた場合には、下穴の内周面が段付き状にずれていることがあり得るが、本発明のドリルのパイロット軸部には外周部に補助切り刃が形成されており、その補助切り刃に隣接する補助ねじれ溝がボディのねじれ溝に連なっているから、補助切り刃によって下穴の段付き状の内周面が切削され、パイロット軸部の下穴貫通、ひいてはボディの切り刃による穴明け作業には影響がなく、途中で進行が止まることなく穴明け作業を完了させることができる。   On the other hand, when drilling a stacked plate formed by stacking a plurality of unit plates, the following operations can be performed using the drill of the present invention. First, a pilot hole having a predetermined diameter is formed in a stacked plate that is a workpiece (preparation process). In this case, it is preferable to use a drill that can form a pilot hole with high positional accuracy, instead of the drill of the present invention. In this pilot hole forming step, burrs may occur on the surface of each unit plate on the drill penetration destination side. Therefore, a deburring step for separating the stacked plates and removing the burrs on the unit plates is performed. Then, a stacked plate is formed in which the prepared holes formed by reassembling the unit plates after deburring are connected (restacking process), and the pilot shaft portion of the drill of the present invention is inserted into the prepared holes of the reassembled stacked plates Then, the hole is drilled by the cutting blade formed in the body (hole expanding process). At this time, if the position of each unit plate is shifted due to an assembly error in the re-stacking process, the inner peripheral surface of the pilot hole may be shifted in a stepped shape, but the pilot shaft portion of the drill of the present invention Since the auxiliary cutting edge is formed on the outer peripheral portion and the auxiliary torsion groove adjacent to the auxiliary cutting edge is connected to the torsion groove of the body, the stepped inner peripheral surface of the pilot hole is formed by the auxiliary cutting edge. There is no effect on the drilling operation by the pilot shaft through the pilot hole and by the body cutting blade, and the drilling operation can be completed without stopping in the middle.

なお、本発明のドリルによって穴拡張工程を行った後に、バリ取り工程及び再重ね工程を繰り返し、その穴を下穴としてより太い本発明のドリルを利用して穴拡張工程を繰り返すことで、ステップ的に穴を広げて必要な寸法の穴を空けることができる。   In addition, after performing the hole expansion process with the drill of the present invention, the deburring process and the re-stacking process are repeated, and the hole expansion process is repeated using the thicker drill of the present invention with the hole as a pilot hole. It is possible to open a hole with a necessary size by expanding the hole.

以上述べたように、本発明によれば、重ね板や厚い材料の穴明け加工に適用できながら、所要の穴径に達するまでの加工ステップ数を少なくでき、また工具寿命が長く、加工精度にも優れるドリル及び重ね板の穴明け方法を提供することができる。   As described above, according to the present invention, it is possible to reduce the number of processing steps required to reach a required hole diameter while being applicable to drilling of a laminated plate or a thick material, and the tool life is long and the processing accuracy is improved. It is also possible to provide a drill and a method for drilling a laminated plate that are excellent.

本発明の一実施形態のドリルを示す側面図The side view which shows the drill of one Embodiment of this invention ドリルの先端部を拡大して示す拡大側面図Enlarged side view of the drill tip ドリルの先端部を拡大して示す正面図Front view showing enlarged tip of drill ドリルの先端部を拡大して示す拡大側面図Enlarged side view of the drill tip 本発明に係る重ね板の穴明け方法の下穴形成工程を示す断面図Sectional drawing which shows the pilot hole formation process of the punching method of the laminated board which concerns on this invention 下穴形成工程の完了後の状態を示す断面図Sectional drawing which shows the state after completion of a pilot hole formation process バリ取り工程を示す断面図Sectional view showing the deburring process 穴拡張工程を示す断面図Sectional view showing the hole expansion process 穴拡張工程の完了後の状態を示す断面図Sectional drawing which shows the state after completion of a hole expansion process 2回目の穴拡張工程を示す断面図Sectional view showing the second hole expansion process 穴拡張工程における単位板のズレ発生状況を示す断面図Sectional view showing the status of unit plate misalignment in the hole expansion process

本発明の実施形態を図1ないし図11によって説明する。     An embodiment of the present invention will be described with reference to FIGS.

本実施形態のドリル1は、所定の直径を有するボディ10の先端に、そのボディ10よりも径小のパイロット軸部20を同心に突設した形状で、鋼製又は超硬合金製の丸棒を切削して製造してある。   The drill 1 of this embodiment is a round bar made of steel or cemented carbide with a shape in which a pilot shaft portion 20 smaller in diameter than the body 10 is concentrically provided at the tip of a body 10 having a predetermined diameter. It is manufactured by cutting.

ボディ10には、外周面に奇数、例えば3本のねじれ溝11が所定のリード、ねじれ角及び溝長で形成されている。ボディ10の外周面からパイロット軸部20の軸主体部21の基端部に連なるボディ先端面12は、軸主体部21の基端部の周りを環状に取り巻くように位置しているが、前記ねじれ溝11によって3分割された状態となっている。そのボディ先端面12は、所定の先端角α(図4参照)を有する先細のテーパ状をなしており、この実施形態の場合、先端角αは例えば118°に設定してあるが、ドリルの強度及び切削効率から適切な値を選定すればよい。ボディ先端面12には、各ねじれ溝11に隣接して合計3枚の切り刃13が形成してあり、それにボディ10の外周面側に連続してボディ10の最外周面に相当してその直径を決めているマージン14がねじれ溝11に沿って形成されている。   The body 10 has an odd number, for example, three twisted grooves 11 formed on the outer peripheral surface with predetermined leads, twist angles and groove lengths. The body distal end surface 12 connected to the base end portion of the shaft main body portion 21 of the pilot shaft portion 20 from the outer peripheral surface of the body 10 is positioned so as to surround the base end portion of the shaft main body portion 21 in an annular shape. It is in a state of being divided into three by the twisted groove 11. The body front end surface 12 has a tapered shape having a predetermined front end angle α (see FIG. 4). In this embodiment, the front end angle α is set to 118 °, for example. An appropriate value may be selected from the strength and cutting efficiency. A total of three cutting blades 13 are formed on the body front end surface 12 adjacent to each twist groove 11 and correspond to the outermost peripheral surface of the body 10 continuously to the outer peripheral surface side of the body 10. A margin 14 for determining the diameter is formed along the twisted groove 11.

パイロット軸部20は、直円柱状をなして基端がボディ10の先端に一体に連なる軸主体部21と、その軸主体部21の先端に位置する先端平坦面22と、軸主体部21の外周面及び前記先端平坦面22の間に位置する先端テーパー面23を備える。先端テーパ面23の先端角β(図4参照)は、この実施形態では一例として90°に設定してあるが、切削性を考慮すると、60°以上の範囲とすることが好ましい。また、前記ボディ10におけるボディ先端面12の先端角αと同程度としておくことが、ドリルの製造上好ましい。   The pilot shaft portion 20 has a right columnar shape and a base body portion 21 whose base end is integrally connected to the front end of the body 10, a distal end flat surface 22 positioned at the distal end of the shaft body portion 21, and the shaft body portion 21. A tip tapered surface 23 is provided between the outer peripheral surface and the tip flat surface 22. The tip angle β (see FIG. 4) of the tip tapered surface 23 is set to 90 ° as an example in this embodiment, but it is preferable to set the tip angle β to a range of 60 ° or more in consideration of machinability. Moreover, it is preferable on manufacture of a drill to make it the same grade as the front-end | tip angle (alpha) of the body front end surface 12 in the said body 10. FIG.

上記の先端テーパー面23は先端平坦面22の外周を環状に取り巻くように位置しているが、後述する3本の補助ねじれ溝24によって3カ所に分断された状態にある。   The tip tapered surface 23 is positioned so as to surround the outer periphery of the tip flat surface 22 in an annular shape, but is divided into three portions by three auxiliary twist grooves 24 described later.

そして、前記パイロット軸部20には、軸主体部21の外周面に、ボディ10のねじれ溝11に同じねじれ角で連続して補助ねじれ溝24が形成されており、前記先端テーパ面23に補助ねじれ溝24に隣接する補助切り刃26が形成されている。補助ねじれ溝24は、各ねじれ溝11に連続しているから、3本形成されており、従って補助切り刃26も、切り刃13と同数の3枚が形成されている。なお、この補助切り刃26の切り代は、例えば0.3mmとなるように設定されている。補助切り刃26の切り代は自由に設定することができるが、大きく設定するとパイロット軸部20の軸方向の有効寸法が短くなってパイロット軸部20によるガイド性が低下するという問題を生ずる。   The pilot shaft portion 20 has an auxiliary twist groove 24 formed on the outer peripheral surface of the shaft main body portion 21 continuously at the same twist angle as the twist groove 11 of the body 10. An auxiliary cutting edge 26 adjacent to the twist groove 24 is formed. Since the auxiliary torsion grooves 24 are continuous with the torsion grooves 11, three auxiliary torsion grooves 24 are formed. Accordingly, the auxiliary cutting blades 26 are formed in the same number as the cutting blades 13. The cutting margin of the auxiliary cutting blade 26 is set to be 0.3 mm, for example. The cutting allowance of the auxiliary cutting edge 26 can be set freely. However, if the auxiliary cutting edge 26 is set large, the effective dimension in the axial direction of the pilot shaft portion 20 is shortened and the guide performance by the pilot shaft portion 20 is deteriorated.

さて、上記のドリル1を使用した、例えば航空機用の高強度アルミニウム合金製の重ね板30の穴明け方法について説明する。図5に示した重ね板30は、2枚の単位板31をボルト(図示せず)によって密着状態に積層した材料である。まず、この重ね板30に下穴形成用のドリル32によって、図6のように所定寸法の下穴33を形成する(下穴形成工程)。この下穴形成用のドリル32は、食い付きが良くて位置精度を出しやすい二枚刃のドリルを用いることが好ましい。   Now, a method for drilling the laminated plate 30 made of, for example, a high-strength aluminum alloy for aircraft using the drill 1 will be described. The stacked plate 30 shown in FIG. 5 is a material in which two unit plates 31 are stacked in close contact with bolts (not shown). First, a pilot hole 33 having a predetermined size is formed on the overlap plate 30 with a pilot hole forming drill 32 as shown in FIG. 6 (preparation hole forming step). As the pilot hole forming drill 32, it is preferable to use a double-edged drill that has good biting and easily obtains positional accuracy.

次に、上記ボルトを外し、図7に示すように重ね板30を分離し、各単位板31に生じたバリ34をカウンターカッター等の適切な工具によって除去する(バリ取り工程)。そして、バリの除去後、各単位板31を再び下穴33が連続するように位置合わせして重ね合わせてボルトで固定し(再重ね工程)、上記の本実施形態のドリル1を使用して穴拡張工程を実行する。すなわち、図8に示すようにドリル1において、パイロット軸部20の外径寸法は下穴33の内径とほぼ同一のものを使用し、そのパイロット軸部20を下穴33に嵌め込んで穴明け作業を行う。ドリル1を回転させて押し込めば、ボディ10の先端に設けられている切り刃13によって下穴33の内周面が切削され、ボディ10の外径寸法まで穴径が拡がる。   Next, the bolts are removed, the stacked plates 30 are separated as shown in FIG. 7, and the burrs 34 generated on the unit plates 31 are removed with an appropriate tool such as a counter cutter (deburring step). Then, after removing the burrs, the unit plates 31 are again aligned so that the pilot holes 33 are continuous, overlapped and fixed with bolts (re-stacking step), and the drill 1 of the present embodiment is used. Perform the hole expansion process. That is, in the drill 1, as shown in FIG. 8, the outer diameter of the pilot shaft portion 20 is substantially the same as the inner diameter of the pilot hole 33, and the pilot shaft portion 20 is fitted into the pilot hole 33 for drilling. Do work. When the drill 1 is rotated and pushed in, the inner peripheral surface of the prepared hole 33 is cut by the cutting blade 13 provided at the tip of the body 10, and the hole diameter is expanded to the outer diameter of the body 10.

このとき、ドリル1はパイロット軸部20により切り込み位置が確実に決められており、かつ、パイロット軸部20と下穴33との嵌合によって進行方向が直線的にガイドされるから、図9に示すように正確な位置に真っ直ぐな穴35を明けることができる。また、本実施形態のドリル1は、3枚の切り刃13を有するいわゆる三枚刃ドリルであるから、マージン14の位置が120°の角度間隔で配置されてドリル1がいわゆる三点支持された状態になり、二枚刃ドリルに比べて振れが少なくなる。従来の二枚刃ダブルマージンドリルでは、二点支持構造のためにドリルが縦に振れ、穴が長円形になりやすいという傾向があったところ、本実施形態では、より真円に近い高精度な穴明け加工を行うことができた。   At this time, the cutting position of the drill 1 is surely determined by the pilot shaft portion 20, and the traveling direction is linearly guided by the fitting of the pilot shaft portion 20 and the pilot hole 33. As shown, a straight hole 35 can be drilled in the correct position. Further, since the drill 1 of the present embodiment is a so-called three-blade drill having three cutting blades 13, the positions of the margins 14 are arranged at an angular interval of 120 °, and the drill 1 is supported at three points. It will be in a state and will have less run-out than a double-edged drill. In the conventional double-edged double margin drill, there was a tendency for the drill to swing vertically due to the two-point support structure, and the hole tends to become an oval. Drilling could be done.

また、切り屑の排出路となるねじれ溝11が3本と多くなるから、そのねじれ溝11の深さを浅くでき、結局、ドリル1の軸剛性が高くなり、撓みが減少してドリルの直進性が向上し、ひいては深穴でも直線性が良い穴明け加工が可能である。また、高硬度アルミニウム合金に穴明けを行う場合でも、従来の二枚刃ダブルマージンドリルのように切り屑が一連に連なることがなく、粉々に分断されて排出されるから、切り屑による穴35の内周面の傷付きが少なく、その面からも精度の高い穴明け作業が可能である。   Further, since there are as many as three torsion grooves 11 serving as chip discharge paths, the depth of the torsion grooves 11 can be made shallower. As a result, the axial rigidity of the drill 1 is increased, the bending is reduced, and the drill advances straight. As a result, drilling with good linearity is possible even in deep holes. Further, even when drilling a high-hardness aluminum alloy, chips do not continue in a series as in the conventional two-blade double margin drill, but are divided into pieces and discharged. There is little damage to the inner peripheral surface of the metal, and high-precision drilling can be performed from that surface.

上記のようにドリル1により穴35を明けた後、更にその穴径を広げるには、上記のバリ取り工程、再重ね工程及び更に大径のドリル1を使用した穴拡張工程とを段階的に繰り返せば、所望の穴径まで広げることができる。この場合、本実施形態のドリル1では、従来の二枚刃ダブルマージンドリルに比べて多い3枚の切り刃13を有するから、その分、1回の穴明け作業での切削を効率的に行うことができる。この結果、各ステップでの穴径の拡大代をより大きくすることができるから、結局、所要の穴径に達するまでの加工ステップ数を従来よりも少なくでき、作業効率が高い。また、本実施形態のドリル1では、切り刃13の枚数が従来ドリルの1,5倍に相当することから、1ステップ当たりのドリル1の摩耗量は少なくなり、ドリル1本当たりの穴加工数を格段に増加させることができた。   In order to further widen the hole diameter after drilling the hole 35 with the drill 1 as described above, the deburring process, the re-stacking process, and the hole expanding process using the larger-diameter drill 1 are performed step by step. If it repeats, it can be expanded to a desired hole diameter. In this case, the drill 1 of the present embodiment has three cutting blades 13 that are more than the conventional two-blade double margin drill, so that the cutting in one drilling operation is performed efficiently. be able to. As a result, the hole diameter expansion allowance at each step can be further increased, and as a result, the number of processing steps required to reach the required hole diameter can be reduced as compared with the prior art, and the work efficiency is high. Moreover, in the drill 1 of this embodiment, since the number of the cutting blades 13 corresponds to 1.5 times that of the conventional drill, the wear amount of the drill 1 per step is reduced, and the number of holes processed per drill is reduced. Can be increased significantly.

さて、再重ね工程では、各単位板31の重ね位置にずれが発生し、図11に示すように下穴33の内周面が段付き状にずれてしまうことがある。本実施形態で説明する重ね板30では、組付けの誤差(公差)は例えば0.2mmが予定されており、このようなズレが発生した場合、パイロット軸部20に補助切り刃26を設けていないと、パイロット軸部20の先端が下穴33の段差部36に突き当たり、それ以上のドリル1の進行が妨げられることがある。   Now, in the re-stacking process, a shift occurs in the stacking position of each unit plate 31, and the inner peripheral surface of the pilot hole 33 may shift in a stepped manner as shown in FIG. In the laminated plate 30 described in the present embodiment, an assembly error (tolerance) of, for example, 0.2 mm is planned, and when such a deviation occurs, an auxiliary cutting edge 26 is provided on the pilot shaft portion 20. Otherwise, the tip of the pilot shaft 20 may abut against the stepped portion 36 of the pilot hole 33, and further progress of the drill 1 may be hindered.

これに対して、本実施形態では、パイロット軸部20の先端平坦面22の外周部に先端テーパ面23を設け、ここに補助切り刃26を形成しているから、単位板31相互のズレに起因する段差部36が発生していたとしても、その段差部36は補助切り刃26によって削り取られ、そのまま真っ直ぐに穴明けを継続することができる。従って、複数枚の単位板31を積層して構成した重ね板30に対して、下穴形成工程と、バリ取り工程と、再重ね工程と、穴拡張工程とを順に実行することとして単位板31のズレが不可避である穴明け作業であっても、支障なく穴明け作業を完遂することができる。   On the other hand, in this embodiment, the tip tapered surface 23 is provided on the outer peripheral portion of the tip flat surface 22 of the pilot shaft portion 20 and the auxiliary cutting edge 26 is formed here. Even if the resulting stepped portion 36 is generated, the stepped portion 36 is scraped off by the auxiliary cutting edge 26 and can continue to be drilled straight as it is. Accordingly, the unit plate 31 is formed by sequentially performing the pilot hole forming step, the deburring step, the re-stacking step, and the hole expanding step on the stacked plate 30 configured by stacking a plurality of unit plates 31. Even in the drilling work where the deviation is inevitable, the drilling work can be completed without hindrance.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.

(1)上記実施形態に例示したボディ10における先端角α及びパイロット軸部20における先端角βは一例であり、本発明はこれらに限定されるものではない。   (1) The tip angle α in the body 10 and the tip angle β in the pilot shaft 20 illustrated in the above embodiment are examples, and the present invention is not limited to these.

(2)上記実施形態では3枚刃のドリル1を例示したが、5枚刃としてもよい。奇数の刃数とすると、マージンが全周に対して奇数で均等配置され、振れ止めに効果的だからである。   (2) Although the three-blade drill 1 is illustrated in the above embodiment, a five-blade may be used. This is because if the number of teeth is an odd number, the margin is evenly arranged with an odd number with respect to the entire circumference, which is effective for steadying.

(3)上記実施形態では重ね板の穴明け作業を例示したが、本発明のドリルではワークが重ね板に限定されるものではない。例えば、5D程度或いはそれ以上の深穴加工を行う場合でも、穴の直線性は重要であり、軸剛性が高くて撓みの少ない本発明のドリルはそれに最適だからである。   (3) In the above embodiment, the punching operation of the stacked plate is exemplified, but the workpiece is not limited to the stacked plate in the drill of the present invention. For example, even when deep hole machining of about 5D or more is performed, the linearity of the hole is important, and the drill of the present invention having high axial rigidity and less deflection is optimal for it.

10…ボディ
11…ねじれ溝
12…ボディ先端面
13…切り刃
14…マージン
20…パイロット軸部
21…軸主体部
22…先端平坦面
23…先端テーパー面
24…補助ねじれ溝
26…補助切り刃
30…重ね板
31…単位板
DESCRIPTION OF SYMBOLS 10 ... Body 11 ... Twist groove | channel 12 ... Body tip surface 13 ... Cutting blade 14 ... Margin 20 ... Pilot shaft part 21 ... Shaft main part 22 ... Tip flat surface 23 ... Tip taper surface 24 ... Auxiliary twist groove 26 ... Auxiliary cutting blade 30 ... Laminated plate 31 ... Unit plate

Claims (3)

ボディーの先端に前記ボディよりも径小で同心に突設されたパイロット軸部を有し、
前記パイロット軸部は軸主体部とその軸主体部の先端に位置する先端平坦面と前記軸主体部の外周面及び前記先端平坦面との間に位置する所定の先端角の先端テーパー面とを備えており、
前記ボディには、外周面に奇数本のねじれ溝と、前記外周面から前記パイロット軸部に至る領域に所定の先端角で形成されたボディ先端面に前記ねじれ溝に隣接する奇数枚の切り刃が設けられ、
前記パイロット軸部には、前記軸主体部の外周面から前記先端テーパー面にかけて前記ねじれ溝に連なった補助ねじれ溝と、前記先端テーパー面に前記補助ねじれ溝に隣接する補助切り刃とが形成されているドリル。
Having a pilot shaft that is concentrically projected at a tip of the body smaller in diameter than the body,
The pilot shaft portion includes a shaft main portion, a tip flat surface located at the tip of the shaft main portion, and a tip tapered surface having a predetermined tip angle located between the outer peripheral surface of the shaft main portion and the tip flat surface. Has
The body has an odd number of twisted grooves on the outer peripheral surface, and an odd number of cutting blades adjacent to the twisted groove on the front end surface of the body formed at a predetermined tip angle in a region extending from the outer peripheral surface to the pilot shaft portion. Is provided,
The pilot shaft portion is formed with an auxiliary torsion groove connected to the torsion groove from the outer peripheral surface of the shaft main portion to the tip tapered surface, and an auxiliary cutting blade adjacent to the auxiliary torsion groove on the tip tapered surface. Drill.
前記パイロット軸部における前記先端角は、60°以上に設定されていることを特徴とする請求項1記載のドリル。 The drill according to claim 1, wherein the tip angle of the pilot shaft is set to 60 ° or more. 複数枚の単位板を重ねた重ね板にドリルによって穴を空ける方法であって、

前記重ね板に所定の径寸法の下穴を形成する下穴形成工程と、
前記下穴形成後の前記重ね板を分離して前記単位板のバリを除去するバリ取り工程と、
前記単位板を再組立して前記重ね板を構成する再重ね工程と、
前記再組立した前記重ね板の前記下穴に請求項1のドリルを使用して穴を空ける穴拡張工程と、
とを順に実行する重ね板の穴明け方法。
A method of drilling a hole in a stacked plate in which a plurality of unit plates are stacked,

A pilot hole forming step of forming a pilot hole of a predetermined diameter in the stacked plate;
A deburring step for separating the stacked plate after the formation of the pilot hole and removing the burr of the unit plate;
A re-stacking step of reassembling the unit plate to constitute the stacked plate;
A hole expanding step of drilling a hole using the drill of claim 1 in the pilot hole of the reassembled stack;
A method for drilling a laminated board that sequentially executes and.
JP2012214943A 2012-09-27 2012-09-27 Drill and drilling method Active JP5973304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012214943A JP5973304B2 (en) 2012-09-27 2012-09-27 Drill and drilling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012214943A JP5973304B2 (en) 2012-09-27 2012-09-27 Drill and drilling method

Publications (2)

Publication Number Publication Date
JP2014069246A JP2014069246A (en) 2014-04-21
JP5973304B2 true JP5973304B2 (en) 2016-08-23

Family

ID=50744954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012214943A Active JP5973304B2 (en) 2012-09-27 2012-09-27 Drill and drilling method

Country Status (1)

Country Link
JP (1) JP5973304B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3536432B1 (en) 2018-01-22 2021-08-25 OSG Corporation Step drill and manufacturing method for a step drill
CN114072249B (en) 2019-07-09 2024-04-19 京瓷株式会社 Rotary tool and method for manufacturing cut product
US11260459B2 (en) 2020-04-30 2022-03-01 The Boeing Company Tools and methods for forming aligned holes from near full-sized holes

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1643679A (en) * 1926-04-06 1927-09-27 W L Brubaker & Bros Company Flue-sheet tool
JPS52156495A (en) * 1976-06-21 1977-12-26 Tatsuma Shiiha Lazy drill
JPS59124012U (en) * 1983-02-08 1984-08-21 株式会社神戸製鋼所 Spot facing cutter with pilot
JPH035371Y2 (en) * 1986-09-03 1991-02-12
JPH0428910U (en) * 1990-06-26 1992-03-09
JPH0617814U (en) * 1992-08-06 1994-03-08 孝喜 堂田 Step drill for hexagon socket head cap bolt
US6511267B2 (en) * 2001-05-09 2003-01-28 Daryl L. Slaughter Tool for removing broken fittings
TW200800447A (en) * 2006-06-12 2008-01-01 Samsung Electro Mech Drill bit for PCB
JP5823840B2 (en) * 2011-11-30 2015-11-25 富士重工業株式会社 Drill and cutting method

Also Published As

Publication number Publication date
JP2014069246A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
JP6442421B2 (en) Drill and drilling method
US10682712B2 (en) Cutting tool with enhanced chip evacuation capability and method of making same
JP6589506B2 (en) Drill and drill head
JP5933935B2 (en) drill
JP6165165B2 (en) Indexable cutting insert, cutting tool therefor and clamping method therefor
US9878379B2 (en) Cutting tool with enhanced chip evacuation capability and method of making same
JP5823840B2 (en) Drill and cutting method
JP2008279547A (en) Groove working method and formed rotary cutting tool
JP4945382B2 (en) Groove cutting method and groove cutting apparatus
JP2010158762A (en) Method for cutting groove for turbine blade connection, and christmas cutter used for the same
WO2019049258A1 (en) Deep hole machining method
JP5973304B2 (en) Drill and drilling method
WO2012017645A1 (en) Drill
WO2009128183A1 (en) Deep-hole boring drill head
KR101594659B1 (en) Drilling tool
JP2020044616A (en) Drill for carbon fiber composite material
JP2008142834A (en) Drill
JP2009178787A (en) Drill, cutting insert for drill, and cutting method
JP2010201565A (en) End mill
JP2009184044A (en) Stepped twist drill and method of manufacturing the same
WO2016047803A1 (en) Drill and drill head
KR102027299B1 (en) Carbon fiber reinforced plastic processing shape drill
JP5413888B2 (en) Drilling tool
JP4666282B2 (en) Drill
JPWO2014050661A1 (en) Drill and method of manufacturing cut product using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160714

R150 Certificate of patent or registration of utility model

Ref document number: 5973304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250