JP5971208B2 - Semiconductor element evaluation method and semiconductor element evaluation apparatus - Google Patents

Semiconductor element evaluation method and semiconductor element evaluation apparatus Download PDF

Info

Publication number
JP5971208B2
JP5971208B2 JP2013148738A JP2013148738A JP5971208B2 JP 5971208 B2 JP5971208 B2 JP 5971208B2 JP 2013148738 A JP2013148738 A JP 2013148738A JP 2013148738 A JP2013148738 A JP 2013148738A JP 5971208 B2 JP5971208 B2 JP 5971208B2
Authority
JP
Japan
Prior art keywords
voltage
light emission
evaluated
semiconductor element
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013148738A
Other languages
Japanese (ja)
Other versions
JP2015023091A (en
Inventor
大槻 剛
剛 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2013148738A priority Critical patent/JP5971208B2/en
Publication of JP2015023091A publication Critical patent/JP2015023091A/en
Application granted granted Critical
Publication of JP5971208B2 publication Critical patent/JP5971208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、半導体素子の評価方法及び半導体素子の評価装置に関し、特に半導体基板上に作製された各種デバイスの不良箇所を特定するための評価方法及び評価装置に関するものである。   The present invention relates to a semiconductor element evaluation method and a semiconductor element evaluation apparatus, and more particularly, to an evaluation method and an evaluation apparatus for specifying a defective portion of various devices fabricated on a semiconductor substrate.

半導体基板上に形成される各種デバイスが動作不良を起こす場合、この原因解明の方法のひとつとして、不良箇所を特定し、その不良箇所がどのような状態であるかを解析することがよく行われる。
このような解析において、何らかの方法で不良箇所を特定することができれば、収束イオンビーム(FIB:Focused Ion Beam)による微細加工技術と、高解像度の走査電子顕微鏡(SEM)、透過電子顕微鏡(TEM)技術、及び、エネルギ分散型X線分光(EDX)のような不純物解析技術を用いることで不良箇所を直接観察することができ、不良原因の究明を行うことが可能になる。
一連の技術について各種検討がなされているが、その中でも、不良箇所特定が一番の問題である。
When various devices formed on a semiconductor substrate cause a malfunction, it is often performed as one of the methods for elucidating the cause to identify the defective part and analyze the state of the defective part. .
In such an analysis, if a defective portion can be identified by any method, a fine processing technique using a focused ion beam (FIB), a high-resolution scanning electron microscope (SEM), and a transmission electron microscope (TEM) By using a technique and an impurity analysis technique such as energy dispersive X-ray spectroscopy (EDX), a defective part can be directly observed, and the cause of the defect can be investigated.
Various studies have been made on a series of techniques, but among them, the identification of defective parts is the biggest problem.

不良箇所を特定する方法としては、デバイスを動作させるか、電圧を印加して回路に電流を流した状態で、回路領域上に塗布した液晶の配向性を利用するものや、発熱をIRカメラで特定する方法(特許文献1)や、不良箇所からの発光をカメラで検出する方法(特許文献2)などが知られているが、最も一般的な方法としては、不良箇所からの発光を検出する方法である。   As a method for identifying a defective portion, the device is operated or a voltage is applied and a current is passed through the circuit, and the orientation of the liquid crystal applied on the circuit region is utilized, or the heat generation is detected by an IR camera. A method of specifying (Patent Document 1), a method of detecting light emission from a defective portion with a camera (Patent Document 2), and the like are known, but the most common method is detecting light emission from a defective portion. Is the method.

特開2009−288090号公報JP 2009-288090 A 特開2003−133382号公報JP 2003-133382 A

しかしながら、不良箇所からの発光を検出する方法において、非常に低い電圧で発光を得ることができれば問題は生じないが、一般に発光量は非常に小さく、また回路表面には保護膜などが存在することが多い。
従って、発光を検出するためには、検出するカメラの感度を向上させるか、発光量を大きくすることが原理的には考えられる。
このうちで、カメラの感度向上は理想ではあるが、実際には各種感度のカメラをそろえることは不可能であり、また、カメラの感度を向上させたとしても、外乱とのSN比の問題等がある。
However, in the method for detecting light emission from a defective portion, there is no problem if light emission can be obtained at a very low voltage, but generally the amount of light emission is very small, and there is a protective film on the circuit surface. There are many.
Therefore, in order to detect light emission, it is theoretically possible to improve the sensitivity of the camera to be detected or increase the light emission amount.
Of these, it is ideal to improve the sensitivity of the camera, but in reality it is impossible to arrange cameras with various sensitivities, and even if the sensitivity of the camera is improved, the problem of the SN ratio with the disturbance, etc. There is.

上記を考慮し、発光量を大きくする方法、すなわち印加電圧を大きくして発光が観察されるようになるまで徐々に印加電圧を大きくする方法を選択することが好ましい。
しかしながら、発明者が検討した結果、この方法では印加電圧を大きくしすぎてデバイスをさらに熱破壊するという問題があることを見出した。
In consideration of the above, it is preferable to select a method for increasing the light emission amount, that is, a method for gradually increasing the applied voltage until light emission is observed by increasing the applied voltage.
However, as a result of examination by the inventors, it has been found that this method has a problem that the applied voltage is excessively increased to further thermally destroy the device.

本発明は、上記問題点に鑑みてなされたものであって、発光を得るために被評価素子への印加電圧を上げすぎて必要以上にデバイスを破壊することなく、不良箇所を特定することができる半導体素子の評価方法及び評価装置を提供することを目的とする。   The present invention has been made in view of the above problems, and it is possible to specify a defective portion without excessively destroying the device by excessively increasing the voltage applied to the element to be evaluated in order to obtain light emission. An object of the present invention is to provide an evaluation method and an evaluation apparatus for a semiconductor element.

上記目的を達成するために、本発明は、半導体素子に電圧を印加して不良箇所を発光で特定する半導体素子の評価方法であって、被評価素子に印加する電圧を徐々に上昇させながら発光状態を監視する工程と、所定の強度の発光が確認された時点で、前記電圧の上昇を停止する工程と、該上昇を停止した時の電圧を保持しながら前記被評価素子の発光部の撮影を行う工程と、前記発光部の場所を特定することで、半導体素子の不良箇所を特定する工程とを有することを特徴とする半導体素子の評価方法を提供する。   In order to achieve the above object, the present invention is a method for evaluating a semiconductor element in which a voltage is applied to a semiconductor element to identify a defective portion by light emission, and light emission is performed while gradually increasing the voltage applied to the element to be evaluated A step of monitoring the state, a step of stopping the increase of the voltage when light emission of a predetermined intensity is confirmed, and a photographing of the light emitting portion of the element to be evaluated while maintaining the voltage when the increase is stopped There is provided a method for evaluating a semiconductor device, comprising: a step of performing a step of identifying a defective portion of a semiconductor element by identifying a location of the light emitting portion.

このように、被評価素子に印加する電圧を徐々に上昇させながら発光状態を監視し、所定の強度の発光が確認された時点で、印加電圧の上昇を停止することで、被評価素子への印加電圧を上げすぎて必要以上にデバイスを破壊することを防ぐことができる。   In this way, the light emission state is monitored while gradually increasing the voltage applied to the element to be evaluated, and when the light emission of a predetermined intensity is confirmed, the increase in the applied voltage is stopped, thereby It is possible to prevent the device from being destroyed more than necessary by increasing the applied voltage.

ここで、前記発光状態の監視を撮像装置で行い、前記被評価素子への電圧の印加を、電圧印加装置によって行い、前記電圧の上昇、前記電圧の上昇の停止、及び、前記電圧の保持を、制御装置が撮像装置の出力信号に基づいて、前記電圧印加装置を制御することによって行うことができる。
このようにすることで、確実にデバイスの破壊を防ぐことができる。
Here, the light emission state is monitored by an imaging device, the voltage is applied to the element to be evaluated by the voltage application device, and the voltage is increased, the voltage increase is stopped, and the voltage is maintained. The control device can control the voltage application device based on the output signal of the imaging device.
By doing in this way, destruction of a device can be prevented reliably.

また、前記発光状態を監視する工程は、前記電圧が所定の電圧値だけ増加したときに前記撮像装置によって前記被評価素子を撮像する段階を含むことが望ましい。
このように、電圧が所定の電圧値だけ増加したときに撮像装置によって被評価素子を撮像することで、より確実にデバイスの破壊を防ぐことができる。
Further, it is preferable that the step of monitoring the light emission state includes a step of imaging the element to be evaluated by the imaging device when the voltage increases by a predetermined voltage value.
In this way, when the voltage increases by a predetermined voltage value, the device to be evaluated is imaged by the imaging device, so that destruction of the device can be prevented more reliably.

さらに、前記発光部の撮影を前記撮像装置で行うことができる。
このように、発光状態を監視する撮像装置で発光部の撮影を行うことで、効率的に不良箇所を特定することができる。
Furthermore, the light emitting unit can be imaged by the imaging device.
As described above, by photographing the light emitting unit with the imaging device that monitors the light emitting state, it is possible to efficiently identify the defective portion.

また、上記目的を達成するために、本発明は、半導体素子に電圧を印加して不良箇所を発光で特定する半導体素子の評価装置であって、被評価素子に電圧を印加する電圧印加装置と、前記被評価素子の発光状態を監視する撮像装置と、前記撮像装置からの信号に基づいて、前記電圧印加装置を制御する制御装置とを有し、前記制御装置は、前記被評価素子に印加する電圧を増加させるように前記電圧印加装置を制御し、前記撮像装置が所定の強度の発光を検知したときに、前記電圧の上昇を停止させ、該停止した電圧を保持するように前記電圧印加装置を制御することを特徴とする半導体素子の評価装置を提供する。   In order to achieve the above object, the present invention is an evaluation device for a semiconductor element that applies a voltage to a semiconductor element to identify a defective portion by light emission, and a voltage application apparatus that applies a voltage to the element to be evaluated. An imaging device that monitors a light emission state of the element to be evaluated, and a control device that controls the voltage application device based on a signal from the imaging device, the control device applying to the element to be evaluated The voltage application device is controlled to increase the voltage to be applied, and when the imaging device detects light emission of a predetermined intensity, the voltage application is stopped so as to stop the voltage increase and hold the stopped voltage. An apparatus for evaluating a semiconductor element, characterized by controlling the apparatus.

このように、評価装置が、発光状態の監視を行う撮像装置の出力信号に基づいて、電圧の上昇、電圧の上昇の停止、及び、電圧の保持を制御する制御装置を有することで、被評価素子への印加電圧を上げすぎて必要以上にデバイスを破壊することを防ぐことができる装置となる。   As described above, the evaluation apparatus includes a control device that controls the voltage increase, the voltage increase stop, and the voltage holding based on the output signal of the imaging apparatus that monitors the light emission state. The device can prevent the device from being destroyed more than necessary by increasing the voltage applied to the element.

ここで、前記制御装置は、前記電圧が所定の電圧値だけ増加したときに前記半導体素子を撮像するように、前記電圧印加装置及び前記撮像装置を制御することが好ましい。
制御装置が、上記のように電圧印加装置及び撮像装置を制御することで、確実にデバイスの破壊を防ぐことができる。
Here, it is preferable that the control device controls the voltage application device and the imaging device so that the semiconductor element is imaged when the voltage increases by a predetermined voltage value.
By controlling the voltage application device and the imaging device as described above, the control device can reliably prevent the destruction of the device.

さらに、前記撮像装置が前記発光部の撮影を行うことが好ましい。
このように、撮像装置が発光部の撮影を行うことで、評価装置の構成を簡素にすることができる。
Furthermore, it is preferable that the imaging device performs imaging of the light emitting unit.
In this way, the imaging device can take a picture of the light emitting unit, whereby the configuration of the evaluation device can be simplified.

以上のように、本発明によれば、被評価素子に印加する電圧を徐々に上昇させながら発光状態を監視し、所定の強度の発光が確認された時点で、印加電圧の上昇を停止することで、被評価素子への印加電圧を上げすぎて必要以上にデバイスを破壊することを防ぐことが可能になる。   As described above, according to the present invention, the light emission state is monitored while gradually increasing the voltage applied to the element to be evaluated, and when the light emission of a predetermined intensity is confirmed, the increase in the applied voltage is stopped. Thus, it is possible to prevent the device from being destroyed more than necessary by increasing the voltage applied to the element to be evaluated.

本発明の半導体素子の評価方法を示すフローである。It is a flow which shows the evaluation method of the semiconductor element of this invention. 本発明の半導体素子の評価装置を示す図である。It is a figure which shows the evaluation apparatus of the semiconductor element of this invention. 実施例の電圧印加時のIVカーブ及び発光状態を示す図である。It is a figure which shows the IV curve at the time of the voltage application of an Example, and a light emission state. 比較例の電圧印加時のIVカーブ及び発光状態を示す図である。It is a figure which shows the IV curve at the time of the voltage application of a comparative example, and a light emission state.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
前述のように、不良箇所からの発光を検出する方法において、発光を検知するカメラの感度を向上させるよりも、印加電圧を大きくして発光が観察されるようになるまで徐々に印加電圧を大きくするほうが好ましいが、この方法では印加電圧を大きくしすぎてデバイスをさらに熱破壊するという問題があった。破壊されてしまうと、そもそもの不良箇所の分析に支障をきたしてしまう。
Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.
As described above, in the method of detecting light emission from a defective portion, rather than improving the sensitivity of the camera that detects light emission, the applied voltage is gradually increased until the light emission is observed by increasing the applied voltage. However, this method has a problem that the applied voltage is excessively increased to further thermally destroy the device. If it is destroyed, it will interfere with the analysis of the defective part.

そこで、発明者は、発光を得るために被評価素子への印加電圧を上げすぎて必要以上にデバイスを破壊することなく、不良箇所を特定することができる半導体素子の評価方法について鋭意検討を重ねた。
その結果、被評価素子に印加する電圧を徐々に上昇させながら発光状態を監視し、所定の発光量が確認された時点で、印加電圧の上昇を停止することで、被評価素子への印加電圧を上げすぎて必要以上にデバイスを破壊することを防ぐことができることを見出し、本発明をなすに至った。
In view of this, the inventor conducted extensive studies on a semiconductor element evaluation method that can identify a defective portion without excessively destroying the device by excessively increasing the voltage applied to the element to be evaluated in order to obtain light emission. It was.
As a result, the light emission state is monitored while gradually increasing the voltage applied to the element to be evaluated, and when the predetermined amount of light emission is confirmed, the increase in the applied voltage is stopped, thereby applying the voltage to the element to be evaluated. It has been found that it is possible to prevent the device from being destroyed more than necessary due to excessive increase in the thickness of the device, and the present invention has been made.

以下、図1及び図2を参照しながら、本発明の半導体素子の評価方法及び評価装置を説明する。   The semiconductor element evaluation method and evaluation apparatus of the present invention will be described below with reference to FIGS.

まず、図2を参照しながら、本発明の半導体素子の評価装置を説明する。
図2に示すように、本発明の半導体素子の評価装置10は、被評価素子1を載せる載置台6と、被評価素子1にプローブ針5を介して電圧を印加する電圧印加装置4と、被評価素子1の発光状態を監視するとともに、被評価素子1の発光部を撮影する撮像装置2と、電圧印加装置4及び撮像装置2を制御する制御装置3を有している。
電圧印加装置4は例えばテスタであり、撮像装置2は例えばカメラである。
First, the semiconductor device evaluation apparatus of the present invention will be described with reference to FIG.
As shown in FIG. 2, a semiconductor element evaluation apparatus 10 according to the present invention includes a mounting table 6 on which an element to be evaluated 1 is placed, a voltage application apparatus 4 that applies a voltage to the element to be evaluated 1 via a probe needle 5, While monitoring the light emission state of the element under evaluation 1, the image pickup apparatus 2 for photographing the light emitting portion of the element under evaluation 1, the voltage application device 4, and the control device 3 for controlling the image pickup device 2 are provided.
The voltage application device 4 is, for example, a tester, and the imaging device 2 is, for example, a camera.

制御装置3は、被評価素子1に印加する電圧を徐々に上昇させるように電圧印加装置4を制御し、撮像装置2が所定の強度の発光を検知したときに、電圧の上昇を停止させ、この停止した電圧を保持するように電圧印加装置4を制御する。
また、制御装置3は、被評価素子1に印加する電圧をステップ状に増加させるように電圧印加装置4を制御することができ、印加電圧が増加するたびに被評価素子1を撮像するように撮像装置2を制御することができる。
さらに、制御装置3は、撮像装置2からの映像信号に基づいて、撮像された領域の中で一番発光量(輝度)の高い箇所の輝度を数値化し、一番発光量の高い箇所の輝度が予め決められた輝度の閾値に到達するまで、電圧をステップ状に昇圧するように電圧印加装置4を制御することができる。
The control device 3 controls the voltage application device 4 so as to gradually increase the voltage applied to the element 1 to be evaluated, and stops the voltage increase when the imaging device 2 detects light emission of a predetermined intensity, The voltage application device 4 is controlled so as to hold the stopped voltage.
Further, the control device 3 can control the voltage application device 4 so as to increase the voltage applied to the element to be evaluated 1 in a step-like manner, so that the device to be evaluated 1 is imaged whenever the applied voltage increases. The imaging device 2 can be controlled.
Further, based on the video signal from the imaging device 2, the control device 3 digitizes the luminance of the portion with the highest light emission amount (luminance) in the imaged region, and the luminance of the portion with the highest light emission amount. Until the voltage reaches a predetermined luminance threshold, the voltage application device 4 can be controlled to step up the voltage stepwise.

上記のような構成により、評価装置10は不良箇所の発光による特定を自動化することができる。   With the configuration as described above, the evaluation apparatus 10 can automate identification by light emission of a defective portion.

次に、上記のような評価装置を用いた本発明の評価方法を説明する。
まず、被評価素子に印加する電圧を徐々に上昇させながら、発光状態を監視する(図1のステップS11参照)。
具体的には、評価装置10の載置台6上に載せた被評価素子1の所定のパッドにプローブ針5を当てて、電圧印加装置(例えば、テスタ)4から被評価素子1に電圧を印加する。印加する電圧はステップ状に上昇し、電圧が上昇するたびに発光を撮像装置(例えば、カメラ)2によって撮像する。
撮像するたびに、撮像装置2からの映像信号に基づいて、撮像された領域の中で一番発光量(輝度)の高い箇所の輝度が数値化され、一番発光量の高い箇所の輝度が予め決定した輝度の閾値に到達するまで、電圧をステップ状に昇圧するように電圧印加装置4は制御装置3によって制御される。
Next, the evaluation method of the present invention using the above evaluation apparatus will be described.
First, the light emission state is monitored while gradually increasing the voltage applied to the element to be evaluated (see step S11 in FIG. 1).
Specifically, the probe needle 5 is applied to a predetermined pad of the element to be evaluated 1 placed on the mounting table 6 of the evaluation apparatus 10, and a voltage is applied to the element to be evaluated 1 from the voltage application device (for example, tester) 4. To do. The applied voltage rises stepwise, and light emission is imaged by the imaging device (for example, camera) 2 each time the voltage rises.
Each time an image is taken, the luminance of the portion with the highest light emission amount (luminance) in the imaged region is digitized based on the video signal from the imaging device 2, and the luminance of the portion with the highest light emission amount is calculated. The voltage application device 4 is controlled by the control device 3 so as to step up the voltage in a stepwise manner until a predetermined luminance threshold value is reached.

次に、所定の強度の発光が確認された時点で電圧の上昇を停止する(図1のステップS12参照)。
具体的には、一番発光量の高い箇所の輝度が閾値に到達したら、印加電圧の昇圧を停止するように電圧印加装置4は制御装置3によって制御される。
Next, the increase in voltage is stopped when light emission with a predetermined intensity is confirmed (see step S12 in FIG. 1).
Specifically, the voltage application device 4 is controlled by the control device 3 so as to stop the boosting of the applied voltage when the luminance of the portion with the highest light emission amount reaches the threshold value.

次に、上昇を停止した時の電圧を保持しながら、被評価素子の発光部を撮影する(図1のステップS13参照)。
具体的には、一番発光量の高い箇所の輝度が閾値に到達したときの電圧を保持するように電圧印加装置4は制御装置3によって制御され、その状態で被評価素子1からの発光状態を示す画像を取得するように撮像装置2は制御装置3によって制御され、画像の取得が完了した時点で電圧印加を停止させるように電圧印加装置4は制御装置3によって制御される。
Next, the light emitting part of the element to be evaluated is photographed while maintaining the voltage when the rise is stopped (see step S13 in FIG. 1).
Specifically, the voltage application device 4 is controlled by the control device 3 so as to maintain the voltage when the luminance of the portion with the highest light emission amount reaches the threshold value, and in that state, the light emission state from the element 1 to be evaluated The image pickup device 2 is controlled by the control device 3 so as to obtain an image indicating that the voltage application device 4 is controlled by the control device 3 so that the voltage application is stopped when the image acquisition is completed.

次に、発光部の場所を特定することで、半導体素子の不良箇所を特定する(図1のステップS14参照)。
具体的には、撮像装置2で取得した被評価素子1からの発光状態を示す画像から発光部の場所を特定し、半導体素子の不良箇所を特定する。
Next, a defective portion of the semiconductor element is specified by specifying the location of the light emitting unit (see step S14 in FIG. 1).
Specifically, the location of the light emitting unit is identified from the image indicating the light emission state from the evaluated element 1 acquired by the imaging device 2, and the defective portion of the semiconductor element is identified.

また、上述した一連の動作を自動化することが好ましく、これにより作業ばらつきのない安定した不良箇所の特定が可能になる。   In addition, it is preferable to automate the series of operations described above, which makes it possible to identify a stable defective portion without variation in work.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.

(実施例)
試料として、ボロンをドープした抵抗率が10Ω・cmで直径200mmのp型シリコンウェーハを用いた。このウェーハに1000℃のパイロ雰囲気(高純度水蒸気雰囲気)中で300nmの厚さのゲート酸化を行い、これにリンドープのポリシリコンをデポし、その後フォトリソグラフィー工程、エッチング工程により、ポリシリコンを電極パターンに加工し、MOSキャパシタを作製した。
(Example)
A p-type silicon wafer having a resistivity of 10 Ω · cm and a diameter of 200 mm doped with boron was used as a sample. The wafer is oxidized with a gate thickness of 300 nm in a 1000 ° C. pyro atmosphere (high-purity water vapor atmosphere), and phosphorus-doped polysilicon is deposited thereon, and then the polysilicon is formed into an electrode pattern by a photolithography process and an etching process. To produce a MOS capacitor.

図2に示す評価装置10を用いて、このMOSキャパシタのポリシリコン電極に電圧を1Vステップで0Vから印加し、各ステップ毎に発光強度を観察し、閾値に達するまで、印加電圧の増加と発光強度観察を繰り返した。印加電圧の昇圧レートは、1V/secとした。
なお閾値は、0V印加のときの発光強度の値を0として発光が画面内で最初に観察されたときの発光強度の値を閾値とした。
実施例では、発光が観察された時点で電圧印加を停止したことで、図3(b)に示すような局所的な発光(右下の円で囲まれた領域)、すなわち不良箇所を特定することが可能となった。
また、実施例では、図3(a)に示すように、250Vに到達した時点で電圧印加を停止したので、流れる電流を2×10−6A以下に抑えることができ、デバイスをさらに熱破壊することを防止することができた。
Using the evaluation apparatus 10 shown in FIG. 2, a voltage is applied to the polysilicon electrode of this MOS capacitor from 0 V in 1 V steps, the emission intensity is observed at each step, and the increase in applied voltage and light emission until the threshold is reached. The intensity observation was repeated. The boosting rate of the applied voltage was 1 V / sec.
Note that the threshold value was set to the value of the light emission intensity when light emission was first observed in the screen with the value of the light emission intensity when 0 V was applied being 0.
In the embodiment, the application of voltage is stopped when light emission is observed, so that local light emission (a region surrounded by a circle on the lower right) as shown in FIG. It became possible.
Further, in the example, as shown in FIG. 3A, since the voltage application was stopped when the voltage reached 250 V, the flowing current could be suppressed to 2 × 10 −6 A or less, and the device was further thermally destroyed. I was able to prevent it.

(比較例)
実施例と同様にしてMOSキャパシタを作製した。
このMOSキャパシタのポリシリコン電極に電圧を1Vステップで0Vから印加し、
各ステップ毎に特に発光強度を観察することなく、また発光の閾値も特に決めずに、ある程度の発光が確認されるまで電圧を上昇させた。印加電圧の昇圧レートは、1V/secとした。
その結果、発光したときには既に図4(b)に示すように発光が素子内のかなり広い領域(円で囲まれた領域)に広がり、不良箇所を高精度で特定することができなかった。
また、比較例の方法では発光が確認された時点で不良箇所が大きく破壊されてしまい、不良原因の解析が困難になった。
比較例では、図4(a)に示すように、300Vに到達するまで電圧印加を停止しなかったので、不良箇所に1×10−4A程度の電流が流れてしまい、デバイスをさらに熱破壊することを防止することができなかった
(Comparative example)
A MOS capacitor was fabricated in the same manner as in the example.
A voltage is applied from 0V to the polysilicon electrode of this MOS capacitor in 1V step,
The voltage was increased until a certain amount of light emission was confirmed without observing the light emission intensity at each step and without particularly determining the light emission threshold value. The boosting rate of the applied voltage was 1 V / sec.
As a result, as shown in FIG. 4B, when the light was emitted, the light was already spread over a considerably wide area (area surrounded by a circle), and the defective portion could not be identified with high accuracy.
Further, in the method of the comparative example, when the light emission was confirmed, the defective part was greatly destroyed, and it became difficult to analyze the cause of the defect.
In the comparative example, as shown in FIG. 4A, the voltage application was not stopped until the voltage reached 300 V, so that a current of about 1 × 10 −4 A flowed to the defective portion, and the device was further thermally destroyed. Couldn't prevent

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

1…被評価素子、 2…撮像装置(カメラ)、 3…制御装置、
4…電圧印加装置(テスタ)、 5…プローブ針、 6…載置台、 10…評価装置。

DESCRIPTION OF SYMBOLS 1 ... Element to be evaluated, 2 ... Imaging device (camera), 3 ... Control device,
DESCRIPTION OF SYMBOLS 4 ... Voltage application apparatus (tester), 5 ... Probe needle, 6 ... Mounting stand, 10 ... Evaluation apparatus.

Claims (7)

半導体素子に電圧を印加して不良箇所を発光で特定する半導体素子の評価方法であって、
被評価素子に印加する電圧を徐々に上昇させながら発光状態を監視する工程と、
所定の強度の発光が確認された時点で、前記電圧の上昇を停止する工程と、
該上昇を停止した時の電圧を保持しながら前記被評価素子の発光部の撮影を行う工程と、
前記発光部の場所を特定することで、半導体素子の不良箇所を特定する工程と
を有することを特徴とする半導体素子の評価方法。
A method for evaluating a semiconductor element in which a voltage is applied to a semiconductor element to identify a defective portion by light emission,
Monitoring the light emission state while gradually increasing the voltage applied to the device under evaluation;
A step of stopping the increase in the voltage when light emission of a predetermined intensity is confirmed;
Photographing the light emitting portion of the element to be evaluated while maintaining the voltage when the increase is stopped;
And a step of specifying a defective portion of the semiconductor element by specifying a location of the light emitting portion.
前記発光状態の監視を撮像装置で行い、
前記被評価素子への電圧の印加を、電圧印加装置によって行い、
前記電圧の上昇、前記電圧の上昇の停止、及び、前記電圧の保持を、制御装置が撮像装置の出力信号に基づいて、前記電圧印加装置を制御することによって行うことを特徴とする請求項1に記載の半導体素子の評価方法。
The light emission state is monitored by an imaging device,
Application of voltage to the element to be evaluated is performed by a voltage application device,
2. The voltage increase, stop of the voltage increase, and holding of the voltage are performed by a control device controlling the voltage application device based on an output signal of an imaging device. The evaluation method of the semiconductor element of description.
前記発光状態を監視する工程は、前記電圧が所定の電圧値だけ増加したときに前記撮像装置によって前記被評価素子を撮像する段階を含むことを特徴とする請求項2に記載の半導体素子の評価方法。   3. The evaluation of a semiconductor device according to claim 2, wherein the step of monitoring the light emission state includes a step of imaging the device to be evaluated by the imaging device when the voltage increases by a predetermined voltage value. Method. 前記発光部の撮影を前記撮像装置で行うことを特徴とする請求項2又は請求項3に記載の半導体素子の評価方法。   The method for evaluating a semiconductor element according to claim 2, wherein the imaging of the light emitting unit is performed by the imaging device. 半導体素子に電圧を印加して不良箇所を発光で特定する半導体素子の評価装置であって、
被評価素子に電圧を印加する電圧印加装置と、
前記被評価素子の発光状態を監視する撮像装置と、
前記撮像装置からの信号に基づいて、前記電圧印加装置を制御する制御装置と
を有し、
前記制御装置は、前記被評価素子に印加する電圧を徐々に増加させるように前記電圧印加装置を制御し、前記撮像装置が所定の強度の発光を検知したときに、前記電圧の上昇を停止させ、該停止した電圧を保持するように前記電圧印加装置を制御することを特徴とする半導体素子の評価装置。
A semiconductor element evaluation device that applies a voltage to a semiconductor element to identify a defective portion by light emission,
A voltage applying device for applying a voltage to the element to be evaluated;
An imaging device for monitoring a light emission state of the element to be evaluated;
A control device for controlling the voltage application device based on a signal from the imaging device;
The control device controls the voltage application device to gradually increase the voltage applied to the element to be evaluated, and stops the voltage increase when the imaging device detects light emission of a predetermined intensity. An apparatus for evaluating a semiconductor element, wherein the voltage application device is controlled to hold the stopped voltage.
前記制御装置は、前記電圧が所定の電圧値だけ増加したときに前記半導体素子を撮像するように、前記電圧印加装置及び前記撮像装置を制御することを特徴とする請求項5に記載の半導体素子の評価装置。   The semiconductor device according to claim 5, wherein the control device controls the voltage application device and the imaging device so that the semiconductor device is imaged when the voltage increases by a predetermined voltage value. Evaluation device. 前記撮像装置が前記被評価素子の発光部の撮影を行うことを特徴とする請求項5又は請求項6に記載の半導体素子の評価装置。 The semiconductor device evaluation apparatus according to claim 5, wherein the imaging device photographs a light emitting portion of the element to be evaluated.
JP2013148738A 2013-07-17 2013-07-17 Semiconductor element evaluation method and semiconductor element evaluation apparatus Active JP5971208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013148738A JP5971208B2 (en) 2013-07-17 2013-07-17 Semiconductor element evaluation method and semiconductor element evaluation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013148738A JP5971208B2 (en) 2013-07-17 2013-07-17 Semiconductor element evaluation method and semiconductor element evaluation apparatus

Publications (2)

Publication Number Publication Date
JP2015023091A JP2015023091A (en) 2015-02-02
JP5971208B2 true JP5971208B2 (en) 2016-08-17

Family

ID=52487314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013148738A Active JP5971208B2 (en) 2013-07-17 2013-07-17 Semiconductor element evaluation method and semiconductor element evaluation apparatus

Country Status (1)

Country Link
JP (1) JP5971208B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479345A (en) * 1990-07-23 1992-03-12 Fujitsu Ltd Device and method for analyzing semiconductor device
JPH0479343A (en) * 1990-07-23 1992-03-12 Nippon Telegr & Teleph Corp <Ntt> Method and device for analyzing semiconductor integrated circuit
JPH0714899A (en) * 1993-06-23 1995-01-17 Seiko Instr Inc Analyzing method for standby current failure of semiconductor device
JPH11214460A (en) * 1998-01-22 1999-08-06 Mitsubishi Electric Corp Failure position detecting method
JP4190748B2 (en) * 2001-06-27 2008-12-03 株式会社ルネサステクノロジ CAD tool for semiconductor failure analysis and semiconductor failure analysis method
JP2003133382A (en) * 2001-10-23 2003-05-09 Sony Corp Method for analyzing semiconductor fault, and semiconductor manufacturing method
JP2009288090A (en) * 2008-05-29 2009-12-10 Sanyo Electric Co Ltd Heat generation analysis method of semiconductor element
JP5399982B2 (en) * 2010-06-17 2014-01-29 浜松ホトニクス株式会社 Inspection method of semiconductor integrated circuit device and semiconductor integrated circuit device

Also Published As

Publication number Publication date
JP2015023091A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
JP6595058B2 (en) Method and system for adaptively scanning a sample during electron beam inspection
WO2012147807A1 (en) Wiring defect inspecting method, wiring defect inspecting apparatus, and method for manufacturing semiconductor substrate
JP2006332296A (en) Focus correction method in electronic beam applied circuit pattern inspection
JP4334927B2 (en) Inspection method and inspection apparatus for semiconductor laser diode chip
JP2007281136A (en) Semiconductor substrate, and substrate inspection method
JP2009085657A (en) Method and system for observing sample using scanning electron microscope
JPWO2017158742A1 (en) Defect inspection equipment
US10147174B2 (en) Substrate inspection device and method thereof
KR20220143742A (en) Method, apparatus and system for dynamically controlling an electrostatic chuck during inspection of a wafer
WO2022128846A1 (en) Thermal-aided inspection by advanced charge controller module in a charged particle system
JP2015032686A (en) Semiconductor element evaluation method and semiconductor element evaluation device
JP2009288090A (en) Heat generation analysis method of semiconductor element
JP2011254021A (en) Method of manufacturing semiconductor device
JP3859480B2 (en) Inspection method
JP5971208B2 (en) Semiconductor element evaluation method and semiconductor element evaluation apparatus
US9658128B2 (en) Defect inspection method
JPWO2012008484A1 (en) Contact state detection device, contact state detection method, computer program for contact state detection, electrical conductivity measurement system provided with contact state detection device, and electrical conductivity measurement method including contact state detection method
JP5016799B2 (en) Inspection equipment using charged particle beam
JP2006047294A (en) Semiconductor element analysis method
TWI723930B (en) Overlap measurement system and overlap measurement device
JP2015023114A (en) Method of evaluating semiconductor element
JP5987801B2 (en) Semiconductor element evaluation method
JP6572839B2 (en) Semiconductor substrate evaluation method
JP5267471B2 (en) Semiconductor device inspection method and inspection apparatus
Lorut et al. EBIC on TEM lamellae for improved failure localization and root cause understanding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160627

R150 Certificate of patent or registration of utility model

Ref document number: 5971208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250