JP5966224B2 - Current detection resistor mounting structure - Google Patents

Current detection resistor mounting structure Download PDF

Info

Publication number
JP5966224B2
JP5966224B2 JP2012051316A JP2012051316A JP5966224B2 JP 5966224 B2 JP5966224 B2 JP 5966224B2 JP 2012051316 A JP2012051316 A JP 2012051316A JP 2012051316 A JP2012051316 A JP 2012051316A JP 5966224 B2 JP5966224 B2 JP 5966224B2
Authority
JP
Japan
Prior art keywords
current
current detection
resistor
mounting structure
wiring pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012051316A
Other languages
Japanese (ja)
Other versions
JP2013187354A (en
Inventor
里志 知久
里志 知久
平沢 浩一
浩一 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2012051316A priority Critical patent/JP5966224B2/en
Publication of JP2013187354A publication Critical patent/JP2013187354A/en
Application granted granted Critical
Publication of JP5966224B2 publication Critical patent/JP5966224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Description

本発明は電流検出に用いられる抵抗器の実装構造に関する。   The present invention relates to a mounting structure of a resistor used for current detection.

電池の充放電電流を監視し、電池の充放電電流を制御する等の目的で電流検出用抵抗器が使用される。電流検出用抵抗器は、監視対象電流の経路に挿入され、該電流によって抵抗器両端に生じる電圧を検出し、既知の抵抗値から電流を検出する。このような用途では、例えば10mΩ以下の低抵抗値の電流検出用抵抗器が用いられる場合があるが、さらなる低抵抗値の要求に対して、電流検出用抵抗器15a,15bを配線パターン11a、11b間に複数並列に実装することがある(図1参照)。   A current detection resistor is used for the purpose of monitoring the charge / discharge current of the battery and controlling the charge / discharge current of the battery. The current detection resistor is inserted in the path of the current to be monitored, detects a voltage generated across the resistor by the current, and detects a current from a known resistance value. In such an application, a current detection resistor having a low resistance value of, for example, 10 mΩ or less may be used. In response to a request for a further low resistance value, the current detection resistors 15a and 15b are connected to the wiring pattern 11a, There may be a plurality of parallel mountings between 11b (see FIG. 1).

係る用途に好適な電流検出用抵抗器として、特許文献1に記載の構造が知られている。このような構造の抵抗器であって、例えば0.2mΩ程度の低抵抗値の電流検出用抵抗器を2個並列に接続することで、0.1mΩ程度の合成抵抗値とすることができる。   As a current detection resistor suitable for such use, a structure described in Patent Document 1 is known. A combined resistance value of about 0.1 mΩ can be obtained by connecting two current detection resistors having a low resistance value of about 0.2 mΩ, for example, in parallel.

特開2002−57009号公報JP 2002-57009 A

しかしながら、0.1mΩ程度の低抵抗値となると、配線パターンに流れる電流の状態が無視できなくなる。例えば、図2(a)に示す一方の配線パターン11aの端部Xから他方の配線パターン11bの端部Yに電流が流れる場合と、図2(b)に示す配線パターン11aの端部Xから配線パターン11bの端部Zに電流が流れる場合とでは、2個の抵抗器15a,15bに流れる電流に偏りが生じる。そうすると、2個の抵抗器15a,15bに均等に電流が流れる場合と比較して、検出電圧に誤差が生じることになる。   However, when the resistance value is as low as about 0.1 mΩ, the state of the current flowing through the wiring pattern cannot be ignored. For example, when a current flows from the end X of one wiring pattern 11a shown in FIG. 2A to the end Y of the other wiring pattern 11b, and from the end X of the wiring pattern 11a shown in FIG. When a current flows through the end Z of the wiring pattern 11b, the current flowing through the two resistors 15a and 15b is biased. As a result, an error occurs in the detection voltage as compared with the case where current flows uniformly through the two resistors 15a and 15b.

本発明は、上述の事情に基づいてなされたもので、低抵抗値の抵抗器を並列接続して電流検出する場合に、配線パターンの電流経路に基づく並列接続した抵抗器の電流の偏りを低減し、検出電圧に生じる誤差を低減できる電流検出用抵抗器の実装構造を提供することを目的とする。   The present invention has been made based on the above-described circumstances, and reduces current bias of resistors connected in parallel based on the current path of the wiring pattern when detecting current by connecting resistors of low resistance value in parallel. Then, it aims at providing the mounting structure of the resistor for electric current detection which can reduce the error which arises in a detection voltage.

本発明の電流検出用抵抗器の実装構造は、基板上に形成された一対のランドを含む配線パターンと、前記ランドに並列に実装された少なくとも2つの電流検出用抵抗器と、前記一対のランドから導出された検出端子と、を備え、一の電流検出用抵抗器の実装部の近傍および他の電流検出用抵抗器の実装部の近傍の配線パターンの抵抗値を下げるための調整素子を備えたことを特徴とする。   The mounting structure of the current detection resistor of the present invention includes a wiring pattern including a pair of lands formed on a substrate, at least two current detection resistors mounted in parallel to the lands, and the pair of lands. And an adjustment element for lowering the resistance value of the wiring pattern in the vicinity of the mounting portion of one current detection resistor and in the vicinity of the mounting portion of the other current detection resistor. It is characterized by that.

本発明によれば、調整素子を実装した部位においては、配線パターンの等価的な電気抵抗率が低くなる。このため、電流方向が異なった場合でも、調整素子によって抵抗器実装部分周辺の電位が変化することが抑制される。従って、並列接続したそれぞれの抵抗器に、それぞれの抵抗値に相応の電流が分流することとなり、電流検出精度の安定性が維持される。   According to the present invention, the equivalent electrical resistivity of the wiring pattern is lowered at the site where the adjustment element is mounted. For this reason, even when the current direction is different, the adjustment element suppresses the potential around the resistor mounting portion from changing. Therefore, a current corresponding to each resistance value is shunted to each resistor connected in parallel, and the stability of the current detection accuracy is maintained.

2個並列接続した電流検出用抵抗器の従来の実装構造を示す斜視図である。It is a perspective view which shows the conventional mounting structure of the resistor for a current detection connected in parallel by two pieces. 図1Aの平面図である。It is a top view of FIG. 1A. 電流経路を破線で示す図であり、(a)はXからYに電流が流れる場合を示し、(b)はXからZに電流が流れる場合を示す。It is a figure which shows a current pathway with a broken line, (a) shows the case where an electric current flows from X to Y, (b) shows the case where an electric current flows from X to Z. 本発明の一実施例の電流検出用抵抗器の実装構造を示す斜視図である。It is a perspective view which shows the mounting structure of the resistor for electric current detection of one Example of this invention. 図3の平面図である。FIG. 4 is a plan view of FIG. 3. 本発明の説明に用いるグラフのX軸と電圧検出端子取出位置Sとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the X-axis of the graph used for description of this invention, and the voltage detection terminal extraction position S. 従来の実装構造における、電流経路がX→Yの場合(実線)と電流経路がX→Zの場合(波線)の取出位置Sに対する出現抵抗値を示すグラフである。It is a graph which shows the appearance resistance value with respect to the taking-out position S when the current path is X → Y (solid line) and when the current path is X → Z (dashed line) in the conventional mounting structure. 従来の実装構造における、電流経路がX→Yの場合(実線)と電流経路がX→Zの場合(波線)の取出位置Sに対する抵抗温度係数(TCR)を示すグラフである。It is a graph which shows the temperature coefficient of resistance (TCR) with respect to extraction position S when the current path is X → Y (solid line) and when the current path is X → Z (dashed line) in the conventional mounting structure. 本発明の実装構造における、電流経路がX→Yの場合(実線)と電流経路がX→Zの場合(波線)の取出位置Sに対する出現抵抗値を示すグラフである。It is a graph which shows the appearance resistance value with respect to the taking-out position S when the current path is X → Y (solid line) and when the current path is X → Z (broken line) in the mounting structure of the present invention. 本発明の実装構造における、電流経路がX→Yの場合(実線)と電流経路がX→Zの場合(波線)の取出位置Sに対する抵抗温度係数(TCR)を示すグラフである。It is a graph which shows the resistance temperature coefficient (TCR) with respect to the extraction position S when the current path is X → Y (solid line) and when the current path is X → Z (dashed line) in the mounting structure of the present invention. 本発明の第1変形例の電流検出用抵抗器の実装構造を示す斜視図である。It is a perspective view which shows the mounting structure of the resistor for electric current detection of the 1st modification of this invention. 本発明の第2変形例の電流検出用抵抗器の実装構造を示す斜視図である。It is a perspective view which shows the mounting structure of the resistor for electric current detection of the 2nd modification of this invention. 本発明の第3変形例の電流検出用抵抗器の実装構造を示す斜視図である。It is a perspective view which shows the mounting structure of the resistor for electric current detection of the 3rd modification of this invention. 本発明の第4変形例の電流検出用抵抗器の実装構造を示す斜視図である。It is a perspective view which shows the mounting structure of the resistor for electric current detection of the 4th modification of this invention.

以下、本発明の実施形態について、図3乃至図13を参照して説明する。なお、各図中、同一または相当する部材または要素には、同一の符号を付して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 3 to 13. In addition, in each figure, the same code | symbol is attached | subjected and demonstrated to the same or equivalent member or element.

図3および図4は本発明の一実施例の電流検出用抵抗器の実装構造を示す。この実施例では、基板上に形成された一対のランドを含む配線パターン11a、11bと、ランド間に並列に実装された少なくとも2つの電流検出用抵抗器15a、15bを備える。ここで、配線パターン11a、11bの少なくとも一方は、電流検出用抵抗器15a、15bの電極配置方向と略直角方向に延びている(図示省略)。つまり電流検出用抵抗器15a、15bを流れる電流は、電流検出用抵抗器15a、15bの電極配置方向と同一方向に直線的に流入および流出するのではなく、電流の流入方向および/または流出方向が、電極の配置方向と異なっている。   3 and 4 show a mounting structure of a current detection resistor according to an embodiment of the present invention. In this embodiment, wiring patterns 11a and 11b including a pair of lands formed on a substrate and at least two current detection resistors 15a and 15b mounted in parallel between the lands are provided. Here, at least one of the wiring patterns 11a and 11b extends in a direction substantially perpendicular to the electrode arrangement direction of the current detection resistors 15a and 15b (not shown). That is, the current flowing through the current detection resistors 15a and 15b does not flow in and out linearly in the same direction as the electrode arrangement direction of the current detection resistors 15a and 15b, but the current inflow direction and / or outflow direction. However, it is different from the arrangement direction of the electrodes.

一対のランドからは一対の引出線12a、12bが導出され、電圧検出端子として機能し、この線間電圧を計測することで、2個の並列接続した抵抗器15a、15bの電極間の電圧、すなわち、抵抗器15a、15bに流れる電流を計測することができる。   A pair of lead wires 12a and 12b are led out from the pair of lands and function as voltage detection terminals. By measuring the line voltage, the voltage between the electrodes of the two resistors 15a and 15b connected in parallel, That is, the current flowing through the resistors 15a and 15b can be measured.

抵抗器15a,15bは銅ニッケル合金、銅マンガンニッケル合金等の金属抵抗材料からなる平板状の抵抗体の両端に銅等の高導電性材料の電極を接合した構造を有している。一例として、抵抗器15a,15bの幅は8mmであり、長さは10mmである。この抵抗器の抵抗値は1個あたり0.2mΩであり、2個並列接続することで、合成抵抗値0.1mΩが得られる。   The resistors 15a and 15b have a structure in which electrodes of a highly conductive material such as copper are joined to both ends of a flat resistor made of a metal resistance material such as a copper nickel alloy or a copper manganese nickel alloy. As an example, resistors 15a and 15b have a width of 8 mm and a length of 10 mm. Each resistor has a resistance value of 0.2 mΩ, and a combined resistance value of 0.1 mΩ can be obtained by connecting two resistors in parallel.

一対の配線パターン11a、11bには、一の電流検出用抵抗器15aの実装部の近傍および他の電流検出用抵抗器11bの実装部の近傍に、配線パターンの抵抗値を下げるための調整素子21a、21bを備える。すなわち、この実施例では、配線パターン11aにおいて、抵抗器15a,15bの両端の実装部近傍に、電極の配置方向と略直角方向に調整素子21a、21bを配置する。   The pair of wiring patterns 11a and 11b include adjustment elements for reducing the resistance value of the wiring pattern in the vicinity of the mounting portion of one current detection resistor 15a and in the vicinity of the mounting portion of the other current detection resistor 11b. 21a and 21b. That is, in this embodiment, in the wiring pattern 11a, the adjustment elements 21a and 21b are arranged in the vicinity of the mounting portions at both ends of the resistors 15a and 15b in a direction substantially perpendicular to the arrangement direction of the electrodes.

調整素子21a、21bは、CuやAlなどの高導電性材料を用いて製作されており、配線パターンや抵抗器よりも電気抵抗率が低い。図示するように、調整素子の厚みは配線パターンの厚みよりも厚く、また、抵抗器の電極よりも厚い。調整素子21a、21bは、はんだ付けや、溶接等により配線パターン上に実装する。はんだ付けを行う場合は、調整素子が配線パターンに当接する部位にSnやNiなどの表面処理があるとはんだ付けが容易になる。   The adjustment elements 21a and 21b are manufactured using a highly conductive material such as Cu or Al, and have an electric resistivity lower than that of the wiring pattern or the resistor. As shown in the figure, the adjustment element is thicker than the wiring pattern and thicker than the resistor electrode. The adjustment elements 21a and 21b are mounted on the wiring pattern by soldering or welding. In the case of performing soldering, soldering is facilitated if there is a surface treatment such as Sn or Ni at a portion where the adjustment element contacts the wiring pattern.

調整素子21a、21bを実装した部位においては、配線パターンの等価的な電気抵抗率が低くなる。このため、配線パターンの電源位置の変化等により電流方向が変わったとしても、調整素子によって抵抗器実装部分周辺の電位が変化することが抑制され、並列接続した抵抗器の電流検出精度の安定性が維持される。調整素子自体の抵抗値は低いほど電位調整効果は高い。   In the portion where the adjustment elements 21a and 21b are mounted, the equivalent electrical resistivity of the wiring pattern is low. For this reason, even if the current direction changes due to a change in the power supply position of the wiring pattern, etc., the adjustment element suppresses changes in the potential around the resistor mounting part, and the stability of the current detection accuracy of the resistors connected in parallel Is maintained. The lower the resistance value of the adjusting element itself, the higher the potential adjusting effect.

次に、調整素子を備えない従来の実装構造(図1参照)と本発明の調整素子を備えた実装構造(図3参照)による効果を対比して検討する。まず、図2(a)に示すように配線パターン11a、11bの一方の端部X,Y側に電源が接続されている等の理由により、電流経路がXからYにU字型となる場合である。この場合に、2個の抵抗器15a,15bには、配線パターンの抵抗により外側の抵抗器15aの電流が減少し、内側の抵抗器15bの電流が増加すると考えられる。すなわち、2個の抵抗器15a,15bに電流分布の偏りが生じる。   Next, the effects of the conventional mounting structure that does not include the adjustment element (see FIG. 1) and the mounting structure that includes the adjustment element of the present invention (see FIG. 3) will be compared. First, as shown in FIG. 2A, when the power path is U-shaped from X to Y because the power is connected to one end X, Y side of the wiring patterns 11a, 11b. It is. In this case, it is considered that the current of the outer resistor 15a decreases and the current of the inner resistor 15b increases in the two resistors 15a and 15b due to the resistance of the wiring pattern. That is, the current distribution is biased in the two resistors 15a and 15b.

これに対し、図2(b)に示すように、電流経路がXからZに配線パターン11a、11bにおいて同一方向に流れる場合である。この場合には、2個の抵抗器15a,15bに略均等に電流が流れると考えられる。   On the other hand, as shown in FIG. 2B, the current path flows from X to Z in the same direction in the wiring patterns 11a and 11b. In this case, it is considered that current flows through the two resistors 15a and 15b substantially evenly.

調整素子の効果を検証するため、電流経路がX→Yの場合とX→Zの場合について、電圧検出端子Sの導出位置によって、どのように特性が変化するかを検証した。具体的には、図5下部に示す配線パターンからの電圧検出端子取出位置Sを両抵抗器15a,15bの中心位置を0.00とし、取出位置Sを、両抵抗器を固定した状態で左右に移動させ、出現抵抗値および抵抗温度係数(TCR)を測定した。そして、図5上部に示すグラフに、横軸を電圧検出端子取出位置Sとし、縦軸を出現抵抗値(mΩ)または抵抗温度係数(ppm/℃)として、位置Sの変化による出現抵抗値と抵抗温度係数の変化を調べた。   In order to verify the effect of the adjustment element, it was verified how the characteristics change depending on the lead-out position of the voltage detection terminal S when the current path is X → Y and X → Z. Specifically, the voltage detection terminal extraction position S from the wiring pattern shown in the lower part of FIG. 5 is set to 0.00 at the center position of both resistors 15a and 15b, and the extraction position S is left and right with both resistors fixed. The appearance resistance value and the temperature coefficient of resistance (TCR) were measured. In the graph shown in the upper part of FIG. 5, the horizontal axis is the voltage detection terminal extraction position S and the vertical axis is the appearance resistance value (mΩ) or the resistance temperature coefficient (ppm / ° C.). The change of resistance temperature coefficient was investigated.

図6および図7は調整素子が存在しない実装構造における出現抵抗値および抵抗温度係数(TCR)のグラフである。実線で示すのが、電流をX→Yへ流した場合で、破線で示すのが、電流をX→Zへ流した場合である。このグラフで示すとおり、電圧検出端子取出位置Sが0mm、つまり、並列接続した2つの抵抗器15a,15bの中間においては、出現抵抗値や抵抗温度係数が安定する。しかし、実線で示す電流経路がX→Yの場合には、これをはずれた位置では、出現抵抗値や抵抗温度係数が大きく変化する。従って、抵抗器の実装位置のバラツキによって特性が変化し易く、安定した精度の電流検出が難しくなる。   6 and 7 are graphs of the appearance resistance value and the temperature coefficient of resistance (TCR) in a mounting structure in which no adjustment element is present. The solid line shows the case where the current is passed from X to Y, and the broken line shows the case where the current is passed from X to Z. As shown in this graph, when the voltage detection terminal extraction position S is 0 mm, that is, between the two resistors 15a and 15b connected in parallel, the appearance resistance value and the resistance temperature coefficient are stabilized. However, when the current path indicated by the solid line is X → Y, the appearance resistance value and the temperature coefficient of resistance greatly change at a position away from this. Therefore, the characteristics are likely to change due to variations in the mounting position of the resistor, making it difficult to detect current with stable accuracy.

図8および図9は調整素子を実装した本発明の実装構造における出現抵抗値および抵抗温度係数(TCR)のグラフである。このグラフで示すとおり、調整素子を備えない場合に比べて、X→Y方向とX→Z方向のそれぞれのグラフの乖離が押さえられており、特にX→Y方向における出現抵抗値や抵抗温度係数のグラフの傾斜が緩やかになっていることが分かる。従って、調整素子21a、21bを配置することで、両抵抗器の電流分布の偏りが小さくなり、抵抗器の実装位置ズレ、あるいは、電圧検出端子取出位置Sのズレによる、電流検出の精度のバラツキを抑制できることが分かる。また、本発明は、より低い抵抗値が要求される場合に効果が高く、特に、5mΩ以下の電流検出用抵抗器、更に好ましくは1mΩ以下の電流検出用抵抗器を並列に実装して使用する場合に好適である。   8 and 9 are graphs of the appearance resistance value and the resistance temperature coefficient (TCR) in the mounting structure of the present invention in which the adjustment element is mounted. As shown in this graph, the divergence between the graphs in the X → Y direction and the X → Z direction is suppressed as compared with the case where no adjustment element is provided. In particular, the appearance resistance value and the resistance temperature coefficient in the X → Y direction are suppressed. It can be seen that the slope of the graph in FIG. Therefore, by arranging the adjusting elements 21a and 21b, the current distribution of both resistors is less biased, and the current detection accuracy varies due to the displacement of the resistor mounting position or the voltage detection terminal extraction position S. It can be seen that it can be suppressed. The present invention is highly effective when a lower resistance value is required. In particular, a current detection resistor of 5 mΩ or less, more preferably a current detection resistor of 1 mΩ or less is mounted and used in parallel. It is suitable for the case.

図10は本発明の第1変形例の実装構造を示す。この変形例では、CuやAlなどの抵抗率が低い材料をクランク状に折り曲げた形状の調整素子22a、22bを採用している。抵抗器の並び方向に沿って、一方の抵抗器15aの電極の端部から、他方の抵抗器15bの電極の端部までに及ぶサイズのブリッジ状の調整素子である。上記実施例に比べると、実装面積が小さいため、実装性が向上する。すなわち、はんだ付けを行う場合は、実装面積が大きくなるとボイドの発生が懸念されるが、実装面積が小さいので、そのような懸念が低減する。   FIG. 10 shows a mounting structure of a first modification of the present invention. In this modified example, adjustment elements 22a and 22b having a shape obtained by bending a material having a low resistivity such as Cu or Al into a crank shape are employed. This is a bridge-shaped adjusting element having a size extending from the end of the electrode of one resistor 15a to the end of the electrode of the other resistor 15b along the direction in which the resistors are arranged. Compared to the above embodiment, the mounting area is small, so that the mountability is improved. That is, when soldering, if the mounting area becomes large, the generation of voids is a concern. However, since the mounting area is small, such a concern is reduced.

図11は本発明の第2変形例の実装構造を示す。この変形例では、第1変形例と同様にクランク状に折り曲げた形状の調整素子23a、23bを採用している。この調整素子は第1変形例の調整素子と比較して、抵抗器の並び方向に沿って、短く形成されている。   FIG. 11 shows the mounting structure of the second modification of the present invention. In this modification, adjustment elements 23a and 23b having a shape bent in a crank shape are employed as in the first modification. This adjustment element is shorter than the adjustment element of the first modification along the direction in which the resistors are arranged.

図12は本発明の第3変形例の実装構造を示す。この変形例では、第1変形例と同様にクランク状に折り曲げた形状の調整素子24a、24bを採用している。この調整素子は同様に抵抗器の並び方向に沿って配置されているが、電流が一方の抵抗器15aに流出入する部位の手前に調整素子の接続部位があり、調整素子の他の接続部位が、他の抵抗器15bに電流が流出入する部位の手前となるように、長く配置されている。   FIG. 12 shows the mounting structure of the third modified example of the present invention. In this modification, adjustment elements 24a and 24b having a shape bent in a crank shape are employed as in the first modification. This adjusting element is similarly arranged along the direction in which the resistors are arranged, but there is a connecting portion of the adjusting element before the portion where the current flows into and out of one resistor 15a, and the other connecting portion of the adjusting element. However, it is arranged long so as to be in front of the part where the current flows into and out of the other resistor 15b.

図13は本発明の第4変形例の実装構造を示す。この変形例では、第1変形例と同様にクランク状に折り曲げた形状の調整素子25a、25bを採用している。この調整素子は同様に抵抗器の並び方向に沿って配置されているが、調整素子の幅が配線パターンの幅と等しくなっている。すなわち、電流が抵抗器に流出入する手前で、配線パターンが調整素子に分岐し、電流の一部が配線パターンから分岐して流れ、さらに調整素子から抵抗器に流出入し得る構造になっている。   FIG. 13 shows the mounting structure of the fourth modified example of the present invention. In this modification, adjustment elements 25a and 25b having a shape bent in a crank shape are employed as in the first modification. This adjustment element is similarly arranged along the direction in which the resistors are arranged, but the width of the adjustment element is equal to the width of the wiring pattern. That is, before the current flows into and out of the resistor, the wiring pattern branches to the adjustment element, and a part of the current flows from the wiring pattern and flows into the resistor, and further from the adjustment element to the resistor. Yes.

これまで本発明の一実施形態について説明したが、本発明は上述の実施例に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

本発明は、低抵抗値の抵抗器を並列接続して使用する、電流検出用抵抗器の実装構造に好適に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be suitably used for a current detection resistor mounting structure in which low resistance resistors are connected in parallel.

Claims (3)

基板上に形成された一対のランドを含む配線パターンと、
前記ランドに並列に実装された少なくとも2つの電流検出用抵抗器と、
前記一対のランドから導出された検出端子と、を備え、
一の電流検出用抵抗器の実装部の近傍および他の電流検出用抵抗器の実装部の近傍の配線パターンの抵抗値を下げるための調整素子を備えたことを特徴とする電流検出用抵抗器の実装構造。
A wiring pattern including a pair of lands formed on a substrate;
At least two current sensing resistors mounted in parallel to the land;
A detection terminal derived from the pair of lands,
A current detecting resistor comprising an adjustment element for reducing a resistance value of a wiring pattern in the vicinity of a mounting portion of one current detecting resistor and in the vicinity of a mounting portion of another current detecting resistor Implementation structure.
前記配線パターンの少なくとも一方は、前記電流検出用抵抗器の電極配置方向と略直角方向に延びていることを特徴とする請求項1に記載の電流検出用抵抗器の実装構造。   2. The current detection resistor mounting structure according to claim 1, wherein at least one of the wiring patterns extends in a direction substantially perpendicular to an electrode arrangement direction of the current detection resistor. 基板上に形成された一対のランドを含む配線パターンと、  A wiring pattern including a pair of lands formed on a substrate;
前記ランドに並列に実装された少なくとも2つの電流検出用抵抗器と、を備え、  And at least two current detection resistors mounted in parallel to the land,
一の電流検出用抵抗器の電極の端部から、他方の電流検出用抵抗器の電極の端部に及ぶ調整素子であって、電流検出用抵抗器よりも電気抵抗率が低い調整素子を備えたことを特徴とする電流検出用抵抗器の実装構造。  An adjustment element extending from the end of the electrode of one current detection resistor to the end of the electrode of the other current detection resistor, the adjustment element having an electric resistivity lower than that of the current detection resistor A mounting structure of a current detection resistor characterized by that.
JP2012051316A 2012-03-08 2012-03-08 Current detection resistor mounting structure Active JP5966224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012051316A JP5966224B2 (en) 2012-03-08 2012-03-08 Current detection resistor mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012051316A JP5966224B2 (en) 2012-03-08 2012-03-08 Current detection resistor mounting structure

Publications (2)

Publication Number Publication Date
JP2013187354A JP2013187354A (en) 2013-09-19
JP5966224B2 true JP5966224B2 (en) 2016-08-10

Family

ID=49388547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012051316A Active JP5966224B2 (en) 2012-03-08 2012-03-08 Current detection resistor mounting structure

Country Status (1)

Country Link
JP (1) JP5966224B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6894181B2 (en) * 2015-06-17 2021-06-30 ダイキン工業株式会社 Inverter device
CN108323006B (en) * 2018-03-07 2024-01-16 长沙先度科技有限公司 Pad layout structure of power resistor and battery detection circuit
JP7014138B2 (en) * 2018-11-26 2022-02-01 三菱電機株式会社 Semiconductor device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216308A (en) * 1993-01-14 1994-08-05 Mitsubishi Electric Corp Semiconductor device sealed with resin
JP2879526B2 (en) * 1993-12-24 1999-04-05 株式会社三社電機製作所 Current detector
JP3826749B2 (en) * 2001-08-22 2006-09-27 株式会社日立製作所 Power converter with shunt resistor
JP2005174955A (en) * 2003-12-05 2005-06-30 Toyota Industries Corp Semiconductor module
JP4391918B2 (en) * 2004-10-13 2009-12-24 コーア株式会社 Current detection resistor
JP4403428B2 (en) * 2007-02-09 2010-01-27 オンキヨー株式会社 Printed wiring board
JP4681031B2 (en) * 2008-08-01 2011-05-11 富士通テレコムネットワークス株式会社 Current balance circuit
JP5309361B2 (en) * 2009-01-15 2013-10-09 コーア株式会社 Mounting board for current detection resistor and manufacturing method thereof
JP5360419B2 (en) * 2010-01-27 2013-12-04 三菱電機株式会社 Electronic circuit board

Also Published As

Publication number Publication date
JP2013187354A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
KR102181276B1 (en) Current detection device
US8531264B2 (en) Current sensing resistor and method for manufacturing the same
JP6074696B2 (en) Resistor terminal connection structure
JP5970695B2 (en) Current detection resistor and its mounting structure
JP6010468B2 (en) Shunt resistance type current sensor
WO2015012314A1 (en) Shunt-resistor-type current sensor
JP5966224B2 (en) Current detection resistor mounting structure
KR20150023704A (en) Shunt resistance type current sensor
JP5957693B2 (en) Chip resistor
US20170162302A1 (en) Current detection resistor
JP5309361B2 (en) Mounting board for current detection resistor and manufacturing method thereof
JP4391918B2 (en) Current detection resistor
JP6474640B2 (en) Current detection resistor
KR20150047546A (en) Shunt resistance-type current sensor
JP2014085245A (en) Shunt resistor current sensor
JP2014137223A (en) Shunt resistance type current sensor and fitting structure of shunt resistance type current sensor
JP4814553B2 (en) Current detection resistor
JP5927435B2 (en) Electronic equipment
JP6400051B2 (en) Shunt resistance type current detector
JP6082604B2 (en) Shunt resistance type current sensor
JP2020101542A (en) Resistance assembly for battery sensor and battery sensor
WO2024111254A1 (en) Shunt resistor
JP5918023B2 (en) Shunt resistance type current sensor
JP2016023974A (en) Current sensor
JP2016038232A (en) Resistance measuring electro-conductor, resistance measuring apparatus for electro-conductors, and electric current detecting apparatus

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20150108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160616

R150 Certificate of patent or registration of utility model

Ref document number: 5966224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250