JP5964983B2 - 質量分析法により微生物を特定するための方法 - Google Patents
質量分析法により微生物を特定するための方法 Download PDFInfo
- Publication number
- JP5964983B2 JP5964983B2 JP2014544031A JP2014544031A JP5964983B2 JP 5964983 B2 JP5964983 B2 JP 5964983B2 JP 2014544031 A JP2014544031 A JP 2014544031A JP 2014544031 A JP2014544031 A JP 2014544031A JP 5964983 B2 JP5964983 B2 JP 5964983B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- peak
- range
- charge ratio
- microorganisms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 244000005700 microbiome Species 0.000 title claims description 28
- 238000000034 method Methods 0.000 title claims description 21
- 238000004949 mass spectrometry Methods 0.000 title claims description 13
- 238000001819 mass spectrum Methods 0.000 claims description 15
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 claims description 3
- 238000004611 spectroscopical analysis Methods 0.000 claims description 3
- 238000013139 quantization Methods 0.000 description 19
- 238000001228 spectrum Methods 0.000 description 14
- 239000011159 matrix material Substances 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000007635 classification algorithm Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000000538 analytical sample Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000009411 base construction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/0027—Methods for using particle spectrometers
- H01J49/0036—Step by step routines describing the handling of the data generated during a measurement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
- G01N33/6848—Methods of protein analysis involving mass spectrometry
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
- G16B40/10—Signal processing, e.g. from mass spectrometry [MS] or from PCR
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B99/00—Subject matter not provided for in other groups of this subclass
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Medical Informatics (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Theoretical Computer Science (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Evolutionary Biology (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Microbiology (AREA)
- Artificial Intelligence (AREA)
- Signal Processing (AREA)
- Bioethics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Evolutionary Computation (AREA)
- Public Health (AREA)
- Software Systems (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
当該微生物の少なくとも1つの質量スペクトルを取得するステップと、
取得した質量スペクトルごとに、
当該スペクトルのピークを所定の質量範囲で検出するステップと、
質量対電荷比の範囲における各所定の再分割区間において高々1つのピークを特定する、ピークのリストを生成するステップであって、当該再分割区間の幅は、関係
過去に特定した微生物および/または微生物の種類の知識ベースに従って取得したピークのリスト(複数可)を分析するステップと、
を含む方法を提供することである。
p=Δμ/m=定数
に適合させることができる。
p=Δμ/m (4)
のタイプの不確実性を考慮することができる。ここで、pはピーク位置の精度であり、Δμは分光計ピーク位置の測定の不確実性であり、mはピークの実際の位置である。したがって、当該量子化は、質量分光計の測定誤差を考慮した適合的な量子化である。
22 分類検出
24 知識ベース
Claims (7)
- 質量分析法によって微生物を特定するための方法であって、
前記微生物の少なくとも1つの質量スペクトルを取得するステップと、
取得した質量スペクトルごとに、
前記質量スペクトルのピークを所定の質量範囲で検出するステップと、
質量対電荷比の範囲における各所定の再分割区間において高々1つのピークを特定する、ピークのリストを生成するステップであって、前記再分割区間の幅は、関係
過去に特定した微生物および/または微生物の種類の知識ベースに従って取得したピークのリスト(複数可)を分析するステップと、
を含む、方法。 - 質量対電荷比の所定の範囲は3、000トムソンから17、000トムソンの範囲内にある、請求項1に記載の方法。
- 900から1500個の区間が存在する、請求項1または2に記載の方法。
- 1200から1400個の区間が存在する、請求項3に記載の方法。
- 前記再分割区間に保持された前記ピークは最大ピークである、請求項1乃至4の何れか1項に記載の方法。
- 前記質量分析法はMALDI−TOF分光分析である、請求項1乃至5の何れか1項に記載の方法。
- 特定すべき微生物の質量スペクトルを生成可能な質量分光計と、
請求項1乃至6の何れか1項の方法を実施することによって、前記質量分光計により生成された前記質量スペクトルに関連付けられた前記微生物を特定可能な計算ユニットと、
を備える、質量分析法により微生物を特定するための装置。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161566025P | 2011-12-02 | 2011-12-02 | |
US61/566,025 | 2011-12-02 | ||
EP11306610.4A EP2600385A1 (fr) | 2011-12-02 | 2011-12-02 | Procédé d'identification de microorganismes par spectrométrie de masse |
EP11306610.4 | 2011-12-02 | ||
PCT/IB2012/056860 WO2013080170A1 (fr) | 2011-12-02 | 2012-11-30 | Procede d'identification de microorganismes par spectrometrie de masse |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015500466A JP2015500466A (ja) | 2015-01-05 |
JP5964983B2 true JP5964983B2 (ja) | 2016-08-03 |
Family
ID=45524307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014544031A Active JP5964983B2 (ja) | 2011-12-02 | 2012-11-30 | 質量分析法により微生物を特定するための方法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US10541119B2 (ja) |
EP (3) | EP2600385A1 (ja) |
JP (1) | JP5964983B2 (ja) |
CN (1) | CN103959426B (ja) |
ES (1) | ES2755734T3 (ja) |
IN (1) | IN2014KN01140A (ja) |
WO (1) | WO2013080170A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2600385A1 (fr) * | 2011-12-02 | 2013-06-05 | bioMérieux, Inc. | Procédé d'identification de microorganismes par spectrométrie de masse |
FR3009387B1 (fr) * | 2013-07-31 | 2016-11-18 | Biomerieux Sa | Procede et dispositif d'analyse d'un echantillon biologique |
FR3016461B1 (fr) * | 2014-01-10 | 2017-06-23 | Imabiotech | Procede de traitement de donnees d'imagerie moleculaire et serveur de donnees correspondant |
FR3035410B1 (fr) * | 2015-04-24 | 2021-10-01 | Biomerieux Sa | Procede d'identification par spectrometrie de masse d'un sous-groupe de microorganisme inconnu parmi un ensemble de sous-groupes de reference |
WO2017168741A1 (ja) * | 2016-03-31 | 2017-10-05 | 株式会社島津製作所 | 微生物の識別方法 |
GB2575168B (en) * | 2018-06-04 | 2022-06-01 | Bruker Daltonics Gmbh & Co Kg | Precursor selection for data-dependent tandem mass spectrometry |
WO2020230397A1 (ja) * | 2019-05-10 | 2020-11-19 | 株式会社島津製作所 | 理論質量の外れ値検出方法 |
WO2021061247A2 (en) | 2019-06-29 | 2021-04-01 | Zeteo Tech, Inc. | Methods and systems for detecting aerosol particles without using complex organic maldi matrices |
US12112933B2 (en) | 2019-08-01 | 2024-10-08 | Shimadzu Corporation | Imaging mass spectrometer |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4008388A (en) * | 1974-05-16 | 1977-02-15 | Universal Monitor Corporation | Mass spectrometric system for rapid, automatic and specific identification and quantitation of compounds |
JP2006522340A (ja) | 2003-04-02 | 2006-09-28 | メルク エンド カムパニー インコーポレーテッド | 質量分析データの分析法 |
JP4818981B2 (ja) | 2006-04-28 | 2011-11-16 | 独立行政法人産業技術総合研究所 | 細胞の迅速識別方法及び識別装置 |
US7501621B2 (en) * | 2006-07-12 | 2009-03-10 | Leco Corporation | Data acquisition system for a spectrometer using an adaptive threshold |
EP1942194A1 (en) | 2007-01-08 | 2008-07-09 | Université René Descartes | Method for identifying a germ isolated from a clinical sample |
FR2920235B1 (fr) | 2007-08-22 | 2009-12-25 | Commissariat Energie Atomique | Procede d'estimation de concentrations de molecules dans un releve d'echantillon et appareillage |
DE102010006450B4 (de) | 2010-02-01 | 2019-03-28 | Bruker Daltonik Gmbh | Gestufte Suche nach Mikrobenspektren in Referenzbibiliotheken |
CN102253110A (zh) | 2011-06-09 | 2011-11-23 | 曹际娟 | Maldi-tof ms辅助鉴定霍乱弧菌的方法 |
CN102253111A (zh) | 2011-06-09 | 2011-11-23 | 曹际娟 | Maldi-tof ms辅助鉴定单增李斯特氏菌的方法 |
EP2600385A1 (fr) * | 2011-12-02 | 2013-06-05 | bioMérieux, Inc. | Procédé d'identification de microorganismes par spectrométrie de masse |
-
2011
- 2011-12-02 EP EP11306610.4A patent/EP2600385A1/fr not_active Withdrawn
-
2012
- 2012-11-30 WO PCT/IB2012/056860 patent/WO2013080170A1/fr active Application Filing
- 2012-11-30 ES ES12798884T patent/ES2755734T3/es active Active
- 2012-11-30 CN CN201280058472.1A patent/CN103959426B/zh active Active
- 2012-11-30 EP EP12798884.8A patent/EP2786397B1/fr active Active
- 2012-11-30 JP JP2014544031A patent/JP5964983B2/ja active Active
- 2012-11-30 US US14/361,794 patent/US10541119B2/en active Active
- 2012-11-30 IN IN1140KON2014 patent/IN2014KN01140A/en unknown
- 2012-11-30 EP EP19199848.3A patent/EP3627533A1/fr not_active Withdrawn
-
2019
- 2019-12-09 US US16/708,419 patent/US20200111653A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20200111653A1 (en) | 2020-04-09 |
US10541119B2 (en) | 2020-01-21 |
WO2013080170A1 (fr) | 2013-06-06 |
CN103959426B (zh) | 2016-11-09 |
IN2014KN01140A (ja) | 2015-10-16 |
JP2015500466A (ja) | 2015-01-05 |
EP2786397B1 (fr) | 2019-10-02 |
EP3627533A1 (fr) | 2020-03-25 |
EP2600385A1 (fr) | 2013-06-05 |
US20140358449A1 (en) | 2014-12-04 |
ES2755734T3 (es) | 2020-04-23 |
EP2786397A1 (fr) | 2014-10-08 |
CN103959426A (zh) | 2014-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5964983B2 (ja) | 質量分析法により微生物を特定するための方法 | |
US10859556B2 (en) | Systems and methods for multivariate analysis using multi-subsystem data | |
Wünsch et al. | Emerging patterns in the global distribution of dissolved organic matter fluorescence | |
JP6091493B2 (ja) | 試料に存在する成分を決定するための分光装置と分光法 | |
JP5238145B2 (ja) | 質量分析データの処理装置及び方法 | |
US20230240538A1 (en) | System and Methods for Real Time Raman Spectroscopy for Cancer Detection | |
CN108931570B (zh) | 质谱分析数据解析装置以及质谱分析数据解析用程序 | |
US20060255249A1 (en) | Automatic background removal for input data | |
WO2016103312A1 (ja) | 分析データ処理方法及び装置 | |
CN108240978B (zh) | 基于拉曼光谱的自学习式定性分析方法 | |
JP6370903B2 (ja) | 生体サンプルを分析するための方法及びデバイス | |
JP6748085B2 (ja) | 干渉検出および着目ピークのデコンボルーション | |
US6944549B2 (en) | Method and apparatus for automated detection of peaks in spectroscopic data | |
Cooper et al. | Wavelet based Raman spectra comparison | |
CN109829513B (zh) | 一种顺序式波长色散x射线荧光光谱智能分析方法 | |
WO2021038252A1 (en) | Spectroscopic apparatus and methods for determining components present in a sample | |
WO2018158801A1 (ja) | スペクトルデータの特徴抽出装置および方法 | |
Dai et al. | Improved random forest algorithm to classify methicillin-resistant and methicillin-susceptible staphylococcus aureus on mass spectra | |
Cannataro et al. | Preprocessing, management, and analysis of mass spectrometry proteomics data | |
Cannataro et al. | On the preprocessing of mass spectrometry proteomics data | |
CN117999605A (zh) | 谱比较 | |
Andersson | Classification of spectral signatures in biological aerosols | |
Dalmasso et al. | Data processing and analysis using ProteinChip® data manager software | |
Jouve et al. | Statistical power in MALDI/SELDI-TOF studies | |
Si | Enhancement of MS Signal Processing For Improved Cancer Biomarker Discovery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150622 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160630 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5964983 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |