JP5963202B2 - Vehicle exhaust system with "stop-start" compression ignition internal combustion engine - Google Patents

Vehicle exhaust system with "stop-start" compression ignition internal combustion engine Download PDF

Info

Publication number
JP5963202B2
JP5963202B2 JP2012545440A JP2012545440A JP5963202B2 JP 5963202 B2 JP5963202 B2 JP 5963202B2 JP 2012545440 A JP2012545440 A JP 2012545440A JP 2012545440 A JP2012545440 A JP 2012545440A JP 5963202 B2 JP5963202 B2 JP 5963202B2
Authority
JP
Japan
Prior art keywords
washcoat
upstream
zone
downstream
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012545440A
Other languages
Japanese (ja)
Other versions
JP2013515201A (en
JP2013515201A5 (en
Inventor
ダビド、ベルジャル
ポール、リチャード、フィリップス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey PLC
Original Assignee
Johnson Matthey PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41717219&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5963202(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Johnson Matthey PLC filed Critical Johnson Matthey PLC
Publication of JP2013515201A publication Critical patent/JP2013515201A/en
Publication of JP2013515201A5 publication Critical patent/JP2013515201A5/ja
Application granted granted Critical
Publication of JP5963202B2 publication Critical patent/JP5963202B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/60Discontinuous, uneven properties of filter material, e.g. different material thickness along the longitudinal direction; Higher filter capacity upstream than downstream in same housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0682Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Description

本発明は、ディーゼルエンジンのような車両の圧縮点火内燃機関用排気システムに関し、特にいわゆるエンジン「停止-始動」システムを含む車両用排気システムに関する。   The present invention relates to an exhaust system for a compression ignition internal combustion engine of a vehicle such as a diesel engine, and more particularly to a vehicle exhaust system including a so-called engine “stop-start” system.

先行技術
一般に、車両と内燃機関からの排気ガスは、世界的に強化されつつある規制の対象である。COの排出と関連した地球温暖化への懸念が、車両からのCO排気ガスを削減するために世界各国で財政的インセンティブに繋がっている。それにより、自家用自動車と小型商用車が、相対的に燃料消費量が少なく、相対的にCOを少なく排出する軽量ディーゼルエンジンをより一層使用されている。
Prior Art In general, exhaust gases from vehicles and internal combustion engines are subject to regulations being tightened worldwide. Concerns about global warming associated with CO 2 emissions have led to financial incentives around the world to reduce CO 2 emissions from vehicles. Thus, private cars and light commercial vehicles, relatively fuel consumption is small, is further using lightweight diesel engine for discharging reduced relatively CO 2.

ガソリン点火燃焼内燃機関と圧縮燃焼(即ち、ディーゼル)内燃機関の両方に対して燃料消費と排気ガスを何れも改善するために採択されている計画のうち、「停止-始動」がある。停止-始動システムの場合、車両が数秒以上停止していると、エンジンが全体的に停止する。ドライバがもう一度操作する必要があるとき、クラッチを解除したり、ギアスティックを動かしたり、パワーステアリングホイールを回転させたり、自動又は半自動車両において、「ドライブ」にシフトして行う行動はエンジンを再始動させる。たとえ、このような要因がバッテリと始動モータにおいて荷重を更に増加させても、アップグレードされる必要があり、それにより大幅に節約できる。新欧州ドライビングサイクル(New European Drive Cycle)によるテストにおいて、このような節約は停止-始動システムの採択によって燃料消費の5%まで、CO排気ガスの8%にまで達し得る。都市当局は、小都市と中・大都市における排気ガスの低減に頭を悩ましており、また交通混雑による排気ガスの低減にも力を入れている。従って、停止-始動システムを有する多くの新しい車両が使用されることが期待されている。 Among the plans that have been adopted to improve both fuel consumption and exhaust gas for both gasoline ignition and compression combustion (ie diesel) internal combustion engines are “stop-start”. In the case of a stop-start system, if the vehicle is stopped for more than a few seconds, the engine stops overall. When the driver needs to operate again, the action of shifting to "drive" in an automatic or semi-automatic vehicle, such as disengaging the clutch, moving the gear stick, rotating the power steering wheel, or restarting the engine Let Even if such factors further increase the load on the battery and starter motor, they need to be upgraded, which can save a lot. In testing with the New European Drive Cycle, such savings can reach up to 5% of fuel consumption and up to 8% of CO 2 emissions by adopting a stop-start system. City authorities are worried about reducing exhaust emissions in small cities, medium and large cities, and are also focusing on reducing exhaust emissions due to traffic congestion. Therefore, many new vehicles with a stop-start system are expected to be used.

軽量ディーゼルエンジンは、電子制御モジュールと機械的に改善された噴射技術によって更に効率が高まっている。これは、排気ガスの温度がガソリンエンジン又はヘビーデューティ(トラック及びバス)ディーゼルエンジンの場合よりも非常に低いことを意味する。軽い荷重において、例えば都市で「コースティング(coasting)」インギア(in gear)であるとき、最新のライトデューティ・ディーゼルエンジンによれば燃料を殆ど使用することはなく、また、全く使用されず、このことから、排気ガスの温度もまた約100〜200℃と高くないことがあり得る。このような低い温度にも拘らず、最新の触媒技術は、新欧州ドライビングサイクルで実際の都市運転条件、低速加速及び正常運転条件中にライト-オフ(light-off:触媒活性化)を達成できる。「ライト-オフ」は、触媒が好ましい変換活動温度で反応に対する触媒作用を行う温度と定義され得る。例えば、「CO T80」は、特定の触媒が供給ガスの一酸化炭素を少なくとも50%の効率で、例えばCOに変換させる温度である。これと同様に、「HC T80」は炭化水素(オクタン又はプロパンのような特定の炭化水素)が80%以上の効率で、例えば水蒸気又はCOに変換される温度である。
[5]
しかし、ある環境では低い排気ガスの温度によりディーゼル酸化触媒(DOC)が効率的に動作できないということを意味し得る。即ち、DOCは「ライト-オフ」を達成又は維持できないこともあり得る。
Lightweight diesel engines are even more efficient with electronic control modules and mechanically improved injection technology. This means that the temperature of the exhaust gas is much lower than in the case of gasoline engines or heavy duty (truck and bus) diesel engines. At light loads, for example “coasting” in gear in cities, little or no fuel is used by modern light duty diesel engines. Therefore, the temperature of the exhaust gas may not be as high as about 100 to 200 ° C. Despite these low temperatures, the latest catalyst technology can achieve light-off during actual urban, low-speed acceleration and normal operating conditions in the new European driving cycle. . “Light-off” may be defined as the temperature at which the catalyst catalyzes the reaction at the preferred conversion activity temperature. For example, “CO T 80 ” is the temperature at which a particular catalyst converts the feed gas carbon monoxide to, for example, CO 2 with an efficiency of at least 50%. Similarly, “HC T 80 ” is the temperature at which a hydrocarbon (a specific hydrocarbon such as octane or propane) is converted to, for example, water vapor or CO 2 with an efficiency of 80% or more.
[5]
However, it can mean that in some circumstances, the diesel oxidation catalyst (DOC) cannot operate efficiently due to the low exhaust gas temperature. That is, the DOC may not be able to achieve or maintain “light-off”.

エンジン「停止-始動」システムを備えていない車両の場合、このような軽荷重状態でのエンジンの動作によって発生する追加の問題は、エンジンの作動中に、主に空気を含む相対的に冷たい排気ガスがエンジンからDOC又は他の触媒を経て通過し続けることにある。例えば、加速のような荷重が再び加えられたとき、触媒は即刻的な汚染ガスの好適な変換率を満足させることができず、結果として、汚染した排気ガスは暫く規制水準を超えるおそれがある。適当な時に、より高い温度の排気ガスは触媒温度をもう一度ライトオフ温度以上に上げるようになる。   For vehicles that do not have an engine “stop-start” system, additional problems caused by the operation of the engine under such light load conditions are relatively cool exhausts, mainly containing air, during engine operation. The gas is to continue to pass from the engine through the DOC or other catalyst. For example, when a load such as acceleration is reapplied, the catalyst cannot satisfy the preferred conversion rate of instant pollutant gases, and as a result, polluted exhaust gases may exceed regulatory levels for some time. . At appropriate times, the higher temperature exhaust gas will once again raise the catalyst temperature above the light-off temperature.

第一、第二及び第三白金族金属含有ウォッシュコート区域(上流から下流側に順にナンバリングされる)を含む流動-貫通モノリスを備えるDOC構造がWO 2007/077462に開示されている。第一及び第三区域のそれぞれにおける白金族金属含有量は、空間的に第一区域と第三区域との間に位置する第二区域で更に高い。使用時にエンジンから最も遠くに位置する区域である第三区域は、例えば、より厚いウォッシュコート又は高密度のジルコニアのような本質的に、より高い熱(質)量を有するウォッシュコート物質を利用することによって、第一、第二区域よりも更に高い熱質量を有するウォッシュコートを含むことができる。高密度のジルコニアは、3.5g/cmの密度を有し得る。3つの区域の配置は、全体的に減少した白金族金属費用全体で触媒性能を維持するように設計される。 A DOC structure comprising a flow-through monolith comprising first, second and third platinum group metal containing washcoat zones (numbered in order from upstream to downstream) is disclosed in WO 2007/077462. The platinum group metal content in each of the first and third zones is even higher in the second zone, which is spatially located between the first zone and the third zone. The third zone, the zone furthest away from the engine when in use, utilizes a washcoat material having an essentially higher heat (quality) quantity, such as a thicker washcoat or dense zirconia, for example. Thus, a washcoat having a higher thermal mass than the first and second zones can be included. High density zirconia can have a density of 3.5 g / cm 3 . The three zone arrangement is designed to maintain catalyst performance with overall reduced platinum group metal costs.

アイドル状態で動作を維持する従来のディーゼルエンジンに比べて、触媒がアイドル状態で相対的に低温である排気ガスとの接触により冷却されないため、「停止/始動」技術が備えられた車両ディーゼルエンジンのための運転サイクルにかけて触媒温度の変化が一般的に少ない。本発明の発明者らは、このような「停止/始動」技術が装着されているディーゼル車両から排出される排気ガスの処理のために、改善された活動度を有するディーゼル酸化触媒を考案した。特に、発明者らは、コールド-スタート(cold-start)排気ガスをできるだけ速く処理するための低い触媒ライト-オフ(light-off)温度に対する競合的要求と、触媒がコールド-スタート後に既に「ライト-オフした(light-off)」後で運転サイクルの低温期間中に所望の活動度を下回る「ライトアウト(light-out)」とのバランスを取る装置を考案した。
Compared to conventional diesel engines that maintain operation in the idle state, the catalyst is not cooled by contact with the relatively cool exhaust gas in the idle state, so vehicle diesel engines equipped with “stop / start” technology The change in the catalyst temperature is generally small over the operation cycle. The inventors of the present invention have devised a diesel oxidation catalyst with improved activity for the treatment of exhaust gas emitted from diesel vehicles equipped with such “stop / start” technology. In particular, the inventors have determined that the competitive requirement for low catalyst light-off temperature to treat cold-start exhaust gas as fast as possible and that the catalyst is already “light” after cold-start. A device was devised that balances “light-out” after “light-off” and below the desired activity during the cold period of the driving cycle.

発明の概要
本発明は、エンジン管理手段を備える圧縮点火内燃機関と排気ガスの後処理のための触媒を備える車両を提供し、前記エンジン管理手段は、使用時にアイドル条件を検出し、アイドル条件の存在を決定してエンジンを全体的に停止させ、前記触媒は一種以上の貴金属を含む触媒ウォッシュコートでコーティングされたハニカム基材モノリスを含み、前記触媒ウォッシュコートは第一の上流ウォッシュコート区域と第二の下流ウォッシュコート区域との間に位置し、前記第一のウォッシュコート区域の熱質量は、前記第二のウォッシュコート区域の熱質量と異なり、前記第一の上流ウォッシュコート区域のウォッシュコート層は、前記第二の下流ウォッシュコート区域のウォッシュコート層と実質的に連続する。
[10]
好適な圧縮点火内燃機関は、ディーゼル燃料を用いるが、天然ガス(NG)とディーゼルとバイオ燃料の混合又はフィッシャー・トロプシュ(Fischer-Tropsch)過程誘導燃料を含む他の形態の燃料も可能である。
[11]
前記ハニカム基材モノリスは、コーディエライト又は炭化珪素のようなセラミック物質又はFecralloy(商品名)のような金属で製造され得る。このような装置は好ましくは、いわゆる流動-貫通の構成であるが、ここには開放された入口端部から開放された出口端部まで多数のチャネルが平行に延びる。しかし、前記ハニカム基材モノリスは、いわゆる壁-流動フィルタ又はセラミックフォームのようなフィルタリング基材の形態をなしてもよい。

SUMMARY OF THE INVENTION The present invention provides a vehicle comprising a compression ignition internal combustion engine having engine management means and a catalyst for exhaust gas aftertreatment, wherein the engine management means detects idle conditions during use and Determining the presence and shutting down the engine as a whole, the catalyst comprising a honeycomb substrate monolith coated with a catalyst washcoat comprising one or more precious metals, the catalyst washcoat comprising a first upstream washcoat area and a first Between the second downstream washcoat zone, the thermal mass of the first washcoat zone is different from the thermal mass of the second washcoat zone, and the washcoat layer of the first upstream washcoat zone Is substantially continuous with the washcoat layer in the second downstream washcoat area.
[10]
A suitable compression ignition internal combustion engine uses diesel fuel, but other forms of fuel are possible including a mixture of natural gas (NG) and diesel and biofuel or a Fischer-Tropsch process induction fuel.
[11]
The honeycomb substrate monolith may be made of a ceramic material such as cordierite or silicon carbide or a metal such as Fecralloy. Such a device is preferably of a so-called flow-through configuration, in which a number of channels extend in parallel from the open inlet end to the open outlet end. However, the honeycomb substrate monolith may also take the form of a filtering substrate such as a so-called wall-flow filter or ceramic foam.

一実施形態において、前記第一の上流ウォッシュコート区域の前記熱質量は、前記第二の下流ウォッシュコート区域の熱質量よりも大きい。しかし、ここで好適な実施形態において、前記第一の上流ウォッシュコート区域での熱質量は、前記第二の下流ウォッシュコート区域での熱質量よりも小さい。   In one embodiment, the thermal mass of the first upstream washcoat zone is greater than the thermal mass of the second downstream washcoat zone. However, in a preferred embodiment here, the thermal mass in the first upstream washcoat zone is less than the thermal mass in the second downstream washcoat zone.

前記実施形態の1つにおいて、前記ハニカム基材モノリスは全長を有する。実施形態において、前記第一の上流ウォッシュコート区域は、前記ハニカム基材モノリスの入口端部での上流端部と前記入口端部から測定された前記基材モノリスの全長の15%〜80%の間(例えば、20%〜30%又は20%〜40%の間)のような10%〜90%間の地点での下流端部で定義される。好適な実施形態では、前記入口区域の長さは前記出口区域よりも小さい。   In one of the embodiments, the honeycomb substrate monolith has a full length. In an embodiment, the first upstream washcoat area is 15% to 80% of the total length of the substrate monolith measured from the upstream end at the inlet end of the honeycomb substrate monolith and the inlet end. Defined at the downstream end at a point between 10% and 90%, such as between (for example, between 20% and 30% or between 20% and 40%). In a preferred embodiment, the length of the inlet area is smaller than the outlet area.

低いウォッシュコート含有量の好ましい特徴は、その相対的に低い熱質量がより迅速に加熱し、それによりコールド-スタートに次いで、より効率的に「ライト-オフ」できるという点にある。しかし、低い熱質量により、前記触媒は更に迅速に冷却されることもでき、これと関連して初期のウォーミングアップ後に運転サイクルの中間(即ち、ポスト-「ライト-オフ」)での「ライト-アウト」は好ましくないことに特徴がある。更に高いウォッシュコートの含有量は、支持貴金属に更に多くの支持物質が存在し、より高い貴金属の分散が可能であるという長所を有する。より高いウォッシュコートの含有量は、使用時に熱的エージングに対するより大きい耐性、即ち、より高い熱的耐久性を提供できる。   A preferred feature of a low washcoat content is that its relatively low thermal mass heats up more quickly, thereby enabling more efficient “light-off” following a cold start. However, due to the low thermal mass, the catalyst can also be cooled more quickly, and in this connection “light-out” in the middle of the operating cycle (ie post- “light-off”) after initial warm-up. "Is not preferable. The higher washcoat content has the advantage that more support material is present in the supported noble metal and higher noble metal dispersion is possible. A higher washcoat content can provide greater resistance to thermal aging, ie higher thermal durability, in use.

特定の実施形態において、前記第二又は第一区域のそれぞれに対して前記第一又は第二区域での他の熱質量が他の区域で使用されるよりは、より厚いウォッシュコート層により提供される。このような実施形態において、より厚いウォッシュコート層でのウォッシュコートの含有量は0.3〜0.5gcm −3 (5〜8gin −3 のような0.2〜0.6gcm −3 (4〜10gin -3 であり得る。反対に、他の区域で相対的に、より薄いウォッシュコート層でのウォッシュコートの含有量は0.1〜0.2gcm −3 (2〜3gin −3 のような0.06〜0.21gcm −3 (1〜3.5gin −3 であり得る。
In certain embodiments, for each of the second or first zones, other thermal mass in the first or second zone is provided by a thicker washcoat layer than is used in other zones. The In such embodiments, the washcoat content in the thicker washcoat layer is 0.2-0.6 gcm −3 (4 , such as 0.3-0.5 gcm −3 (5-8 gin −3 ). 10 gin −3 ) . On the other hand, the content of the washcoat in the thinner washcoat layer is 0.06-0.21 gcm , such as 0.1-0.2 gcm −3 (2-3 gin −3 ) , relative to other areas. -3 (1-3.5 gin -3 ) .

これとは異なり、他の実施形態によれば、第二又は第一区域のそれぞれに対して前記第一又は第二区域での他の熱質量である少なくとも3.50gcm-3の密度を有するウォッシュコート成分により提供され得る。適切な密度を有する物質が高密度のアルファアルミナ、高密度の酸化ランタン、高密度のセリウムII酸化物、高密度のセリウムIII酸化物及び高密度のジルコニアからなる群より選択され得る。 In contrast, according to another embodiment, a wash having a density of at least 3.50 gcm −3 , which is another thermal mass in said first or second zone for each of the second or first zone. It can be provided by a coating component. A material having a suitable density may be selected from the group consisting of high density alpha alumina, high density lanthanum oxide, high density cerium II oxide, high density cerium III oxide and high density zirconia.

好適な実施形態において、貴金属の含有量全体は第一の上流ウォッシュコート区域でウォッシュコートの単位体積当たりの貴金属の単位質量で測定されたとき、第二の下流ウォッシュコート区域での貴金属の含有量全体よりも多い。   In a preferred embodiment, the precious metal content in the second downstream washcoat area is measured in unit mass of precious metal per unit volume of washcoat in the first upstream washcoat area. More than the whole.

一実施形態において、例えば、第一の上流ウォッシュコート区域は、ハニカム基材モノリスの貴金属の含有量全体の55〜9%を含む。他の実施形態において、第一の上流ウォッシュコート区域は、ハニカム基材モノリスの貴金属の含有量全体の60〜80%を含む。

In one embodiment, for example, the first upstream washcoat zone comprises 55-9 0% of the total content of noble metal honeycomb substrate monolith. In other embodiments, the first upstream washcoat zone comprises 60-80% of the total precious metal content of the honeycomb substrate monolith.

前記ハニカム基材モノリス上での貴金属の含有量全体は1.1〜5.3kgm −3 (30〜150gft −3 (例えば、1.4〜4.2kgm −3 (40〜120gft -3 )のような0.53〜11kgm −3 (15〜300gft −3 であり得る。
The total content of the noble metal on the honeycomb substrate monolith is 1.1 to 5.3 kgm −3 (30 to 150 gft −3 ) (for example, 1.4 to 4.2 kgm −3 (40 to 120 gft −3 ) ). Such as 0.53 to 11 kgm −3 (15 to 300 gft −3 ) .

本発明で使用するための貴金属は、白金、パラジウム、ロジウム、金、銀又はそれらの2つ以上の混合物から選択された一種以上を含む。本発明で使用するための貴金属の好適な実施形態のサブセットは白金族金属である。   The noble metals for use in the present invention include one or more selected from platinum, palladium, rhodium, gold, silver or mixtures of two or more thereof. A subset of preferred embodiments of noble metals for use in the present invention are platinum group metals.

特に好適な貴金属の選択は、白金、パラジウム、白金とパラジウム混合物(選択的に合金として存在)又はパラジウムとの組み合わせ、混合物であって、合金又は混合物と合金を何れも含む。
Particularly suitable noble metal selections are platinum, palladium, platinum and palladium mixtures (optionally present as an alloy) or combinations and mixtures of palladium and gold , including both alloys or mixtures and alloys.

特定の実施形態において、前記第一の上流区域での前記貴金属又は貴金属の組み合わせは、前記第二の上流区域での前記貴金属又は貴金属の組み合わせと異なるものである。   In certain embodiments, the noble metal or noble metal combination in the first upstream zone is different from the noble metal or noble metal combination in the second upstream zone.

一般に、前記貴金属は、高表面積の耐火酸化物成分上に支持される。適切な貴金属支持成分は、アルミナ、シリカ、非結晶質アルミノ珪酸塩、アルミノ珪酸塩ゼオライト、チタニア、マグネシア、マグネシウム、アルミン酸塩、酸化セリウム、ジルコニアなどのような分子体、混合物、複合酸化物及びこれらのうち2つ以上の混合酸化物、選択的には、一種以上の希土類成分で安定化したものを含む。特に好適な混合酸化物は、酸化セリウム-ジルコニアを含むが、これは(酸化セリウムの内容によって)一種以上の希土類金属とシリカでドーピングされたアルミナを含むこともできる。   In general, the noble metal is supported on a high surface area refractory oxide component. Suitable noble metal support components include molecules, mixtures, complex oxides such as alumina, silica, amorphous aluminosilicate, aluminosilicate zeolite, titania, magnesia, magnesium, aluminate, cerium oxide, zirconia and the like. Of these, two or more mixed oxides, optionally those stabilized with one or more rare earth components. Particularly suitable mixed oxides include cerium oxide-zirconia, which may also include alumina doped with one or more rare earth metals and silica (depending on the content of cerium oxide).

本発明で使用するための触媒は、パッケージング及び車両の空間的制限を考慮して車両における適切な所に位置し得る。一般的な位置は、できるだけエンジンの排気マニホールドの近くに位置する隣接結合位置であって、最も熱い排気ガスの温度による長所を有する。他の一般的な位置は、いわゆる「アンダフロア」位置である。   The catalyst for use in the present invention may be located at an appropriate location in the vehicle taking into account packaging and vehicle spatial limitations. A common location is an adjacent coupling location located as close to the engine exhaust manifold as possible, with the advantage of the hottest exhaust gas temperature. Another common location is the so-called “underfloor” location.

本発明を更に十分に理解できるように、添付の図面を参照して以下の実施形態が単に説明のために提供される。   In order that the present invention may be more fully understood, the following embodiments are provided for purposes of illustration only with reference to the accompanying drawings.

図1は、時間に対してMVEG-B欧州ドライビングサイクルにかけて2.4リットルユーロIVベンチマウンティング車両ディーゼルエンジンにおけるコンピュータモデリングされた質量流量、隣接結合DOCの入口温度、排気ガスの一酸化炭素及び炭化水素を比較したグラフである。   FIG. 1 shows computer modeled mass flow, adjacent coupled DOC inlet temperature, exhaust gas carbon monoxide and hydrocarbons in a 2.4 liter Euro IV bench-mounted vehicle diesel engine over the MVEG-B European driving cycle over time. It is the graph which compared.

図1は、質量流量、隣接結合DOCの入口温度、排気ガスの一酸化炭素及び炭化水素を比較したグラフである。FIG. 1 is a graph comparing mass flow, inlet temperature of adjacent bonded DOC, exhaust gas carbon monoxide and hydrocarbons.

実施形態
次の実施形態はコンピュータモデルの結果を示すが、平方インチ当たりの円筒形400セルの大きさ143×98×135mmと体積1.50Lを有するコーディエライト流動-貫通のハニカムモノリス基材が、全体にかけて低(0.15gcm −3 (2.5gin −3 )又は高(0.43gcm −3 (7.0gin −3 )のウォッシュコート含有量と均一な白金含有量(比較例)の均質なディーゼル酸化触媒ウォッシュコート層でコーティングされる。本発明に係る区域化されたディーゼル酸化触媒は、同じベアハニカム基材モノリスを用いて製造され、表1に示す。
Embodiment The following embodiment shows the results of a computer model where a cordierite flow-through honeycomb monolith substrate having a size of 143 × 98 × 135 mm of cylindrical 400 cells per square inch and a volume of 1.50 L is shown. Of low ( 0.15 gcm −3 (2.5 gin −3 ) ) or high ( 0.43 gcm −3 (7.0 gin −3 ) ) and uniform platinum content (comparative example) Coated with a homogeneous diesel oxidation catalyst washcoat layer. The zoned diesel oxidation catalyst according to the present invention is manufactured using the same bare honeycomb substrate monolith and is shown in Table 1.

区域化されたハニカム基材モノリスの製造方法は、本発明の技術分野に提示されており、本発明の出願人により出願されたWO 99/47260を含むが、即ち、前記方法は、(a)密閉手段を支持体の上部に位置させる段階、(b)予め設定された液体成分の量を前記密閉手段に提供する段階((a)と(b)の順序は変わり得る)及び(c)圧力を加えたり、真空を形成することによって、前記液体成分を前記支持体の少なくとも一部にドローイングし、前記支持体内に前記量全体を実質的に維持させる段階とを含む。   A method of manufacturing a zoned honeycomb substrate monolith has been presented in the technical field of the present invention and includes WO 99/47260 filed by the applicant of the present invention, ie, the method comprises (a) Positioning the sealing means on top of the support, (b) providing a pre-set amount of liquid component to the sealing means (the order of (a) and (b) may vary) and (c) pressure And / or creating a vacuum to draw the liquid component onto at least a portion of the support to substantially maintain the entire amount within the support.

表1の「ウォッシュコート含有量」の列に示された百分率数字は、基材モノリスの入口
端部から測定された基材全長に対する第一の上流区域(最左側列)と第二の下流区域の長さを示す。「Pt含有量」の列は、左側から右側へそれぞれ第一の上流区域(左側列)と第二の下流区域での白金含有量を示す。CO(g)及びHC(g)の数字は、ディーゼル酸化触媒の出口で測定された一酸化炭素と炭化水素に対するものである。「標準化されたCO(g)変換率」と「標準化されたHC(g)変換率」は、均一にコーティングされた低ウォッシュコート含有量(1.4kgm −3 (40gft −3 )(比較例2)に対するものである。全ての実施形態において全体の白金含有量は一定であった。
The percentage figures shown in the “Washcoat Content” column of Table 1 are the first upstream zone (leftmost column) and the second downstream zone relative to the total length of the substrate measured from the inlet end of the substrate monolith. Indicates the length. The “Pt content” column shows the platinum content in the first upstream zone (left column) and the second downstream zone, respectively, from left to right. The figures for CO (g) and HC (g) are for carbon monoxide and hydrocarbons measured at the outlet of the diesel oxidation catalyst. "Standardized CO (g) conversion rate" and "standardized HC (g) conversion rate" are low washcoat contents ( 1.4 kgm- 3 (40 gft- 3 ) ) uniformly coated (comparative example) To 2). In all embodiments, the overall platinum content was constant.

質量流量、温度及び2.4リットルユーロIVベンチマウンティング車両ディーゼルエンジンからの排気ガスのエンジン-アウト一酸化炭素(CO(g))と炭化水素(HC(g))の総含有量が、(与えられた空間的制約で)できるだけエンジンの排気マニホールドに隣接して位置する、いわゆる隣接結合位置に装着されている車両動力計を用いて記録され、このようなデータはモデリングされた触媒構造を用いてコンピュータモデルを実現するのに使用された。たとえ、使用エンジンが「停止-始動」技術を装着してはいなくても、このようなシステムの効果はMVEG-Bユーロピアン運転サイクルがアイドルに到達した度にエンジンを停止させることで摸倣された。質量流量、触媒入口の温度、排気ガスでの一酸化炭素(CO)及び総炭化水素(THC)が図1に示されている。   Mass flow rate, temperature and total content of engine-out carbon monoxide (CO (g)) and hydrocarbons (HC (g)) of exhaust gas from 2.4 liter Euro IV bench mounting vehicle diesel engine (given) Recorded using a vehicle dynamometer mounted in the so-called adjacent coupling position, located as close as possible to the engine's exhaust manifold (with limited spatial constraints), and such data is recorded using a modeled catalyst structure. Used to implement a computer model. Even if the engine used is not equipped with “stop-start” technology, the effect of such a system was mimicked by stopping the engine every time the MVEG-B Europian driving cycle reached idle. . Mass flow rate, catalyst inlet temperature, exhaust gas carbon monoxide (CO) and total hydrocarbons (THC) are shown in FIG.

結果が表1に示されているが、これから均一な低ウォッシュコートの含有量(比較実施形態2)の代りに、均一な高ウォッシュコートの含有量(比較実施形態1)の使用がMVEG-Bサイクル全体にかけてCO及びHCの変換率を下げることが確認され得る。これは、触媒の増加した熱質量によりテスト始動時に触媒がCO及びHC変換のためのライト-オフにより遅く到達するためであることが分かる。

Figure 0005963202
The results are shown in Table 1, but instead of using a uniform low washcoat content (Comparative Embodiment 2), the use of a uniform high washcoat content (Comparative Embodiment 1) is now MVEG-B. It can be seen that the CO and HC conversion is reduced over the entire cycle. This can be seen because the increased thermal mass of the catalyst causes the catalyst to arrive later at light-off for CO and HC conversion at the start of the test.
Figure 0005963202

基材モノリスの上流側半分が低ウォッシュコートの含有量でコーティングされ、下流側半分が高ウォッシュコートの含有量でコーティングされて残ったとき(実施形態3)、区域間の相対的な白金金属含有量の調節なしに、CO酸化が改善された。テストされた車両に対して、このような構成の逆配列(上流側50%が高ウォッシュコートの含有量であり、下流側半分が低ウォッシュコートの含有量(即ち、実施形態4))は制御より更に活動度が悪い。しかし、テストされた車両は、特にコールド-ランニングエンジンを備え、発明者は実施形態4の構造がより高温で動作するエンジン(他の車両メーカーで提供する製品は、MVEG-Bオンサイクル排気ガスの温度が異なり得る)を備える車両で特に有用であり得ると考えられる。従って、実施形態4の構造は、本発明の範囲に属するものと判断される。しかし、表1の残り(即ち、実施形態5〜8)の結果は、低含有量上流区域を有するが、上流区域の長さと白金金属の含有量が変わる構成に関するものである。   When the upstream half of the substrate monolith is coated with a low washcoat content and the downstream half remains coated with a high washcoat content (Embodiment 3), the relative platinum metal content between the zones CO oxidation was improved without adjusting the amount. For the tested vehicle, the reverse arrangement of such a configuration (upstream 50% is high washcoat content and downstream half is low washcoat content (ie Embodiment 4)) is controlled. The activity is even worse. However, the tested vehicle is particularly equipped with a cold-running engine, and the inventor has found that the engine of Embodiment 4 operates at a higher temperature (the product offered by other vehicle manufacturers is MVEG-B on-cycle exhaust gas It is believed that this can be particularly useful in vehicles with (which may vary in temperature). Therefore, the structure of Embodiment 4 is judged to belong to the scope of the present invention. However, the results of the remainder of Table 1 (ie, embodiments 5-8) relate to configurations having a low content upstream zone, but varying the length of the upstream zone and the platinum metal content.

上流の低ウォッシュコート含有量区域の長さを25%まで短くすることによって(実施形態5)、実施形態4の構造よりもCO酸化において更に改善される。残りの実施形態(実施形態6〜8)は25%長さの入口区域低のウォッシュコートの含有量/75%長さの出口区域の高ウォッシュコート含有量の配列を維持し、両区域間の白金金属含有量の分配の変化を調べた。   By reducing the length of the upstream low washcoat content area to 25% (Embodiment 5), the structure of Embodiment 4 is further improved in CO oxidation. The remaining embodiments (embodiments 6-8) maintain an array of 25% long inlet zone low washcoat content / 75% long outlet zone high washcoat content, and between the two zones Changes in the distribution of platinum metal content were investigated.

低(0.71kg/m (20g/ft )出口区域の白金含有量に比べて高(3.5kg/m (100g/ft )入口区域の白金含有量は、CO変換率を改善させたが、均一な含有量の実施形態に比べてHC変換率を若干低下させた(実施形態6に対する表1の結果参照)。しかし、白金分配2.5kg/m (70g/ft 上流区域/1.1kg/m (30g/ft 下流区域(実施形態7)及び、3.0kg/m (85g/ft 上流区域/0.88kg/m (25g/ft 下流区域(実施形態8))の追加的な繰り返しは、均一な含有量の触媒に対して類似するHC変換率を提供するが、驚いたことに、高PGM含有量の上流区域の実施形態(即ち、3.5kg/m (100g/ft 上流区域の実施形態)に比べてCO変換率を改善させた。
Low ( 0.71 kg / m 3 (20 g / ft 3 ) ) compared to the platinum content in the outlet area High ( 3.5 kg / m 3 (100 g / ft 3 ) ) The platinum content in the inlet area is the CO conversion rate However, the HC conversion rate was slightly reduced as compared with the uniform content embodiment (see the results in Table 1 for Embodiment 6). However, platinum distribution 2.5 kg / m 3 (70 g / ft 3 ) upstream zone / 1.1 kg / m 3 (30 g / ft 3 ) downstream zone (Embodiment 7) and 3.0 kg / m 3 (85 g / ft 3 ) 3 ) Additional iterations of upstream zone / 0.88 kg / m 3 (25 g / ft 3 ) downstream zone (Embodiment 8)) provide similar HC conversion rates for homogeneous content catalysts. Surprisingly, the CO conversion was improved compared to the high PGM content upstream zone embodiment (ie, the 3.5 kg / m 3 (100 g / ft 3 ) upstream zone embodiment).

疑問の余地を無くすために、ここで引用された文献の全体内容が参照としてここに含まれる。   To eliminate any doubt, the entire contents of the documents cited herein are included here as a reference.

Claims (11)

エンジン管理手段を備えた圧縮点火内燃機関と、排気ガス後処理用触媒を有してなる、車両であって、
前記エンジン管理手段が、使用中にアイドル条件を検出し、アイドル条件の存在を決定してエンジンを全体的に停止させるように構成されてなるものであり、
前記触媒が、一種以上の貴金属を含む触媒ウォッシュコートでコーティングされたハニカム基材モノリスを備えてなり、
前記触媒ウォッシュコートが、上流側ウォッシュコート区域から下流側ウォッシュコート区域に渡り延在するものであり
前記上流側ウォッシュコート区域におけるウォッシュコート層が、前記下流側ウォッシュコート区域におけるウォッシュコート層と連続するものであり、
前記上流側ウォッシュコート区域における熱質量が、前記下流側ウォッシュコート区域における熱質量より小さく、
前記上流側ウォッシュコート区域の貴金属の含有量が、前記ハニカム基材モノリスの貴金属の含有量全体の55〜90%であり、
前記ハニカム基材モノリスが全長を有してなり、
前記上流側ウォッシュコート区域が、前記ハニカム基材モノリスの入口端部によって上流端部が定められ、かつ、前記入口端部から測定された前記ハニカム基材モノリスの前記全長の20%〜40%の間の地点によって下流端部が定められてなる、車両。
A vehicle comprising a compression ignition internal combustion engine having an engine management means and an exhaust gas aftertreatment catalyst,
The engine management means is configured to detect idle conditions during use, determine the existence of idle conditions, and stop the engine as a whole.
The catalyst comprises a honeycomb substrate monolith coated with a catalyst washcoat comprising one or more precious metals;
The catalyst washcoat extends from the upstream washcoat zone to the downstream washcoat zone;
The washcoat layer on the upstream side washcoat zone is intended to continue communication with the washcoat layer in the downstream washcoat zones,
The thermal mass in the upstream washcoat zone is less than the thermal mass in the downstream washcoat zone,
The precious metal content in the upstream washcoat zone is 55-90% of the total precious metal content of the honeycomb substrate monolith ,
The honeycomb substrate monolith has a full length,
The upstream washcoat zone is defined by an upstream end by the inlet end of the honeycomb substrate monolith, and is 20% to 40% of the total length of the honeycomb substrate monolith measured from the inlet end. A vehicle having a downstream end defined by a point in between .
前記下流側ウォッシュコート区域における、前記上流側ウォッシュコート区域と比べてより大きい熱質量が、前記下流側ウォッシュコート区域における、前記上流側ウォッシュコート区域と比べてより厚いウォッシュコート層により付与されてなる、請求項に記載の車両。 A greater thermal mass in the downstream washcoat zone than in the upstream washcoat zone is provided by a thicker washcoat layer in the downstream washcoat zone than in the upstream washcoat zone. The vehicle according to claim 1 . 前記より厚いウォッシュコート層が、0.2〜0.6gcm −3 (4〜10gin -3 のウォッシュコート含有量で付与されてなる、請求項に記載の車両。 The vehicle according to claim 2 , wherein the thicker washcoat layer is applied at a washcoat content of 0.2 to 0.6 gcm −3 (4 to 10 gin −3 ) . 前記上流側ウォッシュコート区域は前記下流側ウォッシュコート区域より薄いウォッシュコート層を有し、前記より薄いウォッシュコート層は0.06〜0.21gcm −3 (1〜3.5gin −3 のウォッシュコート含有量を有してなる、請求項2又は3に記載の車両。 The upstream washcoat zone has a thinner washcoat layer than the downstream washcoat zone, and the thinner washcoat layer is 0.06-0.21 gcm- 3 (1-3.5 gin- 3 ) washcoat. The vehicle according to claim 2 or 3 , comprising a content. 前記下流側ウォッシュコート区域における、前記上流側ウォッシュコート区域と比べてより大きい熱質量が、少なくとも3.50gcm-3の密度を有するウォッシュコート成分により付与されてなる、請求項に記載の車両。 Wherein the downstream washcoat zones, larger thermal mass compared to the upstream washcoat zone, formed by applying a washcoat component having a density of at least 3.50Gcm -3, vehicle according to claim 1. 前記ウォッシュコート成分が、アルファアルミナ、ランタナ、セリウムII酸化物、セリウムIII酸化物及びジルコニアからなる群より選択されてなる、請求項に記載の車両。 The washcoat component, A Alpha alumina, La Ntana, Se helium II oxide, formed by selected from the group consisting of Se potassium III oxide及beauty di zirconia, vehicle according to claim 5. 前記上流側ウォッシュコート区域の貴金属の含有量が、前記ハニカム基材モノリスの貴金属の含有量全体の60〜80%である、請求項1〜6の何れか一項に記載の車両。 The vehicle according to any one of claims 1 to 6 , wherein a content of the noble metal in the upstream washcoat area is 60 to 80% of a total content of the noble metal of the honeycomb substrate monolith. 前記ハニカム基材モノリスの体積に対する前記ハニカム基材モノリスにおける貴金属の含有量全体が、0.53〜11kgm −3 (15〜300gft −3 である、請求項1〜7の何れか一項に記載の車両。 Total content of noble metal in the honeycomb substrate monolith to volume of the honeycomb substrate monolith is a 0.53~11kgm -3 (15~300gft -3), according to any one of claims 1 to 7 Vehicle. 前記一種以上の貴金属が、白金、パラジウム、ロジウム、金、銀及びこれらの2つ以上の混合物から構成される群より選択されてなる、請求項1〜8の何れか一項に記載の車両。 The vehicle according to any one of claims 1 to 8 , wherein the one or more noble metals are selected from the group consisting of platinum, palladium, rhodium, gold, silver, and a mixture of two or more thereof. 前記貴金属が、白金、パラジウム、白金とパラジウムの混合物又はパラジウムと金の組み合わせである、請求項に記載の車両。 The vehicle according to claim 9 , wherein the noble metal is platinum, palladium, a mixture of platinum and palladium, or a combination of palladium and gold. 前記上流側ウォッシュコート区域における前記貴金属又は貴金属の組み合わせが、前記下流側ウォッシュコート区域における貴金属又は貴金属の組み合わせと異なるものである、請求項9又は10に記載の車両。 The vehicle according to claim 9 or 10 , wherein the noble metal or combination of noble metals in the upstream washcoat zone is different from the noble metal or combination of noble metals in the downstream washcoat zone.
JP2012545440A 2009-12-21 2010-12-20 Vehicle exhaust system with "stop-start" compression ignition internal combustion engine Expired - Fee Related JP5963202B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0922194.6 2009-12-21
GBGB0922194.6A GB0922194D0 (en) 2009-12-21 2009-12-21 Improvements in emission control
PCT/GB2010/052148 WO2011077125A1 (en) 2009-12-21 2010-12-20 Exhaust system for a vehicle having a "stop- start" compression ignition engine

Publications (3)

Publication Number Publication Date
JP2013515201A JP2013515201A (en) 2013-05-02
JP2013515201A5 JP2013515201A5 (en) 2016-04-14
JP5963202B2 true JP5963202B2 (en) 2016-08-03

Family

ID=41717219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012545440A Expired - Fee Related JP5963202B2 (en) 2009-12-21 2010-12-20 Vehicle exhaust system with "stop-start" compression ignition internal combustion engine

Country Status (10)

Country Link
US (1) US9273583B2 (en)
EP (1) EP2516812B1 (en)
JP (1) JP5963202B2 (en)
KR (1) KR101744364B1 (en)
CN (1) CN102762831B (en)
BR (1) BR112012015197B1 (en)
DE (1) DE102010063714C5 (en)
GB (2) GB0922194D0 (en)
RU (1) RU2554158C2 (en)
WO (1) WO2011077125A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061321A1 (en) * 2009-11-20 2011-05-26 Basf Se Zoned catalyzed soot filter
GB201220912D0 (en) * 2012-11-21 2013-01-02 Johnson Matthey Plc Oxidation catalyst for treating the exhaust gas of a compression ignition engine
US9266092B2 (en) 2013-01-24 2016-02-23 Basf Corporation Automotive catalyst composites having a two-metal layer
US9932876B2 (en) 2015-11-11 2018-04-03 Ford Global Technologies, Llc Systems and method for exhaust warm-up strategy
US11161098B2 (en) * 2018-05-18 2021-11-02 Umicore Ag & Co. Kg Three-way catalyst
GB2581776B (en) * 2019-02-19 2022-08-17 Jaguar Land Rover Ltd Catalytic converter core having first and second regions with different thermal inertia
US11624333B2 (en) 2021-04-20 2023-04-11 Kohler Co. Exhaust safety system for an engine

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559844B1 (en) * 1990-11-26 1999-02-10 Catalytica, Inc. Palladium partial combustion catalysts and a process for using them
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
JPH08103656A (en) 1994-10-06 1996-04-23 N E Chemcat Corp Catalyst for purification of exhaust gas and method therefor
US5510086A (en) * 1995-04-10 1996-04-23 General Motors Corporation Adcat exhaust treatment device
US6087298A (en) * 1996-05-14 2000-07-11 Engelhard Corporation Exhaust gas treatment system
GB9805815D0 (en) 1998-03-19 1998-05-13 Johnson Matthey Plc Manufacturing process
KR100584795B1 (en) * 1998-04-28 2006-06-02 엥겔하드 코포레이션 Monolithic catalysts and related process for manufacture
DE19820971A1 (en) * 1998-05-12 1999-11-18 Emitec Emissionstechnologie Catalytic converter for purifying the exhaust gas from an I.C. engine
US6375910B1 (en) * 1999-04-02 2002-04-23 Engelhard Corporation Multi-zoned catalytic trap and methods of making and using the same
GB0003405D0 (en) 2000-02-15 2000-04-05 Johnson Matthey Plc Improvements in emissions control
DE10046278A1 (en) * 2000-09-19 2002-03-28 Emitec Emissionstechnologie Long life catalyst substrate, for purification of engine exhaust, has initial protective zone with greater thermal capacity per unit area, than another protective zone downstream
DE10161850B4 (en) 2001-12-15 2010-03-04 Daimler Ag Method for operating an internal combustion engine of a motor vehicle
DE10218348B4 (en) * 2002-04-25 2006-08-03 Bayerische Motoren Werke Ag Stop-start device for a motor vehicle with automatic transmission
US7118717B2 (en) * 2002-09-06 2006-10-10 Engelhard Corporation Simplified article for carbon monoxide removal
US7485270B2 (en) 2002-09-13 2009-02-03 Johnson Matthey Public Limited Company Process for treating compression ignition engine exhaust gas
JP4163926B2 (en) 2002-10-09 2008-10-08 日野自動車株式会社 Exhaust white smoke prevention device
GB0304939D0 (en) 2003-03-05 2003-04-09 Johnson Matthey Plc Light-duty diesel engine and a particulate filter therefor
KR20030031074A (en) 2003-03-25 2003-04-18 김성수 Method for controlling idle-stop of a car
DE10333603B4 (en) 2003-07-24 2012-01-05 Daimler Ag Device with a unit for actuating a stop / start unit
JP4333289B2 (en) 2003-09-03 2009-09-16 いすゞ自動車株式会社 Exhaust gas purification system
JP2005177571A (en) * 2003-12-17 2005-07-07 Nissan Motor Co Ltd Catalyst for trapping hc
JP4228971B2 (en) * 2004-04-06 2009-02-25 トヨタ自動車株式会社 Vehicle stop and start device
GB2416717B8 (en) 2004-07-29 2009-11-11 Ford Global Tech Llc A method for regenerating an exhaust treatment device
JP4363331B2 (en) * 2005-01-17 2009-11-11 トヨタ自動車株式会社 Fuel injection system
JP4513629B2 (en) * 2005-03-29 2010-07-28 トヨタ自動車株式会社 Vehicle control device
GB2427655B (en) 2005-06-29 2008-01-30 Ford Global Tech Llc A motor vehicle having a stop-start system
JP5021188B2 (en) 2005-08-01 2012-09-05 株式会社キャタラー Exhaust gas purification catalyst
GB0600130D0 (en) * 2006-01-06 2006-02-15 Johnson Matthey Plc Exhaust system comprising zoned oxidation catalyst
US7740809B2 (en) * 2006-02-15 2010-06-22 Hitachi Metals, Ltd. Exhaust gas-cleaning apparatus
JP4635913B2 (en) * 2006-03-06 2011-02-23 日産自動車株式会社 Engine exhaust purification system
US7722827B2 (en) * 2006-03-31 2010-05-25 Corning Incorporated Catalytic flow-through fast light off ceramic substrate and method of manufacture
US7758834B2 (en) * 2006-08-21 2010-07-20 Basf Corporation Layered catalyst composite
GB0618482D0 (en) 2006-09-20 2006-11-01 Johnson Matthey Plc Washcoated particulate filter substrate
FR2906483B1 (en) * 2006-09-29 2009-06-05 Peugeot Citroen Automobiles Sa MONOLITHIC SUPPORT FOR OXIDATION CATALYST ELEMENT, OXIDATION CATALYST ELEMENT COMPRISING IT, EXHAUST LINE EQUIPPED AND VEHICLE COMPRISING IT.
JPWO2008126321A1 (en) * 2007-03-30 2010-07-22 イビデン株式会社 Exhaust gas purification system
US7802420B2 (en) 2007-07-26 2010-09-28 Eaton Corporation Catalyst composition and structure for a diesel-fueled autothermal reformer placed in and exhaust stream
US9993771B2 (en) 2007-12-12 2018-06-12 Basf Corporation Emission treatment catalysts, systems and methods
DE102007060019B3 (en) 2007-12-13 2009-04-23 Continental Automotive Gmbh Internal combustion engine e.g. petrol engine, controlling method for motor vehicle, involves reducing torque produced by engine such that rotational speed of engine is lowered, and stopping fuel injection, if condition is satisfied
KR20090107359A (en) * 2008-04-08 2009-10-13 현대자동차주식회사 Idle stop and go system and control method thereof
KR100916792B1 (en) * 2008-04-17 2009-09-14 현대자동차주식회사 Regeneration system for emission reduce line of diesel vehicle and method thereof
JP2009285605A (en) * 2008-05-30 2009-12-10 Toyota Motor Corp Catalyst for cleaning exhaust gas
WO2011061321A1 (en) * 2009-11-20 2011-05-26 Basf Se Zoned catalyzed soot filter

Also Published As

Publication number Publication date
DE102010063714C5 (en) 2018-03-29
DE102010063714A1 (en) 2011-09-01
KR20120113231A (en) 2012-10-12
GB2476390A (en) 2011-06-22
EP2516812B1 (en) 2018-10-10
BR112012015197B1 (en) 2021-02-02
GB201021497D0 (en) 2011-02-02
DE102010063714B4 (en) 2014-05-15
EP2516812A1 (en) 2012-10-31
JP2013515201A (en) 2013-05-02
CN102762831B (en) 2015-06-17
GB2476390B (en) 2014-01-15
BR112012015197A2 (en) 2016-04-26
CN102762831A (en) 2012-10-31
GB0922194D0 (en) 2010-02-03
RU2554158C2 (en) 2015-06-27
KR101744364B1 (en) 2017-06-07
WO2011077125A1 (en) 2011-06-30
US20110146251A1 (en) 2011-06-23
US9273583B2 (en) 2016-03-01
RU2012131219A (en) 2014-01-27

Similar Documents

Publication Publication Date Title
JP5963202B2 (en) Vehicle exhaust system with "stop-start" compression ignition internal combustion engine
US7998424B2 (en) Exhaust system comprising zoned oxidation catalyst
JP6312210B2 (en) Internal combustion engine exhaust gas purification method
Guan et al. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines
EP2732141B1 (en) Method and device for reactivating exhaust-gas purification systems of diesel engines with low-pressure egr
KR101558850B1 (en) Exhaust gas purifying system
CN104903554B (en) The SCR system of close-coupled
EP3047122B1 (en) Electrically heated catalyst for a compression ignition engine
CN101776005B (en) Method and system for regeneration of a catalyst
EP2063976B1 (en) Washcoated particulate filter substrate
EP2950912A1 (en) Exhaust system with a reformer catalyst
CN102016252A (en) Exhaust gas purification method and exhaust gas purificaton system
CA2593547A1 (en) Method for purification of exhaust gas from internal-combustion engine
JP2013515201A5 (en)
JP4889585B2 (en) Internal combustion engine exhaust gas purification method
Abthoff et al. Application of in-line hydrocarbon adsorber systems
JP2010281266A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141031

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141203

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141210

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151124

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20160224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160622

R150 Certificate of patent or registration of utility model

Ref document number: 5963202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees