JP5963079B2 - LED driving device, lighting device and vehicle lighting device - Google Patents

LED driving device, lighting device and vehicle lighting device Download PDF

Info

Publication number
JP5963079B2
JP5963079B2 JP2012125014A JP2012125014A JP5963079B2 JP 5963079 B2 JP5963079 B2 JP 5963079B2 JP 2012125014 A JP2012125014 A JP 2012125014A JP 2012125014 A JP2012125014 A JP 2012125014A JP 5963079 B2 JP5963079 B2 JP 5963079B2
Authority
JP
Japan
Prior art keywords
temperature
led
light source
control mode
led light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012125014A
Other languages
Japanese (ja)
Other versions
JP2013251131A (en
Inventor
春男 永瀬
春男 永瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012125014A priority Critical patent/JP5963079B2/en
Publication of JP2013251131A publication Critical patent/JP2013251131A/en
Application granted granted Critical
Publication of JP5963079B2 publication Critical patent/JP5963079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Led Devices (AREA)

Description

本発明は、LED光源を駆動するLED駆動装置、照明装置および車両用照明装置に関する。   The present invention relates to an LED drive device, an illumination device, and a vehicle illumination device that drive an LED light source.

近年、発光ダイオード(Light Emitting Diode、以下「LED」という)が盛んに照明分野で使用されており、用途も多様化している。例えば自動車においては、白色LEDが車内灯として用いられたり、高輝度化によってヘッドランプ(前照灯)やデイタイムランニングランプとして用いられたりしている。   In recent years, light emitting diodes (hereinafter referred to as “LEDs”) have been actively used in the lighting field, and their uses have been diversified. For example, in an automobile, a white LED is used as an interior lamp, or is used as a headlamp (headlight) or a daytime running lamp due to high brightness.

LEDは、白熱電球と比べて長寿命であり、かつ、応答性が速く、さらに構造上コンパクトに実装することができる。また、LEDは、さまざまな色の光を簡単に実現させることができ、かつ、調光も容易である。そして、LEDを用いた照明装置では、光源が薄く、上記光源を立体的に実装できるので、車のデザインなどに制限を与えない自由な設計が可能である。   The LED has a longer life than the incandescent bulb, has a quick response, and can be mounted in a compact structure. In addition, the LED can easily realize light of various colors and can easily be dimmed. And in the illuminating device using LED, since the light source is thin and the said light source can be mounted three-dimensionally, the free design which does not restrict | limit a vehicle design etc. is possible.

上述した照明装置は、複数のLEDが直列に接続されたLED光源と、LED光源を駆動するLED駆動装置とを備えており、LED駆動装置からLED光源に定電流を供給することによって、複数のLEDを均一な明るさで点灯させることができる。   The illumination device described above includes an LED light source in which a plurality of LEDs are connected in series, and an LED drive device that drives the LED light source. By supplying a constant current from the LED drive device to the LED light source, The LED can be lit with uniform brightness.

ところで、LED駆動装置からLED光源への出力電力が数Wから数十Wになると、LEDの温度を下げるためにLEDに放熱フィンが取り付けられる。すなわち、LED光源は、複数のLEDと放熱フィンとを含む構成となる。これにより、LEDが熱暴走して発光特性が劣化するのを防止することができる。   By the way, when the output power from the LED driving device to the LED light source becomes several tens to several tens of watts, a radiation fin is attached to the LED in order to lower the temperature of the LED. That is, the LED light source includes a plurality of LEDs and heat radiating fins. Thereby, it is possible to prevent the LED from being thermally runaway and deteriorating the light emission characteristics.

また、従来から、LEDの温度に応じてLEDの電流または光束を制御する照明装置が知られている(例えば特許文献1,2参照)。   Conventionally, lighting devices that control the current or luminous flux of an LED in accordance with the temperature of the LED are known (see, for example, Patent Documents 1 and 2).

特開2010−118295号公報JP 2010-118295 A 特開2007−118847号公報JP 2007-118847 A

しかしながら、LEDに放熱フィンが取り付けられた構造の従来の照明装置では、放熱フィンによってLED光源の熱容量が大きくなるため、LEDの温度が安定するまでに相当の時間を要する。LEDの温度が安定しないと、時間経過に伴う温度変化およびLED間の温度ばらつきによって、LEDが発した光の色や光束が変動し、安定した良質な光を早期に提供することができなくなるおそれがある。   However, in a conventional lighting device having a structure in which a heat radiating fin is attached to an LED, the heat capacity of the LED light source is increased by the heat radiating fin, so that a considerable time is required until the temperature of the LED is stabilized. If the temperature of the LED is not stable, the color and luminous flux of the light emitted by the LED may fluctuate due to temperature changes with time and temperature variations between the LEDs, making it impossible to provide stable and high-quality light at an early stage. There is.

本発明は上記の点に鑑みて為された発明であり、本発明の目的は、LEDの温度を早期に安定させることによって良質な照明環境を短時間で実現することができるLED駆動装置、照明装置および車両用照明装置を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide an LED driving device and an illumination that can realize a good illumination environment in a short time by stabilizing the temperature of the LED at an early stage. It is providing a device and a lighting device for vehicles.

本発明のLED駆動装置は、LEDおよび放熱構造物を含むLED光源を駆動するLED駆動装置であって、前記LED光源を点灯させる点灯回路部と、前記LEDの温度に相当する部位の温度を検出する温度検出部とを備え、前記点灯回路部は、前記LED光源に給電して当該LED光源を点灯させる駆動回路部と、前記LED光源へ定電流を流すように前記駆動回路部を制御する定電流制御モードおよび当該定電流制御モードの場合よりも大きな出力電力を前記LED光源へ供給するように前記駆動回路部を制御する立ち上げ制御モードを制御モードとして有する制御部とを含み、前記制御部は、前記駆動回路部から前記LED光源への給電を開始した場合に、前記温度検出部の検出温度が予め決められたしきい値温度になるまで前記制御モードを前記立ち上げ制御モードにし、前記検出温度が前記しきい値温度以上になると前記制御モードを前記立ち上げ制御モードから前記定電流制御モードに切り替えることを特徴とする。   The LED driving device of the present invention is an LED driving device that drives an LED light source including an LED and a heat dissipation structure, and detects a lighting circuit unit that lights the LED light source and a temperature corresponding to the temperature of the LED. A temperature detection unit configured to supply power to the LED light source to turn on the LED light source, and a constant current circuit that controls the drive circuit unit to pass a constant current to the LED light source. A control unit having, as a control mode, a startup control mode for controlling the drive circuit unit so as to supply the LED light source with a larger output power than in the case of the current control mode and the constant current control mode, When the power supply from the drive circuit unit to the LED light source is started, the control is performed until the temperature detected by the temperature detection unit reaches a predetermined threshold temperature. The mode to the start-up control mode, the detected temperature and switches the control mode to be the higher the threshold temperature to the constant current control mode from the start-up control mode.

このLED駆動装置において、前記温度検出部は、前記点灯回路部の温度を検出することが好ましい。   In this LED driving device, it is preferable that the temperature detection unit detects a temperature of the lighting circuit unit.

このLED駆動装置において、前記温度検出部は、前記LED光源の温度を検出することが好ましい。   In this LED driving device, it is preferable that the temperature detection unit detects the temperature of the LED light source.

このLED駆動装置において、前記温度検出部は、前記LEDの温度に相当する部位の温度を検出する温度検出機能と前記駆動回路部から前記LED光源に供給される出力電流を検出する電流検出機能とを有する抵抗を含み、前記制御部は、前記制御モードが前記立ち上げ制御モードであるときに、前記抵抗が前記しきい値温度相当の抵抗値になると、前記制御モードを前記立ち上げ制御モードから前記定電流制御モードに切り替えることが好ましい。   In this LED drive device, the temperature detection unit detects a temperature of a part corresponding to the temperature of the LED, and a current detection function detects an output current supplied from the drive circuit unit to the LED light source. When the control mode is the start-up control mode, the control unit changes the control mode from the start-up control mode when the resistance becomes a resistance value corresponding to the threshold temperature. It is preferable to switch to the constant current control mode.

本発明の照明装置は、前記LED駆動装置と、前記LED光源とを備えることを特徴とする。   The illuminating device of this invention is equipped with the said LED drive device and the said LED light source, It is characterized by the above-mentioned.

本発明の車両用照明装置は、前記照明装置を備え、前記LED駆動装置および前記LED光源が車両に搭載されることを特徴とする。   The vehicle lighting device of the present invention includes the lighting device, and the LED driving device and the LED light source are mounted on a vehicle.

本発明のLED駆動装置、照明装置および車両用照明装置では、最初から制御モードが定電流制御モードである場合に比べて、LEDの温度上昇を加速させることができる。これにより、放熱構造を有するLED光源すなわち熱容量の大きなLED光源であっても、LEDの温度を早期に安定させることができる。その結果、所定の光束や配光を有する良質な照明環境を短時間で実現することができるので、ユーザは、例えば読書や運転などの行動を快適に行うことができる。   In the LED drive device, the lighting device, and the vehicle lighting device of the present invention, it is possible to accelerate the temperature rise of the LED compared to the case where the control mode is the constant current control mode from the beginning. Thereby, even if it is an LED light source which has a heat dissipation structure, ie, an LED light source with a large heat capacity, the temperature of LED can be stabilized at an early stage. As a result, a high-quality lighting environment having a predetermined luminous flux and light distribution can be realized in a short time, so that the user can comfortably perform actions such as reading and driving, for example.

実施形態1に係る照明装置の構成図である。It is a block diagram of the illuminating device which concerns on Embodiment 1. FIG. 実施形態1に係る制御部の構成図である。FIG. 3 is a configuration diagram of a control unit according to the first embodiment. 実施形態1に係るLED駆動装置の動作を説明するための説明図である。FIG. 6 is an explanatory diagram for explaining an operation of the LED drive device according to the first embodiment. 実施形態2に係る制御部の構成図である。FIG. 5 is a configuration diagram of a control unit according to a second embodiment. 実施形態3に係る照明装置の構成図である。It is a block diagram of the illuminating device which concerns on Embodiment 3. 実施形態3に係る制御部の構成図である。It is a block diagram of the control part which concerns on Embodiment 3. 実施形態3に係るLED駆動装置の動作を説明するための説明図である。FIG. 10 is an explanatory diagram for explaining an operation of the LED drive device according to the third embodiment. 実施形態4に係る照明装置の構成図である。It is a block diagram of the illuminating device which concerns on Embodiment 4. 実施形態4に係る温度検出部の実装状態を示し、(a)は上面図、(b)は側面図である。The mounting state of the temperature detection part which concerns on Embodiment 4 is shown, (a) is a top view, (b) is a side view. 実施形態4に係るLED駆動装置の動作を説明するための説明図である。FIG. 10 is an explanatory diagram for explaining an operation of an LED drive device according to a fourth embodiment. 実施形態4に係るLED駆動装置の動作を説明するための説明図である。FIG. 10 is an explanatory diagram for explaining an operation of an LED drive device according to a fourth embodiment. 実施形態4に係る照明装置の変形例の要部を示す構成図である。It is a block diagram which shows the principal part of the modification of the illuminating device which concerns on Embodiment 4.

以下の実施形態1〜4において、図1などに示すLED駆動装置3は、LED光源2への給電を開始したときに、まず、定常時よりも大きな出力電力(出力電圧V1×出力電流I1)をLED光源2に供給する。これにより、LED駆動装置3は、LED光源2に含まれているLED(LED素子)21の発熱量を定常時よりも増大させて、LED光源2に含まれている放熱構造物(図示せず)の温度を早期に上昇させる。その結果、定常時に比べて、LED21の温度上昇を加速させることができ、LED21の温度を早期に安定させることができる。   In the following Embodiments 1 to 4, when the LED driving device 3 shown in FIG. 1 or the like starts supplying power to the LED light source 2, first, the output power (output voltage V1 × output current I1) is larger than that in the steady state. Is supplied to the LED light source 2. As a result, the LED driving device 3 increases the heat generation amount of the LED (LED element) 21 included in the LED light source 2 as compared with that in the steady state, and the heat dissipation structure (not shown) included in the LED light source 2. ) Increase the temperature early. As a result, the temperature rise of the LED 21 can be accelerated compared to the steady state, and the temperature of the LED 21 can be stabilized at an early stage.

その後、LED21の温度に相当する部位の温度を検出する温度検出部5の検出温度がしきい値温度以上になると、LED駆動装置3は、LED光源2への出力電力をこれまでよりも小さくし、定常時の動作でLED光源2への出力電流I1を制御する。   Thereafter, when the temperature detected by the temperature detector 5 that detects the temperature of the portion corresponding to the temperature of the LED 21 is equal to or higher than the threshold temperature, the LED drive device 3 reduces the output power to the LED light source 2 than before. The output current I1 to the LED light source 2 is controlled by the operation at the steady state.

上記の動作において、LED21の温度に相当する部位の温度とは、LED21の温度を直接的または間接的に検出することができる部位の温度をいう。   In said operation | movement, the temperature of the site | part corresponded to the temperature of LED21 means the temperature of the site | part which can detect the temperature of LED21 directly or indirectly.

以下、各実施形態について説明する。   Each embodiment will be described below.

(実施形態1)
実施形態1に係る照明装置1は、図1に示すように、放熱構造を有するLED光源2と、LED光源2を駆動するLED駆動装置3とを備えている。LED駆動装置3には、直流電源8が接続されている。以下、LED光源2、LED駆動装置3および直流電源8の詳細について説明する。
(Embodiment 1)
As illustrated in FIG. 1, the lighting device 1 according to the first embodiment includes an LED light source 2 having a heat dissipation structure and an LED driving device 3 that drives the LED light source 2. A DC power supply 8 is connected to the LED driving device 3. Hereinafter, the details of the LED light source 2, the LED driving device 3, and the DC power supply 8 will be described.

直流電源8は、例えば自動車のバッテリなどであり、LED駆動装置3の入力側に接続されている。直流電源8とLED駆動装置3との間には電源スイッチ(図示せず)が設けられている。この電源スイッチがオンになると、直流電源8は、LED駆動装置3に直流電力を供給する。   The DC power source 8 is, for example, a car battery or the like, and is connected to the input side of the LED driving device 3. A power switch (not shown) is provided between the DC power supply 8 and the LED driving device 3. When this power switch is turned on, the DC power supply 8 supplies DC power to the LED driving device 3.

LED光源2は、直列接続された複数のLED21と、各LED21で発生した熱を外部に放熱するための放熱構造物(図示せず)とを備えている。各LED21は、LED駆動装置3から給電されると点灯する。放熱構造物としては、例えば放熱フィンなどがある。   The LED light source 2 includes a plurality of LEDs 21 connected in series and a heat radiating structure (not shown) for radiating the heat generated by each LED 21 to the outside. Each LED 21 lights up when power is supplied from the LED driving device 3. Examples of the heat dissipation structure include a heat dissipation fin.

LED駆動装置3は、LED光源2に給電してLED光源2を点灯させる駆動回路部4と、駆動回路部4の出力(出力電力、出力電圧V1、出力電流I1)を調整する制御部7とを備えている。また、LED駆動装置3は、LED光源2で発生した熱が伝わる部分の温度を検出する温度検出部5と、駆動回路部4からLED光源2に供給される出力電流I1を検出する電流検出部6とを備えている。出力電力は、出力電圧V1と出力電流I1との積である。   The LED drive device 3 includes a drive circuit unit 4 that supplies power to the LED light source 2 to light the LED light source 2, and a control unit 7 that adjusts the output (output power, output voltage V1, output current I1) of the drive circuit unit 4. It has. In addition, the LED driving device 3 includes a temperature detection unit 5 that detects the temperature of a portion where heat generated by the LED light source 2 is transmitted, and a current detection unit that detects an output current I1 supplied from the drive circuit unit 4 to the LED light source 2. 6 is provided. The output power is the product of the output voltage V1 and the output current I1.

駆動回路部4は、直流電源8によって印加される直流の電源電圧V2を所望の直流の出力電圧V1に変圧するDC−DCコンバータ41を備えている。   The drive circuit unit 4 includes a DC-DC converter 41 that transforms a direct-current power supply voltage V2 applied by the direct-current power supply 8 into a desired direct-current output voltage V1.

本実施形態のDC−DCコンバータ41は、図1に示すように昇圧回路である。このDC−DCコンバータ41は、直流電源8の正極に一端が接続されたインダクタンス素子411と、インダクタンス素子411の他端と直流電源8の負極との間に接続されたスイッチング素子412とを備えている。また、DC−DCコンバータ41は、インダクタンス素子411の他端にアノードが接続されたダイオード413と、ダイオード413のカソードと直流電源8の負極との間に接続された平滑コンデンサ414とを備えている。スイッチング素子412は、例えばFET(Field Effect Transistor)などのトランジスタであり、制御部7の指示に従ってオンオフする。   The DC-DC converter 41 of this embodiment is a booster circuit as shown in FIG. The DC-DC converter 41 includes an inductance element 411 having one end connected to the positive electrode of the DC power supply 8 and a switching element 412 connected between the other end of the inductance element 411 and the negative electrode of the DC power supply 8. Yes. The DC-DC converter 41 includes a diode 413 having an anode connected to the other end of the inductance element 411, and a smoothing capacitor 414 connected between the cathode of the diode 413 and the negative electrode of the DC power supply 8. . The switching element 412 is a transistor such as an FET (Field Effect Transistor), for example, and is turned on / off according to an instruction from the control unit 7.

本実施形態のDC−DCコンバータ41は、制御部7の指示によってスイッチング素子412がオンしているとき、スイッチング素子412に電流が流れてインダクタンス素子411にエネルギに蓄えられる。その後、制御部7の指示に従ってスイッチング素子412がオフしたときに、インダクタンス素子411に蓄えられているエネルギがダイオード413を介して平滑コンデンサ414に供給される。このように制御部7がスイッチング素子412をPWM制御することによって、直流電源8の電源電圧V2よりも高い所望の出力電圧V1を得ることができる。   In the DC-DC converter 41 of this embodiment, when the switching element 412 is turned on according to an instruction from the control unit 7, a current flows through the switching element 412 and is stored in the inductance element 411 as energy. Thereafter, when the switching element 412 is turned off in accordance with an instruction from the control unit 7, the energy stored in the inductance element 411 is supplied to the smoothing capacitor 414 via the diode 413. As described above, the control unit 7 performs PWM control of the switching element 412, whereby a desired output voltage V 1 higher than the power supply voltage V 2 of the DC power supply 8 can be obtained.

温度検出部5は、LED21の温度に相当する部位の温度を検出する。すなわち、温度検出部5は、LED21からの熱を直接的または間接的に受ける場所、言い換えるとLED21の温度を直接的または間接的に検出することができる場所に配置されている。温度検出部5としては、例えばサーミスタなど温度変化に対して抵抗値が変動する素子が用いられる。   The temperature detector 5 detects the temperature of the part corresponding to the temperature of the LED 21. That is, the temperature detection part 5 is arrange | positioned in the place which receives the heat from LED21 directly or indirectly, in other words, the place which can detect the temperature of LED21 directly or indirectly. As the temperature detection unit 5, for example, an element such as a thermistor whose resistance value varies with temperature change is used.

本実施形態の温度検出部5は、点灯回路部(駆動回路部4、制御部7)の内部または近傍に配置されている。すなわち、本実施形態の温度検出部5は、点灯回路部の内部または近傍においてLED21からの熱を受ける場所、言い換えると点灯回路部の内部または近傍においてLED21の温度を検出することができる場所に配置されている。この温度検出部5は、配置された部位の温度を検出し、検出温度を検出電圧V3(図2参照)として出力する。なお、点灯回路部の温度がLED21の熱で変化する場合、温度検出部5は、点灯回路部の温度を検出することによって、LED21の温度を間接的に検出するようにしてもよい。   The temperature detection unit 5 of the present embodiment is disposed in or near the lighting circuit unit (the drive circuit unit 4 and the control unit 7). That is, the temperature detection unit 5 of the present embodiment is disposed in a place where the heat from the LED 21 is received in or near the lighting circuit unit, in other words, in a place where the temperature of the LED 21 can be detected in or near the lighting circuit unit. Has been. The temperature detection unit 5 detects the temperature of the arranged part and outputs the detected temperature as a detection voltage V3 (see FIG. 2). When the temperature of the lighting circuit unit changes due to the heat of the LED 21, the temperature detection unit 5 may indirectly detect the temperature of the LED 21 by detecting the temperature of the lighting circuit unit.

電流検出部6は、LED光源2に直列接続された検出抵抗61を備えている。この電流検出部6は、検出抵抗61の両端に生じる電圧降下(検出電圧V4(図2参照、V4=R1×I1))を出力電流I1の検出値として制御部7に出力する。なお、上式において、R1は検出抵抗61の抵抗値である。   The current detection unit 6 includes a detection resistor 61 connected in series to the LED light source 2. The current detection unit 6 outputs a voltage drop (detection voltage V4 (see FIG. 2, V4 = R1 × I1)) generated across the detection resistor 61 to the control unit 7 as a detection value of the output current I1. In the above equation, R1 is the resistance value of the detection resistor 61.

制御部7は、駆動回路部4(DC−DCコンバータ41)の出力を制御するための制御モードとして、定電流制御モードと立ち上げ制御モードとを有している。定電流制御モードは、所望の電流値の定電流をLED光源2へ流すように駆動回路部4(DC−DCコンバータ41)を制御するモードである。立ち上げ制御モードは、定電流制御モードの場合よりも大きな出力電力をLED光源2へ供給するように駆動回路部4(DC−DCコンバータ41)を制御するモードである。制御部7は、制御モードが立ち上げ制御モードであるときは、LED光源2の定格(定格電力、定格電圧、定格電流)を超える給電を許容するが、制御モードが定電流制御モードであるときは、LED光源2の定格を超える給電を許容しない。なお、制御部7は、LED光源2の調光に関する要望を、制御モードが定電流制御モードであるときは受け付けるが、制御モードが立ち上げ制御モードであるときは受け付けないようにしてもよい。また、制御部7は、定電流制御モードおよび立ち上げ制御モード以外のモードを制御モードとしてさらに有していてもよい。   The control unit 7 has a constant current control mode and a startup control mode as control modes for controlling the output of the drive circuit unit 4 (DC-DC converter 41). The constant current control mode is a mode for controlling the drive circuit unit 4 (DC-DC converter 41) so as to flow a constant current having a desired current value to the LED light source 2. The start-up control mode is a mode in which the drive circuit unit 4 (DC-DC converter 41) is controlled so as to supply a larger output power to the LED light source 2 than in the case of the constant current control mode. When the control mode is the start-up control mode, the control unit 7 allows power supply exceeding the rating (rated power, rated voltage, rated current) of the LED light source 2, but when the control mode is the constant current control mode. Does not allow power supply exceeding the rating of the LED light source 2. The control unit 7 accepts the request regarding the light control of the LED light source 2 when the control mode is the constant current control mode, but may not accept the request when the control mode is the startup control mode. The control unit 7 may further have a mode other than the constant current control mode and the startup control mode as the control mode.

立ち上げ制御モード時の出力電力(出力電流I1)は、LED21の耐量の範囲内で、定常時(定電流制御モード時)の出力電力(出力電流I1)よりも大きな電力値(電流値)となる。定常時の出力電力は、定常時におけるLED21の順方向電圧とLED21の順方向電流とLED21の個数との積であり、LED光源2の定格電力(LED21の定格電力×LED21の個数)以下の範囲である。定常時の出力電流I1は、LED光源2の定格電流以下の範囲である。また、立ち上げ制御モード時の出力電力(出力電流I1)は、LED21の耐量だけではなく、LED光源2の放熱構造物(図示せず)の熱容量やLED駆動装置3の制御能力なども考慮して設定される。例えば、立ち上げ制御モード時の出力電力(出力電流I1)は、定電流制御モード時の出力電力(出力電流I1)の数%〜50%アップ程度で設定される。一方、立ち上げ制御モード時の出力電力(出力電流I1)が定電流制御モード時の出力電力(出力電流I1)の2倍以上になると、LED21の耐量の問題だけではなく、LED21の光束が一時的に大きく増大し、給電開始時から定常時になるまで光の変動が大きくなり過ぎることがある。   The output power (output current I1) in the start-up control mode is a power value (current value) larger than the output power (output current I1) in the steady state (in the constant current control mode) within the tolerance range of the LED 21. Become. The constant output power is a product of the forward voltage of the LED 21, the forward current of the LED 21, and the number of LEDs 21 in a steady state, and is a range below the rated power of the LED light source 2 (rated power of LED 21 × number of LEDs 21). It is. The constant output current I1 is in a range equal to or less than the rated current of the LED light source 2. Further, the output power (output current I1) in the start-up control mode takes into consideration not only the withstand capability of the LED 21 but also the heat capacity of the heat dissipation structure (not shown) of the LED light source 2 and the control capability of the LED driving device 3. Is set. For example, the output power (output current I1) in the start-up control mode is set to be about several to 50% higher than the output power (output current I1) in the constant current control mode. On the other hand, when the output power (output current I1) in the start-up control mode is twice or more than the output power (output current I1) in the constant current control mode, not only the problem of withstand capability of the LED 21, but also the luminous flux of the LED 21 temporarily. In some cases, the fluctuation of light becomes too large from the start of power supply to the steady state.

本実施形態では、制御モードが立ち上げ制御モードであるときに、制御部7は、駆動回路部4のDC−DCコンバータ41からLED光源2へ供給される出力電力がLED光源2の定格電力の値よりも大きくなるようにDC−DCコンバータ41を制御する。   In the present embodiment, when the control mode is the start-up control mode, the control unit 7 determines that the output power supplied from the DC-DC converter 41 of the drive circuit unit 4 to the LED light source 2 is the rated power of the LED light source 2. The DC-DC converter 41 is controlled so as to be larger than the value.

このような制御部7は、駆動回路部4(DC−DCコンバータ41)からLED光源2への給電を開始した場合に(LED21の温度が低い場合に)、温度検出部5の検出温度がしきい値温度になるまで制御モードを立ち上げ制御モードにする。その後、温度検出部5の検出温度がしきい値温度以上になると、制御部7は、制御モードを立ち上げ制御モードから定電流制御モードに切り替える。   Such a control unit 7 increases the detection temperature of the temperature detection unit 5 when power supply from the drive circuit unit 4 (DC-DC converter 41) to the LED light source 2 is started (when the temperature of the LED 21 is low). Start up the control mode until the threshold temperature is reached, and change to the control mode. After that, when the temperature detected by the temperature detection unit 5 becomes equal to or higher than the threshold temperature, the control unit 7 switches the control mode from the startup control mode to the constant current control mode.

しきい値温度は、周囲温度環境(使用温度環境)、LED光源2の放熱構造や熱容量、LED光源2の特性耐量などを予め考慮して決められた値である。例えば平均的な使用温度環境において定格電流で動作させたときの飽和温度をしきい値温度にすればよい。   The threshold temperature is a value determined in advance in consideration of the ambient temperature environment (operating temperature environment), the heat radiation structure and heat capacity of the LED light source 2, the characteristic tolerance of the LED light source 2, and the like. For example, the threshold temperature may be set as the saturation temperature when operating at the rated current in an average operating temperature environment.

ここで、本実施形態の制御部7の基本動作について説明する。直流電源8の電源電圧V2が駆動回路部4(DC−DCコンバータ41)に印加されると、制御部7は、DC−DCコンバータ41を動作させて出力電圧V1をLED光源2に印加する。出力電圧V1がLED光源2に印加されると、LED光源2には出力電流I1が流れる。そして、制御部7は、電流検出部6の検出電圧V4(図2参照)が一定となるようにスイッチング素子412をPWM制御する。結果として、例えばLED光源2が4個のLED21の直列回路を備え、各LED21の順方向電圧の定格値が3.5Vである場合、定常時において、DC−DCコンバータ41の出力電圧V1は3.5V×4個=14Vになる。   Here, the basic operation of the control unit 7 of the present embodiment will be described. When the power supply voltage V2 of the DC power supply 8 is applied to the drive circuit unit 4 (DC-DC converter 41), the control unit 7 operates the DC-DC converter 41 to apply the output voltage V1 to the LED light source 2. When the output voltage V1 is applied to the LED light source 2, an output current I1 flows through the LED light source 2. And the control part 7 carries out PWM control of the switching element 412 so that the detection voltage V4 (refer FIG. 2) of the electric current detection part 6 becomes fixed. As a result, for example, when the LED light source 2 includes a series circuit of four LEDs 21 and the rated value of the forward voltage of each LED 21 is 3.5 V, the output voltage V1 of the DC-DC converter 41 is 3 in a steady state. .5V × 4 = 14V.

続いて、本実施形態の制御部7の回路構成について図2を用いて説明する。制御部7は、駆動回路部4からLED光源2への出力電力の大きさを設定する設定部71と、設定部71の出力(出力電圧V5)と電流検出部6の出力(検出電圧V4)との誤差を増幅する誤差増幅部72とを備えている。また、制御部7は、誤差増幅部72の出力(出力電圧V6)に基づいてスイッチング素子412のオンデューティを調整するためのPWM信号S1を出力するPWM制御部73を備えている。さらに、制御部7は、PWM制御部73から出力されるPWM信号S1に応じたオンデューティでスイッチング素子412をオンオフする駆動部74と、直流電源8の電源電圧V2から各部の動作電源を作成する制御電源部75とを備えている。   Next, the circuit configuration of the control unit 7 of this embodiment will be described with reference to FIG. The control unit 7 sets the magnitude of the output power from the drive circuit unit 4 to the LED light source 2, the output of the setting unit 71 (output voltage V5), and the output of the current detection unit 6 (detection voltage V4). And an error amplifying unit 72 for amplifying the error. The control unit 7 also includes a PWM control unit 73 that outputs a PWM signal S1 for adjusting the on-duty of the switching element 412 based on the output (output voltage V6) of the error amplification unit 72. Further, the control unit 7 creates an operating power supply for each unit from the drive unit 74 that turns on and off the switching element 412 with an on-duty according to the PWM signal S1 output from the PWM control unit 73, and the power supply voltage V2 of the DC power supply 8. And a control power supply unit 75.

設定部71は、マイクロコンピュータを主構成要素とし、出力電流I1の電流値を指定する指定部711と、指定部711で指定された電流値に対応する基準値(基準電圧V5)を生成する基準値生成部712とを備えている。   The setting unit 71 includes a microcomputer as a main component, a designation unit 711 that designates the current value of the output current I1, and a reference that generates a reference value (reference voltage V5) corresponding to the current value designated by the designation unit 711. A value generation unit 712.

指定部711は、まず、温度検出部5から検出電圧V3(温度検出部5の検出温度T1(図3参照))を受け取る。検出電圧V3を受け取った指定部711は、検出温度T1がしきい値温度T12(図3参照)以上になったか否かを判別することによって、制御モードを切り替えるタイミングを判別する。LED光源2への給電を開始したときに、検出温度T1がしきい値温度T12に達していない場合(図3の時刻t0、温度T11の場合)、指定部711は、立ち上げ制御モード時の出力電流I1の電流値I12を基準値生成部712に出力する。検出温度T1がしきい値温度T12以上になると(図3の時刻t1)、指定部711は、定電流制御モード時の出力電流I1の電流値I11を基準値生成部712に出力する。   The designation unit 711 first receives the detection voltage V3 (the detected temperature T1 of the temperature detection unit 5 (see FIG. 3)) from the temperature detection unit 5. The designation unit 711 that has received the detection voltage V3 determines the timing for switching the control mode by determining whether or not the detected temperature T1 is equal to or higher than the threshold temperature T12 (see FIG. 3). When the power supply to the LED light source 2 is started, if the detected temperature T1 does not reach the threshold temperature T12 (in the case of time t0 and temperature T11 in FIG. 3), the designation unit 711 is in the start-up control mode. The current value I12 of the output current I1 is output to the reference value generation unit 712. When the detected temperature T1 becomes equal to or higher than the threshold temperature T12 (time t1 in FIG. 3), the specifying unit 711 outputs the current value I11 of the output current I1 in the constant current control mode to the reference value generating unit 712.

基準値生成部712は、指定部711で指定された電流値を指定部711から受け取る。出力電流I1の電流値を受け取った基準値生成部712は、受け取った電流値に相当する電圧値の基準電圧V5を誤差増幅部72に出力する。   The reference value generation unit 712 receives the current value specified by the specification unit 711 from the specification unit 711. The reference value generation unit 712 that has received the current value of the output current I1 outputs a reference voltage V5 having a voltage value corresponding to the received current value to the error amplification unit 72.

誤差増幅部72は、検出電圧V4と基準電圧V5との差分を増幅する誤差増幅器721を備えている。誤差増幅器721は、電流検出部6の検出電圧V4が一方の入力端子に入力され、設定部71からの基準電圧V5が他方の入力端子に入力される。この誤差増幅器721は、検出電圧V4と基準電圧V5との差分を増幅して出力電圧V6としてPWM制御部73に出力する。すなわち、誤差増幅器721は、検出電圧V4と基準電圧V5との差分に比例した値の出力電圧V6をPWM制御部73に出力する。   The error amplifier 72 includes an error amplifier 721 that amplifies the difference between the detection voltage V4 and the reference voltage V5. In the error amplifier 721, the detection voltage V4 of the current detection unit 6 is input to one input terminal, and the reference voltage V5 from the setting unit 71 is input to the other input terminal. The error amplifier 721 amplifies the difference between the detection voltage V4 and the reference voltage V5 and outputs the amplified voltage as an output voltage V6 to the PWM control unit 73. That is, the error amplifier 721 outputs the output voltage V6 having a value proportional to the difference between the detection voltage V4 and the reference voltage V5 to the PWM control unit 73.

PWM制御部73は、三角波の基準電圧V7を発生させる三角波発生器731と、誤差増幅部72(誤差増幅器721)の出力電圧V6と三角波発生器731の基準電圧V7とを比較するコンパレータ732とを備えている。コンパレータ732は、基準電圧V7が一方の入力端子に入力され、出力電圧V6が他方の入力端子に入力される。PWM制御部73は、基準電圧V7のレベル(電圧値)が出力電圧V6のレベル(電圧値)を超えている期間だけ出力電圧すなわちPWM信号S1がハイレベルとなる。すなわち、PWM制御部73は、検出電流が目標となる電流になるように、スイッチング素子412のオン時間をフィードバック制御する。例えば検出電流が目標となる電流よりも大きければ、PWM制御部73は、スイッチング素子412のオン時間を短くするようなPWM信号S1を駆動部74に出力する。   The PWM controller 73 includes a triangular wave generator 731 that generates a triangular wave reference voltage V7, and a comparator 732 that compares the output voltage V6 of the error amplifier 72 (error amplifier 721) with the reference voltage V7 of the triangular wave generator 731. I have. In the comparator 732, the reference voltage V7 is input to one input terminal, and the output voltage V6 is input to the other input terminal. In the PWM control unit 73, the output voltage, that is, the PWM signal S1 is set to the high level only during the period in which the level (voltage value) of the reference voltage V7 exceeds the level (voltage value) of the output voltage V6. That is, the PWM control unit 73 feedback-controls the ON time of the switching element 412 so that the detected current becomes a target current. For example, if the detected current is larger than the target current, the PWM control unit 73 outputs a PWM signal S1 that shortens the ON time of the switching element 412 to the drive unit 74.

駆動部74は、PWM制御部73のPWM信号S1のレベル(電圧値)に応じてスイッチング素子412のオンオフを制御する。PWM信号S1がハイレベルとなる期間だけオンデューティとなり、駆動部74によりスイッチング素子412がオンする。駆動部74から出力される駆動信号S2は、PWM信号S1がハイレベルであるときにハイレベルとなり、PWM信号S1がローレベルであるときにローレベルとなる。なお、スイッチング素子412のスイッチング周波数(オンオフ周期)は、三角波発生器731の三角波に同期し、例えば数百kHz程度である。   The drive unit 74 controls on / off of the switching element 412 according to the level (voltage value) of the PWM signal S <b> 1 of the PWM control unit 73. Only when the PWM signal S1 is at a high level, the on-duty is set, and the switching element 412 is turned on by the drive unit 74. The drive signal S2 output from the drive unit 74 is at a high level when the PWM signal S1 is at a high level, and is at a low level when the PWM signal S1 is at a low level. The switching frequency (on / off period) of the switching element 412 is synchronized with the triangular wave of the triangular wave generator 731 and is, for example, about several hundred kHz.

続いて、本実施形態の制御部7の動作について説明する。まず、直流電源8が投入されると、指定部711は、温度検出部5の検出温度T1(図3参照)がしきい値温度T12(図3参照)に達していないことを判断し、立ち上げ制御モード時の出力電流I1の電流値I12(図3参照)を指定する。基準値生成部712は、指定部711で指定された電流値I12に相当する基準電圧V5を誤差増幅部72に出力する。誤差増幅部72の誤差増幅器721は、基準値生成部712からの基準電圧V5と電流検出部6の検出電圧V4との誤差を表わす出力電圧V6をPWM制御部73に出力する。PWM制御部73は、出力電圧V6と三角波の基準電圧V7とを比較し、スイッチング素子412のオン時間を決定する。駆動部74は、PWM制御部73からのPWM信号S1を用いてスイッチング素子412に駆動信号S2を出力してスイッチング素子412をオンオフさせる。   Next, the operation of the control unit 7 of this embodiment will be described. First, when the DC power supply 8 is turned on, the designation unit 711 determines that the detection temperature T1 (see FIG. 3) of the temperature detection unit 5 has not reached the threshold temperature T12 (see FIG. 3), and stands up. A current value I12 (see FIG. 3) of the output current I1 in the raising control mode is designated. The reference value generation unit 712 outputs a reference voltage V5 corresponding to the current value I12 specified by the specification unit 711 to the error amplification unit 72. The error amplifier 721 of the error amplifier 72 outputs an output voltage V6 representing an error between the reference voltage V5 from the reference value generator 712 and the detected voltage V4 of the current detector 6 to the PWM controller 73. The PWM control unit 73 compares the output voltage V6 with the triangular wave reference voltage V7, and determines the on-time of the switching element 412. The drive unit 74 outputs the drive signal S2 to the switching element 412 using the PWM signal S1 from the PWM control unit 73, and turns the switching element 412 on and off.

その後、温度検出部5の検出温度T1がしきい値温度T12に達すると、指定部711は、定電流制御モード時の出力電流I1の電流値I11(図3参照)を指定する。基準値生成部712は、指定部711で指定された電流値I11に相当する基準電圧V5を誤差増幅部72に出力する。その後の動作は、立ち上げ制御モード時と同様である。   Thereafter, when the detected temperature T1 of the temperature detecting unit 5 reaches the threshold temperature T12, the specifying unit 711 specifies the current value I11 (see FIG. 3) of the output current I1 in the constant current control mode. The reference value generation unit 712 outputs a reference voltage V5 corresponding to the current value I11 specified by the specification unit 711 to the error amplification unit 72. The subsequent operation is the same as in the start-up control mode.

上記より、制御部7は、誤差増幅器721の出力電圧V6の増減に逆比例する形でスイッチング素子412のオンデューティを増減する。出力電圧V6のレベルが高くなるほど、スイッチング素子412のオンデューティが小さくなる。出力電圧V6が高くなると、スイッチング素子412のオン期間が短くなるから、出力電圧V1が低くなる。その結果、出力電流I1は、設定部71で設定された電流値に等しくなるように小さくなる。   From the above, the controller 7 increases or decreases the on-duty of the switching element 412 in a manner that is inversely proportional to the increase or decrease of the output voltage V6 of the error amplifier 721. As the level of the output voltage V6 increases, the on-duty of the switching element 412 decreases. When the output voltage V6 is increased, the ON period of the switching element 412 is shortened, so that the output voltage V1 is decreased. As a result, the output current I1 is reduced to be equal to the current value set by the setting unit 71.

ところで、制御部7は、直流電源8のオン後すなわちLED光源2への給電開始後、図3の一点鎖線で示すようにソフトスタートでLED光源2に出力電流I1を供給するように駆動回路部4のDC−DCコンバータ41を制御してもよい。すなわち、制御部7は、給電開始後にソフトスタートして出力電流I1を徐々に大きくしていき、その後、電流値I12とする。ソフトスタートの時間は、数十msから数百msの範囲でよい。   By the way, after the DC power supply 8 is turned on, that is, after the power supply to the LED light source 2 is started, the control unit 7 supplies the output current I1 to the LED light source 2 by soft start as shown by the one-dot chain line in FIG. 4 DC-DC converters 41 may be controlled. That is, the control unit 7 soft-starts after the start of power supply and gradually increases the output current I1, and then sets the current value I12. The soft start time may range from several tens of ms to several hundreds of ms.

また、本実施形態に係る照明装置1は、車両用照明装置として用いることができる。LED光源2およびLED駆動装置3が車両(図示せず)に搭載されることで照明装置1を車両用照明装置として用いることができる。車両用照明装置としては、自動車などの車両の前照灯(ヘッドランプ)やデイタイムランニングランプ、車内灯がある。照明装置1を車両用照明装置として用いる場合、LED光源2として白色LED光源を用いることが多い。すなわち、白色LED光源の高輝度化によって、白色LED光源を前照灯やデイタイムランニングランプ、車内灯の光源として用いることができる。高輝度かつ高出力で用いられる白色LED光源は、放熱構造を有する形態で灯具(図示せず)などに収納される。白色LEDで発生した熱は、白色LEDが一面に実装された高放熱性基板(図示せず)と、高放熱性基板の他面に接するヒートシンク(図示せず)とを介して放熱される。上記高放熱性基板および上記ヒートシンクは、LED光源2の放熱構造物の一例である。   Moreover, the illuminating device 1 which concerns on this embodiment can be used as a vehicle illuminating device. Since the LED light source 2 and the LED driving device 3 are mounted on a vehicle (not shown), the lighting device 1 can be used as a vehicle lighting device. Vehicle lighting devices include headlamps for vehicles such as automobiles, daytime running lamps, and interior lights. When the illumination device 1 is used as a vehicle illumination device, a white LED light source is often used as the LED light source 2. That is, by increasing the brightness of the white LED light source, the white LED light source can be used as a light source for a headlamp, a daytime running lamp, or an interior lamp. A white LED light source used with high brightness and high output is housed in a lamp (not shown) or the like in a form having a heat dissipation structure. The heat generated in the white LED is radiated through a high heat dissipation substrate (not shown) on which the white LED is mounted on one surface and a heat sink (not shown) in contact with the other surface of the high heat dissipation substrate. The high heat dissipation substrate and the heat sink are examples of the heat dissipation structure of the LED light source 2.

以上説明した本実施形態によれば、駆動回路部4からLED光源2への給電を開始した場合に、制御部7は、まず、制御モードを立ち上げ制御モードにし、LED21の発熱量を増大させる。上記より、放熱構造を有するLED光源2すなわち熱容量の高いLED光源2であっても、制御モードが最初から定電流制御モードである場合に比べて、LED21の温度を早期に安定させることができる。その結果、LED21からの光を早期に安定させることができ、所定の光束や配光を有する良質な照明環境を短時間で実現することができるので、ユーザは、例えば読書や運転などの行動を快適に行うことができる。   According to the present embodiment described above, when power supply from the drive circuit unit 4 to the LED light source 2 is started, the control unit 7 first sets the control mode to the start-up control mode and increases the heat generation amount of the LED 21. . From the above, even in the LED light source 2 having a heat dissipation structure, that is, the LED light source 2 having a high heat capacity, the temperature of the LED 21 can be stabilized at an early stage as compared with the case where the control mode is the constant current control mode from the beginning. As a result, the light from the LED 21 can be stabilized at an early stage, and a high-quality lighting environment having a predetermined luminous flux and light distribution can be realized in a short time, so that the user can take actions such as reading and driving, for example. Can be done comfortably.

また、本実施形態では、温度検出部5が点灯回路部(駆動回路部4、制御部7)の温度を検出することによって、LED光源2をそのままの状態で、LED21の温度を容易に検出することができる。   Moreover, in this embodiment, the temperature detection part 5 detects the temperature of the lighting circuit part (the drive circuit part 4, the control part 7), and easily detects the temperature of the LED 21 with the LED light source 2 as it is. be able to.

(実施形態2)
実施形態2では、図4に示す制御部7を用いた照明装置1について説明する。なお、実施形態1の照明装置1と同様の構成要素については、同一の符号を付して説明を省略する。
(Embodiment 2)
Embodiment 2 demonstrates the illuminating device 1 using the control part 7 shown in FIG. In addition, about the component similar to the illuminating device 1 of Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

本実施形態の温度検出部5は、温度が上昇すると抵抗値が増大する特性すなわち正の温度係数を有するサーミスタ(PTC:Positive Temperature Coefficient)である。   The temperature detection unit 5 of the present embodiment is a thermistor (PTC: Positive Temperature Coefficient) having a characteristic that the resistance value increases as the temperature rises, that is, a positive temperature coefficient.

本実施形態の指定部711は、コンパレータ761と、一端がコンパレータ761の反転入力端子に接続された抵抗762と、一端がコンパレータ761の反転入力端子に接続され他端が接地された抵抗763とを備えている。また、指定部711は、一端がコンパレータ761の非反転入力端子に接続された抵抗764と、一端がコンパレータ761の非反転入力端子に接続され他端が温度検出部5に接続された抵抗765とを備えている。   The designation unit 711 of this embodiment includes a comparator 761, a resistor 762 having one end connected to the inverting input terminal of the comparator 761, and a resistor 763 having one end connected to the inverting input terminal of the comparator 761 and the other end grounded. I have. The designation unit 711 includes a resistor 764 having one end connected to the non-inverting input terminal of the comparator 761 and a resistor 765 having one end connected to the non-inverting input terminal of the comparator 761 and the other end connected to the temperature detection unit 5. It has.

温度検出部5の検出温度がしきい値温度未満である場合、基準電圧Vr2を分圧した分圧電圧V9よりも、基準電圧Vr3を分圧した分圧電圧V10のほうが低いから、コンパレータ711の出力電圧すなわちオンオフ信号S3はローレベルとなる。一方、温度検出部5の検出温度がしきい値温度以上である場合、分圧電圧V9よりも分圧電圧V10のほうが大きくなるから、オンオフ信号S3はハイレベルとなる。   When the temperature detected by the temperature detector 5 is lower than the threshold temperature, the divided voltage V10 obtained by dividing the reference voltage Vr3 is lower than the divided voltage V9 obtained by dividing the reference voltage Vr2, and therefore the comparator 711 The output voltage, that is, the on / off signal S3 is at a low level. On the other hand, when the temperature detected by the temperature detector 5 is equal to or higher than the threshold temperature, the divided voltage V10 is higher than the divided voltage V9, and therefore the on / off signal S3 is at a high level.

本実施形態の基準値生成部712は、スイッチング素子714と、抵抗715とを備えている。スイッチング素子714は、オンオフ信号S3がローレベルである場合、オフであり、オンオフ信号S3がハイレベルになると、オンになる。   The reference value generation unit 712 of this embodiment includes a switching element 714 and a resistor 715. The switching element 714 is off when the on / off signal S3 is at a low level, and is turned on when the on / off signal S3 is at a high level.

本実施形態の誤差増幅部72は、誤差増幅器721と、誤差増幅器721の反転入力端子に接続された抵抗722と、一端が誤差増幅器721の反転入力端子に接続され他端が誤差増幅器721の出力端子に接続された抵抗723とを備えている。また、誤差増幅部72は、誤差増幅器721の非反転入力端子に接続された抵抗724と、誤差増幅器721の非反転入力端子に接続された抵抗725と、一端が抵抗725に接続され他端が接地された抵抗726とを備えている。   The error amplifying unit 72 of this embodiment includes an error amplifier 721, a resistor 722 connected to the inverting input terminal of the error amplifier 721, one end connected to the inverting input terminal of the error amplifier 721, and the other end output from the error amplifier 721. And a resistor 723 connected to the terminal. The error amplifying unit 72 includes a resistor 724 connected to the non-inverting input terminal of the error amplifier 721, a resistor 725 connected to the non-inverting input terminal of the error amplifier 721, and one end connected to the resistor 725 and the other end. And a grounded resistor 726.

スイッチング素子714がオフである場合、基準電圧Vr1を抵抗724と抵抗725,726とで分圧したときの入力電圧V8が誤差増幅器721の非反転入力端子に入力される。一方、スイッチング素子714がオンである場合、抵抗726の両端間が短絡するから、基準電圧Vr1を抵抗724と抵抗725とで分圧したときの入力電圧V8が誤差増幅器721の非反転入力端子に入力される。すなわち、スイッチング素子714がオフである場合のほうが、スイッチング素子714がオンである場合よりも、誤差増幅器721の非反転入力端子に入力される入力電圧V8の電圧値が高い。したがって、スイッチング素子714がオンになって入力電圧V8が低くなると、スイッチング素子714がオフである場合に比べて、出力電流I1は小さくなる。スイッチング素子714のオンオフで入力電圧V8の電圧値を変えることによって、制御部7は、出力電流I1すなわち制御モードを切り替えることができる。   When the switching element 714 is off, an input voltage V8 obtained by dividing the reference voltage Vr1 by the resistor 724 and the resistors 725 and 726 is input to the non-inverting input terminal of the error amplifier 721. On the other hand, when the switching element 714 is on, both ends of the resistor 726 are short-circuited. Therefore, the input voltage V8 when the reference voltage Vr1 is divided by the resistor 724 and the resistor 725 is applied to the non-inverting input terminal of the error amplifier 721. Entered. That is, the voltage value of the input voltage V8 input to the non-inverting input terminal of the error amplifier 721 is higher when the switching element 714 is off than when the switching element 714 is on. Therefore, when the switching element 714 is turned on and the input voltage V8 is lowered, the output current I1 is smaller than when the switching element 714 is off. By changing the voltage value of the input voltage V8 by turning on and off the switching element 714, the control unit 7 can switch the output current I1, that is, the control mode.

上記より、温度検出部5の検出温度がしきい値温度未満であるときは、スイッチング素子714はオフで、誤差増幅器721の非反転入力端子の入力電圧V8は高く、LED光源2への出力電流I1も大きい。スイッチング素子714がオフのとき、制御モードは立ち上げ制御モードである。定常時(定電流制御モード時)よりも大きな出力電流I1での動作によって温度が急速に上昇すると、温度検出部5の抵抗値が大きくなっていく。検出温度がしきい値温度以上になると、コンパレータ761の非反転入力端子の分圧電圧V9は、反転入力端子の分圧電圧V10よりも高くなり、コンパレータ761の出力電圧すなわちオンオフ信号S3はハイレベルとなる。これにより、スイッチング素子714はオン状態になる。スイッチング素子714がオンのとき、制御モードは定電流制御モードである。   From the above, when the temperature detected by the temperature detector 5 is lower than the threshold temperature, the switching element 714 is off, the input voltage V8 of the non-inverting input terminal of the error amplifier 721 is high, and the output current to the LED light source 2 I1 is also large. When the switching element 714 is off, the control mode is the startup control mode. When the temperature rises rapidly due to the operation with the output current I1 larger than the constant time (in the constant current control mode), the resistance value of the temperature detection unit 5 increases. When the detected temperature is equal to or higher than the threshold temperature, the divided voltage V9 at the non-inverting input terminal of the comparator 761 becomes higher than the divided voltage V10 at the inverting input terminal, and the output voltage of the comparator 761, that is, the on / off signal S3 is at a high level. It becomes. As a result, the switching element 714 is turned on. When the switching element 714 is on, the control mode is a constant current control mode.

本実施形態においても、実施形態1と同様、設定部71は、温度検出部5により温度状況を把握し、検出温度がしきい値温度未満であるときは、LED光源2への出力電流I1として、定常時よりも大きな電流値を設定することができる。温度検出部5の検出温度がしきい値温度以上になると、設定部71は、LED光源2への出力電流I1として、定常時の電流値を設定することができる。   Also in the present embodiment, as in the first embodiment, the setting unit 71 grasps the temperature state by the temperature detection unit 5, and when the detected temperature is lower than the threshold temperature, as the output current I <b> 1 to the LED light source 2. It is possible to set a larger current value than in a steady state. When the temperature detected by the temperature detection unit 5 becomes equal to or higher than the threshold temperature, the setting unit 71 can set a current value at normal time as the output current I1 to the LED light source 2.

次に、本実施形態に係る照明装置1の動作について説明する。まず、直流電源8が投入されると、スイッチング素子714はオフしているので、誤差増幅器721の非反転入力端子に入力される入力電圧V8は、抵抗725と抵抗726との直列回路の両端電圧となり、この両端電圧に応じて、LED光源2への出力電流I1が規定される。すなわち、温度検出部5の検出温度がしきい値温度未満であるときは、スイッチング素子714はオフであり、誤差増幅器721の非反転入力端子に入力される入力電圧V8は、抵抗725と抵抗726との直列回路の両端電圧で高く、LED光源2への出力電流I1は大きい。その後、温度検出部5の検出温度がしきい値温度以上になると、スイッチング素子714がオンし、抵抗726の両端間が短絡する。誤差増幅器721の非反転入力端子に入力される入力電圧V8は、スイッチング素子714がオフ時よりも低くなり、その結果、LED光源2への出力電流I1が小さくなる。すなわち、温度検出部5の検出温度がしきい値温度以上になると、制御モードが立ち上げ制御モードから定電流制御モードに切り替わる。   Next, operation | movement of the illuminating device 1 which concerns on this embodiment is demonstrated. First, since the switching element 714 is turned off when the DC power supply 8 is turned on, the input voltage V8 input to the non-inverting input terminal of the error amplifier 721 is the voltage across the series circuit of the resistor 725 and the resistor 726. Thus, the output current I1 to the LED light source 2 is defined according to the voltage between both ends. That is, when the temperature detected by the temperature detector 5 is lower than the threshold temperature, the switching element 714 is off, and the input voltage V8 input to the non-inverting input terminal of the error amplifier 721 is a resistor 725 and a resistor 726. The output voltage I1 to the LED light source 2 is large. Thereafter, when the temperature detected by the temperature detection unit 5 becomes equal to or higher than the threshold temperature, the switching element 714 is turned on, and both ends of the resistor 726 are short-circuited. The input voltage V8 input to the non-inverting input terminal of the error amplifier 721 is lower than when the switching element 714 is off, and as a result, the output current I1 to the LED light source 2 is reduced. That is, when the temperature detected by the temperature detection unit 5 is equal to or higher than the threshold temperature, the control mode is switched from the startup control mode to the constant current control mode.

ところで、LED光源2を長時間点灯させてから消灯した後に再点灯させた場合は、LED21の温度は最初から十分高いので、立ち上げ制御モードでの動作は不要である。LED21の温度が高いか否かは、温度検出部5の検出温度がしきい値温度以上であるか否かで判別することができる。検出温度がしきい値温度以上になっていれば、LED駆動装置3は立ち上げ制御モードで動作する必要はなく、LED光源2へのストレスを低減させることができる。   By the way, when the LED light source 2 is turned on for a long time and then turned off and then turned on again, the temperature of the LED 21 is sufficiently high from the beginning, and the operation in the start-up control mode is unnecessary. Whether or not the temperature of the LED 21 is high can be determined by whether or not the temperature detected by the temperature detector 5 is equal to or higher than a threshold temperature. If the detected temperature is equal to or higher than the threshold temperature, the LED driving device 3 does not need to operate in the start-up control mode, and the stress on the LED light source 2 can be reduced.

なお、本実施形態においても、実施形態1と同様、照明装置1を車両用照明装置として用いることができる。   In the present embodiment as well, the lighting device 1 can be used as a vehicle lighting device as in the first embodiment.

(実施形態3)
実施形態3では、図5に示すように、温度検出部5がLED光源2と同一の基板22に配置されている照明装置1について説明する。なお、実施形態1の照明装置1と同様の構成要素については、同一の符号を付して説明を省略する。
(Embodiment 3)
In the third embodiment, as illustrated in FIG. 5, the lighting device 1 in which the temperature detection unit 5 is disposed on the same substrate 22 as the LED light source 2 will be described. In addition, about the component similar to the illuminating device 1 of Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

本実施形態の温度検出部5は、図5に示すように、LED光源2と同一の基板22上に配置されている。すなわち、本実施形態の温度検出部5は、LED21の温度を直接検出することができる場所に配置されている。実施形態1,2では、点灯回路部(駆動回路部4、制御部7)の内部または近傍に温度検出部5が配置されているのに対し、本実施形態では、LED21が実装されている基板22上に配置されている。なお、温度検出部5だけではなく、駆動回路部4や制御部7もLED光源2と同一の基板22上に配置されていてもよい。   The temperature detection part 5 of this embodiment is arrange | positioned on the same board | substrate 22 as the LED light source 2, as shown in FIG. That is, the temperature detection part 5 of this embodiment is arrange | positioned in the place which can detect the temperature of LED21 directly. In the first and second embodiments, the temperature detection unit 5 is disposed inside or in the vicinity of the lighting circuit unit (the drive circuit unit 4 and the control unit 7), whereas in the present embodiment, the substrate on which the LED 21 is mounted. 22 is arranged. Not only the temperature detection unit 5 but also the drive circuit unit 4 and the control unit 7 may be disposed on the same substrate 22 as the LED light source 2.

また、本実施形態の温度検出部5は、温度が上昇すると抵抗値が線形的に増大する特性すなわち正の温度係数を有するサーミスタである。   The temperature detection unit 5 of the present embodiment is a thermistor having a characteristic that the resistance value increases linearly when the temperature rises, that is, a positive temperature coefficient.

本実施形態の制御部7は、図6に示すように、設定部71を備えておらず、誤差増幅部72と、PWM制御部73と、駆動部74とで構成されている。   As shown in FIG. 6, the control unit 7 according to the present embodiment does not include the setting unit 71 and includes an error amplification unit 72, a PWM control unit 73, and a drive unit 74.

本実施形態の誤差増幅部72では、誤差増幅器721の非反転入力端子側において、基準電圧Vr1を温度検出部5と抵抗724,725とで分圧した入力電圧V8が設定される。したがって、検出温度が上昇すると、入力電圧V8が低下し、出力電流I1が減少する。その後、検出温度がしきい値温度以上になると、定常時の動作に移行する。   In the error amplifying unit 72 of this embodiment, an input voltage V8 obtained by dividing the reference voltage Vr1 by the temperature detecting unit 5 and the resistors 724 and 725 is set on the non-inverting input terminal side of the error amplifier 721. Therefore, when the detected temperature increases, the input voltage V8 decreases and the output current I1 decreases. Thereafter, when the detected temperature becomes equal to or higher than the threshold temperature, the operation moves to a steady state.

次に、本実施形態に係る照明装置1の動作について説明する。直流電源8が投入された直後は、LED21(検出領域)の温度が低いので、図7(a)に示すように、温度検出部5の抵抗値R2が小さい。検出温度がしきい値温度未満であるので、制御モードは立ち上げ制御モードである。検出領域の温度が上昇していくと、温度検出部5の抵抗値R2がR22からR21に増大し、入力電圧V8の電圧値がV82からV81に低下していく。その結果、図7(b)に示すように、出力電流I1の電流値がI12からI11に減少していく。その後、抵抗値R2がR21になると(図7の時刻t1)、制御モードが立ち上げ制御モードから定電流制御モードに切り替わる。本実施形態では、立ち上げ制御モード時において、LED21の温度上昇に伴い、出力電流I1が電流値I12から定常時(定電流制御モード時)の電流値I11へ徐々に移行していく。すなわち、本実施形態では、LED21の温度変化に応じて、出力電流I1の電流値が連続的に低下する。   Next, operation | movement of the illuminating device 1 which concerns on this embodiment is demonstrated. Immediately after the DC power supply 8 is turned on, the temperature of the LED 21 (detection region) is low, so that the resistance value R2 of the temperature detection unit 5 is small as shown in FIG. Since the detected temperature is lower than the threshold temperature, the control mode is the startup control mode. As the temperature of the detection region increases, the resistance value R2 of the temperature detection unit 5 increases from R22 to R21, and the voltage value of the input voltage V8 decreases from V82 to V81. As a result, as shown in FIG. 7B, the current value of the output current I1 decreases from I12 to I11. Thereafter, when the resistance value R2 becomes R21 (time t1 in FIG. 7), the control mode is switched from the start-up control mode to the constant current control mode. In the present embodiment, in the start-up control mode, the output current I1 gradually shifts from the current value I12 to the current value I11 in the steady state (constant current control mode) as the temperature of the LED 21 increases. That is, in the present embodiment, the current value of the output current I1 continuously decreases according to the temperature change of the LED 21.

ところで、LED光源2を長時間点灯させてから消灯した後に再点灯させた場合は、LED21の温度は最初から十分高いので、立ち上げ制御モードでの動作は不要である。LED21の温度が高いか否かは、温度検出部5の検出温度がしきい値温度以上であるか否かで判別することができる。検出温度がしきい値温度以上になっていれば、LED駆動装置3は立ち上げ制御モードで動作する必要はなく、LED光源2へのストレスを低減させることができる。   By the way, when the LED light source 2 is turned on for a long time and then turned off and then turned on again, the temperature of the LED 21 is sufficiently high from the beginning, and the operation in the start-up control mode is unnecessary. Whether or not the temperature of the LED 21 is high can be determined by whether or not the temperature detected by the temperature detector 5 is equal to or higher than a threshold temperature. If the detected temperature is equal to or higher than the threshold temperature, the LED driving device 3 does not need to operate in the start-up control mode, and the stress on the LED light source 2 can be reduced.

以上説明した本実施形態のLED駆動装置3では、温度検出部5がLED光源2の温度を検出することによって、LED21の温度を直接検出することができるので、LED21の温度をより精度よく検出することができる。   In the LED driving device 3 according to the present embodiment described above, the temperature detection unit 5 can directly detect the temperature of the LED 21 by detecting the temperature of the LED light source 2. Therefore, the temperature of the LED 21 can be detected with higher accuracy. be able to.

なお、温度検出部5は、LED光源2と同一の基板22上ではなく、LED光源2の近傍に配置されていてもよい。このような配置であっても、LED21の温度をより精度よく検出することができる。   Note that the temperature detection unit 5 may be arranged not in the same substrate 22 as the LED light source 2 but in the vicinity of the LED light source 2. Even with such an arrangement, the temperature of the LED 21 can be detected more accurately.

(実施形態4)
実施形態4の照明装置1は、図8に示すように、LED光源2に直列接続された検出抵抗61に温度検出部5の機能を兼用させている。すなわち、本実施形態の温度検出部5は、LED21の温度に相当する部位の温度を検出する温度検出機能と駆動回路部4からLED光源に供給される出力電流I1を検出する電流検出機能とを有する抵抗である。なお、実施形態1の照明装置1と同様の構成要素については、同一の符号を付して説明を省略する。
(Embodiment 4)
As shown in FIG. 8, the illumination device 1 according to the fourth embodiment has the detection resistor 61 connected in series with the LED light source 2 also has the function of the temperature detection unit 5. That is, the temperature detection unit 5 according to the present embodiment has a temperature detection function for detecting the temperature of the part corresponding to the temperature of the LED 21 and a current detection function for detecting the output current I1 supplied from the drive circuit unit 4 to the LED light source. It is resistance which has. In addition, about the component similar to the illuminating device 1 of Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

本実施形態の検出抵抗61は、図9に示すように、LED光源2と同一の基板22に配置されている。図9の端子23,24には、駆動回路部4が接続され、端子25には制御部7が接続される。なお、LED光源2および検出抵抗61が実装された基板22に駆動回路部4や制御部7が配置されていてもよい。また、駆動回路部4や制御部7が実装された基板(図示せず)の一面に、LED光源2および検出抵抗61が実装された基板22が配置されていてもよい。   The detection resistor 61 of this embodiment is disposed on the same substrate 22 as the LED light source 2 as shown in FIG. The drive circuit unit 4 is connected to the terminals 23 and 24 in FIG. 9, and the control unit 7 is connected to the terminal 25. Note that the drive circuit unit 4 and the control unit 7 may be disposed on the substrate 22 on which the LED light source 2 and the detection resistor 61 are mounted. Further, the substrate 22 on which the LED light source 2 and the detection resistor 61 are mounted may be disposed on one surface of the substrate (not shown) on which the drive circuit unit 4 and the control unit 7 are mounted.

上記より、本実施形態の検出抵抗61は、LED21の温度が直接影響する部位に実装されており、実装領域の温度に対応する抵抗値で、LED光源2への出力電流I1を検出する。   As described above, the detection resistor 61 according to the present embodiment is mounted on a portion directly affected by the temperature of the LED 21 and detects the output current I1 to the LED light source 2 with a resistance value corresponding to the temperature of the mounting region.

検出抵抗61の温度係数は、通常は、数十ppmから数百ppmであるが、線形に抵抗値が変化して数千ppmの温度係数の抵抗を用いることが好ましい。   The temperature coefficient of the detection resistor 61 is normally several tens ppm to several hundred ppm, but it is preferable to use a resistance having a temperature coefficient of several thousand ppm with the resistance value changing linearly.

本実施形態の制御部7は、制御モードが立ち上げ制御モードであるときに、検出抵抗61がしきい値温度相当の抵抗値になると、制御モードを立ち上げ制御モードから定電流制御モードに切り替える。   The control unit 7 of the present embodiment switches the control mode from the start-up control mode to the constant current control mode when the detection resistor 61 has a resistance value corresponding to the threshold temperature when the control mode is the start-up control mode. .

次に、本実施形態に係る照明装置1の動作について説明する。直流電源8が投入された直後は、LED素子21(検出領域)の温度が低いので、図10に示すように、検出抵抗61(温度検出部5)の抵抗値R2がR22と小さい。検出領域の温度が上昇していくと、抵抗値R2がR22からR21に増加し、出力電流I1の電流値がI12からI11に減少する。抵抗値R2がR21になったとき(図10の時刻t1)、すなわち、検出温度がしきい値温度になったとき、制御モードが立ち上げ制御モードから定電流制御モードに切り替わる。   Next, operation | movement of the illuminating device 1 which concerns on this embodiment is demonstrated. Immediately after the DC power supply 8 is turned on, the temperature of the LED element 21 (detection region) is low, so that the resistance value R2 of the detection resistor 61 (temperature detection unit 5) is as small as R22 as shown in FIG. As the temperature of the detection region increases, the resistance value R2 increases from R22 to R21, and the current value of the output current I1 decreases from I12 to I11. When the resistance value R2 becomes R21 (time t1 in FIG. 10), that is, when the detected temperature reaches the threshold temperature, the control mode is switched from the start-up control mode to the constant current control mode.

ところで、本実施形態では、図11に示すように、何らかの要因で周囲温度が上昇したときであっても、LED光源2への出力電流I1を制限することができる。すなわち、本実施形態のLED駆動装置3は、過負荷防止の機能を有している。   By the way, in this embodiment, as shown in FIG. 11, even when the ambient temperature rises for some reason, the output current I1 to the LED light source 2 can be limited. That is, the LED drive device 3 of this embodiment has a function of preventing overload.

以上説明した本実施形態では、温度検出機能と電流検出機能とを兼用することができるので、温度検出機能を有する手段と電流検出機能を有する手段とを別個に備える場合に比べて、構成を簡素にすることができる。   In the present embodiment described above, since the temperature detection function and the current detection function can be used together, the configuration is simplified compared to the case where the means having the temperature detection function and the means having the current detection function are separately provided. Can be.

なお、本実施形態の変形例として、温度検出部5を兼用する検出抵抗61は、図12に示すように、LED光源2の基板22上ではなく、LED光源2の近傍に配置されていてもよい。   As a modification of the present embodiment, the detection resistor 61 that also serves as the temperature detection unit 5 may be disposed not in the vicinity of the LED light source 2 but in the vicinity of the LED light source 2 as shown in FIG. Good.

また、各実施形態のDC−DCコンバータ41は昇圧回路に限らず、降圧回路や昇降圧回路などであってもよい。   Further, the DC-DC converter 41 of each embodiment is not limited to a booster circuit, and may be a step-down circuit, a step-up / step-down circuit, or the like.

1 照明装置
2 LED光源
21 LED
3 LED駆動装置
4 駆動回路部
5 温度検出部
7 制御部
1 Lighting device 2 LED light source 21 LED
3 LED drive device 4 drive circuit unit 5 temperature detection unit 7 control unit

Claims (6)

LEDおよび放熱構造物を含むLED光源を駆動するLED駆動装置であって、
前記LED光源を点灯させる点灯回路部と、
前記LEDの温度に相当する部位の温度を検出する温度検出部とを備え、
前記点灯回路部は、
前記LED光源に給電して当該LED光源を点灯させる駆動回路部と、
前記LED光源へ定電流を流すように前記駆動回路部を制御する定電流制御モードおよび当該定電流制御モードの場合よりも大きな出力電力を前記LED光源へ供給するように前記駆動回路部を制御する立ち上げ制御モードを制御モードとして有する制御部とを含み、
前記制御部は、前記駆動回路部から前記LED光源への給電を開始した場合に、前記温度検出部の検出温度が予め決められたしきい値温度になるまで前記制御モードを前記立ち上げ制御モードにし、前記検出温度が前記しきい値温度以上になると前記制御モードを前記立ち上げ制御モードから前記定電流制御モードに切り替える
ことを特徴とするLED駆動装置。
An LED driving device for driving an LED light source including an LED and a heat dissipation structure,
A lighting circuit section for lighting the LED light source;
A temperature detection unit that detects a temperature of a portion corresponding to the temperature of the LED,
The lighting circuit portion is
A drive circuit unit for supplying power to the LED light source and turning on the LED light source;
A constant current control mode for controlling the drive circuit unit to flow a constant current to the LED light source, and the drive circuit unit is controlled so as to supply output power larger than that in the constant current control mode to the LED light source. Including a control unit having a startup control mode as a control mode,
When the power supply from the drive circuit unit to the LED light source is started, the control unit changes the control mode until the detection temperature of the temperature detection unit reaches a predetermined threshold temperature. And the control mode is switched from the start-up control mode to the constant current control mode when the detected temperature is equal to or higher than the threshold temperature.
前記温度検出部は、前記点灯回路部の温度を検出することを特徴とする請求項1記載のLED駆動装置。   The LED driving device according to claim 1, wherein the temperature detection unit detects a temperature of the lighting circuit unit. 前記温度検出部は、前記LED光源の温度を検出することを特徴とする請求項1記載のLED駆動装置。   The LED driving device according to claim 1, wherein the temperature detection unit detects a temperature of the LED light source. 前記温度検出部は、前記LEDの温度に相当する部位の温度を検出する温度検出機能と前記駆動回路部から前記LED光源に供給される出力電流を検出する電流検出機能とを有する抵抗を含み、
前記制御部は、前記制御モードが前記立ち上げ制御モードであるときに、前記抵抗が前記しきい値温度相当の抵抗値になると、前記制御モードを前記立ち上げ制御モードから前記定電流制御モードに切り替える
ことを特徴とする請求項1記載のLED駆動装置。
The temperature detection unit includes a resistor having a temperature detection function of detecting a temperature of a portion corresponding to the temperature of the LED and a current detection function of detecting an output current supplied from the drive circuit unit to the LED light source,
The control unit changes the control mode from the start-up control mode to the constant current control mode when the resistance reaches a resistance value corresponding to the threshold temperature when the control mode is the start-up control mode. The LED driving device according to claim 1, wherein the LED driving device is switched.
請求項1〜4のいずれか1項に記載のLED駆動装置と、
前記LED光源と
を備えることを特徴とする照明装置。
The LED drive device according to any one of claims 1 to 4,
An illumination device comprising: the LED light source.
請求項5記載の照明装置を備え、前記LED駆動装置および前記LED光源が車両に搭載されることを特徴とする車両用照明装置。   An illumination device for a vehicle comprising the illumination device according to claim 5, wherein the LED driving device and the LED light source are mounted on a vehicle.
JP2012125014A 2012-05-31 2012-05-31 LED driving device, lighting device and vehicle lighting device Active JP5963079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012125014A JP5963079B2 (en) 2012-05-31 2012-05-31 LED driving device, lighting device and vehicle lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012125014A JP5963079B2 (en) 2012-05-31 2012-05-31 LED driving device, lighting device and vehicle lighting device

Publications (2)

Publication Number Publication Date
JP2013251131A JP2013251131A (en) 2013-12-12
JP5963079B2 true JP5963079B2 (en) 2016-08-03

Family

ID=49849620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012125014A Active JP5963079B2 (en) 2012-05-31 2012-05-31 LED driving device, lighting device and vehicle lighting device

Country Status (1)

Country Link
JP (1) JP5963079B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104093238B (en) * 2014-06-24 2016-05-11 苏州达方电子有限公司 In the time of high temperature, can reduce the power supply changeover device of light emitting diode drive current
JP6909801B2 (en) 2016-11-04 2021-07-28 ヌヴォトンテクノロジージャパン株式会社 Light source device
WO2020071067A1 (en) * 2018-10-02 2020-04-09 ローム株式会社 Led driving circuit device and electronic instrument
TW202207702A (en) * 2020-08-13 2022-02-16 日商索尼集團公司 Lighting device, control method of lighting device, and projection-type display device wherein the lighting device includes a light source unit and a control unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288396A (en) * 2007-05-17 2008-11-27 Sharp Corp Constant current circuit, light-emitting device, light-emitting device array, color display device, backlight, and lighting system
JP5285266B2 (en) * 2007-11-29 2013-09-11 パナソニック株式会社 LED lighting equipment
JP2011009474A (en) * 2009-06-25 2011-01-13 Panasonic Electric Works Co Ltd Light emitting diode driving apparatus, and luminaire, lighting device for vehicle interiors and lighting device for vehicles employing the same
JP5371914B2 (en) * 2010-09-03 2013-12-18 三菱電機株式会社 LED lighting device for headlamp and inspection method

Also Published As

Publication number Publication date
JP2013251131A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP4093239B2 (en) LIGHT EMITTING DIODE DRIVING DEVICE, LIGHTING APPARATUS USING THE SAME, LIGHTING DEVICE FOR VEHICLE, LIGHTING DEVICE FOR VEHICLE
KR100989603B1 (en) Control circuit for light emitting element and vehicular lamp
JP4500172B2 (en) LED driving device, lighting device, lighting fixture
JP5537286B2 (en) LED lighting device
JP5624269B2 (en) Lighting device, vehicle interior lighting device, vehicle lighting device
JP4799493B2 (en) Vehicle lighting
US10470273B2 (en) Light emission drive device and vehicle lamp
JP2010129612A (en) Lighting device
JP6667154B2 (en) Lighting device, vehicle lighting device, and vehicle using the same
JP2006210271A (en) Led driving device and lighting device using it
JP2006210272A (en) Led driving device and lighting device using it
JP2013033644A (en) Led drive device and lighting device using the same
JP2009277514A (en) Led dimming lighting device, illumination device for vehicle, and luminaire
JP5963079B2 (en) LED driving device, lighting device and vehicle lighting device
JP5959785B2 (en) Power supply device, light source lighting device, and battery charging device
JP2009302296A (en) Light-emitting diode driving device and illumination device using it, illumination device for in vehicle interior, and illumination device for vehicle
US7368885B2 (en) Lighting controller for lighting device for vehicle
US9345075B2 (en) Vehicular headlamp
JP2008042148A (en) Light emitting device
JP2011009474A (en) Light emitting diode driving apparatus, and luminaire, lighting device for vehicle interiors and lighting device for vehicles employing the same
JP6418681B2 (en) Vehicle lamp system
JP6064272B2 (en) LED driving device and lighting device using the same
JP5963078B2 (en) LED driving device, lighting device and vehicle lighting device
JP5958851B2 (en) LED driving device and lighting device using the same
JP2017021970A (en) Lighting device, luminaire and vehicle using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160617

R151 Written notification of patent or utility model registration

Ref document number: 5963079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151