JP5963003B2 - Imaging lens and imaging apparatus - Google Patents

Imaging lens and imaging apparatus Download PDF

Info

Publication number
JP5963003B2
JP5963003B2 JP2013505259A JP2013505259A JP5963003B2 JP 5963003 B2 JP5963003 B2 JP 5963003B2 JP 2013505259 A JP2013505259 A JP 2013505259A JP 2013505259 A JP2013505259 A JP 2013505259A JP 5963003 B2 JP5963003 B2 JP 5963003B2
Authority
JP
Japan
Prior art keywords
lens
imaging
image
object side
imaging lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013505259A
Other languages
Japanese (ja)
Other versions
JPWO2013054791A1 (en
Inventor
貴志 川崎
貴志 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2013054791A1 publication Critical patent/JPWO2013054791A1/en
Application granted granted Critical
Publication of JP5963003B2 publication Critical patent/JP5963003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

本発明は、CCD(Charge Coupled Devices)型イメージセンサやCMOS(Complementary Meta1−Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像装置に好適な撮像レンズに関するものである。   The present invention relates to an imaging lens suitable for an imaging apparatus using a solid-state imaging device such as a CCD (Charge Coupled Devices) type image sensor or a CMOS (Complementary Meta 1-Oxide Semiconductor) type image sensor.

近年、CCD型イメージセンサあるいはCMOS型イメージセンサ等の固体撮像素子を用いた撮像素子の高性能化、小型化に伴い、撮像装置を備えた携帯電話(スマートフォンを含む)や携帯情報端末が普及しつつある。また、これらの撮像装置に搭載される撮像レンズには、さらなる小型化、高性能化への要求が高まっている。近頃ではこのような携帯端末に高画素・高性能のメインカメラと、低画素・小型のサブカメラの2つが搭載されている場合も多い。   In recent years, mobile phones (including smartphones) and mobile information terminals equipped with an imaging device have become widespread with the improvement in performance and miniaturization of imaging devices using solid-state imaging devices such as CCD image sensors or CMOS image sensors. It's getting on. In addition, there is an increasing demand for further downsizing and higher performance of imaging lenses mounted on these imaging apparatuses. Recently, there are many cases where such a portable terminal is equipped with a high-pixel / high-performance main camera and a low-pixel / small-sized sub-camera.

メインカメラ用途の撮像レンズとしては、高性能化が必要とされるため3枚乃至5枚構成の撮像レンズが提案されている。一方で、サブカメラ用途の撮像レンズとしては、これまではVGA以下の低画素が一般的であったため、1枚構成の撮像レンズが主であったが、近頃ではサブカメラの高画素化が進み、低背(短全長)に加え、130万画素、200万画素などの高画素へ対応できる高性能化も求められるようになってきており、そのため1枚構成に比べ高性能化が可能な2枚構成の撮像レンズが提案されている。   As an imaging lens for main camera applications, an imaging lens having a configuration of three to five lenses has been proposed because high performance is required. On the other hand, as a sub-camera imaging lens, low-pixels of VGA or less have been common so far, so a single-lens imaging lens was the main one. In addition to the low profile (short overall length), high performance capable of dealing with high pixels such as 1.3 million pixels and 2 million pixels has been demanded. A single-lens imaging lens has been proposed.

2枚構成の撮像レンズとしては、特許文献1〜4のような、正負構成の撮像レンズが知られている。   As the imaging lens having the two-lens configuration, imaging lenses having a positive / negative configuration as in Patent Documents 1 to 4 are known.

国際公開第2006/35990号パンフレットInternational Publication No. 2006/35990 Pamphlet 特開2011−28213号公報JP 2011-28213 A 特開2010−113124号公報JP 2010-113124 A 特開2011−145491号公報JP 2011-145491 A

しかしながら、特許文献1に記載の撮像レンズでは、第2レンズの像側面の曲率が強く、変曲点までのサグ量が大きく、成形性が悪くなってしまうという問題がある。特にガラスモールドレンズのような硬い材料のレンズにおいては、成形性が悪くなると成形の際のレンズ面形状バラつきが大きくなってしまい、十分な光学性能の確保が困難となる。   However, the imaging lens described in Patent Document 1 has a problem that the curvature of the image side surface of the second lens is strong, the sag amount to the inflection point is large, and the moldability is deteriorated. In particular, in a lens made of a hard material such as a glass mold lens, when the moldability deteriorates, the lens surface shape variation during molding becomes large, and it becomes difficult to ensure sufficient optical performance.

また、特許文献2に記載の撮像レンズでは、第2レンズの像側面の曲率が弱いため収差補正が不足であり、その収差補正不足を補うために、第2レンズの物体側面の曲率が強くなっており、有効径内の見込み角が大きくなり成形性が悪くなってしまうという問題がある。   In addition, in the imaging lens described in Patent Document 2, the curvature of the image side surface of the second lens is weak, so the aberration correction is insufficient. To compensate for the insufficient aberration correction, the curvature of the object side surface of the second lens becomes strong. There is a problem that the prospective angle within the effective diameter increases and the moldability deteriorates.

また、特許文献3に記載の撮像レンズでは、成形性を考慮した撮像レンズとなっているものの、第1レンズの像側面の曲率が弱く、ペッツバール和が大きいため像面湾曲の補正が不十分であり、さらにレンズ全長を短縮した場合、性能劣化が起こり撮像素子の高画素化に対応が困難となる問題がある。   Moreover, although the imaging lens described in Patent Document 3 is an imaging lens in consideration of moldability, the curvature of the image side surface of the first lens is weak and the Petzval sum is large, so correction of field curvature is insufficient. In addition, when the total lens length is further shortened, there is a problem that performance deterioration occurs and it is difficult to cope with the increase in the number of pixels of the image sensor.

また、特許文献4に記載の撮像レンズでは、第2レンズ物体側の曲率が強過ぎるため成形性が悪いという問題がある。   Further, the imaging lens described in Patent Document 4 has a problem that the moldability is poor because the curvature on the second lens object side is too strong.

本発明は、このような問題点に鑑みてなされたものであり、従来タイプより成形性などが良好でありながら、諸収差が補正された2枚構成の撮像レンズおよび、この撮像レンズを用いた撮像装置を提供することを目的とする。   The present invention has been made in view of such problems, and uses a two-lens imaging lens in which various aberrations are corrected while having better moldability than the conventional type, and the imaging lens. An object is to provide an imaging device.

ここで、小型の撮像レンズの尺度であるが、本発明では下式を満たすレベルの小型化を目指している。この範囲を満たすことで、撮像装置全体の小型軽量化が可能となる。
L/2Y<1.00 (7)
ただし、
L:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離
2Y:固体撮像素子の撮像面対角線長(固体撮像素子の矩形実効画素領域の対角線長)
Here, although it is a scale of a small imaging lens, the present invention aims at miniaturization at a level satisfying the following expression. By satisfying this range, the entire imaging apparatus can be reduced in size and weight.
L / 2Y <1.00 (7)
However,
L: Distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system 2Y: diagonal length of the imaging surface of the solid-state imaging device (diagonal length of the rectangular effective pixel region of the solid-state imaging device)

ここで、像側焦点とは撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。なお、撮像レンズの最も像側の面と像側焦点位置との間に、光学的ローパスフィルタ、赤外線カットフィルタ、または固体撮像素子パッケージのシールガラス等の平行平板が配置される場合には、平行平板部分は空気換算距離としたうえで上記Lの値を計算するものとする。また、より望ましくは下式の範囲が良い。
L/2Y<0.90 (7)’
Here, the image-side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens. When a parallel plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of a solid-state image sensor package is disposed between the image-side surface of the imaging lens and the image-side focal position, the imaging lens is parallel. The flat plate portion is calculated as the above L value after the air conversion distance. More preferably, the range of the following formula is good.
L / 2Y <0.90 (7) '

請求項1に記載の撮像レンズは、物体側から順に開口絞り、第1レンズ、第2レンズからなり、
前記第1レンズは、物体側に凸面、像側に凹面を有する正メニスカスレンズであり、
前記第2レンズは、像側面に近軸凹面を向けた負レンズで、前記像側面は変曲点を持ち周辺が凸形状を有する非球面を備えてなる撮像レンズであって、
前記第2レンズの物体側面に赤外カットコートを有し、
以下の条件式を満足することを特徴とする。
−1.10<(1−n1)f/r2<−0.20 (1)
−0.18<(n2−1)f/r3< 0.18 (2)
−0.25<(1−n2)f/r4<−0.02 (3)
但し、
n1:前記第1レンズのd線に対する屈折率
n2:前記第2レンズのd線に対する屈折率
r2:前記第1レンズ像側面の曲率半径(mm)
r3:前記第2レンズ物体側面の曲率半径(mm)
r4:前記第2レンズ像側面の曲率半径(mm)
The imaging lens according to claim 1 includes an aperture stop, a first lens, and a second lens in order from the object side.
The first lens is a positive meniscus lens having a convex surface on the object side and a concave surface on the image side,
The second lens is a negative lens having a paraxial concave surface facing the image side surface, and the image side surface is an imaging lens having an aspherical surface having an inflection point and a convex shape on the periphery,
An infrared cut coat on the object side surface of the second lens;
The following conditional expression is satisfied.
−1.10 <(1-n1) f / r2 <−0.20 (1)
−0.18 <(n2-1) f / r3 <0.18 (2)
−0.25 <(1-n2) f / r4 <−0.02 (3)
However,
n1: Refractive index of the first lens with respect to the d-line n2: Refractive index of the second lens with respect to the d-line r2: Radius of curvature of the side surface of the first lens (mm)
r3: radius of curvature (mm) of the side surface of the second lens object
r4: radius of curvature of the side surface of the second lens image (mm)

第1レンズを正レンズとし、第2レンズを負レンズの構成とすることで、所謂テレフォトタイプとなるため、光学全長を短縮することが可能となる。さらに第1レンズの形状を物体側に凸面を向けたメニスカスレンズとすることで、パワーの強い第1レンズの主点位置を物体側にできるため、さらなる光学全長の短縮が可能となる。また、一般に光学全長を短縮すると射出瞳位置が像面に近付いてくるため、テレセントリック性の確保が課題となるが、開口絞りを最も物体側に置くことで射出瞳位置を物体側へ寄せ、さらに第2レンズの像側面を、変曲点を持ち周辺が凸形状を有するような非球面とする(すなわち周辺部が正のパワーを持つようにする)ことで画面周辺部への光線入射角を小さくし、良好なテレセントリック性を確保することができる。   By using the first lens as a positive lens and the second lens as a negative lens, a so-called telephoto type is obtained, so that the total optical length can be shortened. Furthermore, by making the shape of the first lens a meniscus lens having a convex surface facing the object side, the principal point position of the first lens with strong power can be set on the object side, so that the optical total length can be further shortened. In general, if the optical total length is shortened, the exit pupil position gets closer to the image plane.Therefore, securing telecentricity is a problem, but by placing the aperture stop closest to the object side, the exit pupil position is moved closer to the object side. By making the image side surface of the second lens an aspherical surface having an inflection point and a convex shape on the periphery (that is, the peripheral portion has a positive power), the incident angle of light on the peripheral portion of the screen is reduced. It can be reduced to ensure good telecentricity.

条件式(1)の値が上限を下回ることで、第1レンズ像側面の凹面にパワーを持たせることができるため、ペッツバール和を小さくし、像面湾曲を良好に補正することが出来る。また、条件式(1)の値が下限を上回ることで、凹面が強くなり過ぎることによる高次収差の発生を防ぐことができる。さらに、本発明の撮像レンズは、望ましくは以下の条件式(1’)を満足する。
−0.90<(1−n1)f/r2<−0.30 (1’)
When the value of conditional expression (1) is less than the upper limit, the concave surface on the side surface of the first lens image can be given power, so that the Petzval sum can be reduced and the curvature of field can be corrected well. In addition, when the value of conditional expression (1) exceeds the lower limit, it is possible to prevent the occurrence of higher-order aberrations due to the concave surface becoming too strong. Furthermore, the imaging lens of the present invention desirably satisfies the following conditional expression (1 ′).
−0.90 <(1-n1) f / r2 <−0.30 (1 ′)

条件式(2)の値が上限を下回るか下限を上回ることで、第2レンズの物体側面の曲率が弱くなるため、光学面の見込み角が小さくなり、成形性が良好となる。さらに、本発明の撮像レンズは、望ましくは以下の条件式(2’)を満足する。
−0.15<(n2−1)f/r3< 0.15 (2’)
When the value of conditional expression (2) is lower than the upper limit or higher than the lower limit, the curvature of the object side surface of the second lens is weakened, so the expected angle of the optical surface is reduced and the moldability is improved. Furthermore, the imaging lens of the present invention desirably satisfies the following conditional expression (2 ′).
−0.15 <(n2-1) f / r3 <0.15 (2 ′)

条件式(3)の値が上限を下回ることで、第2レンズの像側面のパワーが強くなるため、ペッツバール和が小さくなり、像面湾曲を良好に補正することができる。また、条件式(3)の値が下限を上回ることで、第2レンズ像側面の凹面が弱くなるため、周辺の正のパワーに至る変曲点までのサグ量を小さく抑えることができ、良好な成形性を保つことが出来る。さらに、本発明の撮像レンズは、望ましくは以下の条件式(3’)を満足する。
−0.20<(1−n2)f/r4<−0.05 (3’)
When the value of conditional expression (3) is below the upper limit, the power of the image side surface of the second lens is increased, so that the Petzval sum is reduced and the curvature of field can be corrected well. Moreover, since the concave surface on the side surface of the second lens image is weakened when the value of conditional expression (3) exceeds the lower limit, the amount of sag up to the inflection point leading to the peripheral positive power can be suppressed to a small value. Can maintain good moldability. Furthermore, the imaging lens of the present invention desirably satisfies the following conditional expression (3 ′).
−0.20 <(1-n2) f / r4 <−0.05 (3 ′)

請求項2に記載の撮像レンズは、請求項1に記載の発明において、以下の条件式を満足することを特徴とする。
−10.0<(SAG3/f)×1000<0 (4)
ただし、
SAG3:前記第2レンズ物体側面の有効径の7割の位置におけるサグ量
The imaging lens described in claim 2 is characterized in that, in the invention described in claim 1, the following conditional expression is satisfied.
-10.0 <(SAG3 / f) × 1000 <0 (4)
However,
SAG3: Sag amount at 70% of the effective diameter of the second lens object side surface

(4)式を満たすように、第2レンズ物体側面のサグ量を小さく抑えることで、光学面を緩やかな面とすることができるため成形性を良好に保つことができる。ここで、「有効径」とは、最も高い像高に結像する光線の最外光線が通る位置をいう。   By suppressing the sag amount on the side surface of the second lens object so as to satisfy the expression (4), the optical surface can be made a gentle surface, so that good moldability can be maintained. Here, the “effective diameter” refers to the position through which the outermost light beam of the light beam formed at the highest image height passes.

IRカット機能を光学面に持たせることで、IRカットフィルタのような赤外カット機能を持った別部材を省略することができるため、コストダウンにつながる。光学面にIRカットコートを施す場合、レンズに曲率が付いているため、レンズ中心部と周辺部で膜厚に差が出ることが知られている。特に、(2)式、(4)式を満たしている面は面角度が小さく抑えられているため、IRカットコートを光学面にする際に発生する膜厚変動を小さく抑えることができ、コート波長特性の短波長側へのシフトを最小限に抑えることが出来る。   By providing the optical surface with an IR cut function, a separate member having an infrared cut function such as an IR cut filter can be omitted, leading to cost reduction. When IR cut coating is applied to the optical surface, it is known that there is a difference in film thickness between the central portion and the peripheral portion of the lens because the lens has a curvature. In particular, since the surface satisfying the formulas (2) and (4) has a small surface angle, it is possible to suppress a film thickness variation that occurs when an IR cut coat is used as an optical surface. The shift of the wavelength characteristic to the short wavelength side can be minimized.

請求項に記載の撮像レンズは、請求項1又は2に記載の発明において、以下の条件式を満足することを特徴とする。
0.30 < d3/f < 0.60 (5)
ただし、
d3:前記第2レンズの軸上厚(mm)
The imaging lens described in claim 3 is characterized in that, in the invention described in claim 1 or 2 , the following conditional expression is satisfied.
0.30 <d3 / f <0.60 (5)
However,
d3: Axial thickness (mm) of the second lens

条件式(5)の値が上限を下回ることで、第2レンズの厚さが厚くなり過ぎず、光学全長を短縮することができる。また条件式(5)の値が下限を上回ることで、第2レンズの厚さが薄くなり過ぎず、像側面の周辺部が物体側へサグを持っていても、コバ厚を確保することができるため、成形性を良好に保つことができる。さらに、本発明の撮像レンズは、望ましくは以下の条件式(5’)を満足する。
0.35 < d3/f < 0.50 (5’)
When the value of conditional expression (5) is below the upper limit, the thickness of the second lens does not become too thick, and the optical total length can be shortened. Further, when the value of conditional expression (5) exceeds the lower limit, the thickness of the second lens is not reduced too much, and the edge thickness can be secured even if the peripheral portion of the image side surface has a sag toward the object side. Therefore, the moldability can be kept good. Furthermore, the imaging lens of the present invention desirably satisfies the following conditional expression (5 ′).
0.35 <d3 / f <0.50 (5 ')

請求項に記載の撮像レンズは、請求項1〜のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
−20.0 < f2/f1 < −5.0 (6)
ただし、
f1:前記第1レンズの焦点距離(mm)
f2:前記第2レンズの焦点距離(mm)
The imaging lens of Claim 4 satisfies the following conditional expressions in the invention of any one of Claims 1-3 .
-20.0 <f2 / f1 <-5.0 (6)
However,
f1: Focal length (mm) of the first lens
f2: Focal length (mm) of the second lens

条件式(6)は第1レンズと第2レンズのパワーの比を表わす条件式である。条件式(6)の値が上限を下回ることで、第2レンズのパワーに対して第1レンズのパワーが十分強くなるため、光学全長を小さく抑えることができる。また条件式(6)の値が下限を上回ることで、第1レンズのパワーに対して、第2レンズがある程度パワーを持つため、ペッツバール和を小さくすることが出来、像面湾曲を良好に補正することができる。また、全系の主点を物体側に寄せることができるため、さらなる光学全長の短縮も可能となる。
さらに、本発明の撮像レンズは、望ましくは以下の条件式(6’)を満足する。
−17.0 < f2/f1 < −8.0 (6’)
Conditional expression (6) is a conditional expression representing the ratio of the power of the first lens and the second lens. When the value of conditional expression (6) is below the upper limit, the power of the first lens is sufficiently strong with respect to the power of the second lens, so that the total optical length can be kept small. In addition, since the value of conditional expression (6) exceeds the lower limit, the second lens has a certain amount of power with respect to the power of the first lens, so the Petzval sum can be reduced and the field curvature is corrected well. can do. In addition, since the principal point of the entire system can be moved toward the object side, the optical total length can be further shortened.
Furthermore, the imaging lens of the present invention desirably satisfies the following conditional expression (6 ′).
−17.0 <f2 / f1 <−8.0 (6 ′)

請求項に記載の撮像レンズは、請求項1〜のいずれかに記載の発明において、前記第2レンズはガラス製であることを特徴とする。(2)、(3)式を満たす第2レンズは、金型の加工が容易で、素材をガラスとした場合の成形性に優れる。更にガラスモールドレンズのような硬い材料のレンズにおいては、成形性が悪くなると成形の際のレンズ面形状バラつきが大きくなってしまい、十分な光学性能の確保が困難となる。
An imaging lens according to a fifth aspect is the invention according to any one of the first to fourth aspects, wherein the second lens is made of glass. The second lens satisfying the expressions (2) and (3) is easy to mold and has excellent moldability when the material is glass. Further, in a lens made of a hard material such as a glass mold lens, when the moldability is deteriorated, the lens surface shape variation at the time of molding becomes large, and it becomes difficult to ensure sufficient optical performance.

請求項に記載の撮像レンズは、請求項1〜のいずれかに記載の発明において、前記第2レンズは樹脂製であることを特徴とする。(2)、(3)式を満たす第2レンズは、成形時に収縮しても高精度な面形状を確保できる。
An imaging lens according to a sixth aspect is the invention according to any one of the first to fourth aspects, wherein the second lens is made of resin. The second lens satisfying the expressions (2) and (3) can ensure a highly accurate surface shape even when contracted during molding.

請求項に記載の撮像装置は、請求項1〜のいずれかに記載の撮像レンズと、固体撮像素子とを有し、以下の式を満たすことを特徴とする。
L/2Y<1.00 (7)
ただし、
L:前記撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離
2Y:前記固体撮像素子の撮像面対角線長(前記固体撮像素子の矩形実効画素領域の対角線長)
An imaging apparatus according to a seventh aspect includes the imaging lens according to any one of the first to sixth aspects and a solid-state imaging element, and satisfies the following expression.
L / 2Y <1.00 (7)
However,
L: Distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system 2Y: diagonal length of the imaging surface of the solid-state imaging device (diagonal length of the rectangular effective pixel region of the solid-state imaging device)

請求項に記載の撮像装置は、請求項に記載の発明において、以下の式を満たすことを特徴とする。
L/2Y<0.90 (7’)
An imaging device according to an eighth aspect of the invention is characterized in that, in the invention according to the seventh aspect , the following expression is satisfied.
L / 2Y <0.90 (7 ')

本発明によれば、従来タイプより成形性などが良好でありながら、諸収差が補正された2枚構成の撮像レンズおよび、この撮像レンズを用いた撮像装置を提供することができる。   According to the present invention, it is possible to provide an imaging lens having a two-lens configuration in which various aberrations are corrected while having better moldability and the like than the conventional type, and an imaging apparatus using the imaging lens.

本実施の形態にかかる撮像装置LUの斜視図である。It is a perspective view of imaging device LU concerning this embodiment. 図1の構成を矢印II-II線で切断して矢印方向に見た断面図である。It is sectional drawing which cut | disconnected the structure of FIG. 1 by the arrow II-II line, and was seen in the arrow direction. 携帯電話機Tを示す図で、(a)は折り畳んだ携帯電話機を開いて内側から見た図、(b)は折り畳んだ携帯電話機を開いて外側から見た図である。FIGS. 2A and 2B are diagrams showing a mobile phone T, in which FIG. 1A is a view of the folded mobile phone opened and viewed from the inside, and FIG. 2B is a view of the folded mobile phone opened and viewed from the outside. 実施例1にかかる撮像レンズの断面図である。1 is a cross-sectional view of an imaging lens according to Example 1. FIG. 実施例1にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 1; 実施例2にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 2. FIG. 実施例2にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 2; 実施例3にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 3. FIG. 実施例3にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 3; 実施例4にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 4. FIG. 実施例4にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 4; 実施例5にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 5. FIG. 実施例5にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 5; 実施例6にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 6. FIG. 実施例6にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 6; 実施例7にかかる撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens according to Example 7. FIG. 実施例7にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 7;

以下、本発明の実施の形態を図面に基づいて説明する。図1は、本実施の形態にかかる撮像装置LUの斜視図であり、図2は、図1の構成を矢印II-II線で切断して矢印方向に見た断面図である。図2に示すように、撮像装置LUは、光電変換部IMaを有する固体撮像素子としてのCMOS型イメージセンサIMと、このイメージセンサIMの光電変換部(受光面)IMaに被写体像を撮像させる撮像レンズLNと、その電気信号の送受を行う不図示の外部接続用端子(電極)とを備え、これらが一体的に形成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an imaging apparatus LU according to the present embodiment, and FIG. 2 is a cross-sectional view of the configuration of FIG. 1 taken along line II-II and viewed in the direction of the arrow. As shown in FIG. 2, the imaging device LU is a CMOS type image sensor IM as a solid-state imaging device having a photoelectric conversion unit IMa, and imaging that causes the photoelectric conversion unit (light receiving surface) IMa of the image sensor IM to capture a subject image. A lens LN and an external connection terminal (electrode) (not shown) for transmitting and receiving the electrical signal are provided, and these are integrally formed.

撮像レンズLNは、物体側(図2で上方)から順に、ガラス又は樹脂製の第1レンズL1と、ガラス又は樹脂製の第2レンズL2とからなる。レンズをガラスで作製する場合、ガラスモールドや液滴法で成形できる。第1レンズL1は、物体側に凸面、像側に凹面を有する正メニスカスレンズであり、第2レンズL2は、像側面に近軸凹面を向けた負レンズで、像側面は変曲点を持ち周辺が凸形状を有する非球面を備えてなり、以下の条件式を満足する。
−1.10<(1−n1)f/r2<−0.20 (1)
−0.18<(n2−1)f/r3< 0.18 (2)
−0.25<(1−n2)f/r4<−0.05 (3)
但し、
n1:第1レンズL1のd線に対する屈折率
n2:第2レンズL2のd線に対する屈折率
r2:第1レンズ像側面の曲率半径(mm)
r3:第2レンズ物体側面の曲率半径(mm)
r4:第2レンズ像側面の曲率半径(mm)
f:全系の焦点距離(mm)
The imaging lens LN is composed of a glass or resin-made first lens L1 and a glass or resin-made second lens L2 in order from the object side (upper side in FIG. 2). When the lens is made of glass, it can be formed by a glass mold or a droplet method. The first lens L1 is a positive meniscus lens having a convex surface on the object side and a concave surface on the image side. The second lens L2 is a negative lens having a paraxial concave surface on the image side surface, and the image side surface has an inflection point. The periphery includes an aspheric surface having a convex shape, and the following conditional expression is satisfied.
−1.10 <(1-n1) f / r2 <−0.20 (1)
−0.18 <(n2-1) f / r3 <0.18 (2)
−0.25 <(1-n2) f / r4 <−0.05 (3)
However,
n1: Refractive index of the first lens L1 with respect to the d-line n2: Refractive index with respect to the d-line of the second lens L2 r2: Radius of curvature of the first lens image side surface (mm)
r3: radius of curvature of the second lens object side surface (mm)
r4: radius of curvature of the second lens image side surface (mm)
f: Focal length of the entire system (mm)

上記イメージセンサIMは、その受光側の平面の中央部に、画素(光電変換素子)が2次元的に配置された、受光部としての光電変換部IMaが形成されており、不図示の信号処理回路に接続されている。かかる信号処理回路は、各画素を順次駆動し信号電荷を得る駆動回路部と、各信号電荷をデジタル信号に変換するA/D変換部と、このデジタル信号を用いて画像信号出力を形成する信号処理部等から構成されている。また、イメージセンサIMの受光側の平面の外縁近傍には、多数のパッド(図示略)が配置されており、不図示のワイヤを介してイメージセンサIMに接続されている。イメージセンサIMは、光電変換部IMaからの信号電荷をデジタルYUV信号等の画像信号等に変換し、ワイヤ(不図示)を介して所定の回路に出力する。ここで、Yは輝度信号、U(=R−Y)は赤と輝度信号との色差信号、V(=B−Y)は青と輝度信号との色差信号である。なお、固体撮像素子は上記CMOS型のイメージセンサに限定されるものではなく、CCD等の他のものを使用しても良い。   In the image sensor IM, a photoelectric conversion unit IMa as a light receiving unit in which pixels (photoelectric conversion elements) are two-dimensionally arranged is formed in the center of a plane on the light receiving side, and signal processing (not shown) is performed. Connected to the circuit. Such a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like. A number of pads (not shown) are arranged near the outer edge of the light receiving side plane of the image sensor IM, and are connected to the image sensor IM via wires (not shown). The image sensor IM converts a signal charge from the photoelectric conversion unit IMa into an image signal such as a digital YUV signal and outputs the image signal to a predetermined circuit via a wire (not shown). Here, Y is a luminance signal, U (= R−Y) is a color difference signal between red and the luminance signal, and V (= BY) is a color difference signal between blue and the luminance signal. Note that the solid-state imaging device is not limited to the CMOS image sensor, and other devices such as a CCD may be used.

イメージセンサIMは、外部接続用端子を介して外部回路(例えば、撮像装置を実装した携帯端末の上位装置が有する制御回路)と接続し、外部回路からイメージセンサIMを駆動するための電圧やクロック信号の供給を受けたり、また、デジタルYUV信号を外部回路へ出力したりすることを可能とする。   The image sensor IM is connected to an external circuit (for example, a control circuit included in a host device of a portable terminal mounted with an imaging device) via an external connection terminal, and a voltage or a clock for driving the image sensor IM from the external circuit. It is possible to receive a signal and to output a digital YUV signal to an external circuit.

イメージセンサIMの上部は、カバーガラスCGにより封止されている。カバーガラスCGの上方(物体側)には、スペーサSP3を介在させて、平行平板状のIRカットフィルタFが設けられ、その上方には、スペーサSP2を介在させて、所定の距離で第2レンズL2のフランジ部(レンズ部の外側)が固定され、更にその上方には、スペーサSP1を介在させて、第1レンズL1のフランジ部(レンズ部の外側)が固定されている。   The upper part of the image sensor IM is sealed with a cover glass CG. A parallel plate-shaped IR cut filter F is provided above the cover glass CG (object side) with a spacer SP3 interposed therebetween, and a second lens is disposed above the cover glass CG at a predetermined distance with a spacer SP2 interposed therebetween. The flange portion of L2 (outside of the lens portion) is fixed, and further above that, the flange portion (outside of the lens portion) of the first lens L1 is fixed via a spacer SP1.

これらレンズL1、L2の外側は、筐体BXにより覆われており、筐体BXの上部フランジBXaの下面が、第1レンズL1のフランジ部(レンズ部の外側)の上面に当接して支持されており、筐体BXの下端はカバーガラスCGに接触している。筐体BXの上部フランジBXaに形成された開口が絞りSを構成している。   The outer sides of these lenses L1 and L2 are covered with a housing BX, and the lower surface of the upper flange BXa of the housing BX is supported in contact with the upper surface of the flange portion (outside of the lens portion) of the first lens L1. The lower end of the housing BX is in contact with the cover glass CG. An opening formed in the upper flange BXa of the housing BX constitutes a diaphragm S.

次に、撮像装置を備えた携帯端末の一例として携帯電話機を図3の外観図に基づいて説明する。なお、図3(a)は折り畳んだ携帯電話機を開いて内側から見た図であり、図3(b)は折り畳んだ携帯電話機を開いて外側から見た図である。   Next, a mobile phone as an example of a mobile terminal equipped with an imaging device will be described with reference to the external view of FIG. 3A is a view of the folded mobile phone opened from the inside and FIG. 3B is a view of the folded mobile phone opened from the outside.

図3(a)、(b)において、携帯電話機Tは、表示画面D1,D2を備えたケースとしての上筐体71と、操作ボタンBを備えた下筐体72とがヒンジ73を介して連結されている。本実施の形態においては、風景等を撮影するためのメインの撮像装置MCが、上筐体71の表面側に設けられ、上述した広角の撮像レンズLNを備える撮像装置LUが、上筐体71の裏面側であって表示画面D1の上に設けられている。   3A and 3B, the mobile phone T includes an upper casing 71 as a case having display screens D1 and D2 and a lower casing 72 having an operation button B via a hinge 73. It is connected. In the present embodiment, the main imaging device MC for photographing a landscape or the like is provided on the surface side of the upper housing 71, and the imaging device LU including the above-described wide-angle imaging lens LN is the upper housing 71. And provided on the display screen D1.

撮像レンズLNは、図3(a)に示すように撮像装置LUに正対した状態で、携帯電話機Tを手で把持した使用者自身の上半身を撮像装置LUにより撮像できる。その画像信号を通信している相手方の携帯電話機に送信して、こちらのユーザーの画像を表示できると共に、通常の通話を行うことにより、いわゆるテレビ電話を実現できる。なお、携帯電話機Tは折り畳み式に限定されるものではない。   As shown in FIG. 3A, the imaging lens LN can capture an image of the upper body of the user who holds the mobile phone T with his / her hand, with the imaging device LU facing the imaging device LU. By transmitting the image signal to the mobile phone of the other party that is communicating and displaying the image of this user, a so-called videophone can be realized by making a normal call. The mobile phone T is not limited to a folding type.

(実施例)
次に、上述した実施の形態に好適な実施例について説明する。但し、以下に示す実施例により本発明が限定されるものではない。実施例における各符号の意味は以下の通りである。
FL:撮像レンズ全系の焦点距離(mm)
BF:バックフォーカス(mm)(但し、平行平板を空気換算長とした時の、平行平板を除いた最終光学面から近軸像面までの距離)
Fno :Fナンバー
w :半画角(゜)
Ymax:固体撮像素子の撮像面対角線長の半分の長さ(mm)
TL:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離(mm)(但し、「像側焦点」とは、撮像レンズに光軸と平行な平行光線が入射した場合の像点をいい、このときの像点は平行平板を空気換算長として求める。)
r :屈折面の曲率半径(mm)
d :軸上面間隔(mm)
nd:レンズ材料のd線の常温での屈折率
vd:レンズ材料のアッベ数
STO:開口絞り
(Example)
Next, examples suitable for the above-described embodiment will be described. However, the present invention is not limited to the following examples. The meaning of each symbol in the embodiment is as follows.
FL: Focal length of the entire imaging lens (mm)
BF: Back focus (mm) (however, the distance from the final optical surface excluding the parallel plate to the paraxial image plane when the parallel plate is the air conversion length)
Fno: F number w: Half angle of view (°)
Ymax: half length (mm) of the diagonal length of the imaging surface of the solid-state imaging device
TL: Distance (mm) on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system (however, “image-side focal point” means that parallel rays parallel to the optical axis are incident on the imaging lens. (The image point at this time is obtained with the parallel plate as the air conversion length.)
r: radius of curvature of refractive surface (mm)
d: Distance between shaft upper surfaces (mm)
nd: Refractive index of lens material at d-line at room temperature vd: Abbe number of lens material STO: Aperture stop

各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。   In each embodiment, the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin and the X axis in the optical axis direction. The height in the direction perpendicular to the optical axis is represented by the following “Equation 1”.

ただし、
Ai:i次の非球面係数
R :基準曲率半径
K :円錐定数
である。
However,
Ai: i-order aspherical coefficient R: reference radius of curvature K: conic constant.

また、以降(表のレンズデータを含む)において、10のべき乗数(例えば、2.5×10-02)をE(例えば2.5e−002)を用いて表すものとする。また、レンズデータの面番号は第1レンズの物体側を1面として順に付与した。なお、実施例に記載の長さを表す数値の単位はすべてmmとする。In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −02 ) is represented using E (for example, 2.5e−002). The surface number of the lens data was given in order with the object side of the first lens as one surface. In addition, the unit of the numerical value showing the length described in an Example shall be mm.

(実施例1)
実施例1におけるレンズデータを表1に示す。図4は実施例1のレンズの断面図である。実施例1の撮像レンズは、物体側から順に、物体側から順に開口絞りS、第1レンズL1、第2レンズL2からなり、第1レンズL1は、物体側に凸面、像側に凹面を有する正メニスカスレンズであり、第2レンズL2は、像側面に近軸凹面を向けた負レンズで、前記像側面は変曲点を持ち周辺が凸形状を有する非球面を備えてなる。尚、Fは赤外線カットフィルタ、CGはカバーガラス、IMは固体撮像素子である。
Example 1
Table 1 shows lens data in Example 1. 4 is a sectional view of the lens of Example 1. FIG. The imaging lens according to the first exemplary embodiment includes, in order from the object side, an aperture stop S, a first lens L1, and a second lens L2 in order from the object side. The first lens L1 has a convex surface on the object side and a concave surface on the image side. It is a positive meniscus lens, and the second lens L2 is a negative lens having a paraxial concave surface directed to the image side surface, and the image side surface has an aspheric surface having an inflection point and a convex shape in the periphery. Note that F is an infrared cut filter, CG is a cover glass, and IM is a solid-state image sensor.

[表1]
Reference Wave Length = 587.56 nm
unit: mm

NUM. r d nd vd eff.diameter
OBJ INFINITY 350.0000
1 INFINITY 0.0500 0.840
STO INFINITY -0.0850 0.840
3* 0.8376 0.6530 1.58313 59.44 0.904
4* 1.5995 0.4070 0.943
5* 1e+018 0.9620 1.58313 59.44 1.248
6* 12.5380 0.1000 2.334
7 INFINITY 0.1750 1.52310 54.49 3.400
8 INFINITY 0.1690 3.400
9 INFINITY 0.4000 1.52550 62.19 3.400
IMG INFINITY 0.0563

非球面係数
3:K=-4.42830e+000,A3=1.95700e-002,A4=9.65840e-001,A6=-8.98080e-001,A8=-2.17300e+001,A10=3.89000e+002,A12=-2.98010e+003,A14=1.12680e+004,A16=-1.69290e+004
4:K=-5.00000e+001,A3=4.60780e-001,A4=-4.30670e-001,A6=9.84810e+000,A8=-1.02650e+002,A10=8.50080e+002,A12=-4.59480e+003,A14=1.43470e+004,A16=-1.87400e+004
5:K=0.00000e+000,A4=-4.74040e-001,A6=1.18080e+000,A8=-1.32070e+001,A10=5.38720e+001,A12=-9.71240e+001,A14=1.83010e+002,A16=-1.01490e+003,A18=2.50480e+003,A20=-1.91630e+003
6:K=0.00000e+000,A4=-9.02160e-002,A6=-1.31520e-001,A8=2.57910e-001,A10=-3.88240e-001,A12=2.37370e-001,A14=6.04190e-002,A16=-1.63310e-001,A18=7.72210e-002,A20=-1.18490e-002

FL 2.3599
Fno 2.8224
w 64.3227
Ymax 1.5400
BF 0.694
TL 2.715

Elem Surfs Focal Length Diameter
1 3-11 2.359893 3.3685

Elem Surfs Focal Length Diameter
1 3- 4 2.291940 0.9600
2 5- 6 -21.501209 2.4360
[Table 1]
Reference Wave Length = 587.56 nm
unit: mm

NUM. Rd nd vd eff.diameter
OBJ INFINITY 350.0000
1 INFINITY 0.0500 0.840
STO INFINITY -0.0850 0.840
3 * 0.8376 0.6530 1.58313 59.44 0.904
4 * 1.5995 0.4070 0.943
5 * 1e + 018 0.9620 1.58313 59.44 1.248
6 * 12.5380 0.1000 2.334
7 INFINITY 0.1750 1.52310 54.49 3.400
8 INFINITY 0.1690 3.400
9 INFINITY 0.4000 1.52550 62.19 3.400
IMG INFINITY 0.0563

Aspheric coefficient
3: K = -4.42830e + 000, A3 = 1.95700e-002, A4 = 9.65840e-001, A6 = -8.98080e-001, A8 = -2.17300e + 001, A10 = 3.89000e + 002, A12 =- 2.98010e + 003, A14 = 1.12680e + 004, A16 = -1.69290e + 004
4: K = -5.00000e + 001, A3 = 4.60780e-001, A4 = -4.30670e-001, A6 = 9.84810e + 000, A8 = -1.02650e + 002, A10 = 8.50080e + 002, A12 =- 4.59480e + 003, A14 = 1.43470e + 004, A16 = -1.87400e + 004
5: K = 0.00000e + 000, A4 = -4.74040e-001, A6 = 1.18080e + 000, A8 = -1.32070e + 001, A10 = 5.38720e + 001, A12 = -9.71240e + 001, A14 = 1.83010 e + 002, A16 = -1.01490e + 003, A18 = 2.50480e + 003, A20 = -1.91630e + 003
6: K = 0.00000e + 000, A4 = -9.02160e-002, A6 = -1.31520e-001, A8 = 2.57910e-001, A10 = -3.88240e-001, A12 = 2.37370e-001, A14 = 6.04190 e-002, A16 = -1.63310e-001, A18 = 7.72210e-002, A20 = -1.18490e-002

FL 2.3599
Fno 2.8224
w 64.3227
Ymax 1.5400
BF 0.694
TL 2.715

Elem Surfs Focal Length Diameter
1 3-11 2.359893 3.3685

Elem Surfs Focal Length Diameter
1 3- 4 2.291940 0.9600
2 5--6 -21.501209 2.4360

図5は実施例1の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。ここで、球面収差図において、実線はd線、点線はg線に対する球面収差量をそれぞれ表し、非点収差図において、実線はサジタル面、点線はメリディオナル面を表す(以下、同じ)。   FIG. 5 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c)). Here, in the spherical aberration diagram, the solid line represents the spherical aberration amount with respect to the d line and the dotted line, respectively, and in the astigmatism diagram, the solid line represents the sagittal surface and the dotted line represents the meridional surface (hereinafter the same).

(実施例2)
実施例2におけるレンズデータを表2に示す。図6は実施例2のレンズの断面図である。実施例2の撮像レンズは、物体側から順に、物体側から順に開口絞りS、第1レンズL1、第2レンズL2からなり、第1レンズL1は、物体側に凸面、像側に凹面を有する正メニスカスレンズであり、第2レンズL2は、像側面に近軸凹面を向けた負レンズで、前記像側面は変曲点を持ち周辺が凸形状を有する非球面を備えてなる。尚、Fは赤外線カットフィルタ、CGはカバーガラス、IMは固体撮像素子である。
(Example 2)
Table 2 shows lens data in Example 2. 6 is a sectional view of the lens of Example 2. FIG. The imaging lens of Example 2 includes an aperture stop S, a first lens L1, and a second lens L2 in order from the object side, and from the object side. The first lens L1 has a convex surface on the object side and a concave surface on the image side. It is a positive meniscus lens, and the second lens L2 is a negative lens having a paraxial concave surface directed to the image side surface, and the image side surface has an aspheric surface having an inflection point and a convex shape in the periphery. Note that F is an infrared cut filter, CG is a cover glass, and IM is a solid-state image sensor.

[表2]
Reference Wave Length = 587.56 nm
unit: mm

NUM. r d nd vd eff.diameter
OBJ INFINITY 350.0000
1 INFINITY 0.0500 0.840
STO INFINITY -0.0682 0.840
3* 0.9004 0.6899 1.58313 59.44 0.911
4* 1.7114 0.4692 0.981
5* 8.0460 0.9004 1.58313 59.44 1.344
6* 5.7540 0.1000 2.331
7 INFINITY 0.1750 1.52310 54.49 3.400
8 INFINITY 0.1690 3.400
9 INFINITY 0.4000 1.52550 62.19 3.400
IMG INFINITY 0.0924

非球面係数
3:K=-4.40583e+000,A3=-3.52063e-003,A4=8.87648e-001,A6=-1.37562e+000,A8=-2.11593e+001,A10=4.25059e+002,A12=-3.19571e+003,A14=1.12751e+004,A16=-1.53899e+004
4:K=-5.00000e+001,A3=3.97337e-001,A4=-4.98522e-001,A6=1.03872e+001,A8=-1.15793e+002,A10=9.34071e+002,A12=-4.60672e+003,A14=1.23904e+004,A16=-1.36840e+004
5:K=0.00000e+000,A4=-5.09306e-001,A6=1.86433e+000,A8=-1.36358e+001,A10=4.81356e+001,A12=-1.00943e+002,A14=2.40224e+002,A16=-7.55447e+002,A18=1.34373e+003,A20=-8.85488e+002
6:K=0.00000e+000,A4=-1.12968e-001,A6=-1.26251e-001,A8=2.82773e-001,A10=-3.93303e-001,A12=2.24028e-001,A14=5.85290e-002,A16=-1.58629e-001,A18=8.29624e-002,A20=-1.52528e-002

FL 2.4197
Fno 2.8224
w 62.9875
Ymax 1.5400
BF 0.730
TL 2.789

Elem Surfs Focal Length Diameter
1 3-11 2.419650 3.3201

Elem Surfs Focal Length Diameter
1 3- 4 2.480770 1.0038
2 5- 6 -40.501402 2.4472
[Table 2]
Reference Wave Length = 587.56 nm
unit: mm

NUM. Rd nd vd eff.diameter
OBJ INFINITY 350.0000
1 INFINITY 0.0500 0.840
STO INFINITY -0.0682 0.840
3 * 0.9004 0.6899 1.58313 59.44 0.911
4 * 1.7114 0.4692 0.981
5 * 8.0460 0.9004 1.58313 59.44 1.344
6 * 5.7540 0.1000 2.331
7 INFINITY 0.1750 1.52310 54.49 3.400
8 INFINITY 0.1690 3.400
9 INFINITY 0.4000 1.52550 62.19 3.400
IMG INFINITY 0.0924

Aspheric coefficient
3: K = -4.40583e + 000, A3 = -3.52063e-003, A4 = 8.87648e-001, A6 = -1.37562e + 000, A8 = -2.11593e + 001, A10 = 4.25059e + 002, A12 = -3.19571e + 003, A14 = 1.12751e + 004, A16 = -1.53899e + 004
4: K = -5.00000e + 001, A3 = 3.97337e-001, A4 = -4.98522e-001, A6 = 1.03872e + 001, A8 = -1.15793e + 002, A10 = 9.34071e + 002, A12 =- 4.60672e + 003, A14 = 1.23904e + 004, A16 = -1.36840e + 004
5: K = 0.00000e + 000, A4 = -5.09306e-001, A6 = 1.86433e + 000, A8 = -1.36358e + 001, A10 = 4.81356e + 001, A12 = -1.00943e + 002, A14 = 2.40224 e + 002, A16 = -7.55447e + 002, A18 = 1.34373e + 003, A20 = -8.85488e + 002
6: K = 0.00000e + 000, A4 = -1.12968e-001, A6 = -1.26251e-001, A8 = 2.82773e-001, A10 = -3.93303e-001, A12 = 2.24028e-001, A14 = 5.85290 e-002, A16 = -1.58629e-001, A18 = 8.29624e-002, A20 = -1.52528e-002

FL 2.4197
Fno 2.8224
w 62.9875
Ymax 1.5400
BF 0.730
TL 2.789

Elem Surfs Focal Length Diameter
1 3-11 2.419650 3.3201

Elem Surfs Focal Length Diameter
1 3- 4 2.480770 1.0038
2 5--6 -40.501402 2.4472

図7は実施例2の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。   FIG. 7 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c)).

(実施例3)
実施例3におけるレンズデータを表3に示す。図8は実施例3のレンズの断面図である。実施例3の撮像レンズは、物体側から順に、物体側から順に開口絞りS、第1レンズL1、第2レンズL2からなり、第1レンズL1は、物体側に凸面、像側に凹面を有する正メニスカスレンズであり、第2レンズL2は、像側面に近軸凹面を向けた負レンズで、前記像側面は変曲点を持ち周辺が凸形状を有する非球面を備えてなる。尚、Fは赤外線カットフィルタ、CGはカバーガラス、IMは固体撮像素子である。
(Example 3)
Table 3 shows lens data in Example 3. FIG. 8 is a sectional view of the lens of Example 3. The imaging lens according to the third exemplary embodiment includes an aperture stop S, a first lens L1, and a second lens L2 in order from the object side. The first lens L1 has a convex surface on the object side and a concave surface on the image side. It is a positive meniscus lens, and the second lens L2 is a negative lens having a paraxial concave surface directed to the image side surface, and the image side surface has an aspheric surface having an inflection point and a convex shape in the periphery. Note that F is an infrared cut filter, CG is a cover glass, and IM is a solid-state image sensor.

[表3]
Reference Wave Length = 587.56 nm
unit: mm

NUM. r d nd vd eff.diameter
OBJ INFINITY 1000.0000
1 INFINITY 0.0500 0.840
STO INFINITY -0.0623 0.840
3* 0.9126 0.6779 1.48700 70.19 0.914
4* 3.8590 0.5897 1.016
5* -21.4067 1.0663 1.83400 37.19 1.340
6* 8.6587 0.1000 2.447
7 INFINITY 0.1750 1.52310 54.49 3.400
8 INFINITY 0.1690 3.400
9 INFINITY 0.4000 1.52550 62.19 3.400
IMG INFINITY 0.0541

非球面係数
3:K=-6.01260e+000,A3=3.75767e-002,A4=9.55063e-001,A6=-1.88262e+000,A8=-2.24516e+001,A10=4.54566e+002,A12=-3.18006e+003,A14=9.91073e+003,A16=-1.11738e+004
4:K=1.26415e+001,A3=4.22193e-001,A4=-1.62799e+000,A6=1.29438e+001,A8=-1.15022e+002,A10=9.16295e+002,A12=-4.67268e+003,A14=1.25006e+004,A16=-1.30901e+004
5:K=0.00000e+000,A4=-2.82274e-001,A6=9.87052e-001,A8=-1.21176e+001,A10=5.00541e+001,A12=-1.02408e+002,A14=2.13102e+002,A16=-8.12319e+002,A18=1.77837e+003,A20=-1.38317e+003
6:K=0.00000e+000,A4=-5.42322e-002,A6=-1.62605e-001,A8=3.10050e-001,A10=-3.83069e-001,A12=2.15983e-001,A14=5.90651e-002,A16=-1.58014e-001,A18=8.26739e-002,A20=-1.46841e-002

FL 2.5371
Fno 2.8224
w 60.9171
Ymax 1.5400
BF 0.694
TL 3.028

Elem Surfs Focal Length Diameter
1 3-11 2.537109 3.3215

Elem Surfs Focal Length Diameter
1 3- 4 2.282481 1.0321
2 5- 6 -7.274781 2.5797
[Table 3]
Reference Wave Length = 587.56 nm
unit: mm

NUM. Rd nd vd eff.diameter
OBJ INFINITY 1000.0000
1 INFINITY 0.0500 0.840
STO INFINITY -0.0623 0.840
3 * 0.9126 0.6779 1.48700 70.19 0.914
4 * 3.8590 0.5897 1.016
5 * -21.4067 1.0663 1.83400 37.19 1.340
6 * 8.6587 0.1000 2.447
7 INFINITY 0.1750 1.52310 54.49 3.400
8 INFINITY 0.1690 3.400
9 INFINITY 0.4000 1.52550 62.19 3.400
IMG INFINITY 0.0541

Aspheric coefficient
3: K = -6.01260e + 000, A3 = 3.75767e-002, A4 = 9.55063e-001, A6 = -1.88262e + 000, A8 = -2.24516e + 001, A10 = 4.54566e + 002, A12 =- 3.18006e + 003, A14 = 9.91073e + 003, A16 = -1.11738e + 004
4: K = 1.26415e + 001, A3 = 4.22193e-001, A4 = -1.62799e + 000, A6 = 1.29438e + 001, A8 = -1.15022e + 002, A10 = 9.16295e + 002, A12 = -4.67268 e + 003, A14 = 1.25006e + 004, A16 = -1.30901e + 004
5: K = 0.00000e + 000, A4 = -2.82274e-001, A6 = 9.87052e-001, A8 = -1.21176e + 001, A10 = 5.00541e + 001, A12 = -1.02408e + 002, A14 = 2.13102 e + 002, A16 = -8.12319e + 002, A18 = 1.77837e + 003, A20 = -1.38317e + 003
6: K = 0.00000e + 000, A4 = -5.42322e-002, A6 = -1.62605e-001, A8 = 3.10050e-001, A10 = -3.83069e-001, A12 = 2.15983e-001, A14 = 5.90651 e-002, A16 = -1.58014e-001, A18 = 8.26739e-002, A20 = -1.46841e-002

FL 2.5371
Fno 2.8224
w 60.9171
Ymax 1.5400
BF 0.694
TL 3.028

Elem Surfs Focal Length Diameter
1 3-11 2.537109 3.3215

Elem Surfs Focal Length Diameter
1 3- 4 2.282481 1.0321
2 5- 6 -7.274781 2.5797

図9は実施例3の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。   FIG. 9 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion (c)).

(実施例4)
実施例4におけるレンズデータを表4に示す。図10は実施例4のレンズの断面図である。実施例4の撮像レンズは、物体側から順に、物体側から順に開口絞りS、第1レンズL1、第2レンズL2からなり、第1レンズL1は、物体側に凸面、像側に凹面を有する正メニスカスレンズであり、第2レンズL2は、像側面に近軸凹面を向けた負レンズで、前記像側面は変曲点を持ち周辺が凸形状を有する非球面を備えてなる。尚、Fは赤外線カットフィルタ、CGはカバーガラス、IMは固体撮像素子である。
Example 4
Table 4 shows lens data in Example 4. FIG. 10 is a sectional view of the lens of Example 4. The imaging lens according to the fourth exemplary embodiment includes an aperture stop S, a first lens L1, and a second lens L2 in order from the object side, and has a convex surface on the object side and a concave surface on the image side. It is a positive meniscus lens, and the second lens L2 is a negative lens having a paraxial concave surface directed to the image side surface, and the image side surface has an aspheric surface having an inflection point and a convex shape in the periphery. Note that F is an infrared cut filter, CG is a cover glass, and IM is a solid-state image sensor.

[表4]
Reference Wave Length = 587.56 nm
unit: mm

NUM. r d nd vd eff.diameter
OBJ INFINITY 1000.0000
1 INFINITY 0.0500 0.898
STO INFINITY -0.1200 0.898
3* 0.8183 0.6304 1.58313 59.39 0.932
4* 1.4096 0.5085 0.926
5* -44.2023 0.9173 1.58313 59.39 1.299
6* 9.6803 0.1000 2.308
7 INFINITY 0.1750 1.52310 54.49 3.400
8 INFINITY 0.1690 3.400
9 INFINITY 0.3500 1.47140 65.19 3.400
IMG INFINITY 0.1085

非球面係数
3:K=-3.15541e+000,A3=-3.56669e-002,A4=9.24268e-001,A6=-1.05369e-001,A8=-3.30585e+001,A10=4.60558e+002,A12=-3.00381e+003,A14=9.82347e+003,A16=-1.28446e+004
4:K=6.90028e+000,A3=2.93943e-001,A4=-1.57193e+000,A6=1.67272e+001,A8=-1.44248e+002,A10=8.94175e+002,A12=-4.18454e+003,A14=1.34391e+004,A16=-2.09593e+004
5:K=0.00000e+000,A4=-5.35224e-001,A6=1.53473e+000,A8=-1.18000e+001,A10=4.37271e+001,A12=-1.05196e+002,A14=3.34103e+002,A16=-1.20857e+003,A18=2.26001e+003,A20=-1.52940e+003
6:K=0.00000e+000,A4=-1.27106e-001,A6=-1.02122e-001,A8=2.51530e-001,A10=-3.87909e-001,A12=2.31039e-001,A14=6.36030e-002,A16=-1.65851e-001,A18=8.24530e-002,A20=-1.40219e-002

FL 2.5407
Fno 2.8224
w 60.8935
Ymax 1.5400
BF 0.720
TL 2.776

Elem Surfs Focal Length Diameter
1 3-11 2.540692 4.3097

Elem Surfs Focal Length Diameter
1 3- 4 2.401863 0.9700
2 5- 6 -13.533350 2.5958
[Table 4]
Reference Wave Length = 587.56 nm
unit: mm

NUM. Rd nd vd eff.diameter
OBJ INFINITY 1000.0000
1 INFINITY 0.0500 0.898
STO INFINITY -0.1200 0.898
3 * 0.8183 0.6304 1.58313 59.39 0.932
4 * 1.4096 0.5085 0.926
5 * -44.2023 0.9173 1.58313 59.39 1.299
6 * 9.6803 0.1000 2.308
7 INFINITY 0.1750 1.52310 54.49 3.400
8 INFINITY 0.1690 3.400
9 INFINITY 0.3500 1.47140 65.19 3.400
IMG INFINITY 0.1085

Aspheric coefficient
3: K = -3.15541e + 000, A3 = -3.56669e-002, A4 = 9.24268e-001, A6 = -1.05369e-001, A8 = -3.30585e + 001, A10 = 4.60558e + 002, A12 = -3.00381e + 003, A14 = 9.82347e + 003, A16 = -1.28446e + 004
4: K = 6.90028e + 000, A3 = 2.93943e-001, A4 = -1.57193e + 000, A6 = 1.67272e + 001, A8 = -1.44248e + 002, A10 = 8.94175e + 002, A12 = -4.18454 e + 003, A14 = 1.34391e + 004, A16 = -2.09593e + 004
5: K = 0.00000e + 000, A4 = -5.35224e-001, A6 = 1.53473e + 000, A8 = -1.18000e + 001, A10 = 4.37271e + 001, A12 = -1.05196e + 002, A14 = 3.34103 e + 002, A16 = -1.20857e + 003, A18 = 2.26001e + 003, A20 = -1.52940e + 003
6: K = 0.00000e + 000, A4 = -1.27106e-001, A6 = -1.02122e-001, A8 = 2.51530e-001, A10 = -3.87909e-001, A12 = 2.31039e-001, A14 = 6.36030 e-002, A16 = -1.65851e-001, A18 = 8.24530e-002, A20 = -1.40219e-002

FL 2.5407
Fno 2.8224
w 60.8935
Ymax 1.5400
BF 0.720
TL 2.776

Elem Surfs Focal Length Diameter
1 3-11 2.540692 4.3097

Elem Surfs Focal Length Diameter
1 3- 4 2.401863 0.9700
2 5-6 -13.533350 2.5958

図11は実施例4の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。   FIG. 11 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion (c)).

(実施例5)
実施例5におけるレンズデータを表5に示す。図12は実施例5のレンズの断面図である。実施例5の撮像レンズは、物体側から順に、物体側から順に開口絞りS、第1レンズL1、第2レンズL2からなり、第1レンズL1は、物体側に凸面、像側に凹面を有する正メニスカスレンズであり、第2レンズL2は、像側面に近軸凹面を向けた負レンズで、前記像側面は変曲点を持ち周辺が凸形状を有する非球面を備えてなる。尚、CGはカバーガラス、IMは固体撮像素子である。本実施例では、第2レンズL2の物体側面にIRカットコートを施している。
(Example 5)
Table 5 shows lens data in Example 5. 12 is a sectional view of the lens of Example 5. FIG. The imaging lens according to the fifth exemplary embodiment includes an aperture stop S, a first lens L1, and a second lens L2 in order from the object side, and has a convex surface on the object side and a concave surface on the image side. It is a positive meniscus lens, and the second lens L2 is a negative lens having a paraxial concave surface directed to the image side surface, and the image side surface has an aspheric surface having an inflection point and a convex shape in the periphery. In addition, CG is a cover glass and IM is a solid-state image sensor. In this embodiment, an IR cut coat is applied to the object side surface of the second lens L2.

[表5]
Reference Wave Length = 587.56 nm
unit: mm

NUM. r d nd vd eff.diameter
OBJ INFINITY 1000.0000
1 INFINITY 0.0500 0.820
STO INFINITY -0.0227 0.820
3* 0.9797 0.6220 1.72900 52.69 0.959
4* 1.6103 0.3949 0.958
5* 9.1068 1.1790 1.58313 59.39 1.244
6* 7.5041 0.1000 2.507
7 INFINITY 0.3500 1.47140 65.19 3.400
IMG INFINITY 0.2631

非球面係数
3:K=-8.16625e+000,A3=3.18129e-002,A4=9.89771e-001,A6=-5.88553e-001,A8=-3.76841e+001,A10=4.99253e+002,A12=-3.04725e+003,A14=9.22448e+003,A16=-1.10219e+004
4:K=4.33221e+000,A3=3.63077e-001,A4=-1.67171e+000,A6=1.58862e+001,A8=-1.35829e+002,A10=9.18381e+002,A12=-4.32723e+003,A14=1.19693e+004,A16=-1.38134e+004
5:K=0.00000e+000,A4=-4.49680e-001,A6=9.33256e-001,A8=-7.59496e+000,A10=3.81113e+001,A12=-1.56340e+002,A14=4.54470e+002,A16=-7.88247e+002,A18=5.54498e+002,A20=-2.58002e+001
6:K=0.00000e+000,A4=-8.15697e-002,A6=-7.84948e-002,A8=2.35133e-001,A10=-3.93798e-001,A12=2.37718e-001,A14=7.46519e-002,A16=-1.71513e-001,A18=8.12837e-002,A20=-1.30862e-002

FL 2.3215
Fno 2.8224
w 65.4864
Ymax 1.5400
BF 0.592
TL 2.788

Elem Surfs Focal Length Diameter
1 3- 9 2.321550 3.3701

Elem Surfs Focal Length Diameter
1 3- 4 2.423962 0.9833
2 5- 6 -100.308185 2.6834
[Table 5]
Reference Wave Length = 587.56 nm
unit: mm

NUM. Rd nd vd eff.diameter
OBJ INFINITY 1000.0000
1 INFINITY 0.0500 0.820
STO INFINITY -0.0227 0.820
3 * 0.9797 0.6220 1.72900 52.69 0.959
4 * 1.6103 0.3949 0.958
5 * 9.1068 1.1790 1.58313 59.39 1.244
6 * 7.5041 0.1000 2.507
7 INFINITY 0.3500 1.47140 65.19 3.400
IMG INFINITY 0.2631

Aspheric coefficient
3: K = -8.16625e + 000, A3 = 3.18129e-002, A4 = 9.89771e-001, A6 = -5.88553e-001, A8 = -3.76841e + 001, A10 = 4.99253e + 002, A12 =- 3.04725e + 003, A14 = 9.22448e + 003, A16 = -1.10219e + 004
4: K = 4.33221e + 000, A3 = 3.63077e-001, A4 = -1.67171e + 000, A6 = 1.58862e + 001, A8 = -1.35829e + 002, A10 = 9.18381e + 002, A12 = -4.32723 e + 003, A14 = 1.19693e + 004, A16 = -1.38134e + 004
5: K = 0.00000e + 000, A4 = -4.49680e-001, A6 = 9.33256e-001, A8 = -7.59496e + 000, A10 = 3.81113e + 001, A12 = -1.56340e + 002, A14 = 4.54470 e + 002, A16 = -7.88247e + 002, A18 = 5.54498e + 002, A20 = -2.58002e + 001
6: K = 0.00000e + 000, A4 = -8.15697e-002, A6 = -7.84948e-002, A8 = 2.35133e-001, A10 = -3.93798e-001, A12 = 2.37718e-001, A14 = 7.46519 e-002, A16 = -1.71513e-001, A18 = 8.12837e-002, A20 = -1.30862e-002

FL 2.3215
Fno 2.8224
w 65.4864
Ymax 1.5400
BF 0.592
TL 2.788

Elem Surfs Focal Length Diameter
1 3- 9 2.321550 3.3701

Elem Surfs Focal Length Diameter
1 3- 4 2.423962 0.9833
2 5-6 -100.308185 2.6834

図13は実施例5の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。   FIG. 13 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c)).

(実施例6)
実施例6におけるレンズデータを表6に示す。図14は実施例6のレンズの断面図である。実施例6の撮像レンズは、物体側から順に、物体側から順に開口絞りS、第1レンズL1、第2レンズL2からなり、第1レンズL1は、物体側に凸面、像側に凹面を有する正メニスカスレンズであり、第2レンズL2は、像側面に近軸凹面を向けた負レンズで、前記像側面は変曲点を持ち周辺が凸形状を有する非球面を備えてなる。尚、Fは赤外線カットフィルタ、CGはカバーガラス、IMは固体撮像素子である。
(Example 6)
Table 6 shows lens data in Example 6. FIG. 14 is a sectional view of the lens of Example 6. The imaging lens of Example 6 includes an aperture stop S, a first lens L1, and a second lens L2 in order from the object side, and the first lens L1 has a convex surface on the object side and a concave surface on the image side. It is a positive meniscus lens, and the second lens L2 is a negative lens having a paraxial concave surface directed to the image side surface, and the image side surface has an aspheric surface having an inflection point and a convex shape in the periphery. Note that F is an infrared cut filter, CG is a cover glass, and IM is a solid-state image sensor.

[表6]
Reference Wave Length = 587.56 nm
unit: mm

NUM. r d nd vd eff.diameter
OBJ INFINITY 1000.0000
STO INFINITY 0.0500 0.814
2 INFINITY -0.1122 0.808
3* 0.7666 0.5583 1.58313 59.44 0.817
4* 1.4482 0.4740 0.854
5* -8.0747 0.8525 1.58313 59.44 1.190
6* 22.8580 0.0560 2.264
7 INFINITY 0.1450 1.52550 54.99 3.000
8 INFINITY 0.0500 3.100
9 INFINITY 0.5000 1.47140 65.19 3.200
IMG INFINITY 0.1174

非球面係数
3:K=-2.47242e+000,A3=-2.03904e-002,A4=5.28641e-001,A5=2.54642e+000,A6=-8.21916e+000,A8=3.04775e+001,A10=-4.41460e+001,A12=-2.28918e+002,A14=8.29246e+002,A16=-3.23533e+002
4:K=-3.43564e-001,A3=1.96346e-002,A4=2.34363e-001,A5=1.90841e+000,A6=-6.24281e+000,A8=4.77867e+001,A10=-1.42714e+002,A12=-1.22119e+003,A14=1.24465e+004,A16=-2.93322e+004
5:K=0.00000e+000,A3=1.63283e-001,A4=-7.76179e-001,A6=-3.60913e-001,A8=6.84326e+000,A10=-4.15614e+001,A12=8.54161e+001,A14=-1.47110e+001,A16=-1.74300e+002
6:K=0.00000e+000,A4=7.94924e-002,A6=-7.06609e-001,A8=9.79988e-001,A10=-3.12305e-001,A12=-6.37242e-001,A14=5.03041e-001,A16=1.24628e-001,A18=-2.27376e-001,A20=5.74678e-002

FL 2.3694
Fno 2.8200
w 64.2796
Ymax 1.5420
BF 0.645
TL 2.530

Elem Surfs Focal Length Diameter
1 3-11 2.369447 3.5000

Elem Surfs Focal Length Diameter
1 3- 4 2.145640 0.8537
2 5- 6 -10.129665 2.4000
[Table 6]
Reference Wave Length = 587.56 nm
unit: mm

NUM. Rd nd vd eff.diameter
OBJ INFINITY 1000.0000
STO INFINITY 0.0500 0.814
2 INFINITY -0.1122 0.808
3 * 0.7666 0.5583 1.58313 59.44 0.817
4 * 1.4482 0.4740 0.854
5 * -8.0747 0.8525 1.58313 59.44 1.190
6 * 22.8580 0.0560 2.264
7 INFINITY 0.1450 1.52550 54.99 3.000
8 INFINITY 0.0500 3.100
9 INFINITY 0.5000 1.47140 65.19 3.200
IMG INFINITY 0.1174

Aspheric coefficient
3: K = -2.47242e + 000, A3 = -2.03904e-002, A4 = 5.28641e-001, A5 = 2.54642e + 000, A6 = -8.21916e + 000, A8 = 3.04775e + 001, A10 =- 4.41460e + 001, A12 = -2.28918e + 002, A14 = 8.29246e + 002, A16 = -3.23533e + 002
4: K = -3.43564e-001, A3 = 1.96346e-002, A4 = 2.34363e-001, A5 = 1.90841e + 000, A6 = -6.24281e + 000, A8 = 4.77867e + 001, A10 = -1.42714 e + 002, A12 = -1.22119e + 003, A14 = 1.24465e + 004, A16 = -2.93322e + 004
5: K = 0.00000e + 000, A3 = 1.63283e-001, A4 = -7.76179e-001, A6 = -3.60913e-001, A8 = 6.84326e + 000, A10 = -4.15614e + 001, A12 = 8.54161 e + 001, A14 = -1.47110e + 001, A16 = -1.74300e + 002
6: K = 0.00000e + 000, A4 = 7.94924e-002, A6 = -7.06609e-001, A8 = 9.79988e-001, A10 = -3.12305e-001, A12 = -6.37242e-001, A14 = 5.03041 e-001, A16 = 1.24628e-001, A18 = -2.27376e-001, A20 = 5.74678e-002

FL 2.3694
Fno 2.8200
w 64.2796
Ymax 1.5420
BF 0.645
TL 2.530

Elem Surfs Focal Length Diameter
1 3-11 2.369447 3.5000

Elem Surfs Focal Length Diameter
1 3- 4 2.145 640 0.8537
2 5- 6 -10.129665 2.4000

図15は実施例6の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。   FIG. 15 is an aberration diagram of Example 6 (spherical aberration (a), astigmatism (b), distortion (c)).

(実施例7)
実施例7におけるレンズデータを表7に示す。図16は実施例7のレンズの断面図である。実施例7の撮像レンズは、物体側から順に、物体側から順に開口絞りS、第1レンズL1、第2レンズL2からなり、第1レンズL1は、物体側に凸面、像側に凹面を有する正メニスカスレンズであり、第2レンズL2は、像側面に近軸凹面を向けた負レンズで、前記像側面は変曲点を持ち周辺が凸形状を有する非球面を備えてなる。尚、Fは赤外線カットフィルタ、CGはカバーガラス、IMは固体撮像素子である。
(Example 7)
Table 7 shows lens data in Example 7. FIG. 16 is a sectional view of the lens of Example 7. The imaging lens of Example 7 includes an aperture stop S, a first lens L1, and a second lens L2 in order from the object side, in order from the object side, and the first lens L1 has a convex surface on the object side and a concave surface on the image side. It is a positive meniscus lens, and the second lens L2 is a negative lens having a paraxial concave surface directed to the image side surface, and the image side surface has an aspheric surface having an inflection point and a convex shape in the periphery. Note that F is an infrared cut filter, CG is a cover glass, and IM is a solid-state image sensor.

[表7]
Reference Wave Length = 587.56 nm
unit: mm

NUM. r d nd vd eff.diameter
OBJ INFINITY 1000.0000
1 INFINITY 0.0500 0.831
STO INFINITY -0.0537 0.831
3* 1.0204 0.6343 1.58313 59.39 0.924
4* 2.7741 0.5599 1.038
5* 9.6828 0.9844 1.71200 31.09 1.385
6* 6.9382 0.1000 2.554
7 INFINITY 0.1750 1.52310 54.49 3.400
8 INFINITY 0.1690 3.400
9 INFINITY 0.4000 1.52550 62.19 3.400
IMG INFINITY 0.0844


非球面係数
3:K=-7.95071e+000,A3=2.35363e-002,A4=9.82407e-001,A6=-2.35928e+000,A8=-2.33433e+001,A10=4.65419e+002,A12=-3.19416e+003,A14=1.01163e+004,A16=-1.22571e+004
4:K=1.10170e+001,A3=3.78654e-001,A4=-1.54800e+000,A6=1.26252e+001,A8=-1.18094e+002,A10=9.22635e+002,A12=-4.63530e+003,A14=1.24582e+004,A16=-1.34381e+004
5:K=0.00000e+000,A4=-2.59479e-001,A6=8.63308e-001,A8=-1.18218e+001,A10=5.00452e+001,A12=-1.03338e+002,A14=2.11221e+002,A16=-7.81989e+002,A18=1.72624e+003,A20=-1.38433e+003
6:K=0.00000e+000,A4=-3.32183e-002,A6=-1.98003e-001,A8=3.20956e-001,A10=-3.80584e-001,A12=2.13360e-001,A14=5.92626e-002,A16=-1.57226e-001,A18=8.27200e-002,A20=-1.50977e-002

FL 2.3803
Fno 2.8224
w 63.6944
Ymax 1.5400
BF 0.723
TL 2.902

Elem Surfs Focal Length Diameter
1 3-11 2.380264 3.3332

Elem Surfs Focal Length Diameter
1 3- 4 2.442743 1.0382
2 5- 6 -40.404709 2.5543
[Table 7]
Reference Wave Length = 587.56 nm
unit: mm

NUM. Rd nd vd eff.diameter
OBJ INFINITY 1000.0000
1 INFINITY 0.0500 0.831
STO INFINITY -0.0537 0.831
3 * 1.0204 0.6343 1.58313 59.39 0.924
4 * 2.7741 0.5599 1.038
5 * 9.6828 0.9844 1.71200 31.09 1.385
6 * 6.9382 0.1000 2.554
7 INFINITY 0.1750 1.52310 54.49 3.400
8 INFINITY 0.1690 3.400
9 INFINITY 0.4000 1.52550 62.19 3.400
IMG INFINITY 0.0844


Aspheric coefficient
3: K = -7.95071e + 000, A3 = 2.35363e-002, A4 = 9.82407e-001, A6 = -2.35928e + 000, A8 = -2.33433e + 001, A10 = 4.65419e + 002, A12 =- 3.19416e + 003, A14 = 1.01163e + 004, A16 = -1.22571e + 004
4: K = 1.10170e + 001, A3 = 3.78654e-001, A4 = -1.54800e + 000, A6 = 1.26252e + 001, A8 = -1.18094e + 002, A10 = 9.22635e + 002, A12 = -4.63530 e + 003, A14 = 1.24582e + 004, A16 = -1.34381e + 004
5: K = 0.00000e + 000, A4 = -2.59479e-001, A6 = 8.63308e-001, A8 = -1.18218e + 001, A10 = 5.00452e + 001, A12 = -1.03338e + 002, A14 = 2.11221 e + 002, A16 = -7.81989e + 002, A18 = 1.72624e + 003, A20 = -1.38433e + 003
6: K = 0.00000e + 000, A4 = -3.32183e-002, A6 = -1.98003e-001, A8 = 3.20956e-001, A10 = -3.80584e-001, A12 = 2.13360e-001, A14 = 5.92626 e-002, A16 = -1.57226e-001, A18 = 8.27200e-002, A20 = -1.50977e-002

FL 2.3803
Fno 2.8224
w 63.6944
Ymax 1.5400
BF 0.723
TL 2.902

Elem Surfs Focal Length Diameter
1 3-11 2.380264 3.3332

Elem Surfs Focal Length Diameter
1 3- 4 2.442743 1.0382
2 5--6 -40.404709 2.5543

図17は実施例7の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。   FIG. 17 is an aberration diagram of Example 7 (spherical aberration (a), astigmatism (b), distortion (c)).

各条件式に対応する実施例の値を表8にまとめて示す。   Table 8 summarizes the values of the examples corresponding to the respective conditional expressions.

本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や技術思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。   The present invention is not limited to the embodiments described in the specification, and includes other embodiments and modifications for those skilled in the art from the embodiments and technical ideas described in the present specification. it is obvious. The description and examples are for illustrative purposes only, and the scope of the invention is indicated by the following claims.

B 操作ボタン
D1,D2 表示画面
F IRカットフィルタ
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
LN 撮像レンズ
LU 撮像装置
CG カバーガラス
S 開口絞り
IM イメージセンサ
IMa 光電変換部
T 携帯電話機
B Operation buttons D1 and D2 Display screen F IR cut filter L1 First lens L2 Second lens L3 Third lens LN Imaging lens LU Imaging device CG Cover glass S Aperture stop IM Image sensor IMa Photoelectric conversion unit T Mobile phone

Claims (8)

物体側から順に開口絞り、第1レンズ、第2レンズからなり、
前記第1レンズは、物体側に凸面、像側に凹面を有する正メニスカスレンズであり、
前記第2レンズは、像側面に近軸凹面を向けた負レンズで、前記像側面は変曲点を持ち周辺が凸形状を有する非球面を備えてなる撮像レンズであって、
前記第2レンズの物体側面に赤外カットコートを有し、
以下の条件式を満足することを特徴とする撮像レンズ。
−1.10<(1−n1)f/r2<−0.20 (1)
−0.18<(n2−1)f/r3< 0.18 (2)
−0.25<(1−n2)f/r4<−0.02 (3)
但し、
n1:前記第1レンズのd線に対する屈折率
n2:前記第2レンズのd線に対する屈折率
r2:前記第1レンズ像側面の曲率半径(mm)
r3:前記第2レンズ物体側面の曲率半径(mm)
r4:前記第2レンズ像側面の曲率半径(mm)
f:全系の焦点距離(mm)
It consists of an aperture stop, first lens, and second lens in order from the object side.
The first lens is a positive meniscus lens having a convex surface on the object side and a concave surface on the image side,
The second lens is a negative lens having a paraxial concave surface facing the image side surface, and the image side surface is an imaging lens having an aspherical surface having an inflection point and a convex shape on the periphery,
An infrared cut coat on the object side surface of the second lens;
An imaging lens satisfying the following conditional expression:
−1.10 <(1-n1) f / r2 <−0.20 (1)
−0.18 <(n2-1) f / r3 <0.18 (2)
−0.25 <(1-n2) f / r4 <−0.02 (3)
However,
n1: Refractive index of the first lens with respect to the d-line n2: Refractive index of the second lens with respect to the d-line r2: Radius of curvature of the side surface of the first lens (mm)
r3: radius of curvature (mm) of the side surface of the second lens object
r4: radius of curvature of the side surface of the second lens image (mm)
f: Focal length of the entire system (mm)
以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
−10.0<(SAG3/f)×1000<0 (4)
ただし、
SAG3:前記第2レンズ物体側面の有効径の7割の位置におけるサグ量
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
-10.0 <(SAG3 / f) × 1000 <0 (4)
However,
SAG3: Sag amount at 70% of the effective diameter of the second lens object side surface
以下の条件式を満足することを特徴とする請求項1又は2に記載の撮像レンズ。
0.30 < d3/f < 0.60 (5)
ただし、
d3:前記第2レンズの軸上厚(mm)
The imaging lens according to claim 1 or 2, characterized by satisfying the following conditional expression.
0.30 <d3 / f <0.60 (5)
However,
d3: Axial thickness (mm) of the second lens
以下の条件式を満足することを特徴とする請求項1〜のいずれか1項に記載の撮像レンズ。
−20.0 < f2/f1 < −5.0 (6)
ただし、
f1:前記第1レンズの焦点距離(mm)
f2:前記第2レンズの焦点距離(mm)
The imaging lens according to any one of claims 1 to 3, characterized by satisfying the following conditional expression.
-20.0 <f2 / f1 <-5.0 (6)
However,
f1: Focal length (mm) of the first lens
f2: Focal length (mm) of the second lens
前記第2レンズはガラス製であることを特徴とする請求項1〜のいずれか1項に記載の撮像レンズ。 The second lens The imaging lens according to any one of claims 1 to 4, characterized in that is made of glass. 前記第2レンズは樹脂製であることを特徴とする請求項1〜のいずれか1項に記載の撮像レンズ。 The second lens The imaging lens according to any one of claims 1 to 4, characterized in that is made of resin. 請求項1〜のいずれか1項に記載の撮像レンズと、固体撮像素子とを有し、以下の式を満たすことを特徴とする撮像装置。
L/2Y<1.00 (7)
ただし、
L:前記撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離
2Y:前記固体撮像素子の撮像面対角線長(前記固体撮像素子の矩形実効画素領域の対角線長)
An imaging lens according to any one of claims 1 to 6 and a solid-state imaging device, an imaging device and satisfies the following expression.
L / 2Y <1.00 (7)
However,
L: Distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system 2Y: diagonal length of the imaging surface of the solid-state imaging device (diagonal length of the rectangular effective pixel region of the solid-state imaging device)
以下の式を満たすことを特徴とする請求項に記載の撮像装置。
L/2Y<0.90 (7’)
The imaging apparatus according to claim 7 , wherein the following expression is satisfied.
L / 2Y <0.90 (7 ')
JP2013505259A 2011-10-13 2012-10-09 Imaging lens and imaging apparatus Active JP5963003B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011225645 2011-10-13
JP2011225645 2011-10-13
PCT/JP2012/076133 WO2013054791A1 (en) 2011-10-13 2012-10-09 Imaging lens and imaging device

Publications (2)

Publication Number Publication Date
JPWO2013054791A1 JPWO2013054791A1 (en) 2015-03-30
JP5963003B2 true JP5963003B2 (en) 2016-08-03

Family

ID=48081846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013505259A Active JP5963003B2 (en) 2011-10-13 2012-10-09 Imaging lens and imaging apparatus

Country Status (3)

Country Link
JP (1) JP5963003B2 (en)
CN (1) CN103229086B (en)
WO (1) WO2013054791A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002946B2 (en) * 2005-11-17 2012-08-15 パナソニック株式会社 Photography lens and bifocal photography lens
TWI341397B (en) * 2007-05-07 2011-05-01 Largan Precision Co Ltd Optical lens system for taking image
JP2009098492A (en) * 2007-10-18 2009-05-07 Konica Minolta Opto Inc Imaging lens, imaging apparatus, and digital device
JP4418844B2 (en) * 2008-04-10 2010-02-24 株式会社小松ライト製作所 Imaging lens
JP5155781B2 (en) * 2008-09-04 2013-03-06 株式会社エンプラス Imaging lens
JP5413738B2 (en) * 2009-06-26 2014-02-12 コニカミノルタ株式会社 Imaging lens, imaging device, and portable terminal
JP4943518B2 (en) * 2010-01-14 2012-05-30 シャープ株式会社 Imaging lens, imaging module, and portable information device
CN102236155A (en) * 2010-04-28 2011-11-09 夏普株式会社 Cameral lens and camera module
JP2011248319A (en) * 2010-04-28 2011-12-08 Sharp Corp Imaging lens and imaging module
JP5562755B2 (en) * 2010-07-30 2014-07-30 シャープ株式会社 Imaging lens and imaging module

Also Published As

Publication number Publication date
WO2013054791A1 (en) 2013-04-18
CN103229086B (en) 2015-09-30
JPWO2013054791A1 (en) 2015-03-30
CN103229086A (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5839038B2 (en) Imaging lens and imaging apparatus
JP5687390B2 (en) Imaging lens and imaging device provided with imaging lens
US9235029B2 (en) Imaging lens and imaging apparatus including the imaging lens
WO2013114812A1 (en) Image pickup lens and image pickup apparatus provided with image pickup lens
US20140293453A1 (en) Imaging lens and imaging apparatus including the imaging lens
WO2014006822A1 (en) Image pickup lens and image pickup apparatus provided with image pickup lens
US20140139711A1 (en) Image Pickup Lens And Image Pickup Device
JP6191628B2 (en) Imaging optical system, imaging optical device and digital equipment
WO2010047178A1 (en) Imaging lens, imaging device, and portable terminal
KR102109934B1 (en) Photographing lens and photographing device
WO2014034025A1 (en) Imaging lens and imaging device provided with imaging lens
JP5353879B2 (en) Imaging lens, imaging device, and portable terminal
JP2009098513A (en) Four-lens-type small imaging lens, camera module, and imaging apparatus
CN111239971A (en) Optical system, camera module and electronic device
US9207432B2 (en) Imaging lens and imaging device provided with the same
JP6222116B2 (en) Imaging optical system, imaging optical device and digital equipment
JP2013024892A (en) Image pickup lens and image pickup apparatus
CN211577551U (en) Optical system, camera module and electronic device
JP2012230233A (en) Imaging lens, imaging apparatus and portable terminal
WO2012173026A1 (en) Image capture lens for image capture device and image capture device
WO2013132915A1 (en) Imaging lens and imaging device
WO2013145989A1 (en) Image capture lens, image capture device, and portable terminal
CN214474191U (en) Optical imaging lens, camera module and electronic equipment
WO2013018316A1 (en) Imaging lens and imaging device
JP5963003B2 (en) Imaging lens and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160615

R150 Certificate of patent or registration of utility model

Ref document number: 5963003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150