WO2013132915A1 - Imaging lens and imaging device - Google Patents

Imaging lens and imaging device Download PDF

Info

Publication number
WO2013132915A1
WO2013132915A1 PCT/JP2013/051677 JP2013051677W WO2013132915A1 WO 2013132915 A1 WO2013132915 A1 WO 2013132915A1 JP 2013051677 W JP2013051677 W JP 2013051677W WO 2013132915 A1 WO2013132915 A1 WO 2013132915A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
object side
imaging lens
image side
Prior art date
Application number
PCT/JP2013/051677
Other languages
French (fr)
Japanese (ja)
Inventor
松井一生
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201380012700.6A priority Critical patent/CN104169772A/en
Publication of WO2013132915A1 publication Critical patent/WO2013132915A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses

Definitions

  • the present invention relates to an imaging lens suitable for an imaging apparatus using a solid-state imaging device such as a CCD (Charge-Coupled Device) type image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor, and an imaging apparatus using the imaging lens. It is.
  • a solid-state imaging device such as a CCD (Charge-Coupled Device) type image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor
  • CMOS Complementary Metal-Oxide Semiconductor
  • image sensors used in these image pickup apparatuses solid-state image sensors such as CCD (Charge Coupled Device) type image sensors and CMOS (Complementary Metal-Oxide Semiconductor) type image sensors are used.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • the pixel pitch of the image sensor has been miniaturized, and higher resolution and higher performance have been achieved by increasing the number of pixels.
  • the image sensor may be downsized while maintaining the pixels.
  • an increasing number of mobile terminals have a so-called videophone function that captures an image of a user who uses a mobile terminal, transmits the image to the other party, and displays the images of the other party having a conversation with each other. For this reason, in addition to the main camera, there are many portable terminals provided with a sub camera for photographing the user himself.
  • Patent Documents 1 and 2 propose imaging lenses having three lens blocks.
  • the imaging lens used when the mobile terminal or the like has a videophone function has not only the wide-angle performance necessary for photographing a user at a short distance using the mobile terminal or the like, for example.
  • the pixel pitch of the solid-state imaging device used in the imaging device for the sub camera is becoming smaller, there is a situation that a brighter F number is required to be secured.
  • the lens described in Patent Document 1 has a problem that the F-number is dark as well as not achieving the wide-angle performance necessary for such applications.
  • the present invention has been made in view of such a problem, and is suitable for a portable terminal.
  • An imaging lens having a low profile, a wide angle, and a bright F number, and having excellent aberration characteristics, and an imaging using the imaging lens.
  • An object is to provide an apparatus.
  • the imaging lens according to claim 1 is an imaging lens for forming a subject image on a solid-state imaging device, a first lens having an aperture stop in order from the object side, a convex surface on the object side, and having a positive refractive power, It consists of two lenses and a third lens having negative refractive power, and satisfies the following conditional expression.
  • f1 focal length of the first lens
  • f2 focal length r2 of the entire imaging lens system: paraxial radius of curvature r3 of the first lens image side surface: paraxial radius of curvature r5 of the second lens object side surface: third lens
  • Paraxial curvature radius r6 of the object side surface Paraxial curvature radius d1 of the third lens image side surface
  • d1 Distance on the optical axis from the first lens object side surface to the image side surface
  • the present invention by using a three-lens configuration, it is possible to obtain a high-performance imaging lens that has superior aberration characteristics than the two-lens configuration. Further, by arranging the aperture stop closer to the object side than the first lens, it is possible to reduce the height while maintaining good telecentricity. Further, by making the object side of the first lens a convex surface and giving the first lens a positive refractive power, it is possible to realize a low profile and a wide angle. In addition, by giving negative power to the third lens, it is possible to correct curvature of field and astigmatism, and to increase the back focus.
  • conditional expression (1) When the value of conditional expression (1) is less than the upper limit, it is advantageous for lowering the width and widening the angle. On the other hand, when the value of conditional expression (1) exceeds the lower limit, spherical aberration and coma generated in the first lens are improved. Aberration can be suppressed and a bright F number can be realized.
  • the F number is preferably 3 or less.
  • the angle of view is preferably 65 ° or more.
  • conditional expression (3) Astigmatism can be corrected well, and the back focus can be lengthened.
  • conditional expression (4) When the value of conditional expression (4) falls below the upper limit, a reduction in height can be realized, and when the value of conditional expression (4) exceeds the lower limit, spherical aberration and coma generated in the first lens are suppressed and bright F The number can be secured.
  • the imaging lens according to claim 2 is characterized in that, in the invention according to claim 1, the first lens has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side.
  • the imaging lens according to a third aspect is characterized in that, in the invention according to the first or second aspect, the second lens has a concave surface on the object side.
  • the curvature of field and astigmatism can be corrected, and a wide angle can be realized.
  • the imaging lens according to any one of the first to third aspects, wherein the second lens has a convex image side surface.
  • the image side surface of the second lens convex, it is possible to realize a wide angle without giving the first lens strong positive refractive power, and to suppress spherical aberration and coma generated in the first lens. Therefore, a bright F number can be realized.
  • the third lens has a concave image side surface.
  • the astigmatism can be corrected by making the image side surface of the third lens concave, the wide angle can be realized and the back focus can be lengthened.
  • the imaging lens according to a sixth aspect of the invention is characterized in that, in the invention according to any one of the first to fifth aspects, the third lens has a concave image side surface and a convex surface in the peripheral portion.
  • the peripheral part of the image side surface of the third lens convex, it is possible to realize a low profile while maintaining good telecentricity.
  • the image side surface is concave and has a convex surface in the peripheral portion” means that the cross section including the optical axis of the image side surface moves toward the image side as it moves away from the optical axis, and toward the object side at the inflection point. Say something.
  • the imaging lens according to any one of the first to sixth aspects, wherein the second lens satisfies the following conditional expression. 0.5 ⁇ f2 / f ⁇ 4.0 (5) However, f2: focal length of the second lens
  • conditional expression (5) When the value of conditional expression (5) is below the upper limit, it is advantageous for reduction in height and widening of the angle. On the other hand, when the value of conditional expression (5) exceeds the lower limit, the occurrence of field curvature and astigmatism is suppressed. Can do.
  • An imaging lens according to an eighth aspect of the invention is characterized in that, in the invention according to any one of the first to seventh aspects, the third lens satisfies the following conditional expression. ⁇ 10 ⁇ f3 / f ⁇ 0.7 (6) However, f3: focal length of the third lens
  • conditional expression (6) When the value of conditional expression (6) is less than the upper limit, it is advantageous for reduction in height, while when the value of conditional expression (6) exceeds the lower limit, astigmatism can be corrected well. It is more preferable that the following expression is satisfied. ⁇ 10 ⁇ f3 / f ⁇ 0.88 (6 ′)
  • An imaging lens according to a ninth aspect is characterized in that, in the invention according to any one of the first to eighth aspects, the imaging lens satisfies the following conditional expression. 0.1 ⁇
  • conditional expression (7) When the value of conditional expression (7) is lower than the upper limit, it is advantageous for low profile. On the other hand, when the value of conditional expression (7) exceeds the lower limit, spherical aberration and coma generated in the first lens are suppressed. Therefore, a bright F number can be secured.
  • the imaging lens according to a tenth aspect of the invention is characterized in that, in the invention according to any one of the first to ninth aspects, the imaging lens satisfies the following conditional expression. 0.3 ⁇ (d1 + d3 + d5) / TTL ⁇ 0.7 (8) However, d3: Distance on the optical axis from the second lens object side surface to the image side surface d5: Distance on the optical axis from the third lens object side surface to the image side surface TTL: From the first lens object side surface to the solid-state imaging device Distance on the optical axis to the light receiving surface
  • conditional expression (8) When the value of conditional expression (8) is below the upper limit, the height can be reduced and the back focus can be lengthened. On the other hand, when the value of conditional expression (8) exceeds the lower limit, the thickness of each lens does not become too thin, and the manufacturing stability of the imaging lens is improved.
  • An imaging lens according to an eleventh aspect is characterized in that, in the invention according to any one of the first to tenth aspects, the third lens satisfies the following conditional expression. 1.55 ⁇ n3 ⁇ 1.90 (9) n3: refractive index of the third lens
  • the lens thickness can be easily secured.
  • a material with a high refractive index for the third lens By using a material with a high refractive index for the third lens, the amount of surface sag can be reduced, the occurrence of lateral chromatic aberration can be suppressed, and the lens thickness can be easily secured.
  • One such material is glass.
  • the axial thickness is larger than 0.3 mm because it is difficult to break.
  • An imaging lens according to a twelfth aspect is characterized in that, in the invention according to any one of the first to eleventh aspects, the lens has substantially no refractive power. That is, even when a dummy lens having substantially no refractive power is added to the configuration of claim 1, it is within the scope of application of the present invention.
  • An image pickup apparatus uses the image pickup lens according to any one of the first to twelfth aspects.
  • an imaging lens which is suitable for a portable terminal and has an excellent aberration characteristic while having a low profile, wide angle and bright F number, and an imaging apparatus using the imaging lens.
  • FIG. 1 is a cross-sectional view of an imaging lens according to Example 1.
  • FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 1; 6 is a cross-sectional view of an imaging lens according to Example 2.
  • FIG. 1 is a cross-sectional view of an imaging lens according to Example 1.
  • FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 1; 6 is a cross-sectional view of an imaging lens according to Example 2.
  • FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 2; 6 is a cross-sectional view of an imaging lens according to Example 3.
  • FIG. FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 3; 6 is a cross-sectional view of an imaging lens according to Example 4.
  • FIG. FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 4; 6 is a cross-sectional view of an imaging lens according to Example 5.
  • FIG. FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 2; 6 is a cross-sectional view of an imaging lens according to Example 5.
  • FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 5; 6 is a cross-sectional view of an imaging lens according to Example 6.
  • FIG. FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 6; 10 is a cross-sectional view of an imaging lens according to Example 7.
  • FIG. FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 7; 10 is a cross-sectional view of an imaging lens according to Example 8.
  • FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 8; 10 is a cross-sectional view of an imaging lens according to Example 9.
  • FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 9; 10 is a cross-sectional view of an imaging lens according to Example 10.
  • FIG. FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 10; 12 is a cross-sectional view of an imaging lens according to Example 11.
  • FIG. FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 8; 10 is a cross-sectional view of an imaging lens according to Example 9.
  • FIG. FIG. 10 is an aberration diagram of sp
  • FIG. 12 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 11;
  • 14 is a cross-sectional view of an imaging lens according to Example 12.
  • FIG. FIG. 14 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 12;
  • 14 is a cross-sectional view of an imaging lens according to Example 13.
  • FIG. FIG. 14 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 13;
  • FIG. 1 is a perspective view of an imaging apparatus LU according to the present embodiment
  • FIG. 2 is a cross-sectional view of the configuration of FIG. 1 taken along line II-II and viewed in the direction of the arrow.
  • the imaging device LU captures a subject image on a CMOS image sensor IM as a solid-state imaging device having a photoelectric conversion unit IMa and a photoelectric conversion unit (light receiving surface) IMa of the image sensor IM.
  • the imaging lens LN to be connected and an external connection terminal (electrode) (not shown) that transmits and receives the electric signal are integrally formed.
  • the imaging lens LN includes an aperture stop Ape, a first lens L1 having a positive refractive power, a second lens L2, and a third lens L3 having a negative refractive power in order from the object side (upper side in FIG. 2). Consists of.
  • the first lens L1 and the second lens L2 are joined via a donut-plate-shaped first light-shielding member SH1, and the second lens L2 and the third lens L3 are donut-plate-shaped second light-shielding. It joins via member SH2. More specifically, a glass plate-shaped molded body formed with a plurality of lenses is prepared for each lens type, and the optical axes of the lenses are aligned with light shielding members SH1 and SH2 interposed therebetween.
  • each lens with the optical axis aligned is cut into a rectangular shape to form an imaging lens LN.
  • the outer side of the image side optical surface of the first lens L1 and the outer side of the object side optical surface of the second lens L2 are slightly spaced apart, the flange portion of the first lens L1 and the second lens L2 is easily in contact with the flange portion.
  • the outer side of the image side optical surface of the second lens L2 and the outer side of the object side optical surface of the third lens L3 are slightly spaced apart, the flange portion of the second lens L2 and the third lens L3 are separated. It is easy to contact with the flange part.
  • the cut imaging lens LN is fitted to the inner periphery of a lens barrel HLD whose inner peripheral section is rectangular and is fixed via an adhesive.
  • the lens barrel HLD has an outer threaded portion HLLa on the outer periphery, and by screwing this to the inner threaded portion BXa of the cylindrical housing BX, the lens barrel HLD can be adjusted in the optical axis direction. Is attached.
  • An IR cut filter IRCF is attached to a flange portion BXb that protrudes inward from the housing BX so as to face the lower end of the lens barrel HLD. Further, the lower end of the housing BX is in contact with the substrate ST holding the image sensor IM.
  • the imaging lens LN described in the present invention is not limited to the above configuration.
  • the lenses L1 to L3 made of glass or plastic may be individually molded and accommodated in the lens barrel HLD without being joined.
  • a fitting portion may be provided on the lens outer peripheral portion or the lens barrel HLD.
  • the imaging lens LN of the present embodiment satisfies the following conditional expression. 0.9 ⁇ f1 / f ⁇ 1.5 (1) -3 ⁇ r2 / r3 ⁇ -0.2 (2) -0.1 ⁇ (r5 + r6) / (r5-r6) ⁇ 3.0 (3) 0.18 ⁇ d1 / f ⁇ 0.5 (4)
  • f1 Focal length of the first lens L1
  • f Focal length r2 of the entire imaging lens system: Paraxial radius of curvature r3 of the first lens L1 image side surface
  • Paraxial radius of curvature r5 of the second lens L2 object side surface Third lens L3 Paraxial curvature radius r6 of the object side surface: Paraxial curvature radius d1 of the third lens L3 image side surface: Distance on the optical axis from the first lens L1 object side surface to the image side surface
  • a photoelectric conversion unit IMa as a light receiving unit in which pixels (photoelectric conversion elements) are two-dimensionally arranged is formed in the center of a plane on the light receiving side, and signal processing (not shown) is performed.
  • a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like.
  • a number of pads are arranged near the outer edge of the light receiving side plane of the image sensor IM, and are connected to the image sensor IM via wires (not shown).
  • the image sensor IM converts a signal charge from the photoelectric conversion unit IMa into an image signal such as a digital YUV signal and outputs the image signal to a predetermined circuit via a wire (not shown).
  • Y is a luminance signal
  • the solid-state imaging device is not limited to the CMOS image sensor, and other devices such as a CCD may be used.
  • the image sensor IM is connected to an external circuit (for example, a control circuit included in a host device of a portable terminal mounted with an imaging device) via an external connection terminal, and a voltage or a clock for driving the image sensor IM from the external circuit. It is possible to receive a signal and to output a digital YUV signal to an external circuit.
  • an external circuit for example, a control circuit included in a host device of a portable terminal mounted with an imaging device
  • FIGS. 3 is a view of the folded mobile phone as viewed from the inside
  • FIG. 4 is a view of the folded mobile phone as viewed from the outside.
  • an upper casing 71 as a case having display screens D1 and D2 and a lower casing 72 having operation buttons B are connected via a hinge 73.
  • the main imaging device MC for photographing a landscape or the like is provided on the surface side of the upper housing 71, and the imaging device LU including the above-described wide-angle imaging lens LN is the upper housing 71. And provided on the display screen D1.
  • the imaging lens LN can image the upper body of the user himself / herself holding the mobile phone T with his / her hand in the state of facing the imaging device LU as shown in FIG.
  • the imaging lens LN of the present embodiment contributes to the compactness of the imaging device LU, and is suitable for such photographing because it has a wide angle and a bright F number.
  • a so-called videophone can be realized by making a normal call.
  • the mobile phone T is not limited to a folding type.
  • the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin and the X axis in the optical axis direction.
  • the height in the direction perpendicular to the optical axis is represented by the following “Equation 1”.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 02
  • E or e for example, 2.5e ⁇ 002
  • the surface number of the lens data was given in order with the object side of the first lens as one surface.
  • the unit of the numerical value showing the length as described in an Example shall be mm.
  • the paraxial radius of curvature in the actual lens measurement scene, in the vicinity of the center of the lens (specifically, the central region within 10% of the lens outer diameter).
  • the approximate radius of curvature when the measured shape of the shape is fitted by the method of least squares can be regarded as the paraxial radius of curvature.
  • a radius of curvature that takes into account the secondary aspherical coefficient in the reference curvature radius of the aspherical definition formula can be regarded as a paraxial curvature radius.
  • Example 1 shows lens data in Example 1.
  • 5 is a sectional view of the lens of Example 1.
  • the imaging lens of Example 1 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2 having a positive refractive power, and a third lens L3 having a negative refractive power.
  • the first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side.
  • the second lens L2 has a concave surface on the object side and a convex surface on the image side.
  • the third lens L3 has a concave image side surface and a convex surface at the periphery.
  • IRCF is an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 6 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c)).
  • the solid line represents the spherical aberration amount with respect to the d line and the dotted line, respectively
  • the solid line represents the sagittal surface and the dotted line represents the meridional surface (hereinafter the same).
  • FIG. 7 is a sectional view of the lens of Example 2.
  • the imaging lens of Example 2 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power.
  • the first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side.
  • the second lens L2 has a concave surface on the object side and a convex surface on the image side.
  • the third lens L3 has a concave image side surface and a convex surface at the periphery.
  • IRCF is an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 8 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 9 is a sectional view of the lens of Example 3.
  • the imaging lens of Example 3 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power.
  • the first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side.
  • the second lens L2 has a concave surface on the object side and a convex surface on the image side.
  • the third lens L3 has a concave image side surface and a convex surface at the periphery.
  • IRCF is an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 10 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion (c)).
  • Example 4 shows lens data in Example 4.
  • FIG. 11 is a sectional view of the lens of Example 4.
  • the imaging lens of Example 4 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power.
  • the first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side.
  • the second lens L2 has a concave surface on the object side and a convex surface on the image side.
  • the third lens L3 has a concave image side surface and a convex surface at the periphery.
  • IRCF is an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 12 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 13 is a sectional view of the lens of Example 5.
  • the imaging lens of Example 5 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power.
  • the first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side.
  • the second lens L2 has a concave surface on the object side and a convex surface on the image side.
  • the third lens L3 has a concave image side surface and a convex surface at the periphery.
  • IRCF is an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 14 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 15 is a sectional view of the lens of Example 6.
  • the imaging lens of Example 6 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power.
  • the first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side.
  • the second lens L2 has a concave surface on the object side and a convex surface on the image side.
  • the third lens L3 has a concave image side surface and a convex surface at the periphery.
  • IRCF is an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 16 is an aberration diagram of Example 6 (spherical aberration (a), astigmatism (b), distortion (c)).
  • Example 7 shows lens data in Example 7.
  • FIG. 17 is a sectional view of the lens of Example 7.
  • the imaging lens of Example 7 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power.
  • the first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side.
  • the second lens L2 has a concave surface on the object side and a convex surface on the image side.
  • the third lens L3 has a concave image side surface and a convex surface at the periphery.
  • IRCF is an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 18 is an aberration diagram of Example 7 (spherical aberration (a), astigmatism (b), distortion (c)).
  • Example 8 shows lens data in Example 8.
  • FIG. 19 is a sectional view of the lens of Example 8.
  • the imaging lens of Example 8 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power.
  • the first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side.
  • the second lens L2 has a concave surface on the object side and a convex surface on the image side.
  • the third lens L3 has a concave image side surface and a convex surface at the periphery.
  • IRCF is an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 20 is an aberration diagram of Example 8 (spherical aberration (a), astigmatism (b), distortion (c)).
  • Example 9 shows lens data in Example 9.
  • FIG. 21 is a sectional view of the lens of Example 9.
  • the imaging lens of Example 9 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power.
  • the first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side.
  • the second lens L2 has a concave surface on the object side and a convex surface on the image side.
  • the third lens L3 has a concave image side surface and a convex surface at the periphery.
  • IRCF is an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 22 is an aberration diagram of Example 9 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 23 is a sectional view of the lens of Example 10.
  • the imaging lens of Example 10 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power.
  • the first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side.
  • the second lens L2 has a concave surface on the object side and a convex surface on the image side.
  • the third lens L3 has a concave image side surface and a convex surface at the periphery.
  • IRCF is an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 24 is an aberration diagram of Example 10 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 25 is a sectional view of the lens of Example 11.
  • the imaging lens of Example 11 includes an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power.
  • the first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side.
  • the second lens L2 has a concave surface on the object side and a convex surface on the image side.
  • the third lens L3 has a concave image side surface and a convex surface at the periphery.
  • IRCF is an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 26 is an aberration diagram of Example 11 (spherical aberration (a), astigmatism (b), distortion (c)).
  • Example 12 Lens data in Example 12 are shown in Table 12.
  • FIG. 27 is a sectional view of the lens of Example 12.
  • the imaging lens of Example 12 includes an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power.
  • the first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side.
  • the second lens L2 has a concave surface on the object side and a convex surface on the image side.
  • the third lens L3 has a concave image side surface and a convex surface at the periphery.
  • IRCF is an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 28 is an aberration diagram of Example 12 (spherical aberration (a), astigmatism (b), distortion (c)).
  • FIG. 29 is a sectional view of the lens of Example 13.
  • the imaging lens of Example 13 has an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power.
  • the first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side.
  • the second lens L2 has a concave surface on the object side and a convex surface on the image side.
  • the third lens L3 has a concave image side surface and a convex surface at the periphery.
  • IRCF is an IR cut filter
  • IM is an imaging surface of the solid-state imaging device.
  • FIG. 30 is an aberration diagram of Example 13 (spherical aberration (a), astigmatism (b), distortion (c)).
  • Table 14 summarizes the values of the examples corresponding to each conditional expression.
  • the present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are included in the present field from the embodiments and technical ideas described in the present specification. It is clear to the contractor. For example, even when a dummy lens having substantially no refractive power is further provided, it is within the scope of application of the present invention.

Abstract

Provided is an imaging the lens and an imaging device in which the same is used that are suitable for use in a portable terminal and have excellent aberration characteristics while providing a wide angle and bright F number. The imaging lens is formed from, in order from the subject side, an opening aperture, a first lens and second lens provided with a convex surface on the subject side and having positive refractive power, and a third lens having negative refractive power and satisfies the following conditional equations. 0.9 < f1/f < 1.5 (1) -3 < r2/r3 < -0.2 (2) -0.1 < (r5 + r6)/(r5 - r6) < 3.0 (3) 0.18 < d1/f < 0.5 (4) Wherein, f1: focal distance for first lens f: focal distance for imaging lens system r2: paraxial radius of curvature for first lens image side surface r3: paraxial radius of curvature for second lens subject side surface r5: paraxial radius of curvature for third lens subject side surface r6: paraxial radius of curvature for third lens image side surface d1: distance on optical axis from first lens subject side surface to image side surface

Description

撮像レンズ及び撮像装置Imaging lens and imaging apparatus
 本発明は、CCD(Charge Coupled Device)型イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像装置に好適な撮像レンズ及び撮像レンズを用いた撮像装置に関するものである。 The present invention relates to an imaging lens suitable for an imaging apparatus using a solid-state imaging device such as a CCD (Charge-Coupled Device) type image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor, and an imaging apparatus using the imaging lens. It is.
 小型で薄型の撮像装置が、携帯電話機やPDA(Personal Digital Assistant)等のコンパクトで、薄型の電子機器である携帯端末に搭載されるようになり、これにより遠隔地へ音声情報だけでなく画像情報も相互に伝送することが可能となっている。 Small and thin imaging devices are now mounted on portable terminals, which are compact and thin electronic devices such as mobile phones and PDAs (Personal Digital Assistants), which enables not only audio information but also image information to remote locations. Can also be transmitted to each other.
 これらの撮像装置に使用される撮像素子としては、CCD(Charge Coupled Device)型イメージセンサおよびCMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサ等の固体撮像素子が使用されている。近年では、撮像素子の画素ピッチの微小化が進み、高画素化により、高解像、高性能化が図られてきている。一方で、画素を維持しながら、撮像素子の小型化を図ることもある。加えて、最近では携帯端末を使用するユーザーの画像を撮影して相手方に伝送し、会話する相手の画像を相互に表示する、いわゆるテレビ電話機能も有する携帯端末も増えつつある。このため、メインカメラの他に、ユーザー自身を撮影するサブカメラを備えている携帯端末も多い。 As image sensors used in these image pickup apparatuses, solid-state image sensors such as CCD (Charge Coupled Device) type image sensors and CMOS (Complementary Metal-Oxide Semiconductor) type image sensors are used. In recent years, the pixel pitch of the image sensor has been miniaturized, and higher resolution and higher performance have been achieved by increasing the number of pixels. On the other hand, the image sensor may be downsized while maintaining the pixels. In addition, recently, an increasing number of mobile terminals have a so-called videophone function that captures an image of a user who uses a mobile terminal, transmits the image to the other party, and displays the images of the other party having a conversation with each other. For this reason, in addition to the main camera, there are many portable terminals provided with a sub camera for photographing the user himself.
 また、レンズモジュールを大量生産する手法と共に、レンズモジュールを低コストかつ大量に基板に実装する方法として、近年では予め半田がポッティングされた基板に対しIC(Integrated Circuit)チップや、その他の電子部品と共に、レンズモジュールを載置したままリフロー処理(加熱処理)し、半田を溶融させることにより電子部品とレンズモジュールとを基板に同時実装するという手法が提案されており、リフロー処理に耐え得る耐熱性に優れた撮像レンズも求められている。このような撮像レンズとして、レンズブロックを3枚構成とした撮像レンズが特許文献1,2により提案されている。 In addition to mass production of lens modules, as a method of mounting lens modules on a board at low cost and in large quantities, in recent years, IC (Integrated Circuit) chips and other electronic components are mounted on boards that have been soldered in advance. A method has been proposed in which an electronic component and a lens module are simultaneously mounted on a substrate by reflow treatment (heating treatment) while the lens module is placed and melting the solder, and the heat resistance can withstand the reflow treatment. There is also a need for excellent imaging lenses. As such an imaging lens, Patent Documents 1 and 2 propose imaging lenses having three lens blocks.
特開2006-84720号広報Japanese Laid-Open Patent Publication No. 2006-84720 米国特許出願第2011/279910号明細書US Patent Application No. 2011/279910
 ところで上記のように、携帯端末等にテレビ電話機能を持たせた時に使用される撮像レンズには、携帯端末等を使用する至近距離のユーザーを撮影するために必要な広角性能のみならず、例えばサブカメラ用の撮像装置に用いる固体撮像素子の画素ピッチが小さくなってきていることに鑑みて、より明るいFナンバーの確保も求められているという実情がある。ところが、特許文献1に記載のレンズは、かかる用途に必要な広角性能を達成していないばかりかFナンバーも暗いという問題がある。これに対し、特許文献2に記載のレンズは広角性能と、明るいFナンバーは確保しているものの、諸収差の補正が不十分で画面周辺部まで良好な画質を得ることができないという問題がある。 By the way, as described above, the imaging lens used when the mobile terminal or the like has a videophone function has not only the wide-angle performance necessary for photographing a user at a short distance using the mobile terminal or the like, for example, In view of the fact that the pixel pitch of the solid-state imaging device used in the imaging device for the sub camera is becoming smaller, there is a situation that a brighter F number is required to be secured. However, the lens described in Patent Document 1 has a problem that the F-number is dark as well as not achieving the wide-angle performance necessary for such applications. On the other hand, although the lens described in Patent Document 2 has a wide-angle performance and a bright F number, there is a problem that correction of various aberrations is insufficient and a good image quality cannot be obtained up to the periphery of the screen. .
 本発明は、このような問題を鑑みてなされたものであり、携帯端末用として好適であり、低背、広角かつ明るいFナンバーを備えながらも収差特性に優れた撮像レンズ及びこれを用いた撮像装置を提供することを目的とする。 The present invention has been made in view of such a problem, and is suitable for a portable terminal. An imaging lens having a low profile, a wide angle, and a bright F number, and having excellent aberration characteristics, and an imaging using the imaging lens. An object is to provide an apparatus.
 請求項1に記載の撮像レンズは、固体撮像素子に対して被写体像を結像させる撮像レンズにおいて、物体側から順に開口絞り、物体側に凸面を備え正の屈折力を有する第1レンズ、第2レンズ、負の屈折力を有する第3レンズから成り、以下の条件式を満足することを特徴とする。
 0.9<f1/f<1.5    (1)
 -3<r2/r3<-0.2   (2)
 -0.1<(r5+r6)/(r5-r6)<3.0   (3)
 0.18<d1/f<0.5   (4)
但し、
f1 :前記第1レンズの焦点距離
f  :撮像レンズ全系の焦点距離
r2 :前記第1レンズ像側面の近軸曲率半径
r3 :前記第2レンズ物体側面の近軸曲率半径
r5 :前記第3レンズ物体側面の近軸曲率半径
r6 :前記第3レンズ像側面の近軸曲率半径
d1 :前記第1レンズ物体側面から像側面までの光軸上の距離
The imaging lens according to claim 1 is an imaging lens for forming a subject image on a solid-state imaging device, a first lens having an aperture stop in order from the object side, a convex surface on the object side, and having a positive refractive power, It consists of two lenses and a third lens having negative refractive power, and satisfies the following conditional expression.
0.9 <f1 / f <1.5 (1)
-3 <r2 / r3 <-0.2 (2)
-0.1 <(r5 + r6) / (r5-r6) <3.0 (3)
0.18 <d1 / f <0.5 (4)
However,
f1: focal length of the first lens f: focal length r2 of the entire imaging lens system: paraxial radius of curvature r3 of the first lens image side surface: paraxial radius of curvature r5 of the second lens object side surface: third lens Paraxial curvature radius r6 of the object side surface: Paraxial curvature radius d1 of the third lens image side surface d1: Distance on the optical axis from the first lens object side surface to the image side surface
 本発明によれば、3枚のレンズ構成とすることで、2枚のレンズ構成よりも収差特性に優れ高性能の撮像レンズとすることができる。又、前記開口絞りを前記第1レンズよりも物体側に配置することで、良好なテレセントリック性を保ちつつ低背化することができる。更に、前記第1レンズの物体側を凸面とし、前記第1レンズに正の屈折力を持たせることで、低背化と広角化を実現することができる。加えて、前記第3レンズに負の屈折力を持たせることで、像面湾曲、非点収差を補正できるとともにバックフォーカスを長くすることができる。 According to the present invention, by using a three-lens configuration, it is possible to obtain a high-performance imaging lens that has superior aberration characteristics than the two-lens configuration. Further, by arranging the aperture stop closer to the object side than the first lens, it is possible to reduce the height while maintaining good telecentricity. Further, by making the object side of the first lens a convex surface and giving the first lens a positive refractive power, it is possible to realize a low profile and a wide angle. In addition, by giving negative power to the third lens, it is possible to correct curvature of field and astigmatism, and to increase the back focus.
 条件式(1)の値が上限を下回ることで低背化、広角化に有利となり、一方、条件式(1)の値が下限を上回ることで、前記第1レンズで発生する球面収差、コマ収差を抑え明るいFナンバーを実現することができる。Fナンバーは3以下であることが好ましい。 When the value of conditional expression (1) is less than the upper limit, it is advantageous for lowering the width and widening the angle. On the other hand, when the value of conditional expression (1) exceeds the lower limit, spherical aberration and coma generated in the first lens are improved. Aberration can be suppressed and a bright F number can be realized. The F number is preferably 3 or less.
 条件式(2)を満足することで、前記第1レンズ像側面で発生するコマ収差を前記第2レンズ物体側面で良好に補正することができ、広角化が実現できる。画角は65゜以上あると好ましい。 By satisfying the conditional expression (2), coma generated on the side surface of the first lens image can be corrected well on the side surface of the second lens object, and a wide angle can be realized. The angle of view is preferably 65 ° or more.
 条件式(3)を満足することで、非点収差を良好に補正できる他、バックフォーカスを長くすることができる。 By satisfying conditional expression (3), astigmatism can be corrected well, and the back focus can be lengthened.
 条件式(4)の値が上限を下回ることで低背化を実現でき、条件式(4)の値が下限を上回ることで、前記第1レンズで発生する球面収差、コマ収差を抑え明るいFナンバーの確保を実現できる。 When the value of conditional expression (4) falls below the upper limit, a reduction in height can be realized, and when the value of conditional expression (4) exceeds the lower limit, spherical aberration and coma generated in the first lens are suppressed and bright F The number can be secured.
 請求項2に記載の撮像レンズは、請求項1に記載の発明において、前記第1レンズは物体側が凸面、像側が凹面の物凸メニスカス形状であることを特徴とする。 The imaging lens according to claim 2 is characterized in that, in the invention according to claim 1, the first lens has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side.
 前記第1レンズの像側面を凹面とすることで像面湾曲を補正できる他、前記第1レンズで発生する球面収差、コマ収差を補正することができ、広角化と明るいFナンバーが実現できる。 In addition to correcting the curvature of field by making the image side surface of the first lens concave, it is possible to correct spherical aberration and coma aberration generated in the first lens, thereby realizing a wide angle and a bright F number.
 請求項3に記載の撮像レンズは、請求項1又は2に記載の発明において、前記第2レンズは物体側が凹面であることを特徴とする。 The imaging lens according to a third aspect is characterized in that, in the invention according to the first or second aspect, the second lens has a concave surface on the object side.
 前記第2レンズの物体側面を凹面とすることで像面湾曲と非点収差を補正でき、広角化を実現できる。 By making the object side surface of the second lens concave, the curvature of field and astigmatism can be corrected, and a wide angle can be realized.
 請求項4に記載の撮像レンズは、請求項1~3のいずれかに記載の発明において、前記第2レンズは像側面が凸面であることを特徴とする。 According to a fourth aspect of the present invention, there is provided the imaging lens according to any one of the first to third aspects, wherein the second lens has a convex image side surface.
 前記第2レンズの像側面を凸面とすることで、前記第1レンズに強い正の屈折力を持たせなくても広角化を実現でき、前記第1レンズで発生する球面収差、コマ収差を抑えることができるため明るいFナンバーを実現できる。 By making the image side surface of the second lens convex, it is possible to realize a wide angle without giving the first lens strong positive refractive power, and to suppress spherical aberration and coma generated in the first lens. Therefore, a bright F number can be realized.
 請求項5に記載の撮像レンズは、請求項1~4のいずれかに記載の発明において、前記第3レンズは像側面が凹面であることを特徴とする。 According to a fifth aspect of the present invention, in the imaging lens according to any one of the first to fourth aspects, the third lens has a concave image side surface.
 前記第3レンズの像側面を凹面とすることで非点収差を補正できるため、広角化を実現できる他、バックフォーカスを長くすることができる。 Since the astigmatism can be corrected by making the image side surface of the third lens concave, the wide angle can be realized and the back focus can be lengthened.
 請求項6に記載の撮像レンズは、請求項1~5のいずれかに記載の発明において、前記第3レンズは像側面が凹面でかつ周辺部に凸面を有することを特徴とする。 The imaging lens according to a sixth aspect of the invention is characterized in that, in the invention according to any one of the first to fifth aspects, the third lens has a concave image side surface and a convex surface in the peripheral portion.
 前記第3レンズの像側面の周辺部を凸面とすることで、テレセントリック性を良好に保ちながら低背化が実現できる。尚、「像側面が凹面でかつ周辺部に凸面を有する」とは、像側面の光軸を含む断面において光軸から離れるにつれて像側に向かい、変曲点を境に物体側に向かう形状であることをいう。 By making the peripheral part of the image side surface of the third lens convex, it is possible to realize a low profile while maintaining good telecentricity. Note that “the image side surface is concave and has a convex surface in the peripheral portion” means that the cross section including the optical axis of the image side surface moves toward the image side as it moves away from the optical axis, and toward the object side at the inflection point. Say something.
 請求項7に記載の撮像レンズは、請求項1~6のいずれかに記載の発明において、前記第2レンズは、以下の条件式を満足することを特徴とする。
 0.5<f2/f<4.0   (5)
但し、
f2 :前記第2レンズの焦点距離
According to a seventh aspect of the present invention, there is provided the imaging lens according to any one of the first to sixth aspects, wherein the second lens satisfies the following conditional expression.
0.5 <f2 / f <4.0 (5)
However,
f2: focal length of the second lens
 条件式(5)の値が上限を下回ることで低背化、広角化に有利となり、一方、条件式(5)の値が下限を上回ることで像面湾曲、非点収差の発生を抑えることができる。 When the value of conditional expression (5) is below the upper limit, it is advantageous for reduction in height and widening of the angle. On the other hand, when the value of conditional expression (5) exceeds the lower limit, the occurrence of field curvature and astigmatism is suppressed. Can do.
 請求項8に記載の撮像レンズは、請求項1~7のいずれかに記載の発明において、前記第3レンズは、以下の条件式を満足することを特徴とする。
 -10<f3/f<-0.7   (6)
但し、
f3:前記第3レンズの焦点距離
An imaging lens according to an eighth aspect of the invention is characterized in that, in the invention according to any one of the first to seventh aspects, the third lens satisfies the following conditional expression.
−10 <f3 / f <−0.7 (6)
However,
f3: focal length of the third lens
 条件式(6)の値が上限を下回ることで低背化に有利となり、一方、条件式(6)の値が下限を上回ることで非点収差を良好に補正できる。尚、以下の式を満たすと、更に好ましい。
 -10<f3/f<-0.88   (6’)
When the value of conditional expression (6) is less than the upper limit, it is advantageous for reduction in height, while when the value of conditional expression (6) exceeds the lower limit, astigmatism can be corrected well. It is more preferable that the following expression is satisfied.
−10 <f3 / f <−0.88 (6 ′)
 請求項9に記載の撮像レンズは、請求項1~8のいずれかに記載の発明において、前記撮像レンズは、以下の条件式を満足することを特徴とする。
 0.1<|f1/f2|<2.0   (7)
但し、
f2 :前記第2レンズの焦点距離
An imaging lens according to a ninth aspect is characterized in that, in the invention according to any one of the first to eighth aspects, the imaging lens satisfies the following conditional expression.
0.1 <| f1 / f2 | <2.0 (7)
However,
f2: focal length of the second lens
 条件式(7)の値が上限を下回ることで低背化に有利となり、一方、条件式(7)の値が下限を上回ることで、第1レンズで発生する球面収差、コマ収差を抑えることができるため明るいFナンバーを確保することができる。 When the value of conditional expression (7) is lower than the upper limit, it is advantageous for low profile. On the other hand, when the value of conditional expression (7) exceeds the lower limit, spherical aberration and coma generated in the first lens are suppressed. Therefore, a bright F number can be secured.
 請求項10に記載の撮像レンズは、請求項1~9のいずれかに記載の発明において、前記撮像レンズは、以下の条件式を満足することを特徴とする。
 0.3<(d1+d3+d5)/TTL<0.7   (8)
但し、
d3 :前記第2レンズ物体側面から像側面までの光軸上の距離
d5 :前記第3レンズ物体側面から像側面までの光軸上の距離
TTL:前記第1レンズ物体側面から前記固体撮像素子の受光面までの光軸上の距離
The imaging lens according to a tenth aspect of the invention is characterized in that, in the invention according to any one of the first to ninth aspects, the imaging lens satisfies the following conditional expression.
0.3 <(d1 + d3 + d5) / TTL <0.7 (8)
However,
d3: Distance on the optical axis from the second lens object side surface to the image side surface d5: Distance on the optical axis from the third lens object side surface to the image side surface TTL: From the first lens object side surface to the solid-state imaging device Distance on the optical axis to the light receiving surface
 条件式(8)の値が上限を下回ることで低背化を実現できバックフォーカスを長くすることができる。一方、条件式(8)の値が下限を上回ることで、各レンズの厚みが薄くなりすぎず撮像レンズの製造安定性が向上する。 こ と When the value of conditional expression (8) is below the upper limit, the height can be reduced and the back focus can be lengthened. On the other hand, when the value of conditional expression (8) exceeds the lower limit, the thickness of each lens does not become too thin, and the manufacturing stability of the imaging lens is improved.
 請求項11に記載の撮像レンズは、請求項1~10のいずれかに記載の発明において、前記第3レンズは、以下の条件式を満足することを特徴とする。
 1.55<n3<1.90   (9)
n3 :前記第3レンズの屈折率
An imaging lens according to an eleventh aspect is characterized in that, in the invention according to any one of the first to tenth aspects, the third lens satisfies the following conditional expression.
1.55 <n3 <1.90 (9)
n3: refractive index of the third lens
 前記第3レンズに高い屈折率の材料を用いることで面のサグ量を小さくすることができ倍率色収差の発生を抑えることができる他、レンズ厚みを確保しやすくなる。このような素材としては、ガラスがある。レンズをガラス製とする場合、軸上厚が0.3mmより大きいと割れにくいので好ましい。 By using a material with a high refractive index for the third lens, the amount of surface sag can be reduced, the occurrence of lateral chromatic aberration can be suppressed, and the lens thickness can be easily secured. One such material is glass. When the lens is made of glass, it is preferable that the axial thickness is larger than 0.3 mm because it is difficult to break.
 請求項12に記載の撮像レンズは、請求項1~11のいずれかに記載の発明において、実質的に屈折力を有しないレンズを有することを特徴とする。つまり、請求項1の構成に、実質的に屈折力を持たないダミーレンズを付与した場合でも本発明の適用範囲内である。 An imaging lens according to a twelfth aspect is characterized in that, in the invention according to any one of the first to eleventh aspects, the lens has substantially no refractive power. That is, even when a dummy lens having substantially no refractive power is added to the configuration of claim 1, it is within the scope of application of the present invention.
 請求項13に記載の撮像装置は、請求項1~12のいずれかに記載の撮像レンズを用いることを特徴とする。 An image pickup apparatus according to a thirteenth aspect uses the image pickup lens according to any one of the first to twelfth aspects.
 本発明によれば、携帯端末用として好適であり、低背、広角かつ明るいFナンバーを備えながらも収差特性に優れた撮像レンズ及びこれを用いた撮像装置を提供することができる。 According to the present invention, it is possible to provide an imaging lens which is suitable for a portable terminal and has an excellent aberration characteristic while having a low profile, wide angle and bright F number, and an imaging apparatus using the imaging lens.
本実施の形態にかかる撮像装置LUの斜視図である。It is a perspective view of imaging device LU concerning this embodiment. 図1の構成を矢印II-II線で切断して矢印方向に見た断面図である。It is sectional drawing which cut | disconnected the structure of FIG. 1 by the arrow II-II line | wire, and looked at the arrow direction. 携帯電話機Tの表面を示す図である。2 is a diagram showing a surface of a mobile phone T. FIG. 携帯電話機Tの裏面を示す図である。4 is a diagram showing a back surface of a mobile phone T. FIG. 実施例1にかかる撮像レンズの断面図である。1 is a cross-sectional view of an imaging lens according to Example 1. FIG. 実施例1にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 1; 実施例2にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 2. FIG. 実施例2にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 2; 実施例3にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 3. FIG. 実施例3にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 3; 実施例4にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 4. FIG. 実施例4にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 4; 実施例5にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 5. FIG. 実施例5にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 5; 実施例6にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 6. FIG. 実施例6にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 6; 実施例7にかかる撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens according to Example 7. FIG. 実施例7にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 7; 実施例8にかかる撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens according to Example 8. FIG. 実施例8にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 8; 実施例9にかかる撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens according to Example 9. FIG. 実施例9にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 9; 実施例10にかかる撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens according to Example 10. FIG. 実施例10にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 10; 実施例11にかかる撮像レンズの断面図である。12 is a cross-sectional view of an imaging lens according to Example 11. FIG. 実施例11にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 12 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 11; 実施例12にかかる撮像レンズの断面図である。14 is a cross-sectional view of an imaging lens according to Example 12. FIG. 実施例12にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 14 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion aberration (c) of the imaging lens according to Example 12; 実施例13にかかる撮像レンズの断面図である。14 is a cross-sectional view of an imaging lens according to Example 13. FIG. 実施例13にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)の収差図である。FIG. 14 is an aberration diagram of spherical aberration (a), astigmatism (b), and distortion (c) of the imaging lens according to Example 13;
 以下、本発明の実施の形態を図面に基づいて説明する。図1は、本実施の形態にかかる撮像装置LUの斜視図であり、図2は、図1の構成を矢印II-II線で切断して矢印方向に見た断面図である。図1,2に示すように、撮像装置LUは、光電変換部IMaを有する固体撮像素子としてのCMOS型イメージセンサIMと、このイメージセンサIMの光電変換部(受光面)IMaに被写体像を撮像させる撮像レンズLNと、その電気信号の送受を行う不図示の外部接続用端子(電極)とを備え、これらが一体的に形成されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an imaging apparatus LU according to the present embodiment, and FIG. 2 is a cross-sectional view of the configuration of FIG. 1 taken along line II-II and viewed in the direction of the arrow. As illustrated in FIGS. 1 and 2, the imaging device LU captures a subject image on a CMOS image sensor IM as a solid-state imaging device having a photoelectric conversion unit IMa and a photoelectric conversion unit (light receiving surface) IMa of the image sensor IM. The imaging lens LN to be connected and an external connection terminal (electrode) (not shown) that transmits and receives the electric signal are integrally formed.
 撮像レンズLNは、物体側(図2で上方)から順に、開口絞りApeと、正の屈折力を有する第1レンズL1と、第2レンズL2と、負の屈折力を有する第3レンズL3とからなる。第1レンズL1と第2レンズL2とは、ドーナッツ板状の第1の遮光部材SH1を介して接合されており、第2レンズL2と第3レンズL3とは、ドーナッツ板状の第2の遮光部材SH2を介して接合されている。より具体的には、ガラス製の板状成形体に複数のレンズを成形したものを、レンズの種類毎に3枚用意し、間に遮光部材SH1,SH2を介在させてレンズの光軸を合わせながら接合した後に、光軸を合わせたレンズ毎に周囲を矩形状に切断して撮像レンズLNとしている。ここで、第1レンズL1の像側光学面の外側と、第2レンズL2の物体側光学面の外側とが僅かなスキマを隔てているので、第1レンズL1のフランジ部と、第2レンズL2にフランジ部とが当接しやすくなっている。又、第2レンズL2の像側光学面の外側と、第3レンズL3の物体側光学面の外側とが僅かなスキマを隔てているので、第2レンズL2のフランジ部と、第3レンズL3のフランジ部とが当接しやすくなっている。 The imaging lens LN includes an aperture stop Ape, a first lens L1 having a positive refractive power, a second lens L2, and a third lens L3 having a negative refractive power in order from the object side (upper side in FIG. 2). Consists of. The first lens L1 and the second lens L2 are joined via a donut-plate-shaped first light-shielding member SH1, and the second lens L2 and the third lens L3 are donut-plate-shaped second light-shielding. It joins via member SH2. More specifically, a glass plate-shaped molded body formed with a plurality of lenses is prepared for each lens type, and the optical axes of the lenses are aligned with light shielding members SH1 and SH2 interposed therebetween. After being joined, the periphery of each lens with the optical axis aligned is cut into a rectangular shape to form an imaging lens LN. Here, since the outer side of the image side optical surface of the first lens L1 and the outer side of the object side optical surface of the second lens L2 are slightly spaced apart, the flange portion of the first lens L1 and the second lens L2 is easily in contact with the flange portion. Further, since the outer side of the image side optical surface of the second lens L2 and the outer side of the object side optical surface of the third lens L3 are slightly spaced apart, the flange portion of the second lens L2 and the third lens L3 are separated. It is easy to contact with the flange part.
 切断された撮像レンズLNは、内周断面が矩形状の鏡筒HLDの内周に嵌合し接着剤を介して固定されている。鏡筒HLDは外周に外ネジ部HLDaを有しており、これを円筒状の筐体BXの内ネジ部BXaに螺合させることで、鏡筒HLDは光軸方向に調整自在に筐体BXに取り付けられている。鏡筒HLDの下端に対向して、筐体BXから内周側に突出したフランジ部BXbに、IRカットフィルタIRCFが取り付けられている。又、筐体BXの下端は、イメージセンサIMを保持する基板STに当接している。 The cut imaging lens LN is fitted to the inner periphery of a lens barrel HLD whose inner peripheral section is rectangular and is fixed via an adhesive. The lens barrel HLD has an outer threaded portion HLLa on the outer periphery, and by screwing this to the inner threaded portion BXa of the cylindrical housing BX, the lens barrel HLD can be adjusted in the optical axis direction. Is attached. An IR cut filter IRCF is attached to a flange portion BXb that protrudes inward from the housing BX so as to face the lower end of the lens barrel HLD. Further, the lower end of the housing BX is in contact with the substrate ST holding the image sensor IM.
 尚、本発明に記載の撮像レンズLNは、上記構成に限られるものではない。例えば、ガラスまたはプラスチック製の各レンズL1~L3を個別に成形し、接合させずに鏡筒HLD内に収容してもよい。また、レンズの偏心を合わせるためにレンズ外周部または鏡筒HLDに嵌合部を設けてもよい。 The imaging lens LN described in the present invention is not limited to the above configuration. For example, the lenses L1 to L3 made of glass or plastic may be individually molded and accommodated in the lens barrel HLD without being joined. Further, in order to adjust the eccentricity of the lens, a fitting portion may be provided on the lens outer peripheral portion or the lens barrel HLD.
 本実施の形態の撮像レンズLNは、以下の条件式を満足する。
 0.9<f1/f<1.5    (1)
 -3<r2/r3<-0.2   (2)
 -0.1<(r5+r6)/(r5-r6)<3.0   (3)
 0.18<d1/f<0.5   (4)
但し、
f1 :第1レンズL1の焦点距離
f  :撮像レンズ全系の焦点距離
r2 :第1レンズL1像側面の近軸曲率半径
r3 :第2レンズL2物体側面の近軸曲率半径
r5 :第3レンズL3物体側面の近軸曲率半径
r6 :第3レンズL3像側面の近軸曲率半径
d1 :第1レンズL1物体側面から像側面までの光軸上の距離
The imaging lens LN of the present embodiment satisfies the following conditional expression.
0.9 <f1 / f <1.5 (1)
-3 <r2 / r3 <-0.2 (2)
-0.1 <(r5 + r6) / (r5-r6) <3.0 (3)
0.18 <d1 / f <0.5 (4)
However,
f1: Focal length of the first lens L1 f: Focal length r2 of the entire imaging lens system: Paraxial radius of curvature r3 of the first lens L1 image side surface Paraxial radius of curvature r5 of the second lens L2 object side surface: Third lens L3 Paraxial curvature radius r6 of the object side surface: Paraxial curvature radius d1 of the third lens L3 image side surface: Distance on the optical axis from the first lens L1 object side surface to the image side surface
 上記イメージセンサIMは、その受光側の平面の中央部に、画素(光電変換素子)が2次元的に配置された、受光部としての光電変換部IMaが形成されており、不図示の信号処理回路に接続されている。かかる信号処理回路は、各画素を順次駆動し信号電荷を得る駆動回路部と、各信号電荷をデジタル信号に変換するA/D変換部と、このデジタル信号を用いて画像信号出力を形成する信号処理部等から構成されている。また、イメージセンサIMの受光側の平面の外縁近傍には、多数のパッド(図示略)が配置されており、不図示のワイヤを介してイメージセンサIMに接続されている。イメージセンサIMは、光電変換部IMaからの信号電荷をデジタルYUV信号等の画像信号等に変換し、ワイヤ(不図示)を介して所定の回路に出力する。ここで、Yは輝度信号、U(=R-Y)は赤と輝度信号との色差信号、V(=B-Y)は青と輝度信号との色差信号である。なお、固体撮像素子は上記CMOS型のイメージセンサに限定されるものではなく、CCD等の他のものを使用しても良い。 In the image sensor IM, a photoelectric conversion unit IMa as a light receiving unit in which pixels (photoelectric conversion elements) are two-dimensionally arranged is formed in the center of a plane on the light receiving side, and signal processing (not shown) is performed. Connected to the circuit. Such a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like. A number of pads (not shown) are arranged near the outer edge of the light receiving side plane of the image sensor IM, and are connected to the image sensor IM via wires (not shown). The image sensor IM converts a signal charge from the photoelectric conversion unit IMa into an image signal such as a digital YUV signal and outputs the image signal to a predetermined circuit via a wire (not shown). Here, Y is a luminance signal, U (= RY) is a color difference signal between red and the luminance signal, and V (= BY) is a color difference signal between blue and the luminance signal. Note that the solid-state imaging device is not limited to the CMOS image sensor, and other devices such as a CCD may be used.
 イメージセンサIMは、外部接続用端子を介して外部回路(例えば、撮像装置を実装した携帯端末の上位装置が有する制御回路)と接続し、外部回路からイメージセンサIMを駆動するための電圧やクロック信号の供給を受けたり、また、デジタルYUV信号を外部回路へ出力したりすることを可能とする。 The image sensor IM is connected to an external circuit (for example, a control circuit included in a host device of a portable terminal mounted with an imaging device) via an external connection terminal, and a voltage or a clock for driving the image sensor IM from the external circuit. It is possible to receive a signal and to output a digital YUV signal to an external circuit.
 次に、撮像装置を備えた携帯端末の一例として携帯電話機を図3,4の外観図に基づいて説明する。なお、図3は折り畳んだ携帯電話機を開いて内側から見た図であり、図4は折り畳んだ携帯電話機を開いて外側から見た図である。 Next, a mobile phone as an example of a mobile terminal provided with an imaging device will be described with reference to the external views of FIGS. 3 is a view of the folded mobile phone as viewed from the inside, and FIG. 4 is a view of the folded mobile phone as viewed from the outside.
 図3,4において、携帯電話機Tは、表示画面D1,D2を備えたケースとしての上筐体71と、操作ボタンBを備えた下筐体72とがヒンジ73を介して連結されている。本実施の形態においては、風景等を撮影するためのメインの撮像装置MCが、上筐体71の表面側に設けられ、上述した広角の撮像レンズLNを備える撮像装置LUが、上筐体71の裏面側であって表示画面D1の上に設けられている。 3 and 4, in the mobile phone T, an upper casing 71 as a case having display screens D1 and D2 and a lower casing 72 having operation buttons B are connected via a hinge 73. In the present embodiment, the main imaging device MC for photographing a landscape or the like is provided on the surface side of the upper housing 71, and the imaging device LU including the above-described wide-angle imaging lens LN is the upper housing 71. And provided on the display screen D1.
 撮像レンズLNは、図3に示すように撮像装置LUに正対した状態で、携帯電話機Tを手で把持した使用者自身の上半身を撮像装置LUにより撮像できる。本実施の形態の撮像レンズLNは、撮像装置LUのコンパクト化に貢献し、且つ広角でFナンバーが明るいため、このような撮影に好適である。その画像信号を通信している相手方の携帯電話機に送信して、こちらのユーザーの画像を表示できると共に、通常の通話を行うことにより、いわゆるテレビ電話を実現できる。なお、携帯電話機Tは折り畳み式に限定されるものではない。 The imaging lens LN can image the upper body of the user himself / herself holding the mobile phone T with his / her hand in the state of facing the imaging device LU as shown in FIG. The imaging lens LN of the present embodiment contributes to the compactness of the imaging device LU, and is suitable for such photographing because it has a wide angle and a bright F number. By transmitting the image signal to the mobile phone of the other party that is communicating and displaying the image of this user, a so-called videophone can be realized by making a normal call. The mobile phone T is not limited to a folding type.
(実施例)
 次に、上述した実施の形態に好適な実施例について説明する。但し、以下に示す実施例により本発明が限定されるものではない。実施例における各符号の意味は以下の通りである(長さの単位は、波長以外mm)。
FL:撮像レンズ全系の焦点距離(mm)
BF:バックフォーカス(mm)(但し、カバーガラス込みの近軸像面までの距離)
Fno :Fナンバー
w :半画角(゜)
Ymax:固体撮像素子の撮像面対角線長の半分の長さ(mm)
TL:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離(mm)(但し、「像側焦点」とは、撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。)
r :屈折面の曲率半径(mm)
d :軸上面間隔(mm)
nd:レンズ材料のd線の常温での屈折率
vd:レンズ材料のアッベ数
STO:開口絞り
(Example)
Next, examples suitable for the above-described embodiment will be described. However, the present invention is not limited to the following examples. The meaning of each code | symbol in an Example is as follows (a unit of length is mm other than a wavelength).
FL: Focal length of the entire imaging lens system (mm)
BF: Back focus (mm) (however, distance to paraxial image plane including cover glass)
Fno: F number w: Half angle of view (°)
Ymax: half length (mm) of the diagonal length of the imaging surface of the solid-state imaging device
TL: Distance (mm) on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system (however, “image-side focal point” means that parallel rays parallel to the optical axis are incident on the imaging lens. This is the image point when
r: radius of curvature of refractive surface (mm)
d: Distance between shaft upper surfaces (mm)
nd: Refractive index of lens material at d-line at room temperature vd: Abbe number of lens material STO: Aperture stop
 各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。 In each embodiment, the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin and the X axis in the optical axis direction. The height in the direction perpendicular to the optical axis is represented by the following “Equation 1”.
Figure JPOXMLDOC01-appb-M000001
ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
である。
Figure JPOXMLDOC01-appb-M000001
However,
Ai: i-th order aspherical coefficient R: radius of curvature K: conic constant.
 また、以降(表のレンズデータを含む)において、10のべき乗数(例えば、2.5×10-02)をEまたはe(例えば2.5e-002)を用いて表すものとする。また、レンズデータの面番号は第1レンズの物体側を1面として順に付与した。なお、実施例に記載の長さを表す数値の単位はすべてmmとする。 In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −02 ) is represented using E or e (for example, 2.5e−002). The surface number of the lens data was given in order with the object side of the first lens as one surface. In addition, the unit of the numerical value showing the length as described in an Example shall be mm.
 なお、請求項ならびに実施例に記載の近軸曲率半径の意味合いについて、実際のレンズ測定の場面においては、レンズ中央近傍(具体的には、レンズ外径に対して10%以内の中央領域)での形状測定値を最小自乗法でフィッティングした際の近似曲率半径を近軸曲率半径であるとみなすことができる。また、例えば2次の非球面係数を使用した場合には、非球面定義式の基準曲率半径に2次の非球面係数も勘案した曲率半径を近軸曲率半径とみなすことができる。(例えば参考文献として、松居吉哉著「レンズ設計法」(共立出版株式会社)のP41~42を参照のこと) Incidentally, regarding the meaning of the paraxial radius of curvature described in the claims and the examples, in the actual lens measurement scene, in the vicinity of the center of the lens (specifically, the central region within 10% of the lens outer diameter). The approximate radius of curvature when the measured shape of the shape is fitted by the method of least squares can be regarded as the paraxial radius of curvature. For example, when a secondary aspherical coefficient is used, a radius of curvature that takes into account the secondary aspherical coefficient in the reference curvature radius of the aspherical definition formula can be regarded as a paraxial curvature radius. (For example, see pages 41 to 42 of Yoshiya Matsui's “Lens Design Method” (Kyoritsu Publishing Co., Ltd.) for reference)
(実施例1)
 実施例1におけるレンズデータを表1に示す。図5は実施例1のレンズの断面図である。実施例1の撮像レンズは、物体側から順に、開口絞りApe、物体側に凸面を備え正の屈折力を有する第1レンズL1、第2レンズL2、負の屈折力を有する第3レンズL3から成る。第1レンズL1は物体側が凸面、像側が凹面の物凸メニスカス形状である。第2レンズL2は物体側が凹面であり、像側面が凸面である。第3レンズL3は像側面が凹面でかつ周辺部に凸面を有する。IRCFはIRカットフィルタであり、IMは固体撮像素子の撮像面である。
(Example 1)
Table 1 shows lens data in Example 1. 5 is a sectional view of the lens of Example 1. FIG. The imaging lens of Example 1 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2 having a positive refractive power, and a third lens L3 having a negative refractive power. Become. The first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side. The second lens L2 has a concave surface on the object side and a convex surface on the image side. The third lens L3 has a concave image side surface and a convex surface at the periphery. IRCF is an IR cut filter, and IM is an imaging surface of the solid-state imaging device.
[表1]
[実施例1]
Reference Wave Length = 587.56 nm

SURF DATA
 NUM.       r           d          nd     vd
 OBJ     INFINITY    350.0000
   1       1e+018      0.0500
 STO       1e+018     -0.0540
   3*      0.8606      0.4890    1.58313  59.44
   4*      2.0071      0.2570
   5*     -2.0733      0.5110    1.58313  59.44
   6*     -0.6943      0.0500
   7*      1e+018      0.4500    1.58313  59.44
   8*      0.9880      0.2160
   9       1e+018      0.2100    1.52310  54.49
  10       1e+018      0.2683
 IMG     INFINITY      

ASPHERICAL SURFACE
3:K=-1.30010e+001,A3=-6.14640e-002,A4=3.15580e+000,A5=-3.32680e+000,A6=-5.31990e+000,A7=0.00000e+000,A8=-1.24250e+001,A9=0.00000e+000,A10=9.51540e+002,A11=0.00000e+000,A12=-8.11230e+003,A13=0.00000e+000,A14=2.25920e+004,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
4:K=1.00000e+001,A3=0.00000e+000,A4=-4.83238e-002,A5=0.00000e+000,A6=7.28849e+000,A7=0.00000e+000,A8=-1.03218e+002,A9=0.00000e+000,A10=7.96653e+002,A11=0.00000e+000,A12=-2.56732e+003,A13=0.00000e+000,A14=-2.57071e+002,A15=0.00000e+000,A16=1.30778e+004,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
5:K=-3.14500e+001,A3=-1.20510e-001,A4=-1.58460e-001,A5=-3.88480e-001,A6=4.92580e+000,A7=0.00000e+000,A8=-7.10300e+001,A9=0.00000e+000,A10=6.50140e+002,A11=0.00000e+000,A12=-3.08060e+003,A13=0.00000e+000,A14=7.51640e+003,A15=0.00000e+000,A16=-7.55150e+003,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
6:K=-5.06210e+000,A4=-1.23770e+000,A6=4.47770e+000,A8=-1.06290e+001,A10=2.09850e+001,A12=-1.11890e+001,A14=-6.32490e+000,A16=-2.78530e+000,A18=0.00000e+000,A20=0.00000e+000
7:K=0.00000e+000,A3=0.00000e+000,A4=-5.57720e-001,A5=0.00000e+000,A6=-3.89730e-001,A7=0.00000e+000,A8=3.89390e+000,A9=0.00000e+000,A10=-5.97670e+000,A11=0.00000e+000,A12=2.96330e+000,A13=0.00000e+000,A14=9.60810e-001,A15=0.00000e+000,A16=-9.89190e-001,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
8:K=-3.56660e-001,A3=0.00000e+000,A4=-1.03780e+000,A5=0.00000e+000,A6=9.89190e-001,A7=0.00000e+000,A8=-7.02670e-001,A9=0.00000e+000,A10=2.27500e-002,A11=0.00000e+000,A12=3.15910e-001,A13=0.00000e+000,A14=-2.14930e-001,A15=0.00000e+000,A16=4.06740e-002,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000

  FL       1.803mm
 Fno       2.780
   w       35.44゜
Ymax       1.295mm
  BF       0.694mm
  TL       2.451mm

 Elem   Surfs    Focal Length
   1     3- 4       2.233mm
   2     5- 6       1.575mm
   3     7- 8      -1.694mm
[table 1]
[Example 1]
Reference Wave Length = 587.56 nm

SURF DATA
NUM. R d nd vd
OBJ INFINITY 350.0000
1 1e + 018 0.0500
STO 1e + 018 -0.0540
3 * 0.8606 0.4890 1.58313 59.44
4 * 2.0071 0.2570
5 * -2.0733 0.5110 1.58313 59.44
6 * -0.6943 0.0500
7 * 1e + 018 0.4500 1.58313 59.44
8 * 0.9880 0.2160
9 1e + 018 0.2100 1.52310 54.49
10 1e + 018 0.2683
IMG INFINITY

ASPHERICAL SURFACE
3: K = -1.30010e + 001, A3 = -6.14640e-002, A4 = 3.15580e + 000, A5 = -3.32680e + 000, A6 = -5.31990e + 000, A7 = 0.00000e + 000, A8 = -1.24250e + 001, A9 = 0.00000e + 000, A10 = 9.51540e + 002, A11 = 0.00000e + 000, A12 = -8.11230e + 003, A13 = 0.00000e + 000, A14 = 2.25920e + 004, A15 = 0.00000e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 1.00000e + 001, A3 = 0.00000e + 000, A4 = -4.83238e-002, A5 = 0.00000e + 000, A6 = 7.28849e + 000, A7 = 0.00000e + 000, A8 = -1.03218e + 002, A9 = 0.00000e + 000, A10 = 7.96653e + 002, A11 = 0.00000e + 000, A12 = -2.56732e + 003, A13 = 0.00000e + 000, A14 = -2.57071e + 002, A15 = 0.00000 e + 000, A16 = 1.30778e + 004, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -3.14500e + 001, A3 = -1.20510e-001, A4 = -1.58460e-001, A5 = -3.88480e-001, A6 = 4.92580e + 000, A7 = 0.00000e + 000, A8 = -7.10300e + 001, A9 = 0.00000e + 000, A10 = 6.50140e + 002, A11 = 0.00000e + 000, A12 = -3.08060e + 003, A13 = 0.00000e + 000, A14 = 7.51640e + 003, A15 = 0.00000e + 000, A16 = -7.55150e + 003, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = -5.06210e + 000, A4 = -1.23770e + 000, A6 = 4.47770e + 000, A8 = -1.06290e + 001, A10 = 2.09850e + 001, A12 = -1.11890e + 001, A14 = -6.32490e + 000, A16 = -2.78530e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
7: K = 0.00000e + 000, A3 = 0.00000e + 000, A4 = -5.57720e-001, A5 = 0.00000e + 000, A6 = -3.89730e-001, A7 = 0.00000e + 000, A8 = 3.89390e + 000, A9 = 0.00000e + 000, A10 = -5.97670e + 000, A11 = 0.00000e + 000, A12 = 2.96330e + 000, A13 = 0.00000e + 000, A14 = 9.60810e-001, A15 = 0.00000e + 000, A16 = -9.89190e-001, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = -3.56660e-001, A3 = 0.00000e + 000, A4 = -1.03780e + 000, A5 = 0.00000e + 000, A6 = 9.89190e-001, A7 = 0.00000e + 000, A8 = -7.02670 e-001, A9 = 0.00000e + 000, A10 = 2.27500e-002, A11 = 0.00000e + 000, A12 = 3.15910e-001, A13 = 0.00000e + 000, A14 = -2.14930e-001, A15 = 0.00000 e + 000, A16 = 4.06740e-002, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.803mm
Fno 2.780
w 35.44 °
Ymax 1.295mm
BF 0.694mm
TL 2.451mm

Elem Surfs Focal Length
1 3- 4 2.233mm
2 5--6 1.575mm
3 7-8 -1.694mm
 図6は実施例1の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。ここで、球面収差図において、実線はd線、点線はg線に対する球面収差量をそれぞれ表し、非点収差図において、実線はサジタル面、点線はメリディオナル面を表す(以下、同じ)。 FIG. 6 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c)). Here, in the spherical aberration diagram, the solid line represents the spherical aberration amount with respect to the d line and the dotted line, respectively, and in the astigmatism diagram, the solid line represents the sagittal surface and the dotted line represents the meridional surface (hereinafter the same).
(実施例2)
 実施例2におけるレンズデータを表2に示す。図7は実施例2のレンズの断面図である。実施例2の撮像レンズは、物体側から順に、開口絞りApe、物体側に凸面を備え正の屈折力を有する第1レンズL1、第2レンズL2、負の屈折力を有する第3レンズL3から成る。第1レンズL1は物体側が凸面、像側が凹面の物凸メニスカス形状である。第2レンズL2は物体側が凹面であり、像側面が凸面である。第3レンズL3は像側面が凹面でかつ周辺部に凸面を有する。IRCFはIRカットフィルタであり、IMは固体撮像素子の撮像面である。
(Example 2)
Table 2 shows lens data in Example 2. FIG. 7 is a sectional view of the lens of Example 2. The imaging lens of Example 2 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power. Become. The first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side. The second lens L2 has a concave surface on the object side and a convex surface on the image side. The third lens L3 has a concave image side surface and a convex surface at the periphery. IRCF is an IR cut filter, and IM is an imaging surface of the solid-state imaging device.
[表2]
[実施例2]
Reference Wave Length = 587.56 nm

SURF DATA
 NUM.       r           d          nd     vd
 OBJ     INFINITY    350.0000
   1       1e+018      0.0500
 STO       1e+018     -0.1173
   3*      0.6465      0.4010    1.58313  59.44
   4*      1.2537      0.2450
   5*     -2.4412      0.4018    1.58313  59.44
   6*     -1.0173      0.1209
   7*     -27.0359     0.4158    1.58313  59.44
   8*      1.2804      0.1827
   9       1e+018      0.1450    1.51633  64.14
  10       1e+018      0.2147
 IMG     INFINITY      

ASPHERICAL SURFACE
3:K=-9.85234e+000,A4=4.33389e+000,A6=-2.52893e+001,A8=1.07836e+002,A10=2.28829e+002,A12=-4.05009e+003,A14=1.13135e+004,A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
4:K=1.45514e+000,A4=7.09325e-001,A6=-1.39592e+000,A8=8.52761e+001,A10=-7.75323e+002,A12=3.17675e+003,A14=-4.99608e+002,A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
5:K=-2.59840e+000,A4=-1.64483e-001,A6=3.26907e+000,A8=-1.22912e+002,A10=1.36493e+003,A12=-7.17936e+003,A14=1.79065e+004,A16=-1.83999e+004,A18=0.00000e+000,A20=0.00000e+000
6:K=-1.88242e+001,A4=-1.77959e+000,A6=6.23496e+000,A8=-1.60096e+001,A10=5.15534e+001,A12=-4.98601e+001,A14=-1.01401e+002,A16=1.54188e+002,A18=0.00000e+000,A20=0.00000e+000
7:K=0.00000e+000,A3=0.00000e+000,A4=-1.41854e+000,A5=0.00000e+000,A6=5.04547e-001,A7=0.00000e+000,A8=7.73830e+000,A9=0.00000e+000,A10=-1.30649e+001,A11=0.00000e+000,A12=4.24582e+000,A13=0.00000e+000,A14=4.95653e+000,A15=0.00000e+000,A16=-3.06028e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
8:K=2.51907e-001,A3=0.00000e+000,A4=-1.23037e+000,A5=0.00000e+000,A6=1.58196e+000,A7=0.00000e+000,A8=-1.45211e+000,A9=0.00000e+000,A10=2.43251e-001,A11=0.00000e+000,A12=7.13730e-001,A13=0.00000e+000,A14=-6.37125e-001,A15=0.00000e+000,A16=1.63590e-001,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000

  FL       1.769mm
 Fno       2.400
   w       35.40゜
Ymax       1.295mm
  BF       0.542mm
  TL       2.127mm

 Elem   Surfs    Focal Length
   1     3- 4       1.841mm
   2     5- 6       2.709mm
   3     7- 8      -2.085mm
[Table 2]
[Example 2]
Reference Wave Length = 587.56 nm

SURF DATA
NUM. R d nd vd
OBJ INFINITY 350.0000
1 1e + 018 0.0500
STO 1e + 018 -0.1173
3 * 0.6465 0.4010 1.58313 59.44
4 * 1.2537 0.2450
5 * -2.4412 0.4018 1.58313 59.44
6 * -1.0173 0.1209
7 * -27.0359 0.4158 1.58313 59.44
8 * 1.2804 0.1827
9 1e + 018 0.1450 1.51633 64.14
10 1e + 018 0.2147
IMG INFINITY

ASPHERICAL SURFACE
3: K = -9.85234e + 000, A4 = 4.33389e + 000, A6 = -2.52893e + 001, A8 = 1.07836e + 002, A10 = 2.28829e + 002, A12 = -4.05009e + 003, A14 = 1.13135 e + 004, A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 1.45514e + 000, A4 = 7.09325e-001, A6 = -1.39592e + 000, A8 = 8.52761e + 001, A10 = -7.75323e + 002, A12 = 3.17675e + 003, A14 = -4.99608 e + 002, A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -2.59840e + 000, A4 = -1.64483e-001, A6 = 3.26907e + 000, A8 = -1.22912e + 002, A10 = 1.36493e + 003, A12 = -7.17936e + 003, A14 = 1.79065e + 004, A16 = -1.83999e + 004, A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = -1.88242e + 001, A4 = -1.77959e + 000, A6 = 6.23496e + 000, A8 = -1.60096e + 001, A10 = 5.15534e + 001, A12 = -4.98601e + 001, A14 = -1.01401e + 002, A16 = 1.54188e + 002, A18 = 0.00000e + 000, A20 = 0.00000e + 000
7: K = 0.00000e + 000, A3 = 0.00000e + 000, A4 = -1.41854e + 000, A5 = 0.00000e + 000, A6 = 5.04547e-001, A7 = 0.00000e + 000, A8 = 7.73830e + 000, A9 = 0.00000e + 000, A10 = -1.30649e + 001, A11 = 0.00000e + 000, A12 = 4.24582e + 000, A13 = 0.00000e + 000, A14 = 4.95653e + 000, A15 = 0.00000e + 000, A16 = -3.06028e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = 2.51907e-001, A3 = 0.00000e + 000, A4 = -1.23037e + 000, A5 = 0.00000e + 000, A6 = 1.58196e + 000, A7 = 0.00000e + 000, A8 = -1.45211e + 000, A9 = 0.00000e + 000, A10 = 2.43251e-001, A11 = 0.00000e + 000, A12 = 7.13730e-001, A13 = 0.00000e + 000, A14 = -6.37125e-001, A15 = 0.00000e + 000, A16 = 1.63590e-001, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.769mm
Fno 2.400
w 35.40 °
Ymax 1.295mm
BF 0.542mm
TL 2.127mm

Elem Surfs Focal Length
1 3- 4 1.841mm
2 5--6 2.709mm
3 7-8 -2.085mm
 図8は実施例2の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 8 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c)).
(実施例3)
 実施例3におけるレンズデータを表3に示す。図9は実施例3のレンズの断面図である。実施例3の撮像レンズは、物体側から順に、開口絞りApe、物体側に凸面を備え正の屈折力を有する第1レンズL1、第2レンズL2、負の屈折力を有する第3レンズL3から成る。第1レンズL1は物体側が凸面、像側が凹面の物凸メニスカス形状である。第2レンズL2は物体側が凹面であり、像側面が凸面である。第3レンズL3は像側面が凹面でかつ周辺部に凸面を有する。IRCFはIRカットフィルタであり、IMは固体撮像素子の撮像面である。
(Example 3)
Table 3 shows lens data in Example 3. FIG. 9 is a sectional view of the lens of Example 3. The imaging lens of Example 3 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power. Become. The first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side. The second lens L2 has a concave surface on the object side and a convex surface on the image side. The third lens L3 has a concave image side surface and a convex surface at the periphery. IRCF is an IR cut filter, and IM is an imaging surface of the solid-state imaging device.
[表3]
[実施例3]
Reference Wave Length = 587.56 nm
SURF DATA
 NUM.       r           d          nd     vd
 OBJ     INFINITY    350.0000
   1       1e+018      0.0500
 STO       1e+018     -0.0890
   3*      0.7538      0.4140    1.58313  59.44
   4*      1.7595      0.3299
   5*     -1.3661      0.3546    1.58313  59.44
   6*     -0.8976      0.0200
   7*      1.9338      0.4469    1.58313  59.44
   8*      0.9643      0.4166
   9       1e+018      0.2100    1.51633  64.14
  10       1e+018      0.0460
 IMG     INFINITY      

ASPHERICAL SURFACE
3:K=-1.02298e+001,A3=-4.71951e-002,A4=3.21614e+000,A5=-2.10501e-001,A6=-1.73204e+001,A7=0.00000e+000,A8=8.02584e+001,A9=0.00000e+000,A10=1.96253e+001,A11=0.00000e+000,A12=-1.94373e+003,A13=0.00000e+000,A14=5.97425e+003,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
4:K=6.40445e+000,A4=2.52384e-001,A6=-8.77264e-001,A8=2.20570e+001,A10=-1.72648e+002,A12=6.51289e+002,A14=-6.00426e+002,A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
5:K=-2.15812e+001,A4=-5.67335e-001,A6=2.07946e+000,A8=-9.29274e+001,A10=1.04042e+003,A12=-5.76618e+003,A14=1.68506e+004,A16=-2.12551e+004,A18=0.00000e+000,A20=0.00000e+000
6:K=-1.40891e+001,A4=-1.93827e+000,A6=5.08491e+000,A8=-1.62450e+001,A10=5.10933e+001,A12=-3.01929e+001,A14=-3.93449e+001,A16=-4.53094e+000,A18=0.00000e+000,A20=0.00000e+000
7:K=0.00000e+000,A3=0.00000e+000,A4=-1.44793e+000,A5=0.00000e+000,A6=-3.65941e-001,A7=0.00000e+000,A8=6.55839e+000,A9=0.00000e+000,A10=-7.26979e+000,A11=0.00000e+000,A12=9.98861e-001,A13=0.00000e+000,A14=8.11267e-001,A15=0.00000e+000,A16=5.20526e-001,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
8:K=-2.90917e-001,A3=0.00000e+000,A4=-1.28121e+000,A5=0.00000e+000,A6=1.36460e+000,A7=0.00000e+000,A8=-1.17266e+000,A9=0.00000e+000,A10=5.86706e-002,A11=0.00000e+000,A12=6.23348e-001,A13=0.00000e+000,A14=-4.00205e-001,A15=0.00000e+000,A16=5.15907e-002,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000

  FL       1.731mm
 Fno       2.420
   w       34.95゜
Ymax       1.234mm
  BF       0.673mm
  TL       2.238mm

 Elem   Surfs    Focal Length
   1     3- 4       1.964mm
   2     5- 6       3.510mm
   3     7- 8      -3.973mm
[Table 3]
[Example 3]
Reference Wave Length = 587.56 nm
SURF DATA
NUM. R d nd vd
OBJ INFINITY 350.0000
1 1e + 018 0.0500
STO 1e + 018 -0.0890
3 * 0.7538 0.4140 1.58313 59.44
4 * 1.7595 0.3299
5 * -1.3661 0.3546 1.58313 59.44
6 * -0.8976 0.0200
7 * 1.9338 0.4469 1.58313 59.44
8 * 0.9643 0.4166
9 1e + 018 0.2100 1.51633 64.14
10 1e + 018 0.0460
IMG INFINITY

ASPHERICAL SURFACE
3: K = -1.02298e + 001, A3 = -4.71951e-002, A4 = 3.21614e + 000, A5 = -2.10501e-001, A6 = -1.73204e + 001, A7 = 0.00000e + 000, A8 = 8.02584e + 001, A9 = 0.00000e + 000, A10 = 1.96253e + 001, A11 = 0.00000e + 000, A12 = -1.94373e + 003, A13 = 0.00000e + 000, A14 = 5.97425e + 003, A15 = 0.00000e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 6.40445e + 000, A4 = 2.52384e-001, A6 = -8.77264e-001, A8 = 2.20570e + 001, A10 = -1.72648e + 002, A12 = 6.51289e + 002, A14 = -6.00426 e + 002, A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -2.15812e + 001, A4 = -5.67335e-001, A6 = 2.07946e + 000, A8 = -9.29274e + 001, A10 = 1.04042e + 003, A12 = -5.76618e + 003, A14 = 1.68506e + 004, A16 = -2.12551e + 004, A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = -1.40891e + 001, A4 = -1.93827e + 000, A6 = 5.08491e + 000, A8 = -1.62450e + 001, A10 = 5.10933e + 001, A12 = -3.01929e + 001, A14 = -3.93449e + 001, A16 = -4.53094e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
7: K = 0.00000e + 000, A3 = 0.00000e + 000, A4 = -1.44793e + 000, A5 = 0.00000e + 000, A6 = -3.65941e-001, A7 = 0.00000e + 000, A8 = 6.55839e + 000, A9 = 0.00000e + 000, A10 = -7.26979e + 000, A11 = 0.00000e + 000, A12 = 9.98861e-001, A13 = 0.00000e + 000, A14 = 8.11267e-001, A15 = 0.00000e + 000, A16 = 5.20526e-001, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = -2.90917e-001, A3 = 0.00000e + 000, A4 = -1.28121e + 000, A5 = 0.00000e + 000, A6 = 1.36460e + 000, A7 = 0.00000e + 000, A8 = -1.17266 e + 000, A9 = 0.00000e + 000, A10 = 5.86706e-002, A11 = 0.00000e + 000, A12 = 6.23348e-001, A13 = 0.00000e + 000, A14 = -4.00205e-001, A15 = 0.00000 e + 000, A16 = 5.15907e-002, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.731mm
Fno 2.420
w 34.95 °
Ymax 1.234mm
BF 0.673mm
TL 2.238mm

Elem Surfs Focal Length
1 3- 4 1.964mm
2 5--6 3.510mm
3 7-8 -3.973mm
 図10は実施例3の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 10 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion (c)).
(実施例4)
 実施例4におけるレンズデータを表4に示す。図11は実施例4のレンズの断面図である。実施例4の撮像レンズは、物体側から順に、開口絞りApe、物体側に凸面を備え正の屈折力を有する第1レンズL1、第2レンズL2、負の屈折力を有する第3レンズL3から成る。第1レンズL1は物体側が凸面、像側が凹面の物凸メニスカス形状である。第2レンズL2は物体側が凹面であり、像側面が凸面である。第3レンズL3は像側面が凹面でかつ周辺部に凸面を有する。IRCFはIRカットフィルタであり、IMは固体撮像素子の撮像面である。
(Example 4)
Table 4 shows lens data in Example 4. FIG. 11 is a sectional view of the lens of Example 4. The imaging lens of Example 4 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power. Become. The first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side. The second lens L2 has a concave surface on the object side and a convex surface on the image side. The third lens L3 has a concave image side surface and a convex surface at the periphery. IRCF is an IR cut filter, and IM is an imaging surface of the solid-state imaging device.
[表4]
[実施例4]
Reference Wave Length = 587.56 nm

SURF DATA
 NUM.       r           d          nd     vd
 OBJ     INFINITY    350.0000
   1       1e+018      0.0500
 STO       8e+017     -0.0856
   3*      0.5341      0.3066    1.58313  59.44
   4*      1.0461      0.2241
   5*     -1.3219      0.3255    1.58313  59.44
   6*     -0.6708      0.0200
   7*      2.2903      0.3022    1.58313  59.44
   8*      0.7430      0.1827
   9       1e+018      0.1450    1.51633  64.14
  10       1e+018      0.2246
 IMG     INFINITY      

ASPHERICAL SURFACE
3:K=-1.26588e+001,A4=9.60213e+000,A6=-1.01995e+002,A8=6.99594e+002,A10=2.90205e+003,A12=-7.58814e+004,A14=3.37048e+005,A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
4:K=-1.08216e+000,A4=1.71624e+000,A6=-1.16538e+001,A8=5.83475e+002,A10=-7.99398e+003,A12=5.06305e+004,A14=-7.12124e+004,A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
5:K=-3.18826e+000,A4=-2.34538e-001,A6=1.62040e+001,A8=-8.15451e+002,A10=1.49262e+004,A12=-1.35044e+005,A14=6.17716e+005,A16=-1.19743e+006,A18=0.00000e+000,A20=0.00000e+000
6:K=-9.80067e+000,A4=-3.93296e+000,A6=2.15066e+001,A8=-1.00633e+002,A10=5.97575e+002,A12=-9.06078e+002,A14=-3.37693e+003,A16=7.95303e+003,A18=0.00000e+000,A20=0.00000e+000
7:K=0.00000e+000,A3=0.00000e+000,A4=-3.37645e+000,A5=0.00000e+000,A6=1.85582e+000,A7=0.00000e+000,A8=5.03646e+001,A9=0.00000e+000,A10=-1.45583e+002,A11=0.00000e+000,A12=8.22027e+001,A13=0.00000e+000,A14=1.65261e+002,A15=0.00000e+000,A16=-1.80383e+002,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
8:K=-4.71896e-001,A3=0.00000e+000,A4=-3.04237e+000,A5=0.00000e+000,A6=6.39625e+000,A7=0.00000e+000,A8=-9.66583e+000,A9=0.00000e+000,A10=2.96920e+000,A11=0.00000e+000,A12=1.36719e+001,A13=0.00000e+000,A14=-2.03550e+001,A15=0.00000e+000,A16=9.47952e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000

  FL       1.389mm
 Fno       2.400
   w       34.95゜
Ymax       0.991mm
  BF       0.552mm
  TL       1.731mm

 Elem   Surfs    Focal Length
   1     3- 4       1.533mm
   2     5- 6       1.972mm
   3     7- 8      -2.032mm
[Table 4]
[Example 4]
Reference Wave Length = 587.56 nm

SURF DATA
NUM. R d nd vd
OBJ INFINITY 350.0000
1 1e + 018 0.0500
STO 8e + 017 -0.0856
3 * 0.5341 0.3066 1.58313 59.44
4 * 1.0461 0.2241
5 * -1.3219 0.3255 1.58313 59.44
6 * -0.6708 0.0200
7 * 2.2903 0.3022 1.58313 59.44
8 * 0.7430 0.1827
9 1e + 018 0.1450 1.51633 64.14
10 1e + 018 0.2246
IMG INFINITY

ASPHERICAL SURFACE
3: K = -1.26588e + 001, A4 = 9.60213e + 000, A6 = -1.01995e + 002, A8 = 6.99594e + 002, A10 = 2.90205e + 003, A12 = -7.58814e + 004, A14 = 3.37048 e + 005, A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = -1.08216e + 000, A4 = 1.71624e + 000, A6 = -1.16538e + 001, A8 = 5.83475e + 002, A10 = -7.99398e + 003, A12 = 5.06305e + 004, A14 =- 7.12124e + 004, A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -3.18826e + 000, A4 = -2.34538e-001, A6 = 1.62040e + 001, A8 = -8.15451e + 002, A10 = 1.49262e + 004, A12 = -1.35044e + 005, A14 = 6.17716e + 005, A16 = -1.19743e + 006, A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = -9.80067e + 000, A4 = -3.93296e + 000, A6 = 2.15066e + 001, A8 = -1.00633e + 002, A10 = 5.97575e + 002, A12 = -9.06078e + 002, A14 = -3.37693e + 003, A16 = 7.95303e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
7: K = 0.00000e + 000, A3 = 0.00000e + 000, A4 = -3.37645e + 000, A5 = 0.00000e + 000, A6 = 1.85582e + 000, A7 = 0.00000e + 000, A8 = 5.03646e + 001, A9 = 0.00000e + 000, A10 = -1.45583e + 002, A11 = 0.00000e + 000, A12 = 8.22027e + 001, A13 = 0.00000e + 000, A14 = 1.65261e + 002, A15 = 0.00000e + 000, A16 = -1.80383e + 002, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = -4.71896e-001, A3 = 0.00000e + 000, A4 = -3.04237e + 000, A5 = 0.00000e + 000, A6 = 6.39625e + 000, A7 = 0.00000e + 000, A8 = -9.66583 e + 000, A9 = 0.00000e + 000, A10 = 2.96920e + 000, A11 = 0.00000e + 000, A12 = 1.36719e + 001, A13 = 0.00000e + 000, A14 = -2.03550e + 001, A15 = 0.00000 e + 000, A16 = 9.47952e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.389mm
Fno 2.400
w 34.95 °
Ymax 0.991mm
BF 0.552mm
TL 1.731mm

Elem Surfs Focal Length
1 3- 4 1.533mm
2 5- 6 1.972mm
3 7-8 -2.032mm
 図12は実施例4の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 12 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion (c)).
(実施例5)
 実施例5におけるレンズデータを表5に示す。図13は実施例5のレンズの断面図である。実施例5の撮像レンズは、物体側から順に、開口絞りApe、物体側に凸面を備え正の屈折力を有する第1レンズL1、第2レンズL2、負の屈折力を有する第3レンズL3から成る。第1レンズL1は物体側が凸面、像側が凹面の物凸メニスカス形状である。第2レンズL2は物体側が凹面であり、像側面が凸面である。第3レンズL3は像側面が凹面でかつ周辺部に凸面を有する。IRCFはIRカットフィルタであり、IMは固体撮像素子の撮像面である。
(Example 5)
Table 5 shows lens data in Example 5. FIG. 13 is a sectional view of the lens of Example 5. The imaging lens of Example 5 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power. Become. The first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side. The second lens L2 has a concave surface on the object side and a convex surface on the image side. The third lens L3 has a concave image side surface and a convex surface at the periphery. IRCF is an IR cut filter, and IM is an imaging surface of the solid-state imaging device.
[表5]
[実施例5]
Reference Wave Length = 587.56 nm

SURF DATA
 NUM.       r           d          nd     vd
 OBJ     INFINITY    350.0000
   1       1e+018      0.0500
 STO       8e+017     -0.0605
   3*      0.6765      0.3664    1.58313  59.44
   4*      2.2475      0.1870
   5*     -1.2310      0.3599    1.58313  59.44
   6*     -0.6254      0.0200
   7*      2.1231      0.3172    1.58313  59.44
   8*      0.6577      0.1827
   9       1e+018      0.1450    1.51633  64.14
  10       1e+018      0.2421
 IMG     INFINITY      

ASPHERICAL SURFACE
3:K=-2.19950e+001,A4=7.80295e+000,A6=-9.87169e+001,A8=7.18215e+002,A10=2.50870e+003,A12=-7.86986e+004,A14=3.66405e+005,A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
4:K=-3.39252e+001,A4=1.01601e+000,A6=-1.96136e+001,A8=5.39391e+002,A10=-7.67207e+003,A12=5.08502e+004,A14=-1.31428e+005,A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
5:K=5.76245e-001,A4=3.41969e-001,A6=1.56094e+001,A8=-7.84281e+002,A10=1.48108e+004,A12=-1.35992e+005,A14=6.18436e+005,A16=-1.15417e+006,A18=0.00000e+000,A20=0.00000e+000
6:K=-7.16419e+000,A4=-3.32814e+000,A6=2.05520e+001,A8=-1.03770e+002,A10=6.04532e+002,A12=-8.20612e+002,A14=-3.41528e+003,A16=7.70186e+003,A18=0.00000e+000,A20=0.00000e+000
7:K=0.00000e+000,A3=0.00000e+000,A4=-3.02355e+000,A5=0.00000e+000,A6=2.64229e-001,A7=0.00000e+000,A8=4.87949e+001,A9=0.00000e+000,A10=-1.42302e+002,A11=0.00000e+000,A12=9.73283e+001,A13=0.00000e+000,A14=1.84249e+002,A15=0.00000e+000,A16=-2.64982e+002,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
8:K=-5.61472e-001,A3=0.00000e+000,A4=-3.18554e+000,A5=0.00000e+000,A6=6.64254e+000,A7=0.00000e+000,A8=-9.71900e+000,A9=0.00000e+000,A10=2.77755e+000,A11=0.00000e+000,A12=1.33813e+001,A13=0.00000e+000,A14=-2.05057e+001,A15=0.00000e+000,A16=9.44739e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000

  FL       1.380mm
 Fno       2.400   
   w       34.95゜
Ymax       0.991mm
  BF       0.570mm
  TL       1.820mm

 Elem   Surfs    Focal Length
   1     3- 4       1.528mm
   2     5- 6       1.789mm
   3     7- 8      -1.776mm
[Table 5]
[Example 5]
Reference Wave Length = 587.56 nm

SURF DATA
NUM. R d nd vd
OBJ INFINITY 350.0000
1 1e + 018 0.0500
STO 8e + 017 -0.0605
3 * 0.6765 0.3664 1.58313 59.44
4 * 2.2475 0.1870
5 * -1.2310 0.3599 1.58313 59.44
6 * -0.6254 0.0200
7 * 2.1231 0.3172 1.58313 59.44
8 * 0.6577 0.1827
9 1e + 018 0.1450 1.51633 64.14
10 1e + 018 0.2421
IMG INFINITY

ASPHERICAL SURFACE
3: K = -2.19950e + 001, A4 = 7.80295e + 000, A6 = -9.87169e + 001, A8 = 7.18215e + 002, A10 = 2.50870e + 003, A12 = -7.86986e + 004, A14 = 3.66405 e + 005, A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = -3.39252e + 001, A4 = 1.01601e + 000, A6 = -1.96136e + 001, A8 = 5.39391e + 002, A10 = -7.67207e + 003, A12 = 5.08502e + 004, A14 =- 1.31428e + 005, A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = 5.76245e-001, A4 = 3.41969e-001, A6 = 1.56094e + 001, A8 = -7.84281e + 002, A10 = 1.48108e + 004, A12 = -1.35992e + 005, A14 = 6.18436e + 005, A16 = -1.15417e + 006, A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = -7.16419e + 000, A4 = -3.32814e + 000, A6 = 2.05520e + 001, A8 = -1.03770e + 002, A10 = 6.04532e + 002, A12 = -8.20612e + 002, A14 = -3.41528e + 003, A16 = 7.70186e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
7: K = 0.00000e + 000, A3 = 0.00000e + 000, A4 = -3.02355e + 000, A5 = 0.00000e + 000, A6 = 2.64229e-001, A7 = 0.00000e + 000, A8 = 4.87949e + 001, A9 = 0.00000e + 000, A10 = -1.42302e + 002, A11 = 0.00000e + 000, A12 = 9.73283e + 001, A13 = 0.00000e + 000, A14 = 1.84249e + 002, A15 = 0.00000e + 000, A16 = -2.64982e + 002, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = -5.61472e-001, A3 = 0.00000e + 000, A4 = -3.18554e + 000, A5 = 0.00000e + 000, A6 = 6.64254e + 000, A7 = 0.00000e + 000, A8 = -9.71900 e + 000, A9 = 0.00000e + 000, A10 = 2.77755e + 000, A11 = 0.00000e + 000, A12 = 1.33813e + 001, A13 = 0.00000e + 000, A14 = -2.05057e + 001, A15 = 0.00000 e + 000, A16 = 9.44739e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.380mm
Fno 2.400
w 34.95 °
Ymax 0.991mm
BF 0.570mm
TL 1.820mm

Elem Surfs Focal Length
1 3- 4 1.528mm
2 5--6 1.789mm
3 7-8 -1.776mm
 図14は実施例5の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 14 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c)).
(実施例6)
 実施例6におけるレンズデータを表6に示す。図15は実施例6のレンズの断面図である。実施例6の撮像レンズは、物体側から順に、開口絞りApe、物体側に凸面を備え正の屈折力を有する第1レンズL1、第2レンズL2、負の屈折力を有する第3レンズL3から成る。第1レンズL1は物体側が凸面、像側が凹面の物凸メニスカス形状である。第2レンズL2は物体側が凹面であり、像側面が凸面である。第3レンズL3は像側面が凹面でかつ周辺部に凸面を有する。IRCFはIRカットフィルタであり、IMは固体撮像素子の撮像面である。
(Example 6)
Table 6 shows lens data in Example 6. FIG. 15 is a sectional view of the lens of Example 6. The imaging lens of Example 6 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power. Become. The first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side. The second lens L2 has a concave surface on the object side and a convex surface on the image side. The third lens L3 has a concave image side surface and a convex surface at the periphery. IRCF is an IR cut filter, and IM is an imaging surface of the solid-state imaging device.
[表6]
[実施例6]
Reference Wave Length = 587.56 nm

SURF DATA
 NUM.       r           d          nd     vd
 OBJ     INFINITY    350.0000
   1       1e+018      0.0500
 STO       1e+018     -0.0855
   3*      0.8011      0.3237    1.54470  55.99
   4*      2.2836      0.3157
   5*     -1.4368      0.5530    1.54470  55.99
   6*     -0.6722      0.1758
   7*      1.7519      0.2902    1.63200  23.39
   8*      0.6802      0.3956
   9       1e+018      0.2100    1.51633  64.14
  10       1e+018      0.0695
 IMG     INFINITY      

ASPHERICAL SURFACE
3:K=-9.87779e+000,A3=-6.55027e-002,A4=3.44426e+000,A5=-7.76118e+000,A6=1.56862e+001,A7=0.00000e+000,A8=-1.36462e+002,A9=0.00000e+000,A10=1.25602e+003,A11=0.00000e+000,A12=-5.94589e+003,A13=0.00000e+000,A14=1.12813e+004,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+0004:K=1.89046e+001,A4=2.28559e-001,A6=-1.70359e+000,A8=3.53529e+001,A10=-2.49739e+002,A12=1.03705e+003,A14=-1.29823e+003,A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
5:K=-5.00000e+001,A4=-2.49136e+000,A6=1.70116e+001,A8=-1.85904e+002,A10=1.37438e+003,A12=-6.16703e+003,A14=1.58146e+004,A16=-1.67733e+004,A18=0.00000e+000,A20=0.00000e+000
6:K=-5.57638e+000,A4=-2.14824e+000,A6=5.66201e+000,A8=-1.48783e+001,A10=2.84402e+001,A12=-2.59328e+001,A14=-8.71478e+000,A16=6.33991e+001,A18=0.00000e+000,A20=0.00000e+000
7:K=0.00000e+000,A3=0.00000e+000,A4=-1.79161e+000,A5=0.00000e+000,A6=2.84819e-001,A7=0.00000e+000,A8=6.57807e+000,A9=0.00000e+000,A10=-1.10690e+001,A11=0.00000e+000,A12=1.74363e+000,A13=0.00000e+000,A14=8.77950e+000,A15=0.00000e+000,A16=-5.88319e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
8:K=-3.75175e+000,A3=0.00000e+000,A4=-1.07137e+000,A5=0.00000e+000,A6=1.46707e+000,A7=0.00000e+000,A8=-1.04080e+000,A9=0.00000e+000,A10=-1.16349e-003,A11=0.00000e+000,A12=5.26393e-001,A13=0.00000e+000,A14=-3.55775e-001,A15=0.00000e+000,A16=7.45061e-002,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000

  FL       1.720mm
 Fno       2.400   
   w       34.95゜
Ymax       1.233mm
  BF       0.675mm
  TL       2.333mm

 Elem   Surfs    Focal Length
   1     3- 4       2.104mm
   2     5- 6       1.848mm
   3     7- 8      -1.965mm
[Table 6]
[Example 6]
Reference Wave Length = 587.56 nm

SURF DATA
NUM. R d nd vd
OBJ INFINITY 350.0000
1 1e + 018 0.0500
STO 1e + 018 -0.0855
3 * 0.8011 0.3237 1.54470 55.99
4 * 2.2836 0.3157
5 * -1.4368 0.5530 1.54470 55.99
6 * -0.6722 0.1758
7 * 1.7519 0.2902 1.63200 23.39
8 * 0.6802 0.3956
9 1e + 018 0.2100 1.51633 64.14
10 1e + 018 0.0695
IMG INFINITY

ASPHERICAL SURFACE
3: K = -9.87779e + 000, A3 = -6.55027e-002, A4 = 3.44426e + 000, A5 = -7.76118e + 000, A6 = 1.56862e + 001, A7 = 0.00000e + 000, A8 =- 1.36462e + 002, A9 = 0.00000e + 000, A10 = 1.25602e + 003, A11 = 0.00000e + 000, A12 = -5.94589e + 003, A13 = 0.00000e + 000, A14 = 1.12813e + 004, A15 = 0.00000e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 0004: K = 1.89046e + 001, A4 = 2.28559 e-001, A6 = -1.70359e + 000, A8 = 3.53529e + 001, A10 = -2.49739e + 002, A12 = 1.03705e + 003, A14 = -1.29823e + 003, A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = -5.00000e + 001, A4 = -2.49136e + 000, A6 = 1.70116e + 001, A8 = -1.85904e + 002, A10 = 1.37438e + 003, A12 = -6.16703e + 003, A14 = 1.58146e + 004, A16 = -1.67733e + 004, A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = -5.57638e + 000, A4 = -2.14824e + 000, A6 = 5.66201e + 000, A8 = -1.48783e + 001, A10 = 2.84402e + 001, A12 = -2.59328e + 001, A14 = -8.71478e + 000, A16 = 6.33991e + 001, A18 = 0.00000e + 000, A20 = 0.00000e + 000
7: K = 0.00000e + 000, A3 = 0.00000e + 000, A4 = -1.79161e + 000, A5 = 0.00000e + 000, A6 = 2.84819e-001, A7 = 0.00000e + 000, A8 = 6.57807e + 000, A9 = 0.00000e + 000, A10 = -1.10690e + 001, A11 = 0.00000e + 000, A12 = 1.74363e + 000, A13 = 0.00000e + 000, A14 = 8.77950e + 000, A15 = 0.00000e + 000, A16 = -5.88319e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = -3.75175e + 000, A3 = 0.00000e + 000, A4 = -1.07137e + 000, A5 = 0.00000e + 000, A6 = 1.46707e + 000, A7 = 0.00000e + 000, A8 = -1.04080 e + 000, A9 = 0.00000e + 000, A10 = -1.16349e-003, A11 = 0.00000e + 000, A12 = 5.26393e-001, A13 = 0.00000e + 000, A14 = -3.55775e-001, A15 = 0.00000e + 000, A16 = 7.45061e-002, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.720mm
Fno 2.400
w 34.95 °
Ymax 1.233mm
BF 0.675mm
TL 2.333mm

Elem Surfs Focal Length
1 3- 4 2.104mm
2 5--6 1.848mm
3 7-8 -1.965mm
 図16は実施例6の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 16 is an aberration diagram of Example 6 (spherical aberration (a), astigmatism (b), distortion (c)).
(実施例7)
 実施例7におけるレンズデータを表7に示す。図17は実施例7のレンズの断面図である。実施例7の撮像レンズは、物体側から順に、開口絞りApe、物体側に凸面を備え正の屈折力を有する第1レンズL1、第2レンズL2、負の屈折力を有する第3レンズL3から成る。第1レンズL1は物体側が凸面、像側が凹面の物凸メニスカス形状である。第2レンズL2は物体側が凹面であり、像側面が凸面である。第3レンズL3は像側面が凹面でかつ周辺部に凸面を有する。IRCFはIRカットフィルタであり、IMは固体撮像素子の撮像面である。
(Example 7)
Table 7 shows lens data in Example 7. FIG. 17 is a sectional view of the lens of Example 7. The imaging lens of Example 7 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power. Become. The first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side. The second lens L2 has a concave surface on the object side and a convex surface on the image side. The third lens L3 has a concave image side surface and a convex surface at the periphery. IRCF is an IR cut filter, and IM is an imaging surface of the solid-state imaging device.
[表7]
[実施例7]
Reference Wave Length = 587.56 nm

SURF DATA
 NUM.       r           d          nd     vd
 OBJ     INFINITY    350.0000
   1       1e+018      0.0500
 STO       1e+018     -0.0950
   3*      0.8100      0.4970    1.58313  59.44
   4*      1.8120      0.2860
   5*     -2.6965      0.4920    1.58313  59.44
   6*     -0.8337      0.0500
   7*      1e+018      0.4500    1.58313  59.44
   8*      1.0328      0.2120
   9       1e+018      0.1750    1.51633  64.14
  10       1e+018      0.2389
 IMG     INFINITY      

ASPHERICAL SURFACE
3:K=-1.09130e+001,A3=-4.28630e-002,A4=2.72130e+000,A5=-1.73630e-001,A6=-1.39980e+001,A7=0.00000e+000,A8=6.19930e+001,A9=0.00000e+000,A10=8.17240e+000,A11=0.00000e+000,A12=-1.30390e+003,A13=0.00000e+000,A14=3.68140e+003,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
4:K=-7.10230e-001,A4=3.05050e-001,A6=1.15600e+000,A8=3.13370e+000,A10=-7.87290e+001,A12=4.39260e+002,A14=-7.01600e+002,A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
5:K=9.36420e-001,A4=-3.38170e-001,A6=4.90530e+000,A8=-7.81990e+001,A10=6.90310e+002,A12=-3.41590e+003,A14=8.90940e+003,A16=-9.71660e+003,A18=0.00000e+000,A20=0.00000e+000
6:K=-7.19890e+000,A4=-1.51010e+000,A6=4.39310e+000,A8=-1.02880e+001,A10=2.37390e+001,A12=-1.65960e+001,A14=-1.37720e+001,A16=1.42310e+001,A18=0.00000e+000,A20=0.00000e+000
7:K=0.00000e+000,A3=0.00000e+000,A4=-1.14210e+000,A5=0.00000e+000,A6=5.77640e-002,A7=0.00000e+000,A8=4.51270e+000,A9=0.00000e+000,A10=-6.42750e+000,A11=0.00000e+000,A12=3.16230e+000,A13=0.00000e+000,A14=7.43000e-001,A15=0.00000e+000,A16=-1.13770e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
8:K=-2.52380e-001,A4=-1.05890e+000,A6=1.00030e+000,A8=-7.52190e-001,A10=1.65600e-002,A12=3.61580e-001,A14=-2.28690e-001,A16=3.47470e-002,A18=0.00000e+000,A20=0.00000e+000

  FL       1.858mm
 Fno       2.420
   w       34.47゜
Ymax       1.295mm
  BF       0.626mm
  TL       2.401mm

 Elem   Surfs    Focal Length
   1     3- 4       2.124mm
   2     5- 6       1.886mm
   3     7- 8      -1.771mm
[Table 7]
[Example 7]
Reference Wave Length = 587.56 nm

SURF DATA
NUM. R d nd vd
OBJ INFINITY 350.0000
1 1e + 018 0.0500
STO 1e + 018 -0.0950
3 * 0.8100 0.4970 1.58313 59.44
4 * 1.8 120 0.2860
5 * -2.6965 0.4920 1.58313 59.44
6 * -0.8337 0.0500
7 * 1e + 018 0.4500 1.58313 59.44
8 * 1.0328 0.2120
9 1e + 018 0.1750 1.51633 64.14
10 1e + 018 0.2389
IMG INFINITY

ASPHERICAL SURFACE
3: K = -1.09130e + 001, A3 = -4.28630e-002, A4 = 2.72130e + 000, A5 = -1.73630e-001, A6 = -1.39980e + 001, A7 = 0.00000e + 000, A8 = 6.19930e + 001, A9 = 0.00000e + 000, A10 = 8.17240e + 000, A11 = 0.00000e + 000, A12 = -1.30390e + 003, A13 = 0.00000e + 000, A14 = 3.68140e + 003, A15 = 0.00000e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = -7.10230e-001, A4 = 3.05050e-001, A6 = 1.15600e + 000, A8 = 3.13370e + 000, A10 = -7.87290e + 001, A12 = 4.39260e + 002, A14 = -7.01600 e + 002, A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = 9.36420e-001, A4 = -3.38170e-001, A6 = 4.90530e + 000, A8 = -7.81990e + 001, A10 = 6.90310e + 002, A12 = -3.41590e + 003, A14 = 8.90940 e + 003, A16 = -9.71660e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = -7.19890e + 000, A4 = -1.51010e + 000, A6 = 4.39310e + 000, A8 = -1.02880e + 001, A10 = 2.37390e + 001, A12 = -1.65960e + 001, A14 = -1.37720e + 001, A16 = 1.42310e + 001, A18 = 0.00000e + 000, A20 = 0.00000e + 000
7: K = 0.00000e + 000, A3 = 0.00000e + 000, A4 = -1.14210e + 000, A5 = 0.00000e + 000, A6 = 5.77640e-002, A7 = 0.00000e + 000, A8 = 4.51270e + 000, A9 = 0.00000e + 000, A10 = -6.42750e + 000, A11 = 0.00000e + 000, A12 = 3.16230e + 000, A13 = 0.00000e + 000, A14 = 7.43000e-001, A15 = 0.00000e + 000, A16 = -1.13770e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = -2.52380e-001, A4 = -1.05890e + 000, A6 = 1.00030e + 000, A8 = -7.52190e-001, A10 = 1.65600e-002, A12 = 3.61580e-001, A14 =- 2.28690e-001, A16 = 3.47470e-002, A18 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.858mm
Fno 2.420
w 34.47 °
Ymax 1.295mm
BF 0.626mm
TL 2.401mm

Elem Surfs Focal Length
1 3- 4 2.124mm
2 5--6 1.886mm
3 7-8 -1.771mm
 図18は実施例7の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 18 is an aberration diagram of Example 7 (spherical aberration (a), astigmatism (b), distortion (c)).
(実施例8)
 実施例8におけるレンズデータを表8に示す。図19は実施例8のレンズの断面図である。実施例8の撮像レンズは、物体側から順に、開口絞りApe、物体側に凸面を備え正の屈折力を有する第1レンズL1、第2レンズL2、負の屈折力を有する第3レンズL3から成る。第1レンズL1は物体側が凸面、像側が凹面の物凸メニスカス形状である。第2レンズL2は物体側が凹面であり、像側面が凸面である。第3レンズL3は像側面が凹面でかつ周辺部に凸面を有する。IRCFはIRカットフィルタであり、IMは固体撮像素子の撮像面である。
(Example 8)
Table 8 shows lens data in Example 8. FIG. 19 is a sectional view of the lens of Example 8. The imaging lens of Example 8 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power. Become. The first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side. The second lens L2 has a concave surface on the object side and a convex surface on the image side. The third lens L3 has a concave image side surface and a convex surface at the periphery. IRCF is an IR cut filter, and IM is an imaging surface of the solid-state imaging device.
[表8]
[実施例8]
Reference Wave Length = 587.56 nm

SURF DATA
 NUM.       r           d          nd     vd
 OBJ     INFINITY    350.0000
   1       1e+018      0.0500
 STO       9e+017     -0.0940
   3*      0.8725      0.5130    1.58313  59.44
   4*      1.7620      0.4000
   5*     -3.1758      0.5280    1.58313  59.44
   6*     -1.0426      0.1030
   7*      1e+020      0.4520    1.58313  59.44
   8*      1.2574      0.2050
   9       1e+018      0.2100    1.51633  64.14
  10       1e+018      0.3214
 IMG     INFINITY     

ASPHERICAL SURFACE
3:K=-1.06660e+001,A4=1.94190e+000,A6=-7.85770e+000,A8=2.76230e+001,A10=-8.51860e-001,A12=-3.80390e+002,A14=9.37710e+002,A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
4:K=1.48910e+000,A4=2.85310e-001,A6=4.86070e-002,A8=3.10470e+000,A10=-3.84290e+000,A12=-3.29300e+001,A14=1.49880e+002,A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
5:K=7.67660e+000,A4=-1.21580e-001,A6=1.95950e+000,A8=-3.28920e+001,A10=2.43670e+002,A12=-9.56010e+002,A14=1.92260e+003,A16=-1.58860e+003,A18=0.00000e+000,A20=0.00000e+000
6:K=-9.43740e+000,A4=-9.98920e-001,A6=2.37560e+000,A8=-4.77930e+000,A10=8.10950e+000,A12=-4.75270e+000,A14=-2.59250e+000,A16=2.65170e+000,A18=0.00000e+000,A20=0.00000e+000
7:K=0.00000e+000,A4=-7.94090e-001,A6=1.85940e-002,A8=1.93190e+000,A10=-2.31150e+000,A12=8.67520e-001,A14=2.62540e-001,A16=-2.17920e-001,A18=0.00000e+000,A20=0.00000e+000
8:K=-1.90790e-001,A4=-7.43050e-001,A6=5.73280e-001,A8=-3.18710e-001,A10=-1.09810e-004,A12=9.67330e-002,A14=-4.97220e-002,A16=7.54580e-003,A18=0.00000e+000,A20=0.00000e+000

  FL       2.218mm
 Fno       2.800
   w       34.21゜
Ymax       1.545mm
  BF       0.736mm
  TL       2.732mm

 Elem   Surfs    Focal Length
   1     3- 4       2.444mm
   2     5- 6       2.439mm
   3     7- 8      -2.156mm
[Table 8]
[Example 8]
Reference Wave Length = 587.56 nm

SURF DATA
NUM. R d nd vd
OBJ INFINITY 350.0000
1 1e + 018 0.0500
STO 9e + 017 -0.0940
3 * 0.8725 0.5130 1.58313 59.44
4 * 1.7620 0.4000
5 * -3.1758 0.5280 1.58313 59.44
6 * -1.0426 0.1030
7 * 1e + 020 0.4520 1.58313 59.44
8 * 1.2574 0.2050
9 1e + 018 0.2100 1.51633 64.14
10 1e + 018 0.3214
IMG INFINITY

ASPHERICAL SURFACE
3: K = -1.06660e + 001, A4 = 1.94190e + 000, A6 = -7.85770e + 000, A8 = 2.76230e + 001, A10 = -8.51860e-001, A12 = -3.80390e + 002, A14 = 9.37710e + 002, A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 1.48910e + 000, A4 = 2.85310e-001, A6 = 4.86070e-002, A8 = 3.10470e + 000, A10 = -3.84290e + 000, A12 = -3.29300e + 001, A14 = 1.49880e + 002, A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = 7.67660e + 000, A4 = -1.21580e-001, A6 = 1.95950e + 000, A8 = -3.28920e + 001, A10 = 2.43670e + 002, A12 = -9.56010e + 002, A14 = 1.92260 e + 003, A16 = -1.58860e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = -9.43740e + 000, A4 = -9.98920e-001, A6 = 2.37560e + 000, A8 = -4.77930e + 000, A10 = 8.10950e + 000, A12 = -4.75270e + 000, A14 = -2.59250e + 000, A16 = 2.65170e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
7: K = 0.00000e + 000, A4 = -7.94090e-001, A6 = 1.85940e-002, A8 = 1.93190e + 000, A10 = -2.31150e + 000, A12 = 8.67520e-001, A14 = 2.62540e -001, A16 = -2.17920e-001, A18 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = -1.90790e-001, A4 = -7.43050e-001, A6 = 5.73280e-001, A8 = -3.18710e-001, A10 = -1.09810e-004, A12 = 9.67330e-002, A14 = -4.97220e-002, A16 = 7.54580e-003, A18 = 0.00000e + 000, A20 = 0.00000e + 000

FL 2.218mm
Fno 2.800
w 34.21 °
Ymax 1.545mm
BF 0.736mm
TL 2.732mm

Elem Surfs Focal Length
1 3- 4 2.444mm
2 5--6 2.439mm
3 7-8 -2.156mm
 図20は実施例8の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 20 is an aberration diagram of Example 8 (spherical aberration (a), astigmatism (b), distortion (c)).
(実施例9)
 実施例9におけるレンズデータを表9に示す。図21は実施例9のレンズの断面図である。実施例9の撮像レンズは、物体側から順に、開口絞りApe、物体側に凸面を備え正の屈折力を有する第1レンズL1、第2レンズL2、負の屈折力を有する第3レンズL3から成る。第1レンズL1は物体側が凸面、像側が凹面の物凸メニスカス形状である。第2レンズL2は物体側が凹面であり、像側面が凸面である。第3レンズL3は像側面が凹面でかつ周辺部に凸面を有する。IRCFはIRカットフィルタであり、IMは固体撮像素子の撮像面である。
Example 9
Table 9 shows lens data in Example 9. FIG. 21 is a sectional view of the lens of Example 9. The imaging lens of Example 9 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power. Become. The first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side. The second lens L2 has a concave surface on the object side and a convex surface on the image side. The third lens L3 has a concave image side surface and a convex surface at the periphery. IRCF is an IR cut filter, and IM is an imaging surface of the solid-state imaging device.
[表9]
[実施例9]
Reference Wave Length = 587.56 nm

SURF DATA
 NUM.       r           d          nd     vd
 OBJ     INFINITY    350.0000
   1       1e+018      0.0500
 STO       1e+018     -0.0554
   3*      0.8130      0.3376    1.58313  59.44
   4*      1.9159      0.4237
   5*     -9.1229      0.5201    1.58313  59.44
   6*     -0.8074      0.1447
   7*     -1.5112      0.3500    1.58313  59.44
   8*      1.8101      0.1655
   9       1e+018      0.2100    1.51633  64.14
  10       1e+018      0.1780
 IMG     INFINITY      

ASPHERICAL SURFACE
3:K=-8.41137e+000,A3=-1.89085e-001,A4=3.26293e+000,A5=-3.27022e+000,A6=-5.22303e+000,A7=0.00000e+000,A8=-7.38156e+000,A9=0.00000e+000,A10=9.32430e+002,A11=0.00000e+000,A12=-8.10202e+003,A13=0.00000e+000,A14=2.20764e+004,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
4:K=1.95777e+001,A4=-9.73005e-002,A6=6.00918e-002,A8=-9.62410e+000,A10=-1.26856e+002,A12=1.85600e+003,A14=-8.14407e+003,A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
5:K=5.00000e+001,A4=-5.01089e-001,A6=4.58089e+000,A8=-7.58649e+001,A10=6.51015e+002,A12=-3.05960e+003,A14=7.49193e+003,A16=-7.64498e+003,A18=0.00000e+000,A20=0.00000e+000
6:K=-7.82824e+000,A4=-1.43882e+000,A6=4.12154e+000,A8=-1.06296e+001,A10=2.12637e+001,A12=-1.18091e+001,A14=-7.27818e+000,A16=2.58626e+000,A18=0.00000e+000,A20=0.00000e+000
7:K=0.00000e+000,A3=0.00000e+000,A4=-6.78548e-001,A5=0.00000e+000,A6=-2.85546e-001,A7=0.00000e+000,A8=4.12093e+000,A9=0.00000e+000,A10=-5.67624e+000,A11=0.00000e+000,A12=3.19559e+000,A13=0.00000e+000,A14=9.18131e-001,A15=0.00000e+000,A16=-1.80888e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
8:K=1.01272e+000,A3=0.00000e+000,A4=-6.84353e-001,A5=0.00000e+000,A6=7.32018e-001,A7=0.00000e+000,A8=-5.87425e-001,A9=0.00000e+000,A10=2.97702e-002,A11=0.00000e+000,A12=2.99710e-001,A13=0.00000e+000,A14=-2.28302e-001,A15=0.00000e+000,A16=5.37851e-002,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000

  FL       1.814mm
 Fno       2.780
   w       34.49゜
Ymax       1.295mm
  BF       0.554mm
  TL       2.230mm

 Elem   Surfs    Focal Length
   1     3- 4       2.177mm
   2     5- 6       1.485mm
   3     7- 8      -1.360mm
[Table 9]
[Example 9]
Reference Wave Length = 587.56 nm

SURF DATA
NUM. R d nd vd
OBJ INFINITY 350.0000
1 1e + 018 0.0500
STO 1e + 018 -0.0554
3 * 0.8130 0.3376 1.58313 59.44
4 * 1.9159 0.4237
5 * -9.1229 0.5201 1.58313 59.44
6 * -0.8074 0.1447
7 * -1.5112 0.3500 1.58313 59.44
8 * 1.8101 0.1655
9 1e + 018 0.2100 1.51633 64.14
10 1e + 018 0.1780
IMG INFINITY

ASPHERICAL SURFACE
3: K = -8.41137e + 000, A3 = -1.89085e-001, A4 = 3.26293e + 000, A5 = -3.27022e + 000, A6 = -5.22303e + 000, A7 = 0.00000e + 000, A8 = -7.38156e + 000, A9 = 0.00000e + 000, A10 = 9.32430e + 002, A11 = 0.00000e + 000, A12 = -8.10202e + 003, A13 = 0.00000e + 000, A14 = 2.20764e + 004, A15 = 0.00000e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 1.95777e + 001, A4 = -9.73005e-002, A6 = 6.00918e-002, A8 = -9.62410e + 000, A10 = -1.26856e + 002, A12 = 1.85600e + 003, A14 =- 8.14407e + 003, A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = 5.00000e + 001, A4 = -5.01089e-001, A6 = 4.58089e + 000, A8 = -7.58649e + 001, A10 = 6.51015e + 002, A12 = -3.05960e + 003, A14 = 7.49193 e + 003, A16 = -7.64498e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = -7.82824e + 000, A4 = -1.43882e + 000, A6 = 4.12154e + 000, A8 = -1.06296e + 001, A10 = 2.12637e + 001, A12 = -1.18091e + 001, A14 = -7.27818e + 000, A16 = 2.58626e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
7: K = 0.00000e + 000, A3 = 0.00000e + 000, A4 = -6.78548e-001, A5 = 0.00000e + 000, A6 = -2.85546e-001, A7 = 0.00000e + 000, A8 = 4.12093e + 000, A9 = 0.00000e + 000, A10 = -5.67624e + 000, A11 = 0.00000e + 000, A12 = 3.19559e + 000, A13 = 0.00000e + 000, A14 = 9.18131e-001, A15 = 0.00000e + 000, A16 = -1.80888e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = 1.01272e + 000, A3 = 0.00000e + 000, A4 = -6.84353e-001, A5 = 0.00000e + 000, A6 = 7.32018e-001, A7 = 0.00000e + 000, A8 = -5.87425e -001, A9 = 0.00000e + 000, A10 = 2.97702e-002, A11 = 0.00000e + 000, A12 = 2.99710e-001, A13 = 0.00000e + 000, A14 = -2.28302e-001, A15 = 0.00000e + 000, A16 = 5.37851e-002, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.814mm
Fno 2.780
w 34.49 °
Ymax 1.295mm
BF 0.554mm
TL 2.230mm

Elem Surfs Focal Length
1 3- 4 2.177mm
2 5--6 1.485mm
3 7-8 -1.360mm
 図22は実施例9の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 22 is an aberration diagram of Example 9 (spherical aberration (a), astigmatism (b), distortion (c)).
(実施例10)
 実施例10におけるレンズデータを表10に示す。図23は実施例10のレンズの断面図である。実施例10の撮像レンズは、物体側から順に、開口絞りApe、物体側に凸面を備え正の屈折力を有する第1レンズL1、第2レンズL2、負の屈折力を有する第3レンズL3から成る。第1レンズL1は物体側が凸面、像側が凹面の物凸メニスカス形状である。第2レンズL2は物体側が凹面であり、像側面が凸面である。第3レンズL3は像側面が凹面でかつ周辺部に凸面を有する。IRCFはIRカットフィルタであり、IMは固体撮像素子の撮像面である。
(Example 10)
Table 10 shows lens data in Example 10. FIG. 23 is a sectional view of the lens of Example 10. The imaging lens of Example 10 includes, in order from the object side, an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power. Become. The first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side. The second lens L2 has a concave surface on the object side and a convex surface on the image side. The third lens L3 has a concave image side surface and a convex surface at the periphery. IRCF is an IR cut filter, and IM is an imaging surface of the solid-state imaging device.
[表10]
[実施例10]
Reference Wave Length = 587.56 nm

SURF DATA
 NUM.       r           d          nd     vd
 OBJ     INFINITY    350.0000
   1       1e+018      0.0500
 STO       1e+018     -0.0286
   3*      0.9743      0.7072    1.58313  59.44
   4*      4.3185      0.1584
   5*     -1.4890      0.3542    1.58313  59.44
   6*     -0.8520      0.0575
   7*      2.0908      0.4305    1.58313  59.44
   8*      1.0186      0.1657
   9       1e+018      0.2100    1.51633  64.14
  10       1e+018      0.2581
 IMG     INFINITY      

ASPHERICAL SURFACE
3:K=-1.49646e+001,A3=-2.40163e-001,A4=3.19329e+000,A5=-3.12984e+000,A6=-5.17692e+000,A7=0.00000e+000,A8=-1.78454e+001,A9=0.00000e+000,A10=8.55955e+002,A11=0.00000e+000,A12=-8.04824e+003,A13=0.00000e+000,A14=2.86045e+004,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
4:K=2.55757e+001,A4=-1.59434e-001,A6=3.62896e+000,A8=-2.34729e+001,A10=-2.01401e+002,A12=1.89444e+003,A14=-4.54269e+003,A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
5:K=8.18681e+000,A4=2.39407e-001,A6=5.15397e+000,A8=-7.60391e+001,A10=6.42980e+002,A12=-3.06012e+003,A14=7.53016e+003,A16=-8.06855e+003,A18=0.00000e+000,A20=0.00000e+000
6:K=-1.24645e+001,A4=-1.64885e+000,A6=4.81635e+000,A8=-9.27638e+000,A10=2.07419e+001,A12=-1.07214e+001,A14=-9.09638e+000,A16=-5.03441e-001,A18=0.00000e+000,A20=0.00000e+000
7:K=0.00000e+000,A3=0.00000e+000,A4=-9.04595e-001,A5=0.00000e+000,A6=-4.50738e-001,A7=0.00000e+000,A8=3.99429e+000,A9=0.00000e+000,A10=-5.81707e+000,A11=0.00000e+000,A12=3.02672e+000,A13=0.00000e+000,A14=8.76283e-001,A15=0.00000e+000,A16=-1.08086e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
8:K=-2.99939e-001,A3=0.00000e+000,A4=-9.97211e-001,A5=0.00000e+000,A6=9.56039e-001,A7=0.00000e+000,A8=-7.50568e-001,A9=0.00000e+000,A10=1.47239e-002,A11=0.00000e+000,A12=3.45320e-001,A13=0.00000e+000,A14=-2.04576e-001,A15=0.00000e+000,A16=2.23757e-002,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000

  FL       1.626mm
 Fno       2.780
   w       37.13゜
Ymax       1.295mm
  BF       0.634mm
  TL       2.342mm

 Elem   Surfs    Focal Length
   1     3- 4       2.002mm
   2     5- 6       2.835mm
   3     7- 8      -3.997mm
[Table 10]
[Example 10]
Reference Wave Length = 587.56 nm

SURF DATA
NUM. R d nd vd
OBJ INFINITY 350.0000
1 1e + 018 0.0500
STO 1e + 018 -0.0286
3 * 0.9743 0.7072 1.58313 59.44
4 * 4.3185 0.1584
5 * -1.4890 0.3542 1.58313 59.44
6 * -0.8520 0.0575
7 * 2.0908 0.4305 1.58313 59.44
8 * 1.0186 0.1657
9 1e + 018 0.2100 1.51633 64.14
10 1e + 018 0.2581
IMG INFINITY

ASPHERICAL SURFACE
3: K = -1.49646e + 001, A3 = -2.40163e-001, A4 = 3.19329e + 000, A5 = -3.12984e + 000, A6 = -5.17692e + 000, A7 = 0.00000e + 000, A8 = -1.78454e + 001, A9 = 0.00000e + 000, A10 = 8.55955e + 002, A11 = 0.00000e + 000, A12 = -8.04824e + 003, A13 = 0.00000e + 000, A14 = 2.86045e + 004, A15 = 0.00000e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 2.55757e + 001, A4 = -1.59434e-001, A6 = 3.62896e + 000, A8 = -2.34729e + 001, A10 = -2.01401e + 002, A12 = 1.89444e + 003, A14 =- 4.54269e + 003, A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = 8.18681e + 000, A4 = 2.39407e-001, A6 = 5.15397e + 000, A8 = -7.60391e + 001, A10 = 6.42980e + 002, A12 = -3.06012e + 003, A14 = 7.53016e + 003, A16 = -8.06855e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = -1.24645e + 001, A4 = -1.64885e + 000, A6 = 4.81635e + 000, A8 = -9.27638e + 000, A10 = 2.07419e + 001, A12 = -1.07214e + 001, A14 = -9.09638e + 000, A16 = -5.03441e-001, A18 = 0.00000e + 000, A20 = 0.00000e + 000
7: K = 0.00000e + 000, A3 = 0.00000e + 000, A4 = -9.04595e-001, A5 = 0.00000e + 000, A6 = -4.50738e-001, A7 = 0.00000e + 000, A8 = 3.99429e + 000, A9 = 0.00000e + 000, A10 = -5.81707e + 000, A11 = 0.00000e + 000, A12 = 3.02672e + 000, A13 = 0.00000e + 000, A14 = 8.76283e-001, A15 = 0.00000e + 000, A16 = -1.08086e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = -2.99939e-001, A3 = 0.00000e + 000, A4 = -9.97211e-001, A5 = 0.00000e + 000, A6 = 9.56039e-001, A7 = 0.00000e + 000, A8 = -7.50568 e-001, A9 = 0.00000e + 000, A10 = 1.47239e-002, A11 = 0.00000e + 000, A12 = 3.45320e-001, A13 = 0.00000e + 000, A14 = -2.04576e-001, A15 = 0.00000 e + 000, A16 = 2.23757e-002, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.626mm
Fno 2.780
w 37.13 °
Ymax 1.295mm
BF 0.634mm
TL 2.342mm

Elem Surfs Focal Length
1 3- 4 2.002mm
2 5--6 2.835mm
3 7-8 -3.997mm
 図24は実施例10の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 24 is an aberration diagram of Example 10 (spherical aberration (a), astigmatism (b), distortion (c)).
(実施例11)
 実施例11におけるレンズデータを表11に示す。図25は実施例11のレンズの断面図である。実施例11の撮像レンズは、物体側から順に、開口絞りApe、物体側に凸面を備え正の屈折力を有する第1レンズL1、第2レンズL2、負の屈折力を有する第3レンズL3から成る。第1レンズL1は物体側が凸面、像側が凹面の物凸メニスカス形状である。第2レンズL2は物体側が凹面であり、像側面が凸面である。第3レンズL3は像側面が凹面でかつ周辺部に凸面を有する。IRCFはIRカットフィルタであり、IMは固体撮像素子の撮像面である。
(Example 11)
Lens data in Example 11 are shown in Table 11. FIG. 25 is a sectional view of the lens of Example 11. In order from the object side, the imaging lens of Example 11 includes an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power. Become. The first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side. The second lens L2 has a concave surface on the object side and a convex surface on the image side. The third lens L3 has a concave image side surface and a convex surface at the periphery. IRCF is an IR cut filter, and IM is an imaging surface of the solid-state imaging device.
[表11]
[実施例11]
Reference Wave Length = 587.56 nm

SURF DATA
 NUM.       r           d          nd     vd
 OBJ     INFINITY    350.0000
   1       1e+018      0.0500
 STO       1e+018     -0.0571
   3*      0.8510      0.3450    1.62263  58.15
   4*      2.1048      0.2332
   5*    -10.0229      0.4259    1.58313  59.44
   6*     -2.9321      0.2234
   7*      2.7076      0.5863    1.84666  23.77
   8*      1.3367      0.1655
   9       1e+018      0.2100    1.51633  64.14
  10       1e+018      0.1831
 IMG     INFINITY      

ASPHERICAL SURFACE
3:K=-1.08683e+001,A3=-1.12840e-001,A4=3.16999e+000,A5=-3.38775e+000,A6=-5.45615e+000,A7=0.00000e+000,A8=-6.77783e+000,A9=0.00000e+000,A10=9.30488e+002,A11=0.00000e+000,A12=-8.03887e+003,A13=0.00000e+000,A14=2.20880e+004,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
4:K=2.07977e+001,A4=-2.67623e-001,A6=2.86720e+000,A8=-1.76914e+001,A10=-1.70949e+002,A12=1.95820e+003,A14=-5.94950e+003,A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
5:K=5.00000e+001,A4=-6.32855e-001,A6=5.04883e+000,A8=-7.48966e+001,A10=6.50885e+002,A12=-3.05342e+003,A14=7.54526e+003,A16=-7.78250e+003,A18=0.00000e+000,A20=0.00000e+000
6:K=1.00070e+001,A4=-1.54318e+000,A6=3.96374e+000,A8=-1.01460e+001,A10=2.23854e+001,A12=-1.02205e+001,A14=-2.44162e+000,A16=3.82496e+001,A18=0.00000e+000,A20=0.00000e+000
7:K=0.00000e+000,A3=0.00000e+000,A4=-1.56360e+000,A5=0.00000e+000,A6=-4.03352e-001,A7=0.00000e+000,A8=3.50762e+000,A9=0.00000e+000,A10=-6.06646e+000,A11=0.00000e+000,A12=3.96505e+000,A13=0.00000e+000,A14=3.15211e+000,A15=0.00000e+000,A16=-9.46297e-001,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
8:K=1.29493e-001,A3=0.00000e+000,A4=-9.94064e-001,A5=0.00000e+000,A6=9.39003e-001,A7=0.00000e+000,A8=-6.74724e-001,A9=0.00000e+000,A10=2.49046e-002,A11=0.00000e+000,A12=3.28650e-001,A13=0.00000e+000,A14=-2.18876e-001,A15=0.00000e+000,A16=4.13213e-002,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000

  FL       1.824mm
 Fno       2.780 
   w       35.24゜
Ymax       1.295mm
  BF       0.559mm
  TL       2.372mm

 Elem   Surfs    Focal Length
   1     3- 4       2.075mm
   2     5- 6       6.953mm
   3     7- 8      -3.879mm
[Table 11]
[Example 11]
Reference Wave Length = 587.56 nm

SURF DATA
NUM. R d nd vd
OBJ INFINITY 350.0000
1 1e + 018 0.0500
STO 1e + 018 -0.0571
3 * 0.8510 0.3450 1.62263 58.15
4 * 2.1048 0.2332
5 * -10.0229 0.4259 1.58313 59.44
6 * -2.9321 0.2234
7 * 2.7076 0.5863 1.84666 23.77
8 * 1.3367 0.1655
9 1e + 018 0.2100 1.51633 64.14
10 1e + 018 0.1831
IMG INFINITY

ASPHERICAL SURFACE
3: K = -1.08683e + 001, A3 = -1.12840e-001, A4 = 3.16999e + 000, A5 = -3.38775e + 000, A6 = -5.45615e + 000, A7 = 0.00000e + 000, A8 = -6.77783e + 000, A9 = 0.00000e + 000, A10 = 9.30488e + 002, A11 = 0.00000e + 000, A12 = -8.03887e + 003, A13 = 0.00000e + 000, A14 = 2.20880e + 004, A15 = 0.00000e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 2.07977e + 001, A4 = -2.67623e-001, A6 = 2.86720e + 000, A8 = -1.76914e + 001, A10 = -1.70949e + 002, A12 = 1.95820e + 003, A14 =- 5.94950e + 003, A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = 5.00000e + 001, A4 = -6.32855e-001, A6 = 5.04883e + 000, A8 = -7.48966e + 001, A10 = 6.50885e + 002, A12 = -3.05342e + 003, A14 = 7.54526 e + 003, A16 = -7.78250e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = 1.00070e + 001, A4 = -1.54318e + 000, A6 = 3.96374e + 000, A8 = -1.01460e + 001, A10 = 2.23854e + 001, A12 = -1.02205e + 001, A14 =- 2.44162e + 000, A16 = 3.82496e + 001, A18 = 0.00000e + 000, A20 = 0.00000e + 000
7: K = 0.00000e + 000, A3 = 0.00000e + 000, A4 = -1.56360e + 000, A5 = 0.00000e + 000, A6 = -4.03352e-001, A7 = 0.00000e + 000, A8 = 3.50762e + 000, A9 = 0.00000e + 000, A10 = -6.06646e + 000, A11 = 0.00000e + 000, A12 = 3.96505e + 000, A13 = 0.00000e + 000, A14 = 3.15211e + 000, A15 = 0.00000e + 000, A16 = -9.46297e-001, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = 1.29493e-001, A3 = 0.00000e + 000, A4 = -9.94064e-001, A5 = 0.00000e + 000, A6 = 9.39003e-001, A7 = 0.00000e + 000, A8 = -6.74724e -001, A9 = 0.00000e + 000, A10 = 2.49046e-002, A11 = 0.00000e + 000, A12 = 3.28650e-001, A13 = 0.00000e + 000, A14 = -2.18876e-001, A15 = 0.00000e + 000, A16 = 4.13213e-002, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.824mm
Fno 2.780
w 35.24 °
Ymax 1.295mm
BF 0.559mm
TL 2.372mm

Elem Surfs Focal Length
1 3- 4 2.075mm
2 5--6 6.953mm
3 7-8 -3.879mm
 図26は実施例11の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 26 is an aberration diagram of Example 11 (spherical aberration (a), astigmatism (b), distortion (c)).
(実施例12)
 実施例12におけるレンズデータを表12に示す。図27は実施例12のレンズの断面図である。実施例12の撮像レンズは、物体側から順に、開口絞りApe、物体側に凸面を備え正の屈折力を有する第1レンズL1、第2レンズL2、負の屈折力を有する第3レンズL3から成る。第1レンズL1は物体側が凸面、像側が凹面の物凸メニスカス形状である。第2レンズL2は物体側が凹面であり、像側面が凸面である。第3レンズL3は像側面が凹面でかつ周辺部に凸面を有する。IRCFはIRカットフィルタであり、IMは固体撮像素子の撮像面である。
Example 12
Lens data in Example 12 are shown in Table 12. FIG. 27 is a sectional view of the lens of Example 12. In order from the object side, the imaging lens of Example 12 includes an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power. Become. The first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side. The second lens L2 has a concave surface on the object side and a convex surface on the image side. The third lens L3 has a concave image side surface and a convex surface at the periphery. IRCF is an IR cut filter, and IM is an imaging surface of the solid-state imaging device.
[表12]
[実施例12]
Reference Wave Length = 587.56 nm

SURF DATA
 NUM.       r           d          nd     vd
 OBJ     INFINITY    350.0000
   1       1e+018      0.0500
 STO       1e+018     -0.0006
   3*      0.8526      0.4288    1.58313  59.44
   4*      1.9004      0.3118
   5*     -3.3942      0.4370    1.58313  59.46
   6*     -1.2270      0.0500
   7*      4.5253      0.6291    1.58313  59.45
   8*      2.2340      0.1655
   9       1e+018      0.2100    1.51633  64.14
  10       1e+018      0.2015
 IMG     INFINITY      

ASPHERICAL SURFACE
3:K=-9.56855e+000,A3=-1.88182e-001,A4=3.23385e+000,A5=-3.22726e+000,A6=-5.29017e+000,A7=0.00000e+000,A8=-7.46570e+000,A9=0.00000e+000,A10=9.10064e+002,A11=0.00000e+000,A12=-8.16189e+003,A13=0.00000e+000,A14=2.35815e+004,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
4:K=1.67143e+001,A4=-5.06610e-001,A6=3.92492e+000,A8=-1.70602e+001,A10=-1.84434e+002,A12=1.84284e+003,A14=-5.52663e+003,A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
5:K=4.16616e+001,A4=-3.52990e-001,A6=3.50700e+000,A8=-7.39884e+001,A10=6.56610e+002,A12=-3.05812e+003,A14=7.49659e+003,A16=-7.79121e+003,A18=0.00000e+000,A20=0.00000e+000
6:K=-5.00000e+001,A4=-1.76547e+000,A6=4.41047e+000,A8=-1.07403e+001,A10=2.12245e+001,A12=-1.19162e+001,A14=-7.35682e+000,A16=-8.94720e-001,A18=0.00000e+000,A20=0.00000e+000
7:K=0.00000e+000,A3=0.00000e+000,A4=-5.69869e-001,A5=0.00000e+000,A6=-5.28980e-001,A7=0.00000e+000,A8=4.03618e+000,A9=0.00000e+000,A10=-5.84274e+000,A11=0.00000e+000,A12=3.01323e+000,A13=0.00000e+000,A14=8.66247e-001,A15=0.00000e+000,A16=-1.31120e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
8:K=1.05588e+000,A3=0.00000e+000,A4=-4.15488e-001,A5=0.00000e+000,A6=5.98068e-001,A7=0.00000e+000,A8=-6.52239e-001,A9=0.00000e+000,A10=8.68266e-002,A11=0.00000e+000,A12=3.46025e-001,A13=0.00000e+000,A14=-2.24614e-001,A15=0.00000e+000,A16=3.77636e-002,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000

  FL       1.684mm
 Fno       2.780
   w       34.73゜
Ymax       1.295mm
  BF       0.577mm
  TL       2.434mm

 Elem   Surfs    Focal Length
   1     3- 4       2.304mm
   2     5- 6       3.068mm
   3     7- 8      -8.418mm
[Table 12]
[Example 12]
Reference Wave Length = 587.56 nm

SURF DATA
NUM. R d nd vd
OBJ INFINITY 350.0000
1 1e + 018 0.0500
STO 1e + 018 -0.0006
3 * 0.8526 0.4288 1.58313 59.44
4 * 1.9004 0.3118
5 * -3.3942 0.4370 1.58313 59.46
6 * -1.2270 0.0500
7 * 4.5253 0.6291 1.58313 59.45
8 * 2.2340 0.1655
9 1e + 018 0.2100 1.51633 64.14
10 1e + 018 0.2015
IMG INFINITY

ASPHERICAL SURFACE
3: K = -9.56855e + 000, A3 = -1.88182e-001, A4 = 3.23385e + 000, A5 = -3.22726e + 000, A6 = -5.29017e + 000, A7 = 0.00000e + 000, A8 = -7.46570e + 000, A9 = 0.00000e + 000, A10 = 9.10064e + 002, A11 = 0.00000e + 000, A12 = -8.16189e + 003, A13 = 0.00000e + 000, A14 = 2.35815e + 004, A15 = 0.00000e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 1.67143e + 001, A4 = -5.06610e-001, A6 = 3.92492e + 000, A8 = -1.70602e + 001, A10 = -1.84434e + 002, A12 = 1.84284e + 003, A14 =- 5.52663e + 003, A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = 4.16616e + 001, A4 = -3.52990e-001, A6 = 3.50700e + 000, A8 = -7.39884e + 001, A10 = 6.56610e + 002, A12 = -3.05812e + 003, A14 = 7.49659 e + 003, A16 = -7.79121e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = -5.00000e + 001, A4 = -1.76547e + 000, A6 = 4.41047e + 000, A8 = -1.07403e + 001, A10 = 2.12245e + 001, A12 = -1.19162e + 001, A14 = -7.35682e + 000, A16 = -8.94720e-001, A18 = 0.00000e + 000, A20 = 0.00000e + 000
7: K = 0.00000e + 000, A3 = 0.00000e + 000, A4 = -5.69869e-001, A5 = 0.00000e + 000, A6 = -5.28980e-001, A7 = 0.00000e + 000, A8 = 4.03618e + 000, A9 = 0.00000e + 000, A10 = -5.84274e + 000, A11 = 0.00000e + 000, A12 = 3.01323e + 000, A13 = 0.00000e + 000, A14 = 8.66247e-001, A15 = 0.00000e + 000, A16 = -1.31120e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = 1.05588e + 000, A3 = 0.00000e + 000, A4 = -4.15488e-001, A5 = 0.00000e + 000, A6 = 5.98068e-001, A7 = 0.00000e + 000, A8 = -6.52239e -001, A9 = 0.00000e + 000, A10 = 8.68266e-002, A11 = 0.00000e + 000, A12 = 3.46025e-001, A13 = 0.00000e + 000, A14 = -2.24614e-001, A15 = 0.00000e + 000, A16 = 3.77636e-002, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.684mm
Fno 2.780
w 34.73 °
Ymax 1.295mm
BF 0.577mm
TL 2.434mm

Elem Surfs Focal Length
1 3- 4 2.304mm
2 5- 6 3.068mm
3 7-8 -8.418mm
 図28は実施例12の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 28 is an aberration diagram of Example 12 (spherical aberration (a), astigmatism (b), distortion (c)).
(実施例13)
 実施例13におけるレンズデータを表13に示す。図29は実施例13のレンズの断面図である。実施例13の撮像レンズは、物体側から順に、開口絞りApe、物体側に凸面を備え正の屈折力を有する第1レンズL1、第2レンズL2、負の屈折力を有する第3レンズL3から成る。第1レンズL1は物体側が凸面、像側が凹面の物凸メニスカス形状である。第2レンズL2は物体側が凹面であり、像側面が凸面である。第3レンズL3は像側面が凹面でかつ周辺部に凸面を有する。IRCFはIRカットフィルタであり、IMは固体撮像素子の撮像面である。
(Example 13)
Table 13 shows lens data in Example 13. FIG. 29 is a sectional view of the lens of Example 13. In order from the object side, the imaging lens of Example 13 has an aperture stop Ape, a first lens L1 having a convex surface on the object side, a second lens L2, and a third lens L3 having a negative refractive power. Become. The first lens L1 has an object-convex meniscus shape having a convex surface on the object side and a concave surface on the image side. The second lens L2 has a concave surface on the object side and a convex surface on the image side. The third lens L3 has a concave image side surface and a convex surface at the periphery. IRCF is an IR cut filter, and IM is an imaging surface of the solid-state imaging device.
[表13]
[実施例13]
Reference Wave Length = 587.56 nm

SURF DATA
 NUM.       r           d          nd     vd
 OBJ     INFINITY    350.0000
   1       1e+018      0.0500
 STO       1e+018     -0.0629
   3*      0.8033      0.3640    1.58313  59.44
   4*      3.3547      0.2000
   5*     -2.3040      0.3997    1.58313  59.44
   6*     -2.7830      0.1222
   7*      3.0976      0.7111    1.69895  30.04
   8*      1.5292      0.1655
   9       1e+018      0.2100    1.51633  64.14
  10       1e+018      0.2349
 IMG     INFINITY     

ASPHERICAL SURFACE
3:K=-1.10538e+001,A3=-5.34071e-002,A4=3.22509e+000,A5=-3.34795e+000,A6=-5.81095e+000,A7=0.00000e+000,A8=-9.80495e+000,A9=0.00000e+000,A10=9.51223e+002,A11=0.00000e+000,A12=-7.89805e+003,A13=0.00000e+000,A14=2.06845e+004,A15=0.00000e+000,A16=0.00000e+000,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
4:K=1.96543e+001,A4=-1.89880e-001,A6=1.66328e+000,A8=-1.39335e+001,A10=-1.41459e+002,A12=1.98177e+003,A14=-6.76793e+003,A16=0.00000e+000,A18=0.00000e+000,A20=0.00000e+000
5:K=2.57480e+001,A4=-5.67041e-001,A6=3.50103e+000,A8=-7.37087e+001,A10=6.61022e+002,A12=-3.06695e+003,A14=7.48236e+003,A16=-5.34108e+003,A18=0.00000e+000,A20=0.00000e+000
6:K=1.47469e+001,A4=-2.42219e+000,A6=4.54251e+000,A8=-8.34777e+000,A10=2.10627e+001,A12=-2.47665e+001,A14=-1.77126e+001,A16=2.80048e+002,A18=0.00000e+000,A20=0.00000e+000
7:K=0.00000e+000,A3=0.00000e+000,A4=-2.32258e+000,A5=0.00000e+000,A6=-9.94904e-002,A7=0.00000e+000,A8=1.39208e+000,A9=0.00000e+000,A10=-5.49251e+000,A11=0.00000e+000,A12=1.75696e+001,A13=0.00000e+000,A14=1.68105e+001,A15=0.00000e+000,A16=-2.20728e+002,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000
8:K=-3.17164e+000,A3=0.00000e+000,A4=-6.19251e-001,A5=0.00000e+000,A6=5.71808e-001,A7=0.00000e+000,A8=-4.79541e-001,A9=0.00000e+000,A10=8.99498e-002,A11=0.00000e+000,A12=2.71691e-001,A13=0.00000e+000,A14=-2.66729e-001,A15=0.00000e+000,A16=7.81994e-002,A17=0.00000e+000,A18=0.00000e+000,A19=0.00000e+000,A20=0.00000e+000

  FL       1.901mm
 Fno       2.780
   w       34.73゜
Ymax       1.295mm
  BF       0.610mm
  TL       2.407mm

 Elem   Surfs    Focal Length
   1     3- 4       1.721mm
   2     5- 6      -33.140mm
   3     7- 8      -5.312mm
[Table 13]
[Example 13]
Reference Wave Length = 587.56 nm

SURF DATA
NUM. R d nd vd
OBJ INFINITY 350.0000
1 1e + 018 0.0500
STO 1e + 018 -0.0629
3 * 0.8033 0.3640 1.58313 59.44
4 * 3.3547 0.2000
5 * -2.3040 0.3997 1.58313 59.44
6 * -2.7830 0.1222
7 * 3.0976 0.7111 1.69895 30.04
8 * 1.5292 0.1655
9 1e + 018 0.2100 1.51633 64.14
10 1e + 018 0.2349
IMG INFINITY

ASPHERICAL SURFACE
3: K = -1.10538e + 001, A3 = -5.34071e-002, A4 = 3.22509e + 000, A5 = -3.34795e + 000, A6 = -5.81095e + 000, A7 = 0.00000e + 000, A8 = -9.80495e + 000, A9 = 0.00000e + 000, A10 = 9.51223e + 002, A11 = 0.00000e + 000, A12 = -7.89805e + 003, A13 = 0.00000e + 000, A14 = 2.06845e + 004, A15 = 0.00000e + 000, A16 = 0.00000e + 000, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
4: K = 1.96543e + 001, A4 = -1.89880e-001, A6 = 1.66328e + 000, A8 = -1.39335e + 001, A10 = -1.41459e + 002, A12 = 1.98177e + 003, A14 =- 6.76793e + 003, A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000
5: K = 2.57480e + 001, A4 = -5.67041e-001, A6 = 3.50103e + 000, A8 = -7.37087e + 001, A10 = 6.61022e + 002, A12 = -3.06695e + 003, A14 = 7.48236 e + 003, A16 = -5.34108e + 003, A18 = 0.00000e + 000, A20 = 0.00000e + 000
6: K = 1.47469e + 001, A4 = -2.42219e + 000, A6 = 4.54251e + 000, A8 = -8.34777e + 000, A10 = 2.10627e + 001, A12 = -2.47665e + 001, A14 =- 1.77126e + 001, A16 = 2.80048e + 002, A18 = 0.00000e + 000, A20 = 0.00000e + 000
7: K = 0.00000e + 000, A3 = 0.00000e + 000, A4 = -2.32258e + 000, A5 = 0.00000e + 000, A6 = -9.94904e-002, A7 = 0.00000e + 000, A8 = 1.39208e + 000, A9 = 0.00000e + 000, A10 = -5.49251e + 000, A11 = 0.00000e + 000, A12 = 1.75696e + 001, A13 = 0.00000e + 000, A14 = 1.68105e + 001, A15 = 0.00000e + 000, A16 = -2.20728e + 002, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000
8: K = -3.17164e + 000, A3 = 0.00000e + 000, A4 = -6.19251e-001, A5 = 0.00000e + 000, A6 = 5.71808e-001, A7 = 0.00000e + 000, A8 = -4.79541 e-001, A9 = 0.00000e + 000, A10 = 8.99498e-002, A11 = 0.00000e + 000, A12 = 2.71691e-001, A13 = 0.00000e + 000, A14 = -2.66729e-001, A15 = 0.00000 e + 000, A16 = 7.81994e-002, A17 = 0.00000e + 000, A18 = 0.00000e + 000, A19 = 0.00000e + 000, A20 = 0.00000e + 000

FL 1.901mm
Fno 2.780
w 34.73 °
Ymax 1.295mm
BF 0.610mm
TL 2.407mm

Elem Surfs Focal Length
1 3- 4 1.721mm
2 5- 6 -33.140mm
3 7-8 -5.312mm
 図30は実施例13の収差図(球面収差(a)、非点収差(b)、歪曲収差(c))である。 FIG. 30 is an aberration diagram of Example 13 (spherical aberration (a), astigmatism (b), distortion (c)).
 各条件式に対応する実施例の値を表14にまとめて示す。 Table 14 summarizes the values of the examples corresponding to each conditional expression.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や技術思想から本分野の当業者にとって明らかである。例えば、実質的に屈折力を持たないダミーレンズを更に付与した場合でも本発明の適用範囲内である。 In addition, the present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are included in the present field from the embodiments and technical ideas described in the present specification. It is clear to the contractor. For example, even when a dummy lens having substantially no refractive power is further provided, it is within the scope of application of the present invention.
B 操作ボタン
D1,D2 表示画面
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
LN 撮像レンズ
LU 撮像装置
Ape 開口絞り
IM イメージセンサ
IMa 光電変換部
T 携帯電話機
B Operation buttons D1 and D2 Display screen L1 First lens L2 Second lens L3 Third lens LN Imaging lens LU Imaging device Ape Aperture stop IM Image sensor IMa Photoelectric conversion unit T Mobile phone

Claims (13)

  1.  固体撮像素子に対して被写体像を結像させる撮像レンズにおいて、物体側から順に開口絞り、物体側に凸面を備え正の屈折力を有する第1レンズ、第2レンズ、負の屈折力を有する第3レンズから成り、以下の条件式を満足することを特徴とする撮像レンズ。
     0.9<f1/f<1.5    (1)
     -3<r2/r3<-0.2   (2)
     -0.1<(r5+r6)/(r5-r6)<3.0   (3)
     0.18<d1/f<0.5   (4)
    但し、
    f1 :前記第1レンズの焦点距離
    f  :撮像レンズ全系の焦点距離
    r2 :前記第1レンズ像側面の近軸曲率半径
    r3 :前記第2レンズ物体側面の近軸曲率半径
    r5 :前記第3レンズ物体側面の近軸曲率半径
    r6 :前記第3レンズ像側面の近軸曲率半径
    d1 :前記第1レンズ物体側面から像側面までの光軸上の距離
    In an imaging lens for forming a subject image on a solid-state imaging device, an aperture stop in order from the object side, a first lens having a convex surface on the object side, a second lens having positive refractive power, and a first lens having negative refractive power An imaging lens comprising three lenses and satisfying the following conditional expression:
    0.9 <f1 / f <1.5 (1)
    -3 <r2 / r3 <-0.2 (2)
    -0.1 <(r5 + r6) / (r5-r6) <3.0 (3)
    0.18 <d1 / f <0.5 (4)
    However,
    f1: focal length of the first lens f: focal length r2 of the entire imaging lens system: paraxial radius of curvature r3 of the first lens image side surface: paraxial radius of curvature r5 of the second lens object side surface: third lens Paraxial curvature radius r6 of the object side surface: Paraxial curvature radius d1 of the third lens image side surface d1: Distance on the optical axis from the first lens object side surface to the image side surface
  2.  前記第1レンズは物体側が凸面、像側が凹面の物凸メニスカス形状であることを特徴とする請求項1に記載の撮像レンズ。 The imaging lens according to claim 1, wherein the first lens has a convex meniscus shape having a convex surface on the object side and a concave surface on the image side.
  3.  前記第2レンズは物体側が凹面であることを特徴とする請求項1又は2に記載の撮像レンズ。 The imaging lens according to claim 1 or 2, wherein the second lens has a concave surface on the object side.
  4.  前記第2レンズは像側面が凸面であることを特徴とする請求項1~3のいずれか1項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 3, wherein the second lens has a convex image side surface.
  5.  前記第3レンズは像側面が凹面であることを特徴とする請求項1~4のいずれか1項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 4, wherein the third lens has a concave image side surface.
  6.  前記第3レンズは像側面が凹面でかつ周辺部に凸面を有することを特徴とする請求項1~5のいずれか1項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 5, wherein the third lens has a concave image side surface and a convex surface in a peripheral portion.
  7.  前記第2レンズは、以下の条件式を満足することを特徴とする請求項1~6のいずれか1項に記載の撮像レンズ。
     0.5<f2/f<4.0   (5)
    但し、
    f2 :前記第2レンズの焦点距離
    The imaging lens according to any one of claims 1 to 6, wherein the second lens satisfies the following conditional expression.
    0.5 <f2 / f <4.0 (5)
    However,
    f2: focal length of the second lens
  8.  前記第3レンズは、以下の条件式を満足することを特徴とする請求項1~7のいずれか1項に記載の撮像レンズ。
     -10<f3/f<-0.7   (6)
    但し、
    f3:前記第3レンズの焦点距離
    The imaging lens according to any one of claims 1 to 7, wherein the third lens satisfies the following conditional expression.
    −10 <f3 / f <−0.7 (6)
    However,
    f3: focal length of the third lens
  9.  前記撮像レンズは、以下の条件式を満足することを特徴とする請求項1~8のいずれか1項に記載の撮像レンズ。
     0.1<|f1/f2|<2.0   (7)
    但し、
    f2 :前記第2レンズの焦点距離
    The imaging lens according to any one of claims 1 to 8, wherein the imaging lens satisfies the following conditional expression.
    0.1 <| f1 / f2 | <2.0 (7)
    However,
    f2: focal length of the second lens
  10.  前記撮像レンズは、以下の条件式を満足することを特徴とする請求項1~9のいずれか1項に記載の撮像レンズ。
     0.3<(d1+d3+d5)/TTL<0.7   (8)
    但し、
    d3 :前記第2レンズ物体側面から像側面までの光軸上の距離
    d5 :前記第3レンズ物体側面から像側面までの光軸上の距離
    TTL:前記第1レンズ物体側面から前記固体撮像素子の受光面までの光軸上の距離
    The imaging lens according to any one of claims 1 to 9, wherein the imaging lens satisfies the following conditional expression.
    0.3 <(d1 + d3 + d5) / TTL <0.7 (8)
    However,
    d3: Distance on the optical axis from the second lens object side surface to the image side surface d5: Distance on the optical axis from the third lens object side surface to the image side surface TTL: From the first lens object side surface to the solid-state imaging device Distance on the optical axis to the light receiving surface
  11.  前記第3レンズは、以下の条件式を満足することを特徴とする請求項1~10のいずれか1項に記載の撮像レンズ。
     1.55<n3<1.90   (9)
    n3 :前記第3レンズの屈折率
    The imaging lens according to any one of claims 1 to 10, wherein the third lens satisfies the following conditional expression.
    1.55 <n3 <1.90 (9)
    n3: refractive index of the third lens
  12.  実質的に屈折力を有しないレンズを有することを特徴とする請求項1~11のいずれか1項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 11, further comprising a lens having substantially no refractive power.
  13.  請求項1~12のいずれか1項に記載の撮像レンズを有することを特徴とする撮像装置。 An imaging apparatus comprising the imaging lens according to any one of claims 1 to 12.
PCT/JP2013/051677 2012-03-09 2013-01-26 Imaging lens and imaging device WO2013132915A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380012700.6A CN104169772A (en) 2012-03-09 2013-01-26 Imaging lens and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012053596 2012-03-09
JP2012-053596 2012-03-09

Publications (1)

Publication Number Publication Date
WO2013132915A1 true WO2013132915A1 (en) 2013-09-12

Family

ID=49116402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051677 WO2013132915A1 (en) 2012-03-09 2013-01-26 Imaging lens and imaging device

Country Status (3)

Country Link
JP (1) JPWO2013132915A1 (en)
CN (1) CN104169772A (en)
WO (1) WO2013132915A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI647477B (en) * 2016-03-25 2019-01-11 先進光電科技股份有限公司 Optical imaging system (2)
CN110187463A (en) * 2019-04-26 2019-08-30 华为技术有限公司 It is automatic to focus driving assembly, camera lens and electronic equipment
CN211698396U (en) * 2019-10-23 2020-10-16 神盾股份有限公司 Optical imaging lens
CN112748548B (en) * 2021-02-02 2023-01-10 玉晶光电(厦门)有限公司 Optical imaging lens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173298A (en) * 2003-12-12 2005-06-30 Milestone Kk Imaging lens
JP2005242286A (en) * 2003-07-11 2005-09-08 Konica Minolta Opto Inc Imaging lens, imaging unit and portable terminal with the unit
JP2008276200A (en) * 2007-03-30 2008-11-13 Fujinon Corp Imaging lens
JP3160406U (en) * 2009-04-15 2010-06-24 一品光学工業股▲ふん▼有限公司 Rectangular laminated glass lens module (Rectangular stacked glass lens module)
JP2010145648A (en) * 2008-12-17 2010-07-01 Fujinon Corp Imaging lens constituted of three groups and imaging apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7035023B2 (en) * 2003-04-24 2006-04-25 Canon Kabushiki Kaisha Lens system
CN101634742B (en) * 2008-07-23 2011-01-05 鸿富锦精密工业(深圳)有限公司 Imaging camera lens
JP5097058B2 (en) * 2008-09-03 2012-12-12 パナソニック株式会社 Imaging lens and imaging apparatus using the same
JP4376954B1 (en) * 2008-09-05 2009-12-02 株式会社小松ライト製作所 Imaging lens
CN102004300A (en) * 2009-08-28 2011-04-06 鸿富锦精密工业(深圳)有限公司 Wide-angle lens system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005242286A (en) * 2003-07-11 2005-09-08 Konica Minolta Opto Inc Imaging lens, imaging unit and portable terminal with the unit
JP2005173298A (en) * 2003-12-12 2005-06-30 Milestone Kk Imaging lens
JP2008276200A (en) * 2007-03-30 2008-11-13 Fujinon Corp Imaging lens
JP2010145648A (en) * 2008-12-17 2010-07-01 Fujinon Corp Imaging lens constituted of three groups and imaging apparatus
JP3160406U (en) * 2009-04-15 2010-06-24 一品光学工業股▲ふん▼有限公司 Rectangular laminated glass lens module (Rectangular stacked glass lens module)

Also Published As

Publication number Publication date
CN104169772A (en) 2014-11-26
JPWO2013132915A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP4924141B2 (en) Imaging lens, imaging device, and portable terminal
JP5440032B2 (en) Imaging lens and small imaging device
JP5839038B2 (en) Imaging lens and imaging apparatus
JP6394598B2 (en) Imaging lens, imaging device, and portable terminal
JP5585586B2 (en) Imaging lens and imaging apparatus
WO2011086827A1 (en) Image-capturing lens, image-capturing device, and portable terminal
WO2013137312A1 (en) Image pickup lens, image pickup device, and portable terminal
WO2013039035A1 (en) Image pick-up lens, image pick-up device, portable terminal and digital instrument
JP2014232147A (en) Imaging lens, imaging apparatus, and portable terminal
WO2013008862A1 (en) Imaging lens and imaging device
WO2015041123A1 (en) Imaging lens, imaging device, and portable terminal
TWM368075U (en) Photographing lens, video camera module and photographing apparatus
WO2010047178A1 (en) Imaging lens, imaging device, and portable terminal
WO2013015082A1 (en) Wide-angle lens, imaging optical device, and digital instrument
JP2011095301A (en) Imaging lens, imaging apparatus and portable terminal
JP2012108230A (en) Imaging lens and imaging apparatus
CN112684594B (en) Optical lens and imaging apparatus
CN113391433B (en) Optical lens, camera module and electronic equipment
JP5353879B2 (en) Imaging lens, imaging device, and portable terminal
JP2013246217A (en) Imaging lens, imaging apparatus, and portable terminal
JP2012252193A (en) Imaging lens for imaging apparatus, imaging apparatus and portable terminal
JP2015001644A (en) Image capturing lens and image capturing device
WO2013132915A1 (en) Imaging lens and imaging device
JP2013024892A (en) Image pickup lens and image pickup apparatus
JP2012230233A (en) Imaging lens, imaging apparatus and portable terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757128

Country of ref document: EP

Kind code of ref document: A1