WO2015041123A1 - Imaging lens, imaging device, and portable terminal - Google Patents
Imaging lens, imaging device, and portable terminal Download PDFInfo
- Publication number
- WO2015041123A1 WO2015041123A1 PCT/JP2014/074011 JP2014074011W WO2015041123A1 WO 2015041123 A1 WO2015041123 A1 WO 2015041123A1 JP 2014074011 W JP2014074011 W JP 2014074011W WO 2015041123 A1 WO2015041123 A1 WO 2015041123A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- imaging
- imaging lens
- image
- conditional expression
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
Definitions
- the present invention relates to a small imaging lens, and an imaging device and a portable terminal incorporating the same, and more particularly to an imaging lens and an imaging device that are suitable for reducing the height of five lenses.
- a five-lens imaging lens As such a five-lens imaging lens, a first lens having positive refractive power in order from the object side, a second lens having negative refractive power with a convex surface facing the image side, and a third lens having negative refractive power.
- An imaging lens including a lens, a fourth lens having a positive refractive power, and a fifth lens having a negative refractive power is disclosed (for example, see Patent Documents 1 and 2).
- the imaging lens described in Patent Document 1 has a long back focus with respect to the entire length of the optical system, and as a result, it is difficult to say that the imaging lens can be sufficiently downsized. Further, the F value is as dark as about F2.8, and it cannot cope with the recent increase in the number of pixels. In addition, the imaging lens described in Patent Document 2 is difficult to say that aberration correction is sufficient as a whole, and the F value is as dark as about F2.4, so that performance is improved when the aperture is further increased. Difficult to achieve.
- the present invention has been made in view of the above-mentioned problems of the background art, and provides an imaging lens having a five-lens configuration that is smaller than a conventional type and has a small F-number in which various aberrations are well corrected and has a small F value. With the goal.
- an imaging lens according to the present invention is an imaging lens for forming a subject image on an imaging surface of an imaging device, and in order from the object side, a first lens having a positive refractive power;
- the second lens having a negative refractive power in the vicinity of the optical axis and having a concave surface facing the image side, a third lens, a fourth lens, and a fifth lens having a negative refractive power.
- all the lenses are formed of a plastic material
- the aperture stop is disposed on the object side of the third lens
- the sag amount on the image side surface of the third lens is a negative value at the peripheral portion.
- the image side surface of the fifth lens is aspheric and has an extreme value at a position other than the intersection with the optical axis, and the following conditional expression is satisfied. 0.55 ⁇ TTL / 2Y ⁇ 0.80 (1) 6.0 ⁇ 3- ⁇ 2 ⁇ 25.0 (2) However, TTL: distance on the optical axis from the object side surface of the first lens to the imaging surface 2Y: diagonal length of the imaging surface of the imaging device (for example, diagonal length of the rectangular effective pixel region of the imaging device) ⁇ 3: Abbe number of the third lens ⁇ 2: Abbe number of the second lens
- the basic configuration according to the present invention for obtaining a compact imaging lens with good aberration correction is a first lens having a positive refractive power, a negative refractive power near the optical axis, and a concave surface on the image side.
- the second lens, the third lens, the fourth lens, and the fifth lens having negative refractive power.
- a so-called telephoto type in which a positive lens group including a first lens, a second lens, a third lens, and a fourth lens is disposed in order from the object side, and a negative fifth lens is disposed on the image side of the positive lens group. This lens configuration is advantageous in reducing the overall length of the imaging lens.
- the number of surfaces having a diverging action can be increased to facilitate correction of Petzval sum, and good imaging performance up to the periphery of the screen can be achieved. It is possible to obtain a secured imaging lens.
- the exit pupil position of the imaging lens can be located closer to the object side, so that good telecentric characteristics can be obtained.
- the plastic lens can lower the press temperature, it is possible to suppress the wear of the molding die, and as a result, the number of replacements and maintenance times of the molding die can be reduced, and the cost can be reduced. Furthermore, since the plastic material is lightweight, the load on the actuator when the entire lens system is extended for focusing can be reduced.
- the image side surface of the second lens since the image side surface of the second lens has a concave shape, a relatively strong divergence surface can be arranged on the object side so as to increase the passage height of the light beam. This is advantageous for correction.
- the imaging lens by making the sag amount of the image side surface of the third lens a negative value in the peripheral portion, the shape of the image side surface of the third lens is the outlet with respect to the aperture stop in the same manner as the second lens. Therefore, various off-axis aberrations that occur on the image side surface of the third lens can be suppressed.
- the “sag amount” is the amount of displacement in the optical axis direction from the surface vertex on the optical axis at the height h from the optical axis of the optical surface.
- the sag amount takes a negative value at a certain height h means that the displacement amount of the surface at the height h is located closer to the object side than the point on the optical axis.
- the imaging lens by making the image side surface of the fifth lens disposed closest to the image side an aspherical surface, various aberrations at the periphery of the screen can be favorably corrected.
- the aspherical shape having an extreme value at a position other than the intersection with the optical axis makes it easy to ensure the telecentric characteristics of the image-side light beam.
- extreme value refers to a curve of the lens cross-sectional shape within the effective radius, and on an aspheric surface where the tangent or tangent plane of the aspherical vertex is a line segment or plane perpendicular to the optical axis. It is a point.
- conditional expression (1) is a conditional expression for achieving a small and lightweight imaging device and portable terminal.
- the total length of the imaging lens is set within the range of the conditional expression (1), it is possible to achieve a small and lightweight imaging device and portable terminal.
- the degree of freedom of the shape of the flange portion is higher than that of other glass materials.
- the positive first lens can be made thinner. As a result, it contributes to shortening of the entire length of the imaging lens. Therefore, in order to obtain a lens system that falls within the range of conditional expression (1), it is an important factor that all the lenses are made of a plastic material.
- the parallel plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of the image pickup device package is disposed between the most image side surface of the image pickup lens and the image side focal position.
- the part is assumed to be the air conversion distance and the TTL value is calculated.
- the image side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens.
- TTL / 2Y the range of the following formula is more desirable. 0.60 ⁇ TTL / 2Y ⁇ 0.75 (1) '
- the entire length of the imaging lens is set to a range that satisfies the conditional expression (1) while maintaining the telephoto type, the refractive power of the second lens becomes relatively weak, and chromatic aberration correction of the entire imaging lens system is achieved. Tend to be insufficient. Therefore, in the imaging lens, by setting the material of the second lens and the material of the third lens so as to satisfy the conditional expression (2), chromatic aberration correction, which tends to become insufficient with downsizing, can be improved. Will be able to do. For the value of ⁇ 3- ⁇ 2, the range of the following equation is more desirable. 6.0 ⁇ 3- ⁇ 2 ⁇ 23.0 (2) ′
- the imaging lens described above satisfies the following conditional expression. 29.0 ⁇ 3 ⁇ 48.0 (3)
- Conditional expression (3) is a conditional expression for satisfactorily correcting the chromatic aberration by appropriately setting the Abbe number of the third lens.
- the material of the second lens and the material of the third lens are combined so as to satisfy the above-mentioned conditional expression (2), and further, the material satisfying the conditional expression (3) is used for the third lens.
- the chromatic aberration of the entire imaging lens system can be corrected more satisfactorily.
- the range of the following formula is more desirable. 30.0 ⁇ ⁇ 3 ⁇ 46.0 (3) ′
- Conditional expression (4) is a conditional expression for satisfactorily correcting the chromatic aberration of the entire imaging lens system.
- conditional expression (4) exceeds the lower limit, chromatic aberrations such as axial chromatic aberration and lateral chromatic aberration can be corrected with good balance.
- conditional expression (4) is below the upper limit, it can be made of an easily available glass material.
- the range of the following equation is more desirable. 25.0 ⁇ 1- ⁇ 2 ⁇ 45.0 (4) ′
- Conditional expression (5) is a conditional expression for appropriately setting the radius of curvature of the side surface of the first lens object to appropriately shorten the entire length of the imaging lens and correct the aberration.
- the value of conditional expression (5) is below the upper limit, the refractive power of the object side surface of the first lens can be maintained moderately, and the combination principal point of the first lens and the second lens is arranged closer to the object side. And the overall length of the imaging lens can be shortened.
- the value of conditional expression (5) exceeds the lower limit, the refractive power of the object side surface of the first lens does not become excessively large, and higher-order spherical aberration and coma aberration that occur in the first lens are reduced. It can be kept small.
- the range of the following Formula is more desirable. 0.33 ⁇ r1 / f ⁇ 0.45 (5) ′
- Conditional expression (6) is a conditional expression for appropriately setting the focal length of the first lens to appropriately shorten the entire imaging lens and correct aberrations.
- the value of conditional expression (6) is less than the upper limit, the refractive power of the first lens can be maintained moderately, and the composite principal point from the first lens to the fourth lens can be arranged closer to the object side. The overall length of the imaging lens can be shortened.
- the value of conditional expression (6) exceeds the lower limit, the refractive power of the first lens does not become unnecessarily large, and high-order spherical aberration and coma generated in the first lens are suppressed to a small level. Can do.
- the range of the following Formula is more desirable. 0.65 ⁇ f1 / f ⁇ 0.85 (6) ′
- Conditional expression (7) is a conditional expression for appropriately setting the focal length of the second lens.
- the value of conditional expression (7) is less than the upper limit, the negative refractive power of the second lens does not become too strong, and coma and distortion occurring in the second lens can be suppressed to a low level. In addition, it is possible to suppress performance degradation when a manufacturing error occurs.
- the value of conditional expression (7) exceeds the lower limit, the negative refractive power of the second lens can be appropriately maintained, and chromatic aberration can be corrected well.
- the range of the following formula is more desirable. -1.65 ⁇ f2 / f ⁇ -0.95 (7) '
- the aperture stop is disposed closer to the object side than the second lens. Therefore, a better telecentric characteristic can be obtained compared with the case where the aperture stop is disposed between the third lens and the second lens.
- the optical device further includes an optical element having substantially no power.
- an imaging apparatus includes the imaging lens described above and an imaging element.
- the imaging lens of the present invention it is possible to obtain a small imaging device capable of obtaining an image in which various aberrations are favorably corrected at a wide angle.
- a mobile terminal according to the present invention includes the above-described imaging device.
- the mobile terminal according to the present invention includes an imaging device that is wide-angle, has a small F-number, is bright and is small, and has various aberrations corrected favorably.
- FIG. 3A and 3B are perspective views of the front side and the back side of the mobile terminal, respectively.
- 2 is a cross-sectional view of an imaging lens of Example 1.
- FIG. 5A to 5E are aberration diagrams of the imaging lens of Example 1.
- FIG. 6 is a cross-sectional view of an imaging lens of Example 2.
- FIG. 7A to 7E are aberration diagrams of the image pickup lens of Example 2.
- FIG. 6 is a cross-sectional view of an imaging lens of Example 3.
- FIG. 9A to 9E are aberration diagrams of the imaging lens of Example 3.
- FIG. 6 is a cross-sectional view of an imaging lens of Example 4.
- FIG. 11A to 11E are aberration diagrams of the imaging lens of Example 4.
- the imaging lens 10 illustrated in FIG. 1 has the same configuration as the imaging lens 11 of Example 1 described later.
- FIG. 1 is a cross-sectional view illustrating a camera module including an imaging lens according to an embodiment of the present invention.
- the camera module 50 includes an imaging lens 10 that forms a subject image, an imaging device 51 that detects a subject image formed by the imaging lens 10, and a wiring board 52 that holds the imaging device 51 from behind and has wiring and the like. And a lens barrel portion 54 having an opening OP for holding the imaging lens 10 and the like and allowing a light beam from the object side to enter.
- the imaging lens 10 has a function of forming a subject image on the imaging surface (projected surface) I of the imaging element 51.
- the camera module 50 is used by being incorporated in an imaging device to be described later.
- the imaging lens 10 forms a subject image on the imaging surface (projected surface) I of the image sensor 51, and in order from the object side, the first lens L1, the second lens L2, and the third lens L3. And a fourth lens L4 and a fifth lens L5.
- the image sensor 51 is a sensor chip made of a solid-state image sensor.
- the photoelectric conversion unit 51a of the image sensor 51 is composed of a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor), photoelectrically converts incident light for each RGB, and outputs an analog signal thereof.
- the wiring board 52 has a role of aligning and fixing the image sensor 51 to other members (for example, the lens barrel portion 54).
- the wiring board 52 can receive a voltage and a signal for driving the image pickup device 51 and the driving mechanism 55a from an external circuit, and can output a detection signal to the external circuit.
- a parallel plate F such as an infrared cut filter or a seal glass of the image sensor is disposed and fixed on the image pickup lens 10 side of the image sensor 51 by a holder member (not shown) so as to cover the image sensor 51 and the like.
- the lens barrel portion 54 houses and holds the imaging lens 10.
- the lens barrel portion 54 enables the focusing operation of the imaging lens 10 by moving any one or more of the lenses L1 to L5 constituting the imaging lens 10 along the optical axis AX.
- it has a drive mechanism 55a.
- the drive mechanism 55a reciprocates the specific lens or all the lenses along the optical axis AX.
- the drive mechanism 55a includes, for example, a voice coil motor and a guide.
- the drive mechanism 55a can be configured by a stepping motor or the like instead of the voice coil motor or the like.
- FIGS. 2, 3A, and 3B An example of a mobile phone or other mobile communication terminal 300 equipped with the camera module 50 illustrated in FIG. 1 will be described with reference to FIGS. 2, 3A, and 3B.
- the mobile communication terminal 300 is a smartphone-type mobile terminal, and includes a wireless communication unit 330 for realizing various information communication between the imaging apparatus 100 having the camera module 50 and an external system or the like via the antenna 331. It has. Although not shown, the mobile communication terminal 300 also includes an operation unit including a power switch and the like, a storage unit (ROM) that stores necessary data such as a system program, various processing programs, and a terminal ID.
- a wireless communication unit 330 for realizing various information communication between the imaging apparatus 100 having the camera module 50 and an external system or the like via the antenna 331. It has.
- the mobile communication terminal 300 also includes an operation unit including a power switch and the like, a storage unit (ROM) that stores necessary data such as a system program, various processing programs, and a terminal ID.
- ROM storage unit
- the imaging apparatus 100 includes an optical system driving unit 101, an imaging interface (I / F) 102, an image processing circuit (ISP) 103, a temporary storage unit (RAM) 104, a data storage unit (EEPROM) 105, CPU 106, display operation unit interface 107, auxiliary storage unit interface 108, display operation unit (LCD) 310, auxiliary storage unit (SD card, etc.) 320, and the like.
- the imaging interface 102, the image processing circuit 103, the temporary storage unit 104, the data storage unit 105, the CPU 106, the display operation unit interface 107, and the auxiliary storage unit interface 108 are the control unit 110 for driving the camera module 50 and the like.
- the control unit 110 for driving the camera module 50 and the like.
- the control unit 110 also includes a communication unit interface 109.
- the image processing circuit 103, the temporary storage unit 104, the data storage unit 105, and the CPU 106 have a role as an image processing unit 111 that processes an image signal output from the camera module 50.
- the optical system driving unit 101 controls the state of the imaging lens 10 by operating the driving mechanism 55a of the imaging lens 10 when performing focusing, exposure, and the like under the control of the CPU 106.
- the optical system driving unit 101 operates the driving mechanism 55a to appropriately move specific or all lenses in the imaging lens 10 along the optical axis AX, thereby causing the imaging lens 10 to perform a focusing operation.
- the imaging interface 102 is a part for delivering the image signal output from the imaging element 51 to the control unit 110.
- the image processing circuit 103 performs image processing on the image signal output from the image sensor 51.
- the image processing circuit 103 performs processing on the frame image constituting the image signal, for example, corresponding to a moving image.
- the image processing circuit 103 executes distortion correction processing on the image signal based on the lens correction data read from the data storage unit 105 in addition to normal image processing such as color correction, gradation correction, and zooming. .
- the temporary storage unit 104 is used as a work area for temporarily storing various processing programs executed by the control unit 110, data necessary for the execution, processing data, imaging data by the imaging apparatus 100, and the like.
- the data storage unit 105 stores lens correction data used for image processing. Specifically, in addition to data for color correction, gradation correction, etc., parameters for distortion correction are stored.
- the CPU 106 comprehensively controls each unit and executes a program corresponding to each process. Further, the CPU 106 performs various image processing such as color correction, gradation correction, and distortion correction on the signal before processing by the image processing circuit 103 based on the lens correction data read from the data storage unit 105. Alternatively, the image signal processed by the image processing circuit 103 can be subjected to the same processing as the image processing circuit 103, compression, or other image processing.
- the display operation unit interface 107 transfers the image signal output from the image processing circuit 103 or the CPU 106 to the display operation unit 310 and transfers the operation signal from the display operation unit 310 to the CPU 106.
- the auxiliary storage unit interface 108 outputs the moving image and the image data as a still image output from the image processing circuit 103 or the like to the auxiliary storage unit 320.
- the display operation unit 310 is a touch panel that displays data related to communication, captured images, and the like and accepts user operations.
- the auxiliary storage unit 320 is detachable and is a part that records and stores the image signal processed by the image processing unit 111.
- the photographing operation of the mobile communication terminal 300 including the imaging device 100 will be described.
- subject monitoring through image display
- image shooting execution are performed.
- an image of a subject obtained through the imaging lens 10 is formed on the imaging surface I (see FIG. 1) of the imaging element 51.
- the image sensor 51 is scanned and driven by an image sensor drive unit (not shown), and outputs one frame of a digital signal obtained by digitizing a photoelectric conversion output corresponding to an optical image formed at a fixed period.
- the digital signal is input to the image processing circuit 103 and the like, and an image signal (video signal) subjected to image processing is generated and output to the display operation unit 310 and the auxiliary storage unit 320.
- the image signal from the image sensor 51 or the image processing circuit 103 is temporarily stored in the temporary storage unit 104.
- the display operation unit 310 functions as a finder in monitoring and displays captured images in real time. In this state, focusing, exposure, and the like of the imaging lens 10 are set by driving the optical system driving unit 101 based on an operation input performed by the user via the display operation unit 310 at any time.
- still image data is captured when the user appropriately operates the display operation unit 310.
- One frame of image data (imaging data) stored in the temporary storage unit 104 is read and compressed in accordance with the operation content of the display operation unit 310.
- the compressed image data is recorded in the temporary storage unit 104 or the like via the control unit 110, for example.
- the image signal output from the imaging lens 10 is input to the control unit 110 via the imaging interface 102.
- the image signal to be displayed corresponds to a still image
- the image signal is stored in the temporary storage unit 104
- the CPU 106 reads the lens correction data from the data storage unit 105
- the image processing circuit 103 Various image processing is performed on the image signal based on the correction data.
- the image processing includes image processing for displaying on the display operation unit 310 and image processing for storing in the auxiliary storage unit 320.
- the image signal to be displayed corresponds to a moving image
- the image signal is input only to the image processing circuit 103, and the image processing circuit 103 reads the image signal based on the lens correction data read from the correction data.
- Various image processing is performed on the image.
- the image signal subjected to the image processing is displayed on the display operation unit 310 via the display operation unit interface 107. Further, the image signal subjected to image processing can be recorded in the auxiliary storage unit 320 via the auxiliary storage unit interface 108.
- the above-described imaging device 100 is an example of an imaging device suitable for the present invention, and the present invention is not limited to this.
- the image pickup apparatus equipped with the camera module 50 or the image pickup lens 10 is not limited to the one built in the smartphone type mobile communication terminal 300, but is built into a mobile phone, a PHS (Personal Handyphone System), or the like. Alternatively, it may be incorporated in a PDA (Personal Digital Assistant), a tablet personal computer, a mobile personal computer, a digital still camera, a video camera, or the like.
- PDA Personal Digital Assistant
- An imaging lens 10 shown in FIG. 1 includes, in order from the object side, an aperture stop S, a first lens L1 having a positive refractive power near the optical axis AX and a meniscus shape with a convex surface facing the object side, and an optical axis.
- all the lenses L1 to L5 are aspherical lenses.
- the sag amount of the image side surface S32 of the third lens L3 has a negative value in the peripheral portion.
- the image side surface S52 of the fifth lens L5 has an aspherical shape and has an extreme value at a position P other than the intersection with the optical axis AX (see FIG. 1).
- the first lens L1 is not limited to a meniscus shape having a convex surface facing the object side in the vicinity of the optical axis AX, and may be, for example, a convex flat shape or a biconvex shape in the vicinity of the optical axis AX.
- the second lens L2 is not limited to a biconcave lens in the vicinity of the optical axis AX.
- the second lens L2 may have a meniscus shape with a concave surface facing the image side in the vicinity of the optical axis AX.
- the aperture stop S is disposed on the object side surface S11 side of the first lens L1, but may be disposed on the object side with respect to the third lens L3.
- the imaging lens 10 satisfies the conditional expressions (1) and (2) already described.
- TTL is the distance on the optical axis AX from the object side surface S11 of the first lens L1 to the imaging surface I
- 2Y is the diagonal length of the imaging surface I of the imaging device 51 (the diagonal line of the rectangular effective pixel region of the imaging device 51).
- ⁇ 3 is the Abbe number of the third lens L3
- ⁇ 2 is the Abbe number of the second lens L2.
- the imaging lens 10 has a so-called telephoto type configuration in which a positive lens group including first to fourth lenses L1 to L4 is disposed, and a negative fifth lens L5 is disposed on the image side of the positive lens group. It has become.
- the telephoto type lens configuration is advantageous in reducing the overall length of the imaging lens 10.
- two or more (specifically, at least the second and fifth lenses L ⁇ b> 2 and L ⁇ b> 5) of the five-lens configuration are negative lenses, so that the surface having a diverging action is increased.
- the Petzval sum can be easily corrected, and good imaging performance can be secured up to the periphery of the screen.
- the exit pupil position of the imaging lens 10 can be located closer to the object side, so that good telecentric characteristics can be obtained. Become.
- all the lenses L1 to L5 are plastic lenses manufactured by injection molding, thereby configuring a small imaging lens to be combined with a recent imaging element 51 having a reduced imaging surface size. Even a lens with a small radius of curvature and outer diameter can be mass-produced at low cost. Further, by using lenses L1 to L5 as plastic lenses, it is possible to reduce costs by reducing the number of times the mold is replaced and the number of maintenance. Furthermore, since the plastic material is lightweight, the load on the actuator when the entire lens system is extended for focusing can be reduced.
- the image side surface S22 of the second lens L2 has a concave shape, a relatively strong divergence surface can be disposed closer to the object side with a higher light ray passing height. This is advantageous for correcting chromatic aberration.
- the shape of the image side surface S32 of the third lens L3 is made concentric with respect to the aperture stop S by setting the sag amount of the image side surface S32 of the third lens L3 to a negative value in the peripheral portion. Therefore, various off-axis aberrations that occur on the image side surface S32 of the third lens L3 can be suppressed.
- the image side surface S52 of the fifth lens L5 is aspherical, so that various aberrations at the periphery of the screen can be corrected satisfactorily. Furthermore, the aspherical shape having an extreme value at a position P other than the intersection with the optical axis AX makes it easy to ensure the telecentric characteristics of the image-side light beam.
- the “extreme value” is a non-linear value such that the tangent plane or tangent of the aspherical vertex is a plane or line segment perpendicular to the optical axis AX when considering the curve of the lens cross-sectional shape within the effective radius. A line or point on a sphere.
- conditional expression (1) is a conditional expression for achieving a small and lightweight imaging device and portable terminal.
- the total length of the imaging lens 10 is set within the range of the conditional expression (1), it is possible to achieve the small and lightweight imaging device 100 and the portable communication terminal 300.
- all the lenses L1 to L5 are formed of a plastic material and are easy to be thin, it contributes to shortening the overall length of the imaging lens 10.
- an optical low-pass filter, an infrared cut filter, an image sensor package seal glass, or the like is provided between the image side lens surface (image side surface S52 of the fifth lens L5) of the imaging lens 10 and the image side focal position.
- the parallel flat plate F is arranged, the TTL value is calculated after the parallel flat plate F portion is set as an air conversion distance.
- conditional expression (2) is a conditional expression for satisfactorily correcting chromatic aberration that tends to be insufficient with downsizing. If the entire length of the imaging lens 10 is set within a range that satisfies the conditional expression (1) while maintaining the telephoto type, the refractive power of the second lens L2 becomes weak, and chromatic aberration correction of the entire imaging lens 10 system is insufficient. There is a tendency to become. Therefore, by setting the materials of the first and second lenses L1 and L2 so as to satisfy the conditional expression (2), it is possible to satisfactorily correct chromatic aberration that tends to become insufficient as the size is reduced. Become.
- conditional expression (3) already described. 29.0 ⁇ 3 ⁇ 48.0 (3) Satisfied.
- conditional expression (4) in addition to the conditional expressions (1) and (2), the conditional expression (4) already described. 20.0 ⁇ 1- ⁇ 2 ⁇ 70.0 (4) Satisfied. Where ⁇ 1 is the Abbe number of the first lens L1.
- conditional expression (5) in addition to the conditional expressions (1) and (2), the conditional expression (5) already described. 0.30 ⁇ r1 / f ⁇ 0.50 (5) Satisfied.
- r1 is the radius of curvature of the object side surface S11 of the first lens L1
- f is the focal length of the entire imaging lens 10.
- conditional expression (6) in addition to the conditional expressions (1) and (2), the conditional expression (6) already described. 0.60 ⁇ f1 / f ⁇ 0.90 (6) Satisfied.
- f1 is the focal length of the first lens L1.
- conditional expression (7) in addition to the conditional expressions (1) and (2), the conditional expression (7) already described. ⁇ 1.70 ⁇ f2 / f ⁇ 0.90 (7) Satisfied.
- f2 is the focal length of the second lens.
- imaging lens 10 of the embodiment may further include an optical element having substantially no power.
- f Focal length of the entire imaging lens system
- fB Back focus
- F F value 2Y: Diagonal length of the imaging surface of the imaging device
- ENTP Entrance pupil position (distance from the first surface to the entrance pupil position)
- EXTP exit pupil position (distance from imaging surface to exit pupil position)
- H1 Front principal point position (distance from first surface to front principal point position)
- H2 Rear principal point position (distance from the final surface to the rear principal point position)
- R radius of curvature
- D axial distance
- Nd refractive index ⁇ d of lens material with respect to d-line: Abbe number of lens material
- the surface described with “*” after each surface number has an aspherical shape.
- Equation 1 The shape of the aspherical surface is expressed by the following “Equation 1” with the vertex of the surface as the origin, the X axis in the direction of the optical axis AX, and the height in the direction perpendicular to the optical axis AX as h.
- Ai i-order aspheric coefficient
- R radius of curvature
- K conic constant
- Example 1 The lens surface data of Example 1 is shown in Table 1 below.
- infinity is represented as “infinity” and the aperture stop is represented as “STOP”.
- STOP aperture stop
- Table 1 Surface number R (mm) D (mm) Nd ⁇ d Effective radius (mm) 1 (STOP) infinity -0.214 0.81 2 * 1.283 0.490 1.54470 56.2 0.81 3 * 17.741 0.080 0.75 4 * -61.587 0.172 1.63470 23.9 0.75 5 * 2.526 0.291 0.77 6 * 5.775 0.299 1.58300 30.0 0.87 7 * infinity 0.732 0.97 8 * -6.132 0.395 1.54470 56.2 1.33 9 * -1.328 0.463 1.60 10 * -1.670 0.278 1.54470 56.2 2.29 11 * 2.564 0.400 2.46 12 infinity 0.110 1.51630 64.1 2.91 13 infinity 2.94
- the aspheric coefficients of the lens surfaces of Example 1 are shown in Table 2 below. In the following it (including lens data in Tables), and represents an exponent of 10 (for example, 2.5 ⁇ 10 -02) with E (e.g. 2.5E-02).
- Example 1 The single lens data of Example 1 is shown in Table 3 below. [Table 3] Lens Start surface Focal length (mm) 1 2 2.512 2 4 -3.820 3 6 9.906 4 8 3.023 5 10 -1.815
- FIG. 4 is a cross-sectional view of the imaging lens 11 and the like of the first embodiment.
- the imaging lens 11 has, in order from the object side, a first lens L1 having a positive refractive power near the optical axis AX and a meniscus shape with a convex surface facing the object side, and a negative refractive power near the optical axis AX.
- a biconcave second lens L2 that is close to a plano-concave, a convex third lens L3 having a positive refractive power near the optical axis AX and having a convex surface facing the object side, and a positive refraction near the optical axis AX.
- All the lenses L1 to L5 are made of a plastic material.
- An aperture stop S is disposed on the image side from the object side vertex of the first lens L1 and on the object side from the periphery of the object side surface.
- a parallel plate F is disposed between the light exit surface of the fifth lens L5 and the imaging surface (image surface) I.
- the parallel plate F is assumed to be an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, and the like (the same applies to the following examples).
- FIGS. 5A to 5C show the spherical aberration, astigmatism, and distortion of the imaging lens 11 of Example 1, and FIGS. 5D and 5E show the meridional coma aberration of the imaging lens 11.
- FIG. 5A to 5C show the spherical aberration, astigmatism, and distortion of the imaging lens 11 of Example 1
- FIGS. 5D and 5E show the meridional coma aberration of the imaging lens 11.
- Example 2 The lens surface data of Example 2 is shown in Table 4 below.
- Table 4 Surface number R (mm) D (mm) Nd ⁇ d Effective radius (mm) 1 (STOP) infinity -0.218 0.81 2 * 1.269 0.455 1.54470 56.2 0.81 3 * 5.514 0.106 0.76 4 * 8.144 0.170 1.63470 23.9 0.76 5 * 2.469 0.303 0.77 6 * 8.458 0.321 1.58300 30.0 0.88 7 * infinity 0.631 0.98 8 * -5.720 0.364 1.54470 56.2 1.22 9 * -1.276 0.475 1.45 10 * -1.751 0.270 1.54470 56.2 2.20 11 * 2.832 0.400 2.38 12 infinity 0.110 1.51630 64.1 3.00 13 infinity 3.00
- Example 2 The single lens data of Example 2 is shown in Table 6 below. [Table 6] Lens Start surface Focal length (mm) 1 2 2.915 2 4 -5.647 3 6 14.508 4 8 2.932 5 10 -1.946
- FIG. 6 is a cross-sectional view of the imaging lens 12 and the like of the second embodiment.
- the imaging lens 12 has, in order from the object side, a first lens L1 having a positive refractive power near the optical axis AX and a meniscus shape with a convex surface facing the object side, and a negative refractive power near the optical axis AX.
- An aperture stop S is disposed on the image side from the object side vertex of the first lens L1 and on the object side from the periphery of the object side surface.
- a parallel plate F is disposed between the light exit surface of the fifth lens L5 and the imaging surface (image surface) I.
- FIGS. 7A to 7C show the spherical aberration, astigmatism, and distortion of the imaging lens 12 of Example 2, and FIGS. 7D and 7E show the meridional coma aberration of the imaging lens 12.
- FIG. 7A to 7C show the spherical aberration, astigmatism, and distortion of the imaging lens 12 of Example 2, and FIGS. 7D and 7E show the meridional coma aberration of the imaging lens 12.
- FIG. 7A to 7C show the spherical aberration, astigmatism, and distortion of the imaging lens 12 of Example 2
- FIGS. 7D and 7E show the meridional coma aberration of the imaging lens 12.
- Example 3 The lens surface data of Example 3 is shown in Table 7 below.
- Table 7 Surface number R (mm) D (mm) Nd ⁇ d Effective radius (mm) 1 (STOP) infinity -0.177 0.80 2 * 1.473 0.448 1.54470 56.2 0.82 3 * -39.273 0.094 0.83 4 * 46.173 0.200 1.63470 23.9 0.84 5 * 2.369 0.339 0.86 6 * 7.315 0.466 1.54000 45.0 0.97 7 * infinity 0.620 1.12 8 * -7.562 0.520 1.54470 56.2 1.48 9 * -1.031 0.398 1.69 10 * -1.531 0.290 1.54470 56.2 2.34 11 * 2.098 0.500 2.52 12 infinity 0.110 1.51630 64.1 3.00 13 infinity 3.00
- Example 3 The single lens data of Example 3 is shown in Table 9 below. [Table 9] Lens Start surface Focal length (mm) 1 2 2.617 2 4 -3.942 3 6 13.547 4 8 2.132 5 10 -1.581
- FIG. 8 is a cross-sectional view of the imaging lens 13 and the like of the third embodiment.
- the imaging lens 13 includes, in order from the object side, a biconvex first lens L1 that has a positive refractive power near the optical axis AX and is nearly convex, and a negative refractive power near the optical axis AX.
- a second lens L2 having a meniscus shape close to a plano-concave with a convex surface facing, a convex third lens L3 having a positive refractive power near the optical axis AX and a convex surface facing the object side, and the vicinity of the optical axis AX
- a fourth lens L4 having a meniscus shape having a positive refractive power and a convex surface facing the image side
- a biconcave fifth lens L5 having a negative refractive power in the vicinity of the optical axis AX. All the lenses L1 to L5 are made of a plastic material.
- An aperture stop S is disposed on the image side from the object side vertex of the first lens L1 and on the object side from the periphery of the object side surface.
- a parallel plate F is disposed between the light exit surface of the fifth lens L5 and the imaging surface (image surface) I.
- FIGS. 9A to 9C show spherical aberration, astigmatism, and distortion of the imaging lens 13 of Example 3, and FIGS. 9D and 9E show meridional coma aberration of the imaging lens 13.
- FIG. 9A to 9C show spherical aberration, astigmatism, and distortion of the imaging lens 13 of Example 3, and FIGS. 9D and 9E show meridional coma aberration of the imaging lens 13.
- FIG. 9A to 9C show spherical aberration, astigmatism, and distortion of the imaging lens 13 of Example 3
- FIGS. 9D and 9E show meridional coma aberration of the imaging lens 13.
- Example 4 The lens surface data of Example 4 is shown in Table 10 below.
- Table 10 Surface number R (mm) D (mm) Nd ⁇ d Effective radius (mm) 1 * 1.417 0.491 1.54470 56.2 0.90 2 * -159.523 0.020 0.85 3 (STOP) infinity 0.020 0.85 4 * 11.065 0.170 1.64250 22.5 0.85 5 * 2.148 0.450 0.85 6 * 11.347 0.351 1.54000 45.0 0.95 7 * infinity 0.467 1.08 8 * -3.439 0.401 1.54470 56.2 1.24 9 * -1.221 0.646 1.50 10 * -4.598 0.288 1.54470 56.2 2.29 11 * 1.744 0.300 2.45 12 infinity 0.210 1.51630 64.1 2.85 13 infinity 2.90
- Example 4 The single lens data of Example 4 is shown in Table 12 below. [Table 12] Lens Start surface Focal length (mm) 1 1 2.582 2 4 -4.180 3 6 21.013 4 8 3.267 5 10 -2.285
- FIG. 10 is a cross-sectional view of the imaging lens 14 and the like of the fourth embodiment.
- the imaging lens 14 has a biconvex first lens L1 having a positive refractive power in the vicinity of the optical axis AX and close to a convex plane, and a negative refractive power in the vicinity of the optical axis AX.
- An aperture stop S is disposed between the first lens L1 and the second lens L2.
- a parallel plate F is disposed between the light exit surface of the fifth lens L5 and the imaging surface (image surface) I.
- FIGS. 11A to 11C show spherical aberration, astigmatism, and distortion of the imaging lens 14 of Example 4, and FIGS. 11D and 11E show meridional coma aberration of the imaging lens 14.
- FIG. 11A to 11C show spherical aberration, astigmatism, and distortion of the imaging lens 14 of Example 4, and FIGS. 11D and 11E show meridional coma aberration of the imaging lens 14.
- FIG. 11A to 11C show spherical aberration, astigmatism, and distortion of the imaging lens 14 of Example 4, and FIGS. 11D and 11E show meridional coma aberration of the imaging lens 14.
- FIG. 11A to 11C show spherical aberration, astigmatism, and distortion of the imaging lens 14 of Example 4
- FIGS. 11D and 11E show meridional coma aberration of the imaging lens 14.
- FIG. 11A to 11C show spherical aberration, astigmatism, and distortion of the imaging lens 14
- Table 13 summarizes the values of Examples 1 to 4 corresponding to the conditional expressions (1) to (7). [Table 13]
- the third lens L3 and the fourth lens L4 have a positive refractive power, but as described above, the composition of the first lens L1 to the fourth lens L4 is positive. If the refractive power is satisfied, two or more of the five-lens configuration, that is, the third lens L3 and / or the fourth lens L4 may be configured as a negative lens in order to facilitate correction of the Petzval sum. In consideration of ease of correction of chromatic aberration, either the third lens L3 or the fourth lens L4 may be a negative lens.
- a reflow process (heating process) is performed on a substrate on which a solder has been potted in advance, with an IC chip and other electronic components and optical elements placed on the board.
- a technique has been proposed in which an electronic component and an optical element are simultaneously mounted on a substrate by melting the substrate.
- it is necessary to heat the optical element together with the electronic components to about 200 to 260 ° C. Under such a high temperature, the lens using the thermoplastic resin is heated. There is a problem that the optical performance deteriorates due to deformation or discoloration.
- the imaging lenses 11 to 14 are effective for the reflow process, are easier to manufacture than the glass mold lens, are inexpensive, and can achieve both low cost and mass productivity of the imaging device incorporating the imaging lens. Therefore, the lenses L1 to L5 of this embodiment may be formed using the energy curable resin.
- the energy curable resin generally refers to a thermosetting resin, an ultraviolet curable resin, or the like.
- the principal ray incident angle of the light beam incident on the imaging surface I of the image sensor 51 is not necessarily designed to be sufficiently small in the peripheral portion of the imaging surface I.
- convex surface in the vicinity of the optical axis means a point (for example, 0.05 mm) away from the optical axis AX regardless of the numerical value of the function defining the shape of the surface. If the sag amount of the lens surface is the object side surface of the lens, it means a surface having a positive value and a negative value on the image side surface. Conversely, “convex surface in the vicinity of the optical axis” means a negative value if the sag amount of the surface at a point (for example, 0.05 mm) away from the optical axis AX by a minute amount is an object side surface of the lens. Then, it means a surface that takes a positive value.
- the discontinuous shape is The sag amount is calculated by a function of the original optical surface without considering it. If the approximate curvature radius when the shape measurement value near the center of the lens (specifically, the central region within 10% of the lens outer diameter) is fitted by the least square method is positive, the optical axis AX It can be regarded as a convex surface in the vicinity.
- a curvature radius that takes into account the secondary aspherical coefficient in the reference curvature radius of the aspherical definition formula can be regarded as a paraxial curvature radius (for example, reference literature).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Provided is an imaging lens that has a compact size while comprising a five-lens configuration that has a bright F value and in which various aberrations are satisfactorily corrected. The imaging lens substantially comprises a first lens (L1) that has a positive refractive power, a second lens (L2) that has a negative refractive power and in which a concave surface thereof faces the image side, a third lens (L3), a fourth lens (L4), and a fifth lens (L5) that has a negative refractive power. An imaging lens (10) fulfills the conditional expressions 0.55 < TTL/2Y < 0.80 and 6.0 < ν3 - ν2 < 25.0, wherein TTL is the distance on the optical axis (AX) from the object-side surface (S11) of the first lens (L1) to the imaging surface (I), 2Y is the diagonal length of the imaging surface (I) of an imaging element (51), ν3 is the Abbe number of the third lens (L3), and ν2 is the Abbe number of the second lens (L2).
Description
本発明は、小型の撮像レンズ、並びにこれを組み込んだ撮像装置及び携帯端末に関し、特に、5枚のレンズからなる低背化に好適な撮像レンズ及び撮像装置等に関する。
The present invention relates to a small imaging lens, and an imaging device and a portable terminal incorporating the same, and more particularly to an imaging lens and an imaging device that are suitable for reducing the height of five lenses.
近年、CCD(Charge Coupled Device)型イメージセンサー或いはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサー等の固体撮像素子を用いた撮像素子の高性能化及び小型化に伴い、撮像装置を備えた携帯電話や携帯情報端末が普及しつつある。また、これらの携帯機器に設けられた撮像装置に搭載される撮像レンズに対しては、さらなる小型化及び高性能化への要求が高まっている。このような用途の撮像レンズとしては、3枚或いは4枚構成のレンズに比べ高性能化が可能であると言うことで、5枚構成の撮像レンズが提案されている。
In recent years, with the improvement in performance and miniaturization of solid-state imaging devices such as CCD (Charge-Coupled Device) type image sensors or CMOS (Complementary Metal-Oxide Semiconductor) type image sensors, Portable information terminals are becoming popular. Further, there is an increasing demand for further downsizing and higher performance of imaging lenses mounted on imaging devices provided in these portable devices. As an imaging lens for such an application, an imaging lens having a five-lens configuration has been proposed because it can be improved in performance as compared with a lens having three or four lenses.
このような5枚構成の撮像レンズとして、物体側より順に正の屈折力を有する第1レンズ、像側に凸面を向けた負の屈折力を有する第2レンズ、負の屈折力を有する第3レンズ、正の屈折力を有する第4レンズ、及び負の屈折力を有する第5レンズで構成された撮像レンズが開示されている(例えば特許文献1、2参照)。
As such a five-lens imaging lens, a first lens having positive refractive power in order from the object side, a second lens having negative refractive power with a convex surface facing the image side, and a third lens having negative refractive power. An imaging lens including a lens, a fourth lens having a positive refractive power, and a fifth lens having a negative refractive power is disclosed (for example, see Patent Documents 1 and 2).
しかしながら、上記特許文献1に記載の撮像レンズは、光学系全長に対しバックフォーカスが長く、結果として撮像レンズの十分な小型化が達成できているとはいい難い。さらに、F値もF2.8程度と暗く、近年の高画素化への対応もできていない。
また、上記特許文献2に記載の撮像レンズは、全体的に収差補正が十分であるとはいい難く、F値もF2.4程度と暗く、さらなる大口径化を行った際に高性能化を達成するのが難しい。 However, the imaging lens described inPatent Document 1 has a long back focus with respect to the entire length of the optical system, and as a result, it is difficult to say that the imaging lens can be sufficiently downsized. Further, the F value is as dark as about F2.8, and it cannot cope with the recent increase in the number of pixels.
In addition, the imaging lens described inPatent Document 2 is difficult to say that aberration correction is sufficient as a whole, and the F value is as dark as about F2.4, so that performance is improved when the aperture is further increased. Difficult to achieve.
また、上記特許文献2に記載の撮像レンズは、全体的に収差補正が十分であるとはいい難く、F値もF2.4程度と暗く、さらなる大口径化を行った際に高性能化を達成するのが難しい。 However, the imaging lens described in
In addition, the imaging lens described in
本発明は、上記背景技術の問題点に鑑みてなされたものであり、従来タイプより小型でありながらも諸収差が良好に補正されたF値が小さく明るい5枚構成の撮像レンズを提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the background art, and provides an imaging lens having a five-lens configuration that is smaller than a conventional type and has a small F-number in which various aberrations are well corrected and has a small F value. With the goal.
上記課題を達成するため、本発明に係る撮像レンズは、撮像素子の撮像面に被写体像を結像させるための撮像レンズであって、物体側より順に、正の屈折力を有する第1レンズと、光軸近傍で負の屈折力を有し像側に凹面を向けた第2レンズと、第3レンズと、第4レンズと、負の屈折力を有する第5レンズとから実質的になる。さらに、本発明に係る撮像レンズは、全てのレンズがプラスチック材料から形成され、第3レンズよりも物体側に開口絞りが配置され、第3レンズの像側面のサグ量が周辺部で負の値となっており、第5レンズの像側面が非球面形状であり光軸との交点以外の位置に極値を有し、以下の条件式を満足する。
0.55<TTL/2Y<0.80 … (1)
6.0<ν3-ν2<25.0 … (2)
ただし、
TTL:第1レンズの物体側面から撮像面までの光軸上の距離
2Y:撮像素子の撮像面の対角線長(例えば撮像素子の矩形実効画素領域の対角線長)
ν3:第3レンズのアッベ数
ν2:第2レンズのアッベ数 In order to achieve the above object, an imaging lens according to the present invention is an imaging lens for forming a subject image on an imaging surface of an imaging device, and in order from the object side, a first lens having a positive refractive power; The second lens having a negative refractive power in the vicinity of the optical axis and having a concave surface facing the image side, a third lens, a fourth lens, and a fifth lens having a negative refractive power. Furthermore, in the imaging lens according to the present invention, all the lenses are formed of a plastic material, the aperture stop is disposed on the object side of the third lens, and the sag amount on the image side surface of the third lens is a negative value at the peripheral portion. The image side surface of the fifth lens is aspheric and has an extreme value at a position other than the intersection with the optical axis, and the following conditional expression is satisfied.
0.55 <TTL / 2Y <0.80 (1)
6.0 <ν3-ν2 <25.0 (2)
However,
TTL: distance on the optical axis from the object side surface of the first lens to the imaging surface 2Y: diagonal length of the imaging surface of the imaging device (for example, diagonal length of the rectangular effective pixel region of the imaging device)
ν3: Abbe number of the third lens ν2: Abbe number of the second lens
0.55<TTL/2Y<0.80 … (1)
6.0<ν3-ν2<25.0 … (2)
ただし、
TTL:第1レンズの物体側面から撮像面までの光軸上の距離
2Y:撮像素子の撮像面の対角線長(例えば撮像素子の矩形実効画素領域の対角線長)
ν3:第3レンズのアッベ数
ν2:第2レンズのアッベ数 In order to achieve the above object, an imaging lens according to the present invention is an imaging lens for forming a subject image on an imaging surface of an imaging device, and in order from the object side, a first lens having a positive refractive power; The second lens having a negative refractive power in the vicinity of the optical axis and having a concave surface facing the image side, a third lens, a fourth lens, and a fifth lens having a negative refractive power. Furthermore, in the imaging lens according to the present invention, all the lenses are formed of a plastic material, the aperture stop is disposed on the object side of the third lens, and the sag amount on the image side surface of the third lens is a negative value at the peripheral portion. The image side surface of the fifth lens is aspheric and has an extreme value at a position other than the intersection with the optical axis, and the following conditional expression is satisfied.
0.55 <TTL / 2Y <0.80 (1)
6.0 <ν3-ν2 <25.0 (2)
However,
TTL: distance on the optical axis from the object side surface of the first lens to the imaging surface 2Y: diagonal length of the imaging surface of the imaging device (for example, diagonal length of the rectangular effective pixel region of the imaging device)
ν3: Abbe number of the third lens ν2: Abbe number of the second lens
小型で収差の良好に補正された撮像レンズを得るための、本発明に係る基本構成は、正の屈折力を有する第1レンズ、光軸近傍で負の屈折力を有し像側に凹面を向けた第2レンズ、第3レンズ、第4レンズ、及び負の屈折力を有する第5レンズからなるというものである。物体側より順に、第1レンズ、第2レンズ、第3レンズ及び第4レンズからなる正レンズ群を配置し、この正レンズ群の像側に負の第5レンズを配置する、いわゆるテレフォトタイプのこのレンズ構成は、撮像レンズ全長の小型化には有利な構成である。
The basic configuration according to the present invention for obtaining a compact imaging lens with good aberration correction is a first lens having a positive refractive power, a negative refractive power near the optical axis, and a concave surface on the image side. The second lens, the third lens, the fourth lens, and the fifth lens having negative refractive power. A so-called telephoto type in which a positive lens group including a first lens, a second lens, a third lens, and a fourth lens is disposed in order from the object side, and a negative fifth lens is disposed on the image side of the positive lens group. This lens configuration is advantageous in reducing the overall length of the imaging lens.
また、上記撮像レンズにおいて、5枚構成のうち2枚以上を負レンズとすることで、発散作用を有する面を多くしてペッツバール和の補正を容易とし、画面周辺部まで良好な結像性能を確保した撮像レンズを得ることが可能となる。
Further, in the above imaging lens, by using two or more of the five lens elements as negative lenses, the number of surfaces having a diverging action can be increased to facilitate correction of Petzval sum, and good imaging performance up to the periphery of the screen can be achieved. It is possible to obtain a secured imaging lens.
さらに、開口絞りを第3レンズよりも物体側に配置することによって、撮像レンズの射出瞳位置をより物体側に配置することができるので、良好なテレセントリック特性を得ることができるようになる。
Furthermore, by disposing the aperture stop closer to the object side than the third lens, the exit pupil position of the imaging lens can be located closer to the object side, so that good telecentric characteristics can be obtained.
近年では、撮像装置全体の小型化を目的とし、同じ画素数の固体撮像素子であっても、画素ピッチが小さく、結果として撮像面サイズの小さいものが開発されている。このような撮像面サイズの小さい固体撮像素子向けの撮像レンズは、全系の焦点距離を比較的短くする必要があるため、各レンズの曲率半径や外径がかなり小さくなってしまう。従って、手間のかかる研磨加工により製造するガラスレンズと比較すれば、全てのレンズを射出成形により製造されるプラスチックレンズで構成することにより、曲率半径や外径の小さなレンズであっても安価に大量生産が可能となる。また、プラスチックレンズはプレス温度を低くできることから、成形金型の損耗を抑えることができ、その結果、成形金型の交換回数やメンテナンス回数を減少させ、コスト低減を図ることができる。さらに、プラスチック材料は軽量であるため、フォーカシングのために例えばレンズ系全体を繰り出す際のアクチュエーターへの負荷を軽減させることができるようになる。
In recent years, for the purpose of downsizing the entire imaging apparatus, even a solid-state imaging device having the same number of pixels has been developed with a small pixel pitch and consequently a small imaging surface size. In such an imaging lens for a solid-state imaging device having a small imaging surface size, it is necessary to make the focal length of the entire system relatively short, so that the curvature radius and the outer diameter of each lens are considerably reduced. Therefore, when compared with glass lenses manufactured by time-consuming polishing, all lenses are made of plastic lenses manufactured by injection molding, so that even lenses with small curvature radii and outer diameters can be manufactured in large quantities at low cost. Production becomes possible. In addition, since the plastic lens can lower the press temperature, it is possible to suppress the wear of the molding die, and as a result, the number of replacements and maintenance times of the molding die can be reduced, and the cost can be reduced. Furthermore, since the plastic material is lightweight, the load on the actuator when the entire lens system is extended for focusing can be reduced.
上記撮像レンズにおいて、第2レンズの像側面を凹面形状とすることで、比較的強い発散面を光線の通過高さが高くなるようにより物体側に配置することができるため、像面湾曲や色収差の補正に有利となる。
上記撮像レンズにおいて、第3レンズの像側面のサグ量を周辺部で負の値となるようにすることで、第2レンズと同様に第3レンズの像側面の形状を開口絞りに対してコンセントリックにすることができるため、第3レンズの像側面で発生する軸外諸収差を抑制することができる。ここで、「サグ量」とは、光学面の光軸からの高さhにおける光軸上の面頂点からの光軸方向における変位量のことである。サグ量がある高さhで負の値を取るということは、高さhでの面の変位量が光軸上の点よりも物体側に位置していることを意味している。
上記撮像レンズにおいて、最も像側に配置された第5レンズの像側面を非球面とすることで、画面周辺部での諸収差を良好に補正することができる。さらに、光軸との交点以外の位置に極値を持つ非球面形状とすることで、像側光束のテレセントリック特性を確保しやすくなる。ここで、「極値」とは、有効半径内でのレンズ断面形状の曲線を考えて、非球面頂点の接線又は接平面が光軸と垂直な線分又は平面となるような非球面上の点のことである。 In the imaging lens, since the image side surface of the second lens has a concave shape, a relatively strong divergence surface can be arranged on the object side so as to increase the passage height of the light beam. This is advantageous for correction.
In the imaging lens, by making the sag amount of the image side surface of the third lens a negative value in the peripheral portion, the shape of the image side surface of the third lens is the outlet with respect to the aperture stop in the same manner as the second lens. Therefore, various off-axis aberrations that occur on the image side surface of the third lens can be suppressed. Here, the “sag amount” is the amount of displacement in the optical axis direction from the surface vertex on the optical axis at the height h from the optical axis of the optical surface. The fact that the sag amount takes a negative value at a certain height h means that the displacement amount of the surface at the height h is located closer to the object side than the point on the optical axis.
In the imaging lens, by making the image side surface of the fifth lens disposed closest to the image side an aspherical surface, various aberrations at the periphery of the screen can be favorably corrected. Furthermore, the aspherical shape having an extreme value at a position other than the intersection with the optical axis makes it easy to ensure the telecentric characteristics of the image-side light beam. Here, “extreme value” refers to a curve of the lens cross-sectional shape within the effective radius, and on an aspheric surface where the tangent or tangent plane of the aspherical vertex is a line segment or plane perpendicular to the optical axis. It is a point.
上記撮像レンズにおいて、第3レンズの像側面のサグ量を周辺部で負の値となるようにすることで、第2レンズと同様に第3レンズの像側面の形状を開口絞りに対してコンセントリックにすることができるため、第3レンズの像側面で発生する軸外諸収差を抑制することができる。ここで、「サグ量」とは、光学面の光軸からの高さhにおける光軸上の面頂点からの光軸方向における変位量のことである。サグ量がある高さhで負の値を取るということは、高さhでの面の変位量が光軸上の点よりも物体側に位置していることを意味している。
上記撮像レンズにおいて、最も像側に配置された第5レンズの像側面を非球面とすることで、画面周辺部での諸収差を良好に補正することができる。さらに、光軸との交点以外の位置に極値を持つ非球面形状とすることで、像側光束のテレセントリック特性を確保しやすくなる。ここで、「極値」とは、有効半径内でのレンズ断面形状の曲線を考えて、非球面頂点の接線又は接平面が光軸と垂直な線分又は平面となるような非球面上の点のことである。 In the imaging lens, since the image side surface of the second lens has a concave shape, a relatively strong divergence surface can be arranged on the object side so as to increase the passage height of the light beam. This is advantageous for correction.
In the imaging lens, by making the sag amount of the image side surface of the third lens a negative value in the peripheral portion, the shape of the image side surface of the third lens is the outlet with respect to the aperture stop in the same manner as the second lens. Therefore, various off-axis aberrations that occur on the image side surface of the third lens can be suppressed. Here, the “sag amount” is the amount of displacement in the optical axis direction from the surface vertex on the optical axis at the height h from the optical axis of the optical surface. The fact that the sag amount takes a negative value at a certain height h means that the displacement amount of the surface at the height h is located closer to the object side than the point on the optical axis.
In the imaging lens, by making the image side surface of the fifth lens disposed closest to the image side an aspherical surface, various aberrations at the periphery of the screen can be favorably corrected. Furthermore, the aspherical shape having an extreme value at a position other than the intersection with the optical axis makes it easy to ensure the telecentric characteristics of the image-side light beam. Here, “extreme value” refers to a curve of the lens cross-sectional shape within the effective radius, and on an aspheric surface where the tangent or tangent plane of the aspherical vertex is a line segment or plane perpendicular to the optical axis. It is a point.
上記撮像レンズにおいて、条件式(1)は、小型軽量な撮像装置及び携帯端末を達成するための条件式である。
撮像レンズ全長を条件式(1)の範囲に設定することで、小型軽量な撮像装置、携帯端末を達成することができるようになる。本撮像レンズを構成するレンズは全てプラスチック材料で形成されるため、その他のガラス材料のレンズに比べ、フランジ部の形状自由度が高く、例えば正の第1レンズ等をより薄肉とすることができ、結果として撮像レンズ全長の短縮に寄与する。したがって、条件式(1)の範囲となるようなレンズ系を得るためには、全てのレンズがプラスチック材料で構成されていることは重要な要素である。
なお、撮像レンズの最も像側の面と像側焦点位置との間に、光学的ローパスフィルター、赤外線カットフィルター、又は撮像素子パッケージのシールガラス等の平行平板が配置される場合には、平行平板部分は空気換算距離としたうえで上記TTLの値を計算するものとする。ここで、像側焦点とは、撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。
なお、TTL/2Yの値については、下式の範囲がより望ましい。
0.60<TTL/2Y<0.75 … (1)' In the imaging lens, conditional expression (1) is a conditional expression for achieving a small and lightweight imaging device and portable terminal.
By setting the total length of the imaging lens within the range of the conditional expression (1), it is possible to achieve a small and lightweight imaging device and portable terminal. Since all the lenses constituting this imaging lens are made of a plastic material, the degree of freedom of the shape of the flange portion is higher than that of other glass materials. For example, the positive first lens can be made thinner. As a result, it contributes to shortening of the entire length of the imaging lens. Therefore, in order to obtain a lens system that falls within the range of conditional expression (1), it is an important factor that all the lenses are made of a plastic material.
When a parallel plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of the image pickup device package is disposed between the most image side surface of the image pickup lens and the image side focal position, the parallel plate is used. The part is assumed to be the air conversion distance and the TTL value is calculated. Here, the image side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens.
In addition, about the value of TTL / 2Y, the range of the following formula is more desirable.
0.60 <TTL / 2Y <0.75 (1) '
撮像レンズ全長を条件式(1)の範囲に設定することで、小型軽量な撮像装置、携帯端末を達成することができるようになる。本撮像レンズを構成するレンズは全てプラスチック材料で形成されるため、その他のガラス材料のレンズに比べ、フランジ部の形状自由度が高く、例えば正の第1レンズ等をより薄肉とすることができ、結果として撮像レンズ全長の短縮に寄与する。したがって、条件式(1)の範囲となるようなレンズ系を得るためには、全てのレンズがプラスチック材料で構成されていることは重要な要素である。
なお、撮像レンズの最も像側の面と像側焦点位置との間に、光学的ローパスフィルター、赤外線カットフィルター、又は撮像素子パッケージのシールガラス等の平行平板が配置される場合には、平行平板部分は空気換算距離としたうえで上記TTLの値を計算するものとする。ここで、像側焦点とは、撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。
なお、TTL/2Yの値については、下式の範囲がより望ましい。
0.60<TTL/2Y<0.75 … (1)' In the imaging lens, conditional expression (1) is a conditional expression for achieving a small and lightweight imaging device and portable terminal.
By setting the total length of the imaging lens within the range of the conditional expression (1), it is possible to achieve a small and lightweight imaging device and portable terminal. Since all the lenses constituting this imaging lens are made of a plastic material, the degree of freedom of the shape of the flange portion is higher than that of other glass materials. For example, the positive first lens can be made thinner. As a result, it contributes to shortening of the entire length of the imaging lens. Therefore, in order to obtain a lens system that falls within the range of conditional expression (1), it is an important factor that all the lenses are made of a plastic material.
When a parallel plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of the image pickup device package is disposed between the most image side surface of the image pickup lens and the image side focal position, the parallel plate is used. The part is assumed to be the air conversion distance and the TTL value is calculated. Here, the image side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens.
In addition, about the value of TTL / 2Y, the range of the following formula is more desirable.
0.60 <TTL / 2Y <0.75 (1) '
一方、テレフォトタイプを維持しつつ条件式(1)を満足するような範囲に撮像レンズの全長を短く設定すると、第2レンズの屈折力が相対的に弱くなり、撮像レンズ全系の色収差補正が不十分となってくる傾向がある。
そこで、上記撮像レンズにおいて、第2レンズの材料と第3レンズの材料とを条件式(2)を満足するように設定することによって、小型化に伴って不十分となりがちな色収差補正を良好に行うことができるようになる。
なお、ν3-ν2の値については、下式の範囲がより望ましい。
6.0<ν3-ν2<23.0 … (2)' On the other hand, if the entire length of the imaging lens is set to a range that satisfies the conditional expression (1) while maintaining the telephoto type, the refractive power of the second lens becomes relatively weak, and chromatic aberration correction of the entire imaging lens system is achieved. Tend to be insufficient.
Therefore, in the imaging lens, by setting the material of the second lens and the material of the third lens so as to satisfy the conditional expression (2), chromatic aberration correction, which tends to become insufficient with downsizing, can be improved. Will be able to do.
For the value of ν3-ν2, the range of the following equation is more desirable.
6.0 <ν3-ν2 <23.0 (2) ′
そこで、上記撮像レンズにおいて、第2レンズの材料と第3レンズの材料とを条件式(2)を満足するように設定することによって、小型化に伴って不十分となりがちな色収差補正を良好に行うことができるようになる。
なお、ν3-ν2の値については、下式の範囲がより望ましい。
6.0<ν3-ν2<23.0 … (2)' On the other hand, if the entire length of the imaging lens is set to a range that satisfies the conditional expression (1) while maintaining the telephoto type, the refractive power of the second lens becomes relatively weak, and chromatic aberration correction of the entire imaging lens system is achieved. Tend to be insufficient.
Therefore, in the imaging lens, by setting the material of the second lens and the material of the third lens so as to satisfy the conditional expression (2), chromatic aberration correction, which tends to become insufficient with downsizing, can be improved. Will be able to do.
For the value of ν3-ν2, the range of the following equation is more desirable.
6.0 <ν3-ν2 <23.0 (2) ′
本発明の具体的な側面によれば、上述の撮像レンズにおいて、以下の条件式を満足する。
29.0<ν3<48.0 … (3) According to a specific aspect of the present invention, the imaging lens described above satisfies the following conditional expression.
29.0 <ν3 <48.0 (3)
29.0<ν3<48.0 … (3) According to a specific aspect of the present invention, the imaging lens described above satisfies the following conditional expression.
29.0 <ν3 <48.0 (3)
条件式(3)は、第3レンズのアッベ数を適切に設定し、色収差の補正を良好に行うための条件式である。第2レンズの材料と第3レンズの材料とを前述の条件式(2)を満足するような組み合わせとした上で、さらに第3レンズに条件式(3)の範囲となる材料を使用することで、撮像レンズ全系の色収差をさらに良好に補正することが可能となる。
なお、ν3の値については、下式の範囲がより望ましい。
30.0≦ν3<46.0 … (3)' Conditional expression (3) is a conditional expression for satisfactorily correcting the chromatic aberration by appropriately setting the Abbe number of the third lens. The material of the second lens and the material of the third lens are combined so as to satisfy the above-mentioned conditional expression (2), and further, the material satisfying the conditional expression (3) is used for the third lens. Thus, the chromatic aberration of the entire imaging lens system can be corrected more satisfactorily.
In addition, about the value of (nu) 3, the range of the following formula is more desirable.
30.0 ≦ ν3 <46.0 (3) ′
なお、ν3の値については、下式の範囲がより望ましい。
30.0≦ν3<46.0 … (3)' Conditional expression (3) is a conditional expression for satisfactorily correcting the chromatic aberration by appropriately setting the Abbe number of the third lens. The material of the second lens and the material of the third lens are combined so as to satisfy the above-mentioned conditional expression (2), and further, the material satisfying the conditional expression (3) is used for the third lens. Thus, the chromatic aberration of the entire imaging lens system can be corrected more satisfactorily.
In addition, about the value of (nu) 3, the range of the following formula is more desirable.
30.0 ≦ ν3 <46.0 (3) ′
本発明の別の側面によれば、以下の条件式を満足する。
20.0<ν1-ν2<70.0 … (4)
ただし、
ν1:第1レンズのアッベ数 According to another aspect of the present invention, the following conditional expression is satisfied.
20.0 <ν1-ν2 <70.0 (4)
However,
ν1: Abbe number of the first lens
20.0<ν1-ν2<70.0 … (4)
ただし、
ν1:第1レンズのアッベ数 According to another aspect of the present invention, the following conditional expression is satisfied.
20.0 <ν1-ν2 <70.0 (4)
However,
ν1: Abbe number of the first lens
条件式(4)は、撮像レンズ全系の色収差を良好に補正するための条件式である。
条件式(4)の値が下限を上回ることで、軸上色収差や倍率色収差等の色収差をバランス良く補正することができる。一方、条件式(4)の値が上限を下回ることで、入手しやすい硝材で構成することができる。
なお、ν1-ν2の値については、下式の範囲がより望ましい。
25.0<ν1-ν2<45.0 … (4)' Conditional expression (4) is a conditional expression for satisfactorily correcting the chromatic aberration of the entire imaging lens system.
When the value of conditional expression (4) exceeds the lower limit, chromatic aberrations such as axial chromatic aberration and lateral chromatic aberration can be corrected with good balance. On the other hand, when the value of conditional expression (4) is below the upper limit, it can be made of an easily available glass material.
For the value of ν1-ν2, the range of the following equation is more desirable.
25.0 <ν1-ν2 <45.0 (4) ′
条件式(4)の値が下限を上回ることで、軸上色収差や倍率色収差等の色収差をバランス良く補正することができる。一方、条件式(4)の値が上限を下回ることで、入手しやすい硝材で構成することができる。
なお、ν1-ν2の値については、下式の範囲がより望ましい。
25.0<ν1-ν2<45.0 … (4)' Conditional expression (4) is a conditional expression for satisfactorily correcting the chromatic aberration of the entire imaging lens system.
When the value of conditional expression (4) exceeds the lower limit, chromatic aberrations such as axial chromatic aberration and lateral chromatic aberration can be corrected with good balance. On the other hand, when the value of conditional expression (4) is below the upper limit, it can be made of an easily available glass material.
For the value of ν1-ν2, the range of the following equation is more desirable.
25.0 <ν1-ν2 <45.0 (4) ′
本発明のさらに別の側面によれば、以下の条件式を満足する。
0.30<r1/f<0.50 … (5)
ただし、
r1:第1レンズの物体側面の曲率半径
f:撮像レンズ全系の焦点距離 According to still another aspect of the present invention, the following conditional expression is satisfied.
0.30 <r1 / f <0.50 (5)
However,
r1: radius of curvature of the object side surface of the first lens f: focal length of the entire imaging lens system
0.30<r1/f<0.50 … (5)
ただし、
r1:第1レンズの物体側面の曲率半径
f:撮像レンズ全系の焦点距離 According to still another aspect of the present invention, the following conditional expression is satisfied.
0.30 <r1 / f <0.50 (5)
However,
r1: radius of curvature of the object side surface of the first lens f: focal length of the entire imaging lens system
条件式(5)は、第1レンズ物体側面の曲率半径を適切に設定し撮像レンズ全長の短縮化と収差補正とを適切に達成するための条件式である。
条件式(5)の値が上限を下回ることで、第1レンズの物体側面の屈折力を適度に維持することができ、第1レンズと第2レンズとの合成主点をより物体側へ配置することができ、撮像レンズ全長を短くすることができる。一方、条件式(5)の値が下限を上回ることで、第1レンズの物体側面の屈折力が必要以上に大きくなりすぎず、第1レンズで発生する、高次の球面収差やコマ収差を小さく抑えることができる。
なお、r1/fの値については、下式の範囲がより望ましい。
0.33<r1/f<0.45 … (5)' Conditional expression (5) is a conditional expression for appropriately setting the radius of curvature of the side surface of the first lens object to appropriately shorten the entire length of the imaging lens and correct the aberration.
When the value of conditional expression (5) is below the upper limit, the refractive power of the object side surface of the first lens can be maintained moderately, and the combination principal point of the first lens and the second lens is arranged closer to the object side. And the overall length of the imaging lens can be shortened. On the other hand, if the value of conditional expression (5) exceeds the lower limit, the refractive power of the object side surface of the first lens does not become excessively large, and higher-order spherical aberration and coma aberration that occur in the first lens are reduced. It can be kept small.
In addition, about the value of r1 / f, the range of the following Formula is more desirable.
0.33 <r1 / f <0.45 (5) ′
条件式(5)の値が上限を下回ることで、第1レンズの物体側面の屈折力を適度に維持することができ、第1レンズと第2レンズとの合成主点をより物体側へ配置することができ、撮像レンズ全長を短くすることができる。一方、条件式(5)の値が下限を上回ることで、第1レンズの物体側面の屈折力が必要以上に大きくなりすぎず、第1レンズで発生する、高次の球面収差やコマ収差を小さく抑えることができる。
なお、r1/fの値については、下式の範囲がより望ましい。
0.33<r1/f<0.45 … (5)' Conditional expression (5) is a conditional expression for appropriately setting the radius of curvature of the side surface of the first lens object to appropriately shorten the entire length of the imaging lens and correct the aberration.
When the value of conditional expression (5) is below the upper limit, the refractive power of the object side surface of the first lens can be maintained moderately, and the combination principal point of the first lens and the second lens is arranged closer to the object side. And the overall length of the imaging lens can be shortened. On the other hand, if the value of conditional expression (5) exceeds the lower limit, the refractive power of the object side surface of the first lens does not become excessively large, and higher-order spherical aberration and coma aberration that occur in the first lens are reduced. It can be kept small.
In addition, about the value of r1 / f, the range of the following Formula is more desirable.
0.33 <r1 / f <0.45 (5) ′
本発明のさらに別の側面によれば、以下の条件式を満足する。
0.60<f1/f<0.90 … (6)
ただし、
f1:第1レンズの焦点距離 According to still another aspect of the present invention, the following conditional expression is satisfied.
0.60 <f1 / f <0.90 (6)
However,
f1: Focal length of the first lens
0.60<f1/f<0.90 … (6)
ただし、
f1:第1レンズの焦点距離 According to still another aspect of the present invention, the following conditional expression is satisfied.
0.60 <f1 / f <0.90 (6)
However,
f1: Focal length of the first lens
条件式(6)は、第1レンズの焦点距離を適切に設定し撮像レンズ全長の短縮化と収差補正とを適切に達成するための条件式である。
条件式(6)の値が上限を下回ることで、第1レンズの屈折力を適度に維持することができ、第1レンズから第4レンズまでの合成主点をより物体側へ配置することができ、撮像レンズ全長を短くすることができる。一方、条件式(6)の値が下限を上回ることで、第1レンズの屈折力が必要以上に大きくなりすぎず、第1レンズで発生する、高次の球面収差やコマ収差を小さく抑えることができる。
なお、f1/fの値については、下式の範囲がより望ましい。
0.65<f1/f<0.85 … (6)' Conditional expression (6) is a conditional expression for appropriately setting the focal length of the first lens to appropriately shorten the entire imaging lens and correct aberrations.
When the value of conditional expression (6) is less than the upper limit, the refractive power of the first lens can be maintained moderately, and the composite principal point from the first lens to the fourth lens can be arranged closer to the object side. The overall length of the imaging lens can be shortened. On the other hand, when the value of conditional expression (6) exceeds the lower limit, the refractive power of the first lens does not become unnecessarily large, and high-order spherical aberration and coma generated in the first lens are suppressed to a small level. Can do.
In addition, about the value of f1 / f, the range of the following Formula is more desirable.
0.65 <f1 / f <0.85 (6) ′
条件式(6)の値が上限を下回ることで、第1レンズの屈折力を適度に維持することができ、第1レンズから第4レンズまでの合成主点をより物体側へ配置することができ、撮像レンズ全長を短くすることができる。一方、条件式(6)の値が下限を上回ることで、第1レンズの屈折力が必要以上に大きくなりすぎず、第1レンズで発生する、高次の球面収差やコマ収差を小さく抑えることができる。
なお、f1/fの値については、下式の範囲がより望ましい。
0.65<f1/f<0.85 … (6)' Conditional expression (6) is a conditional expression for appropriately setting the focal length of the first lens to appropriately shorten the entire imaging lens and correct aberrations.
When the value of conditional expression (6) is less than the upper limit, the refractive power of the first lens can be maintained moderately, and the composite principal point from the first lens to the fourth lens can be arranged closer to the object side. The overall length of the imaging lens can be shortened. On the other hand, when the value of conditional expression (6) exceeds the lower limit, the refractive power of the first lens does not become unnecessarily large, and high-order spherical aberration and coma generated in the first lens are suppressed to a small level. Can do.
In addition, about the value of f1 / f, the range of the following Formula is more desirable.
0.65 <f1 / f <0.85 (6) ′
本発明のさらに別の側面によれば、以下の条件式を満足する。
-1.70<f2/f<-0.90 … (7)
ただし、
f2:第2レンズの焦点距離 According to still another aspect of the present invention, the following conditional expression is satisfied.
−1.70 <f2 / f <−0.90 (7)
However,
f2: focal length of the second lens
-1.70<f2/f<-0.90 … (7)
ただし、
f2:第2レンズの焦点距離 According to still another aspect of the present invention, the following conditional expression is satisfied.
−1.70 <f2 / f <−0.90 (7)
However,
f2: focal length of the second lens
条件式(7)は、第2レンズの焦点距離を適切に設定するための条件式である。
条件式(7)の値が上限を下回ることで、第2レンズの負の屈折力が強くなりすぎず、第2レンズで発生するコマ収差や歪曲収差を小さく抑えることができる。また、製造誤差発生時の性能劣化を抑制することができる。一方、条件式(7)の値が下限を上回ることで、第2レンズの負の屈折力を適度に維持することができ、色収差を良好に補正することが可能となる。
なお、f2/fの値については、下式の範囲がより望ましい。
-1.65<f2/f<-0.95 … (7)' Conditional expression (7) is a conditional expression for appropriately setting the focal length of the second lens.
When the value of conditional expression (7) is less than the upper limit, the negative refractive power of the second lens does not become too strong, and coma and distortion occurring in the second lens can be suppressed to a low level. In addition, it is possible to suppress performance degradation when a manufacturing error occurs. On the other hand, when the value of conditional expression (7) exceeds the lower limit, the negative refractive power of the second lens can be appropriately maintained, and chromatic aberration can be corrected well.
In addition, about the value of f2 / f, the range of the following formula is more desirable.
-1.65 <f2 / f <-0.95 (7) '
条件式(7)の値が上限を下回ることで、第2レンズの負の屈折力が強くなりすぎず、第2レンズで発生するコマ収差や歪曲収差を小さく抑えることができる。また、製造誤差発生時の性能劣化を抑制することができる。一方、条件式(7)の値が下限を上回ることで、第2レンズの負の屈折力を適度に維持することができ、色収差を良好に補正することが可能となる。
なお、f2/fの値については、下式の範囲がより望ましい。
-1.65<f2/f<-0.95 … (7)' Conditional expression (7) is a conditional expression for appropriately setting the focal length of the second lens.
When the value of conditional expression (7) is less than the upper limit, the negative refractive power of the second lens does not become too strong, and coma and distortion occurring in the second lens can be suppressed to a low level. In addition, it is possible to suppress performance degradation when a manufacturing error occurs. On the other hand, when the value of conditional expression (7) exceeds the lower limit, the negative refractive power of the second lens can be appropriately maintained, and chromatic aberration can be corrected well.
In addition, about the value of f2 / f, the range of the following formula is more desirable.
-1.65 <f2 / f <-0.95 (7) '
本発明のさらに別の側面によれば、開口絞りが、第2レンズより物体側に配置されている。これにより、開口絞りが第3レンズと第2レンズとの間に配置されている場合に比べ、より良好なテレセントリック特性を得ることができる。
According to still another aspect of the present invention, the aperture stop is disposed closer to the object side than the second lens. Thereby, a better telecentric characteristic can be obtained compared with the case where the aperture stop is disposed between the third lens and the second lens.
本発明のさらに別の側面によれば、実質的にパワーを持たない光学素子をさらに有する。
According to still another aspect of the present invention, the optical device further includes an optical element having substantially no power.
上記課題を達成するため、本発明に係る撮像装置は、上述した撮像レンズと、撮像素子とを備える。本発明の撮像レンズを用いることで、広角で諸収差が良好に補正された画像を得られる、小型の撮像装置を得ることができる。
In order to achieve the above object, an imaging apparatus according to the present invention includes the imaging lens described above and an imaging element. By using the imaging lens of the present invention, it is possible to obtain a small imaging device capable of obtaining an image in which various aberrations are favorably corrected at a wide angle.
上記課題を達成するため、本発明に係る携帯端末は、上述した撮像装置を備える。つまり、本発明に係る携帯端末は、広角でF値が小さく明るい小型で諸収差が良好に補正された撮像装置を備える。
In order to achieve the above object, a mobile terminal according to the present invention includes the above-described imaging device. In other words, the mobile terminal according to the present invention includes an imaging device that is wide-angle, has a small F-number, is bright and is small, and has various aberrations corrected favorably.
以下、図1等を参照して、本発明の一実施形態である撮像レンズについて説明する。なお、図1で例示した撮像レンズ10は、後述する実施例1の撮像レンズ11と同一の構成となっている。
Hereinafter, an imaging lens according to an embodiment of the present invention will be described with reference to FIG. The imaging lens 10 illustrated in FIG. 1 has the same configuration as the imaging lens 11 of Example 1 described later.
図1は、本発明の一実施形態である撮像レンズを備えるカメラモジュールを説明する断面図である。
FIG. 1 is a cross-sectional view illustrating a camera module including an imaging lens according to an embodiment of the present invention.
カメラモジュール50は、被写体像を形成する撮像レンズ10と、撮像レンズ10によって形成された被写体像を検出する撮像素子51と、この撮像素子51を背後から保持するとともに配線等を有する配線基板52と、撮像レンズ10等を保持するとともに物体側からの光束を入射させる開口部OPを有する鏡筒部54とを備える。撮像レンズ10は、被写体像を撮像素子51の撮像面(被投影面)Iに結像させる機能を有する。このカメラモジュール50は、後述する撮像装置に組み込まれて使用されるが、単独でも撮像装置と呼ぶものとする。
The camera module 50 includes an imaging lens 10 that forms a subject image, an imaging device 51 that detects a subject image formed by the imaging lens 10, and a wiring board 52 that holds the imaging device 51 from behind and has wiring and the like. And a lens barrel portion 54 having an opening OP for holding the imaging lens 10 and the like and allowing a light beam from the object side to enter. The imaging lens 10 has a function of forming a subject image on the imaging surface (projected surface) I of the imaging element 51. The camera module 50 is used by being incorporated in an imaging device to be described later.
撮像レンズ10は、撮像素子51の撮像面(被投影面)Iに被写体像を結像させるものであって、物体側から順に、第1レンズL1と、第2レンズL2と、第3レンズL3と、第4レンズL4と、第5レンズL5とを備える。
The imaging lens 10 forms a subject image on the imaging surface (projected surface) I of the image sensor 51, and in order from the object side, the first lens L1, the second lens L2, and the third lens L3. And a fourth lens L4 and a fifth lens L5.
撮像素子51は、固体撮像素子からなるセンサーチップである。撮像素子51の光電変換部51aは、CCD(電荷結合素子)やCMOS(相補型金属酸化物半導体)からなり、入射光をRGB毎に光電変換し、そのアナログ信号を出力する。
The image sensor 51 is a sensor chip made of a solid-state image sensor. The photoelectric conversion unit 51a of the image sensor 51 is composed of a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor), photoelectrically converts incident light for each RGB, and outputs an analog signal thereof.
配線基板52は、撮像素子51を他の部材(例えば鏡筒部54)に対してアライメントして固定する役割を有する。配線基板52は、外部回路から撮像素子51や駆動機構55aを駆動するための電圧や信号の供給を受けたり、また、検出信号を上記外部回路へ出力したりすることを可能としている。
The wiring board 52 has a role of aligning and fixing the image sensor 51 to other members (for example, the lens barrel portion 54). The wiring board 52 can receive a voltage and a signal for driving the image pickup device 51 and the driving mechanism 55a from an external circuit, and can output a detection signal to the external circuit.
撮像素子51の撮像レンズ10側には、不図示のホルダー部材によって、赤外線カットフィルターや撮像素子のシールガラス等の平行平板Fが撮像素子51等を覆うように配置・固定されている。
A parallel plate F such as an infrared cut filter or a seal glass of the image sensor is disposed and fixed on the image pickup lens 10 side of the image sensor 51 by a holder member (not shown) so as to cover the image sensor 51 and the like.
鏡筒部54は、撮像レンズ10を収納し保持している。鏡筒部54は、撮像レンズ10を構成するレンズL1~L5のうちいずれか1つ以上のレンズを光軸AXに沿って移動させることにより、撮像レンズ10の合焦の動作を可能にするため、例えば駆動機構55aを有している。駆動機構55aは、特定又は全レンズを光軸AXに沿って往復移動させる。駆動機構55aは、例えばボイスコイルモーターとガイドとを備える。なお、駆動機構55aをボイスコイルモーター等の代わりにステッピングモーター等で構成することができる。
The lens barrel portion 54 houses and holds the imaging lens 10. The lens barrel portion 54 enables the focusing operation of the imaging lens 10 by moving any one or more of the lenses L1 to L5 constituting the imaging lens 10 along the optical axis AX. For example, it has a drive mechanism 55a. The drive mechanism 55a reciprocates the specific lens or all the lenses along the optical axis AX. The drive mechanism 55a includes, for example, a voice coil motor and a guide. The drive mechanism 55a can be configured by a stepping motor or the like instead of the voice coil motor or the like.
次に、図2、図3A、及び3Bを参照して、図1に例示されるカメラモジュール50を搭載した携帯電話機その他の携帯通信端末300の一例について説明する。
Next, an example of a mobile phone or other mobile communication terminal 300 equipped with the camera module 50 illustrated in FIG. 1 will be described with reference to FIGS. 2, 3A, and 3B.
携帯通信端末300は、スマートフォン型の携帯端末であり、カメラモジュール50を有する撮像装置100と、アンテナ331を介して外部システム等との間の各種情報通信を実現するための無線通信部330と、を備えている。なお、図示を省略するが、携帯通信端末300は、電源スイッチ等を含む操作部、システムプログラム、各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)も備える。
The mobile communication terminal 300 is a smartphone-type mobile terminal, and includes a wireless communication unit 330 for realizing various information communication between the imaging apparatus 100 having the camera module 50 and an external system or the like via the antenna 331. It has. Although not shown, the mobile communication terminal 300 also includes an operation unit including a power switch and the like, a storage unit (ROM) that stores necessary data such as a system program, various processing programs, and a terminal ID.
撮像装置100は、既に説明したカメラモジュール50のほかに、光学系駆動部101、撮像インターフェース(I/F)102、画像処理回路(ISP)103、一時記憶部(RAM)104、データ保管部(EEPROM)105、CPU106、表示操作部インターフェース107、補助記憶部インターフェース108、表示操作部(LCD)310、補助記憶部(SD card等)320等を備える。これらのうち撮像インターフェース102、画像処理回路103、一時記憶部104、データ保管部105、CPU106、表示操作部インターフェース107、及び補助記憶部インターフェース108は、カメラモジュール50等を駆動するための制御部110としての役割を有する。また、制御部110には、通信部インターフェース109も含まれる。また、画像処理回路103、一時記憶部104、データ保管部105、及びCPU106は、カメラモジュール50から出力される画像信号を処理する画像処理部111としての役割を有する。
In addition to the camera module 50 described above, the imaging apparatus 100 includes an optical system driving unit 101, an imaging interface (I / F) 102, an image processing circuit (ISP) 103, a temporary storage unit (RAM) 104, a data storage unit ( EEPROM) 105, CPU 106, display operation unit interface 107, auxiliary storage unit interface 108, display operation unit (LCD) 310, auxiliary storage unit (SD card, etc.) 320, and the like. Among these, the imaging interface 102, the image processing circuit 103, the temporary storage unit 104, the data storage unit 105, the CPU 106, the display operation unit interface 107, and the auxiliary storage unit interface 108 are the control unit 110 for driving the camera module 50 and the like. As a role. The control unit 110 also includes a communication unit interface 109. In addition, the image processing circuit 103, the temporary storage unit 104, the data storage unit 105, and the CPU 106 have a role as an image processing unit 111 that processes an image signal output from the camera module 50.
光学系駆動部101は、CPU106の制御により合焦、露出等を行う際に、撮像レンズ10の駆動機構55aを動作させて撮像レンズ10の状態を制御する。光学系駆動部101は、駆動機構55aを動作させて撮像レンズ10中の特定又は全レンズを光軸AXに沿って適宜移動させることにより、撮像レンズ10に合焦動作を行わせる。
The optical system driving unit 101 controls the state of the imaging lens 10 by operating the driving mechanism 55a of the imaging lens 10 when performing focusing, exposure, and the like under the control of the CPU 106. The optical system driving unit 101 operates the driving mechanism 55a to appropriately move specific or all lenses in the imaging lens 10 along the optical axis AX, thereby causing the imaging lens 10 to perform a focusing operation.
撮像インターフェース102は、撮像素子51から出力された画像信号を制御部110に受け渡すための部分である。
The imaging interface 102 is a part for delivering the image signal output from the imaging element 51 to the control unit 110.
画像処理回路103は、撮像素子51から出力された画像信号に対して画像処理を行う。画像処理回路103では、画像信号が例えば動画像に対応するものであるとしてこれを構成するコマ画像に対して加工を施す。画像処理回路103は、色補正、階調補正、ズーミング等の通常の画像処理の他に、データ保管部105から読み出されたレンズ補正データに基づいて画像信号に対して歪み補正処理を実行する。
The image processing circuit 103 performs image processing on the image signal output from the image sensor 51. The image processing circuit 103 performs processing on the frame image constituting the image signal, for example, corresponding to a moving image. The image processing circuit 103 executes distortion correction processing on the image signal based on the lens correction data read from the data storage unit 105 in addition to normal image processing such as color correction, gradation correction, and zooming. .
一時記憶部104は、制御部110によって実行される各種処理プログラムやその実行に必要なデータ、処理データ、撮像装置100による撮像データ等を一時的に格納する作業領域として用いられる。
The temporary storage unit 104 is used as a work area for temporarily storing various processing programs executed by the control unit 110, data necessary for the execution, processing data, imaging data by the imaging apparatus 100, and the like.
データ保管部105は、画像処理に用いられるレンズの補正データを保管している。具体的には、色補正、階調補正等のためのデータの他に、歪み補正のためのパラメーターを保管している。
The data storage unit 105 stores lens correction data used for image processing. Specifically, in addition to data for color correction, gradation correction, etc., parameters for distortion correction are stored.
CPU106は、各部を統括的に制御するとともに各処理に応じたプログラムを実行する。また、CPU106は、データ保管部105から読み出されたレンズ補正データに基づいて画像処理回路103による処理前の信号に対して、色補正、階調補正、歪み補正等の各種画像処理を行うことができ、或いは画像処理回路103による処理後の画像信号に対して、画像処理回路103と同様又は圧縮その他の別の画像処理を行うこともできる。
The CPU 106 comprehensively controls each unit and executes a program corresponding to each process. Further, the CPU 106 performs various image processing such as color correction, gradation correction, and distortion correction on the signal before processing by the image processing circuit 103 based on the lens correction data read from the data storage unit 105. Alternatively, the image signal processed by the image processing circuit 103 can be subjected to the same processing as the image processing circuit 103, compression, or other image processing.
表示操作部インターフェース107は、画像処理回路103又はCPU106から出力された画像信号を表示操作部310に転送するとともに、表示操作部310からの操作信号をCPU106に転送する。
The display operation unit interface 107 transfers the image signal output from the image processing circuit 103 or the CPU 106 to the display operation unit 310 and transfers the operation signal from the display operation unit 310 to the CPU 106.
補助記憶部インターフェース108は、画像処理回路103等から出力された動画、静止画としての画像データを補助記憶部320に出力する。
The auxiliary storage unit interface 108 outputs the moving image and the image data as a still image output from the image processing circuit 103 or the like to the auxiliary storage unit 320.
表示操作部310は、通信に関連するデータ、撮像した映像等を表示するとともにユーザーの操作を受け付けるタッチパネルである。
The display operation unit 310 is a touch panel that displays data related to communication, captured images, and the like and accepts user operations.
補助記憶部320は、着脱可能であり、画像処理部111で画像処理された画像信号を記録及び格納する部分である。
The auxiliary storage unit 320 is detachable and is a part that records and stores the image signal processed by the image processing unit 111.
ここで、上記撮像装置100を含む携帯通信端末300の撮影動作を説明する。携帯通信端末300をカメラとして動作させるカメラモードに設定されると、被写体のモニタリング(スルー画像表示)と、画像撮影実行とが行われる。モニタリングにおいては、撮像レンズ10を介して得られた被写体の像が、撮像素子51の撮像面I(図1参照)に結像される。撮像素子51は、不図示の撮像素子駆動部によって走査駆動され、一定周期毎に結像した光像に対応する光電変換出力をデジタル化したデジタル信号を1コマ分出力する。デジタル信号は、画像処理回路103等に入力され、画像処理された画像信号(ビデオ信号)が生成され、表示操作部310や補助記憶部320に出力される。この際、撮像素子51から又は画像処理回路103を経た画像信号が一時記憶部104に暫定的に保管される。
Here, the photographing operation of the mobile communication terminal 300 including the imaging device 100 will be described. When the camera mode in which the mobile communication terminal 300 is operated as a camera is set, subject monitoring (through image display) and image shooting execution are performed. In monitoring, an image of a subject obtained through the imaging lens 10 is formed on the imaging surface I (see FIG. 1) of the imaging element 51. The image sensor 51 is scanned and driven by an image sensor drive unit (not shown), and outputs one frame of a digital signal obtained by digitizing a photoelectric conversion output corresponding to an optical image formed at a fixed period. The digital signal is input to the image processing circuit 103 and the like, and an image signal (video signal) subjected to image processing is generated and output to the display operation unit 310 and the auxiliary storage unit 320. At this time, the image signal from the image sensor 51 or the image processing circuit 103 is temporarily stored in the temporary storage unit 104.
表示操作部310は、モニタリングにおいてはファインダーとして機能し、撮像画像をリアルタイムに表示することとなる。この状態で、随時、ユーザーが表示操作部310を介して行う操作入力に基づいて、光学系駆動部101の駆動により撮像レンズ10の合焦、露出等が設定される。
The display operation unit 310 functions as a finder in monitoring and displays captured images in real time. In this state, focusing, exposure, and the like of the imaging lens 10 are set by driving the optical system driving unit 101 based on an operation input performed by the user via the display operation unit 310 at any time.
このようなモニタリング状態において、ユーザーが表示操作部310を適宜操作することにより、例えば静止画像データが撮影される。表示操作部310の操作内容に応じて、一時記憶部104に格納された1コマの画像データ(撮像データ)が読み出されて、圧縮される。その圧縮された画像データは、制御部110を介して、例えば一時記憶部104等に記録される。
In such a monitoring state, for example, still image data is captured when the user appropriately operates the display operation unit 310. One frame of image data (imaging data) stored in the temporary storage unit 104 is read and compressed in accordance with the operation content of the display operation unit 310. The compressed image data is recorded in the temporary storage unit 104 or the like via the control unit 110, for example.
以下、携帯通信端末300の画像処理について説明する。図2において、撮像レンズ10から出力された画像信号は、撮像インターフェース102を介して制御部110に入力される。ここで、表示すべき画像信号が静止画像に対応するものである場合、例えば画像信号が一時記憶部104に格納され、CPU106がデータ保管部105からレンズ補正データを読み出して、画像処理回路103が補正データに基づき当該画像信号に対して各種画像処理を行う。ここで、画像処理には、表示操作部310に表示させるための画像処理や補助記憶部320に記憶させるための画像処理が含まれる。一方、表示すべき画像信号が動画像に対応するものである場合、画像信号が画像処理回路103のみに入力され、画像処理回路103が補正データから読み出されたレンズ補正データに基づき当該画像信号に対して各種画像処理を行う。画像処理された画像信号は、表示操作部インターフェース107を介して、表示操作部310上に表示される。また、画像処理された画像信号は、補助記憶部インターフェース108を介して補助記憶部320に記録させることもできる。
Hereinafter, image processing of the mobile communication terminal 300 will be described. In FIG. 2, the image signal output from the imaging lens 10 is input to the control unit 110 via the imaging interface 102. Here, when the image signal to be displayed corresponds to a still image, for example, the image signal is stored in the temporary storage unit 104, the CPU 106 reads the lens correction data from the data storage unit 105, and the image processing circuit 103 Various image processing is performed on the image signal based on the correction data. Here, the image processing includes image processing for displaying on the display operation unit 310 and image processing for storing in the auxiliary storage unit 320. On the other hand, when the image signal to be displayed corresponds to a moving image, the image signal is input only to the image processing circuit 103, and the image processing circuit 103 reads the image signal based on the lens correction data read from the correction data. Various image processing is performed on the image. The image signal subjected to the image processing is displayed on the display operation unit 310 via the display operation unit interface 107. Further, the image signal subjected to image processing can be recorded in the auxiliary storage unit 320 via the auxiliary storage unit interface 108.
なお、上述の撮像装置100は、本発明に好適な撮像装置の一例であり、本発明は、これに限定されるものではない。
The above-described imaging device 100 is an example of an imaging device suitable for the present invention, and the present invention is not limited to this.
すなわち、カメラモジュール50又は撮像レンズ10を搭載した撮像装置は、スマートフォン型の携帯通信端末300に内蔵されるものに限らず、携帯電話、PHS(Personal Handyphone System)等に内蔵されるものであってもよく、PDA(Personal Digital Assistant)、タブレットパソコン、モバイルパソコン、デジタルスチルカメラ、ビデオカメラ等に内蔵されるものであってもよい。
That is, the image pickup apparatus equipped with the camera module 50 or the image pickup lens 10 is not limited to the one built in the smartphone type mobile communication terminal 300, but is built into a mobile phone, a PHS (Personal Handyphone System), or the like. Alternatively, it may be incorporated in a PDA (Personal Digital Assistant), a tablet personal computer, a mobile personal computer, a digital still camera, a video camera, or the like.
以下、図1に戻って、本発明の一実施形態である撮像レンズ10について詳細に説明する。図1に示す撮像レンズ10は、物体側より順に、開口絞りSと、光軸AX近傍で正の屈折力を有し物体側に凸面を向けたメニスカス形状を有する第1レンズL1と、光軸AX近傍で負の屈折力を有する両凹の第2レンズL2と、光軸AX近傍で正の屈折力を有し物体側に凸面を向けた略凸平の第3レンズL3と、光軸AX近傍で正の屈折力を有し像側に凸面を向けたメニスカス形状を有する第4レンズL4と、光軸AX近傍で負の屈折力を有する両凹の第5レンズL5とから実質的になる。ここで、全レンズL1~L5は、非球面レンズとなっている。また、第3レンズL3の像側面S32のサグ量は、周辺部で負の値となっている。第5レンズL5の像側面S52は、非球面形状を有し、光軸AXとの交点以外の位置Pに極値を有する(図1参照)。なお、第1レンズL1は、光軸AX近傍で物体側に凸面を向けたメニスカス形状に限らず、例えば光軸AX近傍で凸平あるいは両凸とすることができる。第2レンズL2は、光軸AX近傍で両凹のものに限らず、例えば光軸AX近傍で像側に凹面を向けたメニスカス形状とすることができる。開口絞りSは、第1レンズL1の物体側面S11側に配置されているが、第3レンズL3よりも物体側に配置されていればよく、例えば第1レンズL1の像側面S12と第2レンズL2の物体側面S21との間に配置されてもよい。
撮像レンズ10は、既に説明した条件式(1)及び(2)を満足する。
0.55<TTL/2Y<0.80 … (1)
6.0<ν3-ν2<25.0 … (2)
ただし、TTLは第1レンズL1の物体側面S11から撮像面Iまでの光軸AX上の距離であり、2Yは撮像素子51の撮像面Iの対角線長(撮像素子51の矩形実効画素領域の対角線長)であり、ν3は第3レンズL3のアッベ数であり、ν2は第2レンズL2のアッベ数である。 Hereinafter, returning to FIG. 1, theimaging lens 10 according to an embodiment of the present invention will be described in detail. An imaging lens 10 shown in FIG. 1 includes, in order from the object side, an aperture stop S, a first lens L1 having a positive refractive power near the optical axis AX and a meniscus shape with a convex surface facing the object side, and an optical axis. A biconcave second lens L2 having a negative refractive power in the vicinity of AX; a substantially convex third lens L3 having a positive refractive power in the vicinity of the optical axis AX and having a convex surface directed toward the object; and an optical axis AX It substantially consists of a fourth lens L4 having a meniscus shape having a positive refractive power in the vicinity and a convex surface facing the image side, and a biconcave fifth lens L5 having a negative refractive power in the vicinity of the optical axis AX. . Here, all the lenses L1 to L5 are aspherical lenses. Further, the sag amount of the image side surface S32 of the third lens L3 has a negative value in the peripheral portion. The image side surface S52 of the fifth lens L5 has an aspherical shape and has an extreme value at a position P other than the intersection with the optical axis AX (see FIG. 1). The first lens L1 is not limited to a meniscus shape having a convex surface facing the object side in the vicinity of the optical axis AX, and may be, for example, a convex flat shape or a biconvex shape in the vicinity of the optical axis AX. The second lens L2 is not limited to a biconcave lens in the vicinity of the optical axis AX. For example, the second lens L2 may have a meniscus shape with a concave surface facing the image side in the vicinity of the optical axis AX. The aperture stop S is disposed on the object side surface S11 side of the first lens L1, but may be disposed on the object side with respect to the third lens L3. For example, the image side surface S12 and the second lens of the first lens L1. You may arrange | position between the object side surface S21 of L2.
Theimaging lens 10 satisfies the conditional expressions (1) and (2) already described.
0.55 <TTL / 2Y <0.80 (1)
6.0 <ν3-ν2 <25.0 (2)
However, TTL is the distance on the optical axis AX from the object side surface S11 of the first lens L1 to the imaging surface I, and 2Y is the diagonal length of the imaging surface I of the imaging device 51 (the diagonal line of the rectangular effective pixel region of the imaging device 51). Ν3 is the Abbe number of the third lens L3, and ν2 is the Abbe number of the second lens L2.
撮像レンズ10は、既に説明した条件式(1)及び(2)を満足する。
0.55<TTL/2Y<0.80 … (1)
6.0<ν3-ν2<25.0 … (2)
ただし、TTLは第1レンズL1の物体側面S11から撮像面Iまでの光軸AX上の距離であり、2Yは撮像素子51の撮像面Iの対角線長(撮像素子51の矩形実効画素領域の対角線長)であり、ν3は第3レンズL3のアッベ数であり、ν2は第2レンズL2のアッベ数である。 Hereinafter, returning to FIG. 1, the
The
0.55 <TTL / 2Y <0.80 (1)
6.0 <ν3-ν2 <25.0 (2)
However, TTL is the distance on the optical axis AX from the object side surface S11 of the first lens L1 to the imaging surface I, and 2Y is the diagonal length of the imaging surface I of the imaging device 51 (the diagonal line of the rectangular effective pixel region of the imaging device 51). Ν3 is the Abbe number of the third lens L3, and ν2 is the Abbe number of the second lens L2.
実施形態の撮像レンズ10は、第1~第4レンズL1~L4からなる正レンズ群を配置し、この正レンズ群の像側に負の第5レンズL5を配置する、いわゆるテレフォトタイプの構成となっている。テレフォトタイプのレンズ構成は、撮像レンズ10の全長の小型化には有利な構成である。また、上記撮像レンズ10において、5枚構成のうち2枚以上(具体的には、少なくとも第2及び第5レンズL2,L5)を負レンズとすることで、発散作用を有する面を多くしてペッツバール和の補正を容易とし、画面周辺部まで良好な結像性能を確保できる。
The imaging lens 10 according to the embodiment has a so-called telephoto type configuration in which a positive lens group including first to fourth lenses L1 to L4 is disposed, and a negative fifth lens L5 is disposed on the image side of the positive lens group. It has become. The telephoto type lens configuration is advantageous in reducing the overall length of the imaging lens 10. Further, in the imaging lens 10, two or more (specifically, at least the second and fifth lenses L <b> 2 and L <b> 5) of the five-lens configuration are negative lenses, so that the surface having a diverging action is increased. The Petzval sum can be easily corrected, and good imaging performance can be secured up to the periphery of the screen.
さらに、開口絞りSを第3レンズL3よりも物体側に配置することによって、撮像レンズ10の射出瞳位置をより物体側に配置することができるので、良好なテレセントリック特性を得ることができるようになる。
Furthermore, by arranging the aperture stop S closer to the object side than the third lens L3, the exit pupil position of the imaging lens 10 can be located closer to the object side, so that good telecentric characteristics can be obtained. Become.
実施形態の撮像レンズ10では、全てのレンズL1~L5を射出成形により製造されるプラスチックレンズとすることにより、撮像面サイズを小型化した昨今の撮像素子51と組み合わせるための小型の撮像レンズを構成する曲率半径や外径の小さなレンズであっても、安価に大量生産が可能となる。また、レンズL1~L5をプラスチックレンズとすることにより、成形金型の交換回数やメンテナンス回数を減少させ、コスト低減を図ることができる。さらに、プラスチック材料は軽量であるため、フォーカシングのために例えばレンズ系全体を繰り出す際のアクチュエーターへの負荷を軽減させることができるようになる。
In the imaging lens 10 of the embodiment, all the lenses L1 to L5 are plastic lenses manufactured by injection molding, thereby configuring a small imaging lens to be combined with a recent imaging element 51 having a reduced imaging surface size. Even a lens with a small radius of curvature and outer diameter can be mass-produced at low cost. Further, by using lenses L1 to L5 as plastic lenses, it is possible to reduce costs by reducing the number of times the mold is replaced and the number of maintenance. Furthermore, since the plastic material is lightweight, the load on the actuator when the entire lens system is extended for focusing can be reduced.
上記撮像レンズ10では、第2レンズL2の像側面S22を凹面形状とすることで、比較的強い発散面を光線の通過高さが高い、より物体側に配置することができるため、像面湾曲や色収差の補正に有利となる。また、第3レンズL3の像側面S32のサグ量を周辺部で負の値となるようにすることで、第3レンズL3の像側面S32の形状を開口絞りSに対してコンセントリックにすることができるため、第3レンズL3の像側面S32で発生する軸外諸収差を抑制することができる。
In the imaging lens 10, since the image side surface S22 of the second lens L2 has a concave shape, a relatively strong divergence surface can be disposed closer to the object side with a higher light ray passing height. This is advantageous for correcting chromatic aberration. Further, the shape of the image side surface S32 of the third lens L3 is made concentric with respect to the aperture stop S by setting the sag amount of the image side surface S32 of the third lens L3 to a negative value in the peripheral portion. Therefore, various off-axis aberrations that occur on the image side surface S32 of the third lens L3 can be suppressed.
上記撮像レンズ10では、第5レンズL5の像側面S52を非球面とすることで、画面周辺部での諸収差を良好に補正することができる。さらに、光軸AXとの交点以外の位置Pに極値を持つ非球面形状とすることで、像側光束のテレセントリック特性が確保しやすくなる。ここで、「極値」とは、有効半径内でのレンズ断面形状の曲線を考えた場合に、非球面頂点の接平面又は接線が光軸AXと垂直な平面又は線分となるような非球面上の線又は点のことである。
In the imaging lens 10, the image side surface S52 of the fifth lens L5 is aspherical, so that various aberrations at the periphery of the screen can be corrected satisfactorily. Furthermore, the aspherical shape having an extreme value at a position P other than the intersection with the optical axis AX makes it easy to ensure the telecentric characteristics of the image-side light beam. Here, the “extreme value” is a non-linear value such that the tangent plane or tangent of the aspherical vertex is a plane or line segment perpendicular to the optical axis AX when considering the curve of the lens cross-sectional shape within the effective radius. A line or point on a sphere.
上記撮像レンズ10において、条件式(1)は、小型軽量な撮像装置及び携帯端末を達成するための条件式である。
撮像レンズ10の全長を条件式(1)の範囲に設定することで、小型軽量な撮像装置100及び携帯通信端末300を達成することができる。ここで、全てのレンズL1~L5がプラスチック材料で形成され、薄肉としやすいことから、撮像レンズ10の全長の短縮に寄与する。
なお、撮像レンズ10の最も像側のレンズ面(第5レンズL5の像側面S52)と像側焦点位置との間に、光学的ローパスフィルター、赤外線カットフィルター、又は撮像素子パッケージのシールガラス等の平行平板Fが配置される場合には、平行平板F部分は空気換算距離としたうえで上記TTLの値を計算するものとする。 In theimaging lens 10, conditional expression (1) is a conditional expression for achieving a small and lightweight imaging device and portable terminal.
By setting the total length of theimaging lens 10 within the range of the conditional expression (1), it is possible to achieve the small and lightweight imaging device 100 and the portable communication terminal 300. Here, since all the lenses L1 to L5 are formed of a plastic material and are easy to be thin, it contributes to shortening the overall length of the imaging lens 10.
It should be noted that an optical low-pass filter, an infrared cut filter, an image sensor package seal glass, or the like is provided between the image side lens surface (image side surface S52 of the fifth lens L5) of theimaging lens 10 and the image side focal position. When the parallel flat plate F is arranged, the TTL value is calculated after the parallel flat plate F portion is set as an air conversion distance.
撮像レンズ10の全長を条件式(1)の範囲に設定することで、小型軽量な撮像装置100及び携帯通信端末300を達成することができる。ここで、全てのレンズL1~L5がプラスチック材料で形成され、薄肉としやすいことから、撮像レンズ10の全長の短縮に寄与する。
なお、撮像レンズ10の最も像側のレンズ面(第5レンズL5の像側面S52)と像側焦点位置との間に、光学的ローパスフィルター、赤外線カットフィルター、又は撮像素子パッケージのシールガラス等の平行平板Fが配置される場合には、平行平板F部分は空気換算距離としたうえで上記TTLの値を計算するものとする。 In the
By setting the total length of the
It should be noted that an optical low-pass filter, an infrared cut filter, an image sensor package seal glass, or the like is provided between the image side lens surface (image side surface S52 of the fifth lens L5) of the
上記撮像レンズ10において、条件式(2)は、小型化に伴って不十分となりがちな色収差補正を良好に行うための条件式である。
テレフォトタイプを維持しつつ条件式(1)を満足するような範囲に撮像レンズ10の全長を設定すると、第2レンズL2の屈折力が弱くなり、撮像レンズ10全系の色収差補正が不十分となってくる傾向がある。そこで、条件式(2)を満足するように第1及び第2レンズL1,L2の材料を設定することによって、小型化に伴って不十分となりがちな色収差補正を良好に行うことができるようになる。 In theimaging lens 10, conditional expression (2) is a conditional expression for satisfactorily correcting chromatic aberration that tends to be insufficient with downsizing.
If the entire length of theimaging lens 10 is set within a range that satisfies the conditional expression (1) while maintaining the telephoto type, the refractive power of the second lens L2 becomes weak, and chromatic aberration correction of the entire imaging lens 10 system is insufficient. There is a tendency to become. Therefore, by setting the materials of the first and second lenses L1 and L2 so as to satisfy the conditional expression (2), it is possible to satisfactorily correct chromatic aberration that tends to become insufficient as the size is reduced. Become.
テレフォトタイプを維持しつつ条件式(1)を満足するような範囲に撮像レンズ10の全長を設定すると、第2レンズL2の屈折力が弱くなり、撮像レンズ10全系の色収差補正が不十分となってくる傾向がある。そこで、条件式(2)を満足するように第1及び第2レンズL1,L2の材料を設定することによって、小型化に伴って不十分となりがちな色収差補正を良好に行うことができるようになる。 In the
If the entire length of the
実施形態の撮像レンズ10は、上記条件式(1)及び(2)に加えて、既に説明した条件式(3)
29.0<ν3<48.0 … (3)
を満足する。 In theimaging lens 10 of the embodiment, in addition to the conditional expressions (1) and (2), the conditional expression (3) already described.
29.0 <ν3 <48.0 (3)
Satisfied.
29.0<ν3<48.0 … (3)
を満足する。 In the
29.0 <ν3 <48.0 (3)
Satisfied.
実施形態の撮像レンズ10は、上記条件式(1)及び(2)等に加えて、既に説明した条件式(4)
20.0<ν1-ν2<70.0 … (4)
を満足する。ただし、ν1は第1レンズL1のアッベ数である。 In theimaging lens 10 of the embodiment, in addition to the conditional expressions (1) and (2), the conditional expression (4) already described.
20.0 <ν1-ν2 <70.0 (4)
Satisfied. Where ν1 is the Abbe number of the first lens L1.
20.0<ν1-ν2<70.0 … (4)
を満足する。ただし、ν1は第1レンズL1のアッベ数である。 In the
20.0 <ν1-ν2 <70.0 (4)
Satisfied. Where ν1 is the Abbe number of the first lens L1.
実施形態の撮像レンズ10は、上記条件式(1)及び(2)等に加えて、既に説明した条件式(5)
0.30<r1/f<0.50 … (5)
を満足する。ただし、r1は第1レンズL1の物体側面S11の曲率半径であり、fは撮像レンズ10全系の焦点距離である。 In theimaging lens 10 of the embodiment, in addition to the conditional expressions (1) and (2), the conditional expression (5) already described.
0.30 <r1 / f <0.50 (5)
Satisfied. Here, r1 is the radius of curvature of the object side surface S11 of the first lens L1, and f is the focal length of theentire imaging lens 10.
0.30<r1/f<0.50 … (5)
を満足する。ただし、r1は第1レンズL1の物体側面S11の曲率半径であり、fは撮像レンズ10全系の焦点距離である。 In the
0.30 <r1 / f <0.50 (5)
Satisfied. Here, r1 is the radius of curvature of the object side surface S11 of the first lens L1, and f is the focal length of the
実施形態の撮像レンズ10は、上記条件式(1)及び(2)等に加えて、既に説明した条件式(6)
0.60<f1/f<0.90 … (6)
を満足する。ただし、f1は第1レンズL1の焦点距離である。 In theimaging lens 10 of the embodiment, in addition to the conditional expressions (1) and (2), the conditional expression (6) already described.
0.60 <f1 / f <0.90 (6)
Satisfied. Here, f1 is the focal length of the first lens L1.
0.60<f1/f<0.90 … (6)
を満足する。ただし、f1は第1レンズL1の焦点距離である。 In the
0.60 <f1 / f <0.90 (6)
Satisfied. Here, f1 is the focal length of the first lens L1.
実施形態の撮像レンズ10は、上記条件式(1)及び(2)等に加えて、既に説明した条件式(7)
-1.70<f2/f<-0.90 … (7)
を満足する。ただし、f2は第2レンズの焦点距離である。 In theimaging lens 10 of the embodiment, in addition to the conditional expressions (1) and (2), the conditional expression (7) already described.
−1.70 <f2 / f <−0.90 (7)
Satisfied. Here, f2 is the focal length of the second lens.
-1.70<f2/f<-0.90 … (7)
を満足する。ただし、f2は第2レンズの焦点距離である。 In the
−1.70 <f2 / f <−0.90 (7)
Satisfied. Here, f2 is the focal length of the second lens.
なお、実施形態の撮像レンズ10では、実質的にパワーを持たない光学素子をさらに有してもよい。
Note that the imaging lens 10 of the embodiment may further include an optical element having substantially no power.
〔実施例〕
以下、本発明の撮像レンズの実施例を示す。各実施例に使用する記号は下記の通りである。
f :撮像レンズ全系の焦点距離
fB :バックフォーカス
F :F値
2Y :撮像素子の撮像面対角線長
ENTP:入射瞳位置(第1面から入射瞳位置までの距離)
EXTP:射出瞳位置(撮像面から射出瞳位置までの距離)
H1 :前側主点位置(第1面から前側主点位置までの距離)
H2 :後側主点位置(最終面から後側主点位置までの距離)
R :曲率半径
D :軸上面間隔
Nd :レンズ材料のd線に対する屈折率
νd :レンズ材料のアッベ数
各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸AX方向にX軸をとり、光軸AXと垂直方向の高さをhとして以下の「数1」で表す。
ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数 〔Example〕
Examples of the imaging lens of the present invention will be shown below. Symbols used in each example are as follows.
f: Focal length of the entire imaging lens system fB: Back focus F: F value 2Y: Diagonal length of the imaging surface of the imaging device ENTP: Entrance pupil position (distance from the first surface to the entrance pupil position)
EXTP: exit pupil position (distance from imaging surface to exit pupil position)
H1: Front principal point position (distance from first surface to front principal point position)
H2: Rear principal point position (distance from the final surface to the rear principal point position)
R: radius of curvature D: axial distance Nd: refractive index νd of lens material with respect to d-line: Abbe number of lens material In each example, the surface described with “*” after each surface number has an aspherical shape. The shape of the aspherical surface is expressed by the following “Equation 1” with the vertex of the surface as the origin, the X axis in the direction of the optical axis AX, and the height in the direction perpendicular to the optical axis AX as h.
However,
Ai: i-order aspheric coefficient R: radius of curvature K: conic constant
以下、本発明の撮像レンズの実施例を示す。各実施例に使用する記号は下記の通りである。
f :撮像レンズ全系の焦点距離
fB :バックフォーカス
F :F値
2Y :撮像素子の撮像面対角線長
ENTP:入射瞳位置(第1面から入射瞳位置までの距離)
EXTP:射出瞳位置(撮像面から射出瞳位置までの距離)
H1 :前側主点位置(第1面から前側主点位置までの距離)
H2 :後側主点位置(最終面から後側主点位置までの距離)
R :曲率半径
D :軸上面間隔
Nd :レンズ材料のd線に対する屈折率
νd :レンズ材料のアッベ数
各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸AX方向にX軸をとり、光軸AXと垂直方向の高さをhとして以下の「数1」で表す。
Ai:i次の非球面係数
R :曲率半径
K :円錐定数 〔Example〕
Examples of the imaging lens of the present invention will be shown below. Symbols used in each example are as follows.
f: Focal length of the entire imaging lens system fB: Back focus F: F value 2Y: Diagonal length of the imaging surface of the imaging device ENTP: Entrance pupil position (distance from the first surface to the entrance pupil position)
EXTP: exit pupil position (distance from imaging surface to exit pupil position)
H1: Front principal point position (distance from first surface to front principal point position)
H2: Rear principal point position (distance from the final surface to the rear principal point position)
R: radius of curvature D: axial distance Nd: refractive index νd of lens material with respect to d-line: Abbe number of lens material In each example, the surface described with “*” after each surface number has an aspherical shape. The shape of the aspherical surface is expressed by the following “
Ai: i-order aspheric coefficient R: radius of curvature K: conic constant
(実施例1)
実施例1の撮像レンズの全体諸元を以下に示す。
f=3.61mm
fB=0.23mm
F=2.24
2Y=5.842mm
ENTP=0mm
EXTP=-1.93mm
H1=-2.44mm
H2=-3.38mm Example 1
The overall specifications of the imaging lens of Example 1 are shown below.
f = 3.61mm
fB = 0.23mm
F = 2.24
2Y = 5.842mm
ENTP = 0mm
EXTP = -1.93mm
H1 = -2.44mm
H2 = -3.38mm
実施例1の撮像レンズの全体諸元を以下に示す。
f=3.61mm
fB=0.23mm
F=2.24
2Y=5.842mm
ENTP=0mm
EXTP=-1.93mm
H1=-2.44mm
H2=-3.38mm Example 1
The overall specifications of the imaging lens of Example 1 are shown below.
f = 3.61mm
fB = 0.23mm
F = 2.24
2Y = 5.842mm
ENTP = 0mm
EXTP = -1.93mm
H1 = -2.44mm
H2 = -3.38mm
実施例1のレンズ面のデータを以下の表1に示す。なお、以下の表1等において、無限大を「infinity」と表し、開口絞りを「STOP」と表している。
〔表1〕
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(STOP) infinity -0.214 0.81
2* 1.283 0.490 1.54470 56.2 0.81
3* 17.741 0.080 0.75
4* -61.587 0.172 1.63470 23.9 0.75
5* 2.526 0.291 0.77
6* 5.775 0.299 1.58300 30.0 0.87
7* infinity 0.732 0.97
8* -6.132 0.395 1.54470 56.2 1.33
9* -1.328 0.463 1.60
10* -1.670 0.278 1.54470 56.2 2.29
11* 2.564 0.400 2.46
12 infinity 0.110 1.51630 64.1 2.91
13 infinity 2.94 The lens surface data of Example 1 is shown in Table 1 below. In Table 1 below, infinity is represented as “infinity” and the aperture stop is represented as “STOP”.
[Table 1]
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (STOP) infinity -0.214 0.81
2 * 1.283 0.490 1.54470 56.2 0.81
3 * 17.741 0.080 0.75
4 * -61.587 0.172 1.63470 23.9 0.75
5 * 2.526 0.291 0.77
6 * 5.775 0.299 1.58300 30.0 0.87
7 * infinity 0.732 0.97
8 * -6.132 0.395 1.54470 56.2 1.33
9 * -1.328 0.463 1.60
10 * -1.670 0.278 1.54470 56.2 2.29
11 * 2.564 0.400 2.46
12 infinity 0.110 1.51630 64.1 2.91
13 infinity 2.94
〔表1〕
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(STOP) infinity -0.214 0.81
2* 1.283 0.490 1.54470 56.2 0.81
3* 17.741 0.080 0.75
4* -61.587 0.172 1.63470 23.9 0.75
5* 2.526 0.291 0.77
6* 5.775 0.299 1.58300 30.0 0.87
7* infinity 0.732 0.97
8* -6.132 0.395 1.54470 56.2 1.33
9* -1.328 0.463 1.60
10* -1.670 0.278 1.54470 56.2 2.29
11* 2.564 0.400 2.46
12 infinity 0.110 1.51630 64.1 2.91
13 infinity 2.94 The lens surface data of Example 1 is shown in Table 1 below. In Table 1 below, infinity is represented as “infinity” and the aperture stop is represented as “STOP”.
[Table 1]
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (STOP) infinity -0.214 0.81
2 * 1.283 0.490 1.54470 56.2 0.81
3 * 17.741 0.080 0.75
4 * -61.587 0.172 1.63470 23.9 0.75
5 * 2.526 0.291 0.77
6 * 5.775 0.299 1.58300 30.0 0.87
7 * infinity 0.732 0.97
8 * -6.132 0.395 1.54470 56.2 1.33
9 * -1.328 0.463 1.60
10 * -1.670 0.278 1.54470 56.2 2.29
11 * 2.564 0.400 2.46
12 infinity 0.110 1.51630 64.1 2.91
13 infinity 2.94
実施例1のレンズ面の非球面係数を以下の表2に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10-02)をE(たとえば2.5E-02)を用いて表すものとする。
〔表2〕
第2面
K=-0.89947E-02, A4=0.99536E-02, A6=-0.62845E-02, A8=0.12067E+00,
A10=-0.31260E+00, A12=0.47572E+00, A14=-0.27747E+00
第3面
K=-0.10000E+01, A4=-0.18962E+00, A6=0.75111E+00, A8=-0.14867E+01,
A10=0.21199E+01, A12=-0.19861E+01, A14=0.70343E+00
第4面
K=0.10000E+01, A3=0.00000E+00, A4=-0.44605E+00, A5=0.00000E+00,
A6=0.21065E+01, A8=-0.47962E+01, A10=0.68751E+01, A12=-0.59227E+01,
A14=0.21617E+01
第5面
K=-0.48405E+00, A3=0.00000E+00, A4=-0.34794E+00, A5=0.00000E+00,
A6=0.19209E+01, A8=-0.49014E+01, A10=0.86395E+01, A12=-0.89405E+01,
A14=0.42372E+01
第6面
K=-0.60547E+01, A3=0.00000E+00, A4=-0.25683E+00, A5=0.00000E+00,
A6=0.30105E-01, A8=0.31850E+00, A10=-0.87920E+00, A12=0.12041E+01,
A14=-0.47516E+00
第7面
K=0.00000E+00, A4=-0.17820E+00, A6=0.25199E-01, A8=0.99320E-02,
A10=-0.57166E-01, A12=0.12756E+00, A14=0.00000E+00
第8面
K=0.10000E+01, A4=-0.25161E-01, A6=-0.18349E+00, A8=0.30763E+00,
A10=-0.29171E+00, A12=0.13383E+00, A14=-0.23897E-01
第9面
K=-0.13008E+02, A3=-0.14866E+00, A4=-0.62380E-01, A5=0.55091E-01,
A6=0.48618E-01, A8=-0.15964E-01, A10=-0.23059E-02, A12=0.21921E-02,
A14=-0.49563E-03
第10面
K=-0.22936E+01, A3=-0.21089E-01, A4=0.13697E-01, A5=0.53683E-02,
A6=0.33780E-02, A8=-0.39560E-03, A10=-0.85814E-04, A12=0.13240E-05,
A14=0.13739E-05
第11面
K=-0.40396E+02, A3=-0.23898E-01, A4=-0.12259E-01, A5=0.26471E-02,
A6=-0.68778E-03, A8=-0.52043E-03, A10=0.30694E-04, A12=0.16595E-05,
A14=0.67639E-06 The aspheric coefficients of the lens surfaces of Example 1 are shown in Table 2 below. In the following it (including lens data in Tables), and represents an exponent of 10 (for example, 2.5 × 10 -02) with E (e.g. 2.5E-02).
[Table 2]
Second side
K = -0.89947E-02, A4 = 0.99536E-02, A6 = -0.62845E-02, A8 = 0.12067E + 00,
A10 = -0.31260E + 00, A12 = 0.47572E + 00, A14 = -0.27747E + 00
Third side
K = -0.10000E + 01, A4 = -0.18962E + 00, A6 = 0.75111E + 00, A8 = -0.14867E + 01,
A10 = 0.21199E + 01, A12 = -0.19861E + 01, A14 = 0.70343E + 00
4th page
K = 0.10000E + 01, A3 = 0.00000E + 00, A4 = -0.44605E + 00, A5 = 0.00000E + 00,
A6 = 0.21065E + 01, A8 = -0.47962E + 01, A10 = 0.68751E + 01, A12 = -0.59227E + 01,
A14 = 0.21617E + 01
5th page
K = -0.48405E + 00, A3 = 0.00000E + 00, A4 = -0.34794E + 00, A5 = 0.00000E + 00,
A6 = 0.19209E + 01, A8 = -0.49014E + 01, A10 = 0.86395E + 01, A12 = -0.89405E + 01,
A14 = 0.42372E + 01
6th page
K = -0.60547E + 01, A3 = 0.00000E + 00, A4 = -0.25683E + 00, A5 = 0.00000E + 00,
A6 = 0.30105E-01, A8 = 0.31850E + 00, A10 = -0.87920E + 00, A12 = 0.12041E + 01,
A14 = -0.47516E + 00
7th page
K = 0.00000E + 00, A4 = -0.17820E + 00, A6 = 0.25199E-01, A8 = 0.99320E-02,
A10 = -0.57166E-01, A12 = 0.12756E + 00, A14 = 0.00000E + 00
8th page
K = 0.10000E + 01, A4 = -0.25161E-01, A6 = -0.18349E + 00, A8 = 0.30763E + 00,
A10 = -0.29171E + 00, A12 = 0.13383E + 00, A14 = -0.23897E-01
9th page
K = -0.13008E + 02, A3 = -0.14866E + 00, A4 = -0.62380E-01, A5 = 0.55091E-01,
A6 = 0.48618E-01, A8 = -0.15964E-01, A10 = -0.23059E-02, A12 = 0.21921E-02,
A14 = -0.49563E-03
10th page
K = -0.22936E + 01, A3 = -0.21089E-01, A4 = 0.13697E-01, A5 = 0.53683E-02,
A6 = 0.33780E-02, A8 = -0.39560E-03, A10 = -0.85814E-04, A12 = 0.13240E-05,
A14 = 0.13739E-05
11th page
K = -0.40396E + 02, A3 = -0.23898E-01, A4 = -0.12259E-01, A5 = 0.26471E-02,
A6 = -0.68778E-03, A8 = -0.52043E-03, A10 = 0.30694E-04, A12 = 0.16595E-05,
A14 = 0.67639E-06
〔表2〕
第2面
K=-0.89947E-02, A4=0.99536E-02, A6=-0.62845E-02, A8=0.12067E+00,
A10=-0.31260E+00, A12=0.47572E+00, A14=-0.27747E+00
第3面
K=-0.10000E+01, A4=-0.18962E+00, A6=0.75111E+00, A8=-0.14867E+01,
A10=0.21199E+01, A12=-0.19861E+01, A14=0.70343E+00
第4面
K=0.10000E+01, A3=0.00000E+00, A4=-0.44605E+00, A5=0.00000E+00,
A6=0.21065E+01, A8=-0.47962E+01, A10=0.68751E+01, A12=-0.59227E+01,
A14=0.21617E+01
第5面
K=-0.48405E+00, A3=0.00000E+00, A4=-0.34794E+00, A5=0.00000E+00,
A6=0.19209E+01, A8=-0.49014E+01, A10=0.86395E+01, A12=-0.89405E+01,
A14=0.42372E+01
第6面
K=-0.60547E+01, A3=0.00000E+00, A4=-0.25683E+00, A5=0.00000E+00,
A6=0.30105E-01, A8=0.31850E+00, A10=-0.87920E+00, A12=0.12041E+01,
A14=-0.47516E+00
第7面
K=0.00000E+00, A4=-0.17820E+00, A6=0.25199E-01, A8=0.99320E-02,
A10=-0.57166E-01, A12=0.12756E+00, A14=0.00000E+00
第8面
K=0.10000E+01, A4=-0.25161E-01, A6=-0.18349E+00, A8=0.30763E+00,
A10=-0.29171E+00, A12=0.13383E+00, A14=-0.23897E-01
第9面
K=-0.13008E+02, A3=-0.14866E+00, A4=-0.62380E-01, A5=0.55091E-01,
A6=0.48618E-01, A8=-0.15964E-01, A10=-0.23059E-02, A12=0.21921E-02,
A14=-0.49563E-03
第10面
K=-0.22936E+01, A3=-0.21089E-01, A4=0.13697E-01, A5=0.53683E-02,
A6=0.33780E-02, A8=-0.39560E-03, A10=-0.85814E-04, A12=0.13240E-05,
A14=0.13739E-05
第11面
K=-0.40396E+02, A3=-0.23898E-01, A4=-0.12259E-01, A5=0.26471E-02,
A6=-0.68778E-03, A8=-0.52043E-03, A10=0.30694E-04, A12=0.16595E-05,
A14=0.67639E-06 The aspheric coefficients of the lens surfaces of Example 1 are shown in Table 2 below. In the following it (including lens data in Tables), and represents an exponent of 10 (for example, 2.5 × 10 -02) with E (e.g. 2.5E-02).
[Table 2]
Second side
K = -0.89947E-02, A4 = 0.99536E-02, A6 = -0.62845E-02, A8 = 0.12067E + 00,
A10 = -0.31260E + 00, A12 = 0.47572E + 00, A14 = -0.27747E + 00
Third side
K = -0.10000E + 01, A4 = -0.18962E + 00, A6 = 0.75111E + 00, A8 = -0.14867E + 01,
A10 = 0.21199E + 01, A12 = -0.19861E + 01, A14 = 0.70343E + 00
4th page
K = 0.10000E + 01, A3 = 0.00000E + 00, A4 = -0.44605E + 00, A5 = 0.00000E + 00,
A6 = 0.21065E + 01, A8 = -0.47962E + 01, A10 = 0.68751E + 01, A12 = -0.59227E + 01,
A14 = 0.21617E + 01
5th page
K = -0.48405E + 00, A3 = 0.00000E + 00, A4 = -0.34794E + 00, A5 = 0.00000E + 00,
A6 = 0.19209E + 01, A8 = -0.49014E + 01, A10 = 0.86395E + 01, A12 = -0.89405E + 01,
A14 = 0.42372E + 01
6th page
K = -0.60547E + 01, A3 = 0.00000E + 00, A4 = -0.25683E + 00, A5 = 0.00000E + 00,
A6 = 0.30105E-01, A8 = 0.31850E + 00, A10 = -0.87920E + 00, A12 = 0.12041E + 01,
A14 = -0.47516E + 00
7th page
K = 0.00000E + 00, A4 = -0.17820E + 00, A6 = 0.25199E-01, A8 = 0.99320E-02,
A10 = -0.57166E-01, A12 = 0.12756E + 00, A14 = 0.00000E + 00
8th page
K = 0.10000E + 01, A4 = -0.25161E-01, A6 = -0.18349E + 00, A8 = 0.30763E + 00,
A10 = -0.29171E + 00, A12 = 0.13383E + 00, A14 = -0.23897E-01
9th page
K = -0.13008E + 02, A3 = -0.14866E + 00, A4 = -0.62380E-01, A5 = 0.55091E-01,
A6 = 0.48618E-01, A8 = -0.15964E-01, A10 = -0.23059E-02, A12 = 0.21921E-02,
A14 = -0.49563E-03
10th page
K = -0.22936E + 01, A3 = -0.21089E-01, A4 = 0.13697E-01, A5 = 0.53683E-02,
A6 = 0.33780E-02, A8 = -0.39560E-03, A10 = -0.85814E-04, A12 = 0.13240E-05,
A14 = 0.13739E-05
11th page
K = -0.40396E + 02, A3 = -0.23898E-01, A4 = -0.12259E-01, A5 = 0.26471E-02,
A6 = -0.68778E-03, A8 = -0.52043E-03, A10 = 0.30694E-04, A12 = 0.16595E-05,
A14 = 0.67639E-06
実施例1の単レンズデータを以下の表3に示す。
〔表3〕
レンズ 始面 焦点距離(mm)
1 2 2.512
2 4 -3.820
3 6 9.906
4 8 3.023
5 10 -1.815 The single lens data of Example 1 is shown in Table 3 below.
[Table 3]
Lens Start surface Focal length (mm)
1 2 2.512
2 4 -3.820
3 6 9.906
4 8 3.023
5 10 -1.815
〔表3〕
レンズ 始面 焦点距離(mm)
1 2 2.512
2 4 -3.820
3 6 9.906
4 8 3.023
5 10 -1.815 The single lens data of Example 1 is shown in Table 3 below.
[Table 3]
Lens Start surface Focal length (mm)
1 2 2.512
2 4 -3.820
3 6 9.906
4 8 3.023
5 10 -1.815
図4は、実施例1の撮像レンズ11等の断面図である。撮像レンズ11は、物体側より順に、光軸AX近傍で正の屈折力を有し物体側に凸面を向けたメニスカス形状を有する第1レンズL1と、光軸AX近傍で負の屈折力を有し平凹に近い両凹の第2レンズL2と、光軸AX近傍で正の屈折力を有し物体側に凸面を向けた凸平の第3レンズL3と、光軸AX近傍で正の屈折力を有し像側に凸面を向けたメニスカス形状を有する第4レンズL4と、光軸AX近傍で負の屈折力を有し両凹の第5レンズL5とを備える。全てのレンズL1~L5は、プラスチック材料から形成されている。第1レンズL1の物体側面頂点より像側で物体側面の周辺部より物体側に、開口絞りSが配置されている。第5レンズL5の光射出面と撮像面(像面)Iとの間には、平行平板Fが配置されている。平行平板Fは、光学的ローパスフィルター、IRカットフィルター、固体撮像素子のシールガラス等を想定したものである(以下の実施例でも同様)。
FIG. 4 is a cross-sectional view of the imaging lens 11 and the like of the first embodiment. The imaging lens 11 has, in order from the object side, a first lens L1 having a positive refractive power near the optical axis AX and a meniscus shape with a convex surface facing the object side, and a negative refractive power near the optical axis AX. A biconcave second lens L2 that is close to a plano-concave, a convex third lens L3 having a positive refractive power near the optical axis AX and having a convex surface facing the object side, and a positive refraction near the optical axis AX. And a fourth lens L4 having a meniscus shape having a convex surface facing the image side, and a biconcave fifth lens L5 having a negative refractive power in the vicinity of the optical axis AX. All the lenses L1 to L5 are made of a plastic material. An aperture stop S is disposed on the image side from the object side vertex of the first lens L1 and on the object side from the periphery of the object side surface. A parallel plate F is disposed between the light exit surface of the fifth lens L5 and the imaging surface (image surface) I. The parallel plate F is assumed to be an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, and the like (the same applies to the following examples).
図5A~5Cは、実施例1の撮像レンズ11の球面収差、非点収差、及び歪曲収差を示し、図5D及び5Eは、撮像レンズ11のメリディオナルコマ収差を示している。
5A to 5C show the spherical aberration, astigmatism, and distortion of the imaging lens 11 of Example 1, and FIGS. 5D and 5E show the meridional coma aberration of the imaging lens 11. FIG.
(実施例2)
実施例2の撮像レンズの全体諸元を以下に示す。
f=3.62mm
fB=0.34mm
F=2.24
2Y=5.842mm
ENTP=0mm
EXTP=-1.96mm
H1=-2.08mm
H2=-3.28mm (Example 2)
The overall specifications of the imaging lens of Example 2 are shown below.
f = 3.62mm
fB = 0.34mm
F = 2.24
2Y = 5.842mm
ENTP = 0mm
EXTP = -1.96mm
H1 = −2.08mm
H2 = -3.28mm
実施例2の撮像レンズの全体諸元を以下に示す。
f=3.62mm
fB=0.34mm
F=2.24
2Y=5.842mm
ENTP=0mm
EXTP=-1.96mm
H1=-2.08mm
H2=-3.28mm (Example 2)
The overall specifications of the imaging lens of Example 2 are shown below.
f = 3.62mm
fB = 0.34mm
F = 2.24
2Y = 5.842mm
ENTP = 0mm
EXTP = -1.96mm
H1 = −2.08mm
H2 = -3.28mm
実施例2のレンズ面のデータを以下の表4に示す。
〔表4〕
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(STOP) infinity -0.218 0.81
2* 1.269 0.455 1.54470 56.2 0.81
3* 5.514 0.106 0.76
4* 8.144 0.170 1.63470 23.9 0.76
5* 2.469 0.303 0.77
6* 8.458 0.321 1.58300 30.0 0.88
7* infinity 0.631 0.98
8* -5.720 0.364 1.54470 56.2 1.22
9* -1.276 0.475 1.45
10* -1.751 0.270 1.54470 56.2 2.20
11* 2.832 0.400 2.38
12 infinity 0.110 1.51630 64.1 3.00
13 infinity 3.00 The lens surface data of Example 2 is shown in Table 4 below.
[Table 4]
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (STOP) infinity -0.218 0.81
2 * 1.269 0.455 1.54470 56.2 0.81
3 * 5.514 0.106 0.76
4 * 8.144 0.170 1.63470 23.9 0.76
5 * 2.469 0.303 0.77
6 * 8.458 0.321 1.58300 30.0 0.88
7 * infinity 0.631 0.98
8 * -5.720 0.364 1.54470 56.2 1.22
9 * -1.276 0.475 1.45
10 * -1.751 0.270 1.54470 56.2 2.20
11 * 2.832 0.400 2.38
12 infinity 0.110 1.51630 64.1 3.00
13 infinity 3.00
〔表4〕
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(STOP) infinity -0.218 0.81
2* 1.269 0.455 1.54470 56.2 0.81
3* 5.514 0.106 0.76
4* 8.144 0.170 1.63470 23.9 0.76
5* 2.469 0.303 0.77
6* 8.458 0.321 1.58300 30.0 0.88
7* infinity 0.631 0.98
8* -5.720 0.364 1.54470 56.2 1.22
9* -1.276 0.475 1.45
10* -1.751 0.270 1.54470 56.2 2.20
11* 2.832 0.400 2.38
12 infinity 0.110 1.51630 64.1 3.00
13 infinity 3.00 The lens surface data of Example 2 is shown in Table 4 below.
[Table 4]
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (STOP) infinity -0.218 0.81
2 * 1.269 0.455 1.54470 56.2 0.81
3 * 5.514 0.106 0.76
4 * 8.144 0.170 1.63470 23.9 0.76
5 * 2.469 0.303 0.77
6 * 8.458 0.321 1.58300 30.0 0.88
7 * infinity 0.631 0.98
8 * -5.720 0.364 1.54470 56.2 1.22
9 * -1.276 0.475 1.45
10 * -1.751 0.270 1.54470 56.2 2.20
11 * 2.832 0.400 2.38
12 infinity 0.110 1.51630 64.1 3.00
13 infinity 3.00
実施例2のレンズ面の非球面係数を以下の表5に示す。
〔表5〕
第2面
K=0.57675E-01, A4=0.10693E-01, A6=-0.39321E-01, A8=0.12919E+00,
A10=-0.87256E-01, A12=0.00000E+00
第3面
K=-0.10000E+01, A4=-0.23893E+00, A6=0.46810E+00, A8=-0.34488E+00,
A10=0.00000E+00
第4面
K=0.10000E+01, A3=0.00000E+00, A4=-0.58831E+00, A5=0.00000E+00,
A6=0.16382E+01, A8=-0.18768E+01, A10=0.75285E+00, A12=0.00000E+00,
A14=0.00000E+00
第5面
K=-0.30077E+01, A3=0.00000E+00, A4=-0.42334E+00, A5=0.00000E+00,
A6=0.15662E+01, A8=-0.19275E+01, A10=0.11452E+01, A12=0.00000E+00,
A14=0.00000E+00
第6面
K=-0.60546E+01, A3=0.00000E+00, A4=-0.29452E+00, A5=0.00000E+00,
A6=0.29308E+00, A8=-0.53072E+00, A10=0.83016E+00, A12=-0.34321E+00,
A14=0.00000E+00
第7面
K=0.00000E+00, A4=-0.19388E+00, A6=0.53551E-01, A8=0.81980E-02,
A10=-0.59693E-01, A12=0.11579E+00
第8面
K=0.10000E+01, A4=-0.71880E-01, A6=-0.64501E-01, A8=0.44105E-01,
A10=-0.24352E-01
第9面
K=-0.83780E+01, A3=-0.10244E+00, A4=-0.84445E-01, A5=0.31555E-01,
A6=0.47101E-01, A8=-0.78191E-02, A10=-0.43156E-03, A12=0.14257E-02,
A14=-0.91484E-03
第10面
K=-0.22560E+01, A3=-0.18875E-01, A4=0.13634E-01, A5=0.55911E-02,
A6=0.35914E-02, A8=-0.37488E-03, A10=-0.10174E-03, A12=-0.28283E-05,
A14=0.22980E-05
第11面
K=-0.40000E+02, A3=-0.22624E-01, A4=-0.16366E-01, A5=0.23360E-02,
A6=-0.11426E-03, A8=-0.45958E-03, A10=0.20822E-04, A12=0.65478E-07,
A14=0.11071E-05 The aspherical coefficient of the lens surface of Example 2 is shown in Table 5 below.
[Table 5]
Second side
K = 0.57675E-01, A4 = 0.10693E-01, A6 = -0.39321E-01, A8 = 0.12919E + 00,
A10 = -0.87256E-01, A12 = 0.00000E + 00
Third side
K = -0.10000E + 01, A4 = -0.23893E + 00, A6 = 0.46810E + 00, A8 = -0.34488E + 00,
A10 = 0.00000E + 00
4th page
K = 0.10000E + 01, A3 = 0.00000E + 00, A4 = -0.58831E + 00, A5 = 0.00000E + 00,
A6 = 0.16382E + 01, A8 = -0.18768E + 01, A10 = 0.75285E + 00, A12 = 0.00000E + 00,
A14 = 0.00000E + 00
5th page
K = -0.30077E + 01, A3 = 0.00000E + 00, A4 = -0.42334E + 00, A5 = 0.00000E + 00,
A6 = 0.15662E + 01, A8 = -0.19275E + 01, A10 = 0.11452E + 01, A12 = 0.00000E + 00,
A14 = 0.00000E + 00
6th page
K = -0.60546E + 01, A3 = 0.00000E + 00, A4 = -0.29452E + 00, A5 = 0.00000E + 00,
A6 = 0.29308E + 00, A8 = -0.53072E + 00, A10 = 0.83016E + 00, A12 = -0.34321E + 00,
A14 = 0.00000E + 00
7th page
K = 0.00000E + 00, A4 = -0.19388E + 00, A6 = 0.53551E-01, A8 = 0.81980E-02,
A10 = -0.59693E-01, A12 = 0.11579E + 00
8th page
K = 0.10000E + 01, A4 = -0.71880E-01, A6 = -0.64501E-01, A8 = 0.44105E-01,
A10 = -0.24352E-01
9th page
K = -0.83780E + 01, A3 = -0.10244E + 00, A4 = -0.84445E-01, A5 = 0.31555E-01,
A6 = 0.47101E-01, A8 = -0.78191E-02, A10 = -0.43156E-03, A12 = 0.14257E-02,
A14 = -0.91484E-03
10th page
K = -0.22560E + 01, A3 = -0.18875E-01, A4 = 0.13634E-01, A5 = 0.55911E-02,
A6 = 0.35914E-02, A8 = -0.37488E-03, A10 = -0.10174E-03, A12 = -0.28283E-05,
A14 = 0.22980E-05
11th page
K = -0.40000E + 02, A3 = -0.22624E-01, A4 = -0.16366E-01, A5 = 0.23360E-02,
A6 = -0.11426E-03, A8 = -0.45958E-03, A10 = 0.20822E-04, A12 = 0.65478E-07,
A14 = 0.11071E-05
〔表5〕
第2面
K=0.57675E-01, A4=0.10693E-01, A6=-0.39321E-01, A8=0.12919E+00,
A10=-0.87256E-01, A12=0.00000E+00
第3面
K=-0.10000E+01, A4=-0.23893E+00, A6=0.46810E+00, A8=-0.34488E+00,
A10=0.00000E+00
第4面
K=0.10000E+01, A3=0.00000E+00, A4=-0.58831E+00, A5=0.00000E+00,
A6=0.16382E+01, A8=-0.18768E+01, A10=0.75285E+00, A12=0.00000E+00,
A14=0.00000E+00
第5面
K=-0.30077E+01, A3=0.00000E+00, A4=-0.42334E+00, A5=0.00000E+00,
A6=0.15662E+01, A8=-0.19275E+01, A10=0.11452E+01, A12=0.00000E+00,
A14=0.00000E+00
第6面
K=-0.60546E+01, A3=0.00000E+00, A4=-0.29452E+00, A5=0.00000E+00,
A6=0.29308E+00, A8=-0.53072E+00, A10=0.83016E+00, A12=-0.34321E+00,
A14=0.00000E+00
第7面
K=0.00000E+00, A4=-0.19388E+00, A6=0.53551E-01, A8=0.81980E-02,
A10=-0.59693E-01, A12=0.11579E+00
第8面
K=0.10000E+01, A4=-0.71880E-01, A6=-0.64501E-01, A8=0.44105E-01,
A10=-0.24352E-01
第9面
K=-0.83780E+01, A3=-0.10244E+00, A4=-0.84445E-01, A5=0.31555E-01,
A6=0.47101E-01, A8=-0.78191E-02, A10=-0.43156E-03, A12=0.14257E-02,
A14=-0.91484E-03
第10面
K=-0.22560E+01, A3=-0.18875E-01, A4=0.13634E-01, A5=0.55911E-02,
A6=0.35914E-02, A8=-0.37488E-03, A10=-0.10174E-03, A12=-0.28283E-05,
A14=0.22980E-05
第11面
K=-0.40000E+02, A3=-0.22624E-01, A4=-0.16366E-01, A5=0.23360E-02,
A6=-0.11426E-03, A8=-0.45958E-03, A10=0.20822E-04, A12=0.65478E-07,
A14=0.11071E-05 The aspherical coefficient of the lens surface of Example 2 is shown in Table 5 below.
[Table 5]
Second side
K = 0.57675E-01, A4 = 0.10693E-01, A6 = -0.39321E-01, A8 = 0.12919E + 00,
A10 = -0.87256E-01, A12 = 0.00000E + 00
Third side
K = -0.10000E + 01, A4 = -0.23893E + 00, A6 = 0.46810E + 00, A8 = -0.34488E + 00,
A10 = 0.00000E + 00
4th page
K = 0.10000E + 01, A3 = 0.00000E + 00, A4 = -0.58831E + 00, A5 = 0.00000E + 00,
A6 = 0.16382E + 01, A8 = -0.18768E + 01, A10 = 0.75285E + 00, A12 = 0.00000E + 00,
A14 = 0.00000E + 00
5th page
K = -0.30077E + 01, A3 = 0.00000E + 00, A4 = -0.42334E + 00, A5 = 0.00000E + 00,
A6 = 0.15662E + 01, A8 = -0.19275E + 01, A10 = 0.11452E + 01, A12 = 0.00000E + 00,
A14 = 0.00000E + 00
6th page
K = -0.60546E + 01, A3 = 0.00000E + 00, A4 = -0.29452E + 00, A5 = 0.00000E + 00,
A6 = 0.29308E + 00, A8 = -0.53072E + 00, A10 = 0.83016E + 00, A12 = -0.34321E + 00,
A14 = 0.00000E + 00
7th page
K = 0.00000E + 00, A4 = -0.19388E + 00, A6 = 0.53551E-01, A8 = 0.81980E-02,
A10 = -0.59693E-01, A12 = 0.11579E + 00
8th page
K = 0.10000E + 01, A4 = -0.71880E-01, A6 = -0.64501E-01, A8 = 0.44105E-01,
A10 = -0.24352E-01
9th page
K = -0.83780E + 01, A3 = -0.10244E + 00, A4 = -0.84445E-01, A5 = 0.31555E-01,
A6 = 0.47101E-01, A8 = -0.78191E-02, A10 = -0.43156E-03, A12 = 0.14257E-02,
A14 = -0.91484E-03
10th page
K = -0.22560E + 01, A3 = -0.18875E-01, A4 = 0.13634E-01, A5 = 0.55911E-02,
A6 = 0.35914E-02, A8 = -0.37488E-03, A10 = -0.10174E-03, A12 = -0.28283E-05,
A14 = 0.22980E-05
11th page
K = -0.40000E + 02, A3 = -0.22624E-01, A4 = -0.16366E-01, A5 = 0.23360E-02,
A6 = -0.11426E-03, A8 = -0.45958E-03, A10 = 0.20822E-04, A12 = 0.65478E-07,
A14 = 0.11071E-05
実施例2の単レンズデータを以下の表6に示す。
〔表6〕
レンズ 始面 焦点距離(mm)
1 2 2.915
2 4 -5.647
3 6 14.508
4 8 2.932
5 10 -1.946 The single lens data of Example 2 is shown in Table 6 below.
[Table 6]
Lens Start surface Focal length (mm)
1 2 2.915
2 4 -5.647
3 6 14.508
4 8 2.932
5 10 -1.946
〔表6〕
レンズ 始面 焦点距離(mm)
1 2 2.915
2 4 -5.647
3 6 14.508
4 8 2.932
5 10 -1.946 The single lens data of Example 2 is shown in Table 6 below.
[Table 6]
Lens Start surface Focal length (mm)
1 2 2.915
2 4 -5.647
3 6 14.508
4 8 2.932
5 10 -1.946
図6は、実施例2の撮像レンズ12等の断面図である。撮像レンズ12は、物体側より順に、光軸AX近傍で正の屈折力を有し物体側に凸面を向けたメニスカス形状を有する第1レンズL1と、光軸AX近傍で負の屈折力を有し物体側に凸面を向けたメニスカス形状を有する第2レンズL2と、光軸AX近傍で正の屈折力を有し物体側に凸面を向けた凸平の第3レンズL3と、光軸AX近傍で正の屈折力を有し像側に凸面を向けたメニスカス形状を有する第4レンズL4と、光軸AX近傍で負の屈折力を有し両凹の第5レンズL5とを備える。全てのレンズL1~L5は、プラスチック材料から形成されている。第1レンズL1の物体側面頂点より像側で物体側面の周辺部より物体側に、開口絞りSが配置されている。第5レンズL5の光射出面と撮像面(像面)Iとの間には、平行平板Fが配置されている。
FIG. 6 is a cross-sectional view of the imaging lens 12 and the like of the second embodiment. The imaging lens 12 has, in order from the object side, a first lens L1 having a positive refractive power near the optical axis AX and a meniscus shape with a convex surface facing the object side, and a negative refractive power near the optical axis AX. A second lens L2 having a meniscus shape with a convex surface facing the object side, a convex third lens L3 having a positive refractive power near the optical axis AX and a convex surface facing the object side, and the vicinity of the optical axis AX And a fourth lens L4 having a meniscus shape having a positive refractive power and a convex surface facing the image side, and a biconcave fifth lens L5 having a negative refractive power in the vicinity of the optical axis AX. All the lenses L1 to L5 are made of a plastic material. An aperture stop S is disposed on the image side from the object side vertex of the first lens L1 and on the object side from the periphery of the object side surface. A parallel plate F is disposed between the light exit surface of the fifth lens L5 and the imaging surface (image surface) I.
図7A~7Cは、実施例2の撮像レンズ12の球面収差、非点収差、及び歪曲収差を示し、図7D及び7Eは、撮像レンズ12のメリディオナルコマ収差を示している。
7A to 7C show the spherical aberration, astigmatism, and distortion of the imaging lens 12 of Example 2, and FIGS. 7D and 7E show the meridional coma aberration of the imaging lens 12. FIG.
(実施例3)
実施例3の撮像レンズの全体諸元を以下に示す。
f=3.6mm
fB=0.25mm
F=2.26
2Y=5.712mm
ENTP=0mm
EXTP=-2.18mm
H1=-1.73mm
H2=-3.34mm Example 3
The overall specifications of the imaging lens of Example 3 are shown below.
f = 3.6mm
fB = 0.25mm
F = 2.26
2Y = 5.712mm
ENTP = 0mm
EXTP = -2.18mm
H1 = -1.73mm
H2 = -3.34mm
実施例3の撮像レンズの全体諸元を以下に示す。
f=3.6mm
fB=0.25mm
F=2.26
2Y=5.712mm
ENTP=0mm
EXTP=-2.18mm
H1=-1.73mm
H2=-3.34mm Example 3
The overall specifications of the imaging lens of Example 3 are shown below.
f = 3.6mm
fB = 0.25mm
F = 2.26
2Y = 5.712mm
ENTP = 0mm
EXTP = -2.18mm
H1 = -1.73mm
H2 = -3.34mm
実施例3のレンズ面のデータを以下の表7に示す。
〔表7〕
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(STOP) infinity -0.177 0.80
2* 1.473 0.448 1.54470 56.2 0.82
3* -39.273 0.094 0.83
4* 46.173 0.200 1.63470 23.9 0.84
5* 2.369 0.339 0.86
6* 7.315 0.466 1.54000 45.0 0.97
7* infinity 0.620 1.12
8* -7.562 0.520 1.54470 56.2 1.48
9* -1.031 0.398 1.69
10* -1.531 0.290 1.54470 56.2 2.34
11* 2.098 0.500 2.52
12 infinity 0.110 1.51630 64.1 3.00
13 infinity 3.00 The lens surface data of Example 3 is shown in Table 7 below.
[Table 7]
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (STOP) infinity -0.177 0.80
2 * 1.473 0.448 1.54470 56.2 0.82
3 * -39.273 0.094 0.83
4 * 46.173 0.200 1.63470 23.9 0.84
5 * 2.369 0.339 0.86
6 * 7.315 0.466 1.54000 45.0 0.97
7 * infinity 0.620 1.12
8 * -7.562 0.520 1.54470 56.2 1.48
9 * -1.031 0.398 1.69
10 * -1.531 0.290 1.54470 56.2 2.34
11 * 2.098 0.500 2.52
12 infinity 0.110 1.51630 64.1 3.00
13 infinity 3.00
〔表7〕
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(STOP) infinity -0.177 0.80
2* 1.473 0.448 1.54470 56.2 0.82
3* -39.273 0.094 0.83
4* 46.173 0.200 1.63470 23.9 0.84
5* 2.369 0.339 0.86
6* 7.315 0.466 1.54000 45.0 0.97
7* infinity 0.620 1.12
8* -7.562 0.520 1.54470 56.2 1.48
9* -1.031 0.398 1.69
10* -1.531 0.290 1.54470 56.2 2.34
11* 2.098 0.500 2.52
12 infinity 0.110 1.51630 64.1 3.00
13 infinity 3.00 The lens surface data of Example 3 is shown in Table 7 below.
[Table 7]
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (STOP) infinity -0.177 0.80
2 * 1.473 0.448 1.54470 56.2 0.82
3 * -39.273 0.094 0.83
4 * 46.173 0.200 1.63470 23.9 0.84
5 * 2.369 0.339 0.86
6 * 7.315 0.466 1.54000 45.0 0.97
7 * infinity 0.620 1.12
8 * -7.562 0.520 1.54470 56.2 1.48
9 * -1.031 0.398 1.69
10 * -1.531 0.290 1.54470 56.2 2.34
11 * 2.098 0.500 2.52
12 infinity 0.110 1.51630 64.1 3.00
13 infinity 3.00
実施例3のレンズ面の非球面係数を以下の表8に示す。
〔表8〕
第2面
K=0.10635E+00, A4=0.57234E-02, A6=-0.42528E-04, A8=0.34316E-02,
A10=0.42662E-01, A12=-0.17661E-01, A14=-0.34191E-01
第3面
K=0.40982E+02, A4=0.51090E-01, A6=0.21525E-01, A8=0.48727E-02,
A10=-0.83271E-01, A12=-0.40499E-01, A14=0.38435E-01
第4面
K=-0.50000E+02, A4=0.15141E-01, A6=0.11741E+00, A8=-0.12071E+00,
A10=-0.10087E+00, A12=-0.17401E-01, A14=0.99259E-01
第5面
K=-0.17370E+02, A4=0.12160E+00, A6=0.29487E-01, A8=-0.34402E-01,
A10=0.13207E-01, A12=-0.70731E-01, A14=0.11898E+00
第6面
K=0.17284E+02, A4=-0.12750E+00, A6=0.21338E-01, A8=-0.41553E-01,
A10=0.36000E-01, A12=0.76601E-01, A14=-0.39837E-01
第7面
K=0.00000E+00, A4=-0.80607E-01, A6=-0.22201E-01, A8=0.67598E-02,
A10=-0.25860E-03, A12=-0.28112E-03, A14=0.15083E-01
第8面
K=0.24016E+02, A4=-0.62617E-01, A6=0.38178E-01, A8=-0.15761E-01,
A10=-0.59179E-02, A12=0.86329E-03, A14=0.11669E-02
第9面
K=-0.30808E+01, A4=-0.69175E-01, A6=0.60722E-01, A8=-0.10030E-01,
A10=-0.11506E-02, A12=0.10993E-03, A14=0.64721E-05
第10面
K=-0.46990E+01, A4=-0.16736E-01, A6=0.85842E-02, A8=0.67419E-04,
A10=-0.23912E-03, A12=0.12242E-04, A14=0.12284E-05
第11面
K=-0.20494E+02, A4=-0.45043E-01, A6=0.12681E-01, A8=-0.28506E-02,
A10=0.23806E-03, A12=-0.35985E-05, A14=0.24488E-06 The aspherical coefficients of the lens surfaces of Example 3 are shown in Table 8 below.
[Table 8]
Second side
K = 0.10635E + 00, A4 = 0.57234E-02, A6 = -0.42528E-04, A8 = 0.34316E-02,
A10 = 0.42662E-01, A12 = -0.17661E-01, A14 = -0.34191E-01
Third side
K = 0.40982E + 02, A4 = 0.51090E-01, A6 = 0.21525E-01, A8 = 0.48727E-02,
A10 = -0.83271E-01, A12 = -0.40499E-01, A14 = 0.38435E-01
4th page
K = -0.50000E + 02, A4 = 0.15141E-01, A6 = 0.11741E + 00, A8 = -0.12071E + 00,
A10 = -0.10087E + 00, A12 = -0.17401E-01, A14 = 0.99259E-01
5th page
K = -0.17370E + 02, A4 = 0.12160E + 00, A6 = 0.29487E-01, A8 = -0.34402E-01,
A10 = 0.13207E-01, A12 = -0.70731E-01, A14 = 0.11898E + 00
6th page
K = 0.17284E + 02, A4 = -0.12750E + 00, A6 = 0.21338E-01, A8 = -0.41553E-01,
A10 = 0.36000E-01, A12 = 0.76601E-01, A14 = -0.39837E-01
7th page
K = 0.00000E + 00, A4 = -0.80607E-01, A6 = -0.22201E-01, A8 = 0.67598E-02,
A10 = -0.25860E-03, A12 = -0.28112E-03, A14 = 0.15083E-01
8th page
K = 0.24016E + 02, A4 = -0.62617E-01, A6 = 0.38178E-01, A8 = -0.15761E-01,
A10 = -0.59179E-02, A12 = 0.86329E-03, A14 = 0.11669E-02
9th page
K = -0.30808E + 01, A4 = -0.69175E-01, A6 = 0.60722E-01, A8 = -0.10030E-01,
A10 = -0.11506E-02, A12 = 0.10993E-03, A14 = 0.64721E-05
10th page
K = -0.46990E + 01, A4 = -0.16736E-01, A6 = 0.85842E-02, A8 = 0.67419E-04,
A10 = -0.23912E-03, A12 = 0.12242E-04, A14 = 0.12284E-05
11th page
K = -0.20494E + 02, A4 = -0.45043E-01, A6 = 0.12681E-01, A8 = -0.28506E-02,
A10 = 0.23806E-03, A12 = -0.35985E-05, A14 = 0.24488E-06
〔表8〕
第2面
K=0.10635E+00, A4=0.57234E-02, A6=-0.42528E-04, A8=0.34316E-02,
A10=0.42662E-01, A12=-0.17661E-01, A14=-0.34191E-01
第3面
K=0.40982E+02, A4=0.51090E-01, A6=0.21525E-01, A8=0.48727E-02,
A10=-0.83271E-01, A12=-0.40499E-01, A14=0.38435E-01
第4面
K=-0.50000E+02, A4=0.15141E-01, A6=0.11741E+00, A8=-0.12071E+00,
A10=-0.10087E+00, A12=-0.17401E-01, A14=0.99259E-01
第5面
K=-0.17370E+02, A4=0.12160E+00, A6=0.29487E-01, A8=-0.34402E-01,
A10=0.13207E-01, A12=-0.70731E-01, A14=0.11898E+00
第6面
K=0.17284E+02, A4=-0.12750E+00, A6=0.21338E-01, A8=-0.41553E-01,
A10=0.36000E-01, A12=0.76601E-01, A14=-0.39837E-01
第7面
K=0.00000E+00, A4=-0.80607E-01, A6=-0.22201E-01, A8=0.67598E-02,
A10=-0.25860E-03, A12=-0.28112E-03, A14=0.15083E-01
第8面
K=0.24016E+02, A4=-0.62617E-01, A6=0.38178E-01, A8=-0.15761E-01,
A10=-0.59179E-02, A12=0.86329E-03, A14=0.11669E-02
第9面
K=-0.30808E+01, A4=-0.69175E-01, A6=0.60722E-01, A8=-0.10030E-01,
A10=-0.11506E-02, A12=0.10993E-03, A14=0.64721E-05
第10面
K=-0.46990E+01, A4=-0.16736E-01, A6=0.85842E-02, A8=0.67419E-04,
A10=-0.23912E-03, A12=0.12242E-04, A14=0.12284E-05
第11面
K=-0.20494E+02, A4=-0.45043E-01, A6=0.12681E-01, A8=-0.28506E-02,
A10=0.23806E-03, A12=-0.35985E-05, A14=0.24488E-06 The aspherical coefficients of the lens surfaces of Example 3 are shown in Table 8 below.
[Table 8]
Second side
K = 0.10635E + 00, A4 = 0.57234E-02, A6 = -0.42528E-04, A8 = 0.34316E-02,
A10 = 0.42662E-01, A12 = -0.17661E-01, A14 = -0.34191E-01
Third side
K = 0.40982E + 02, A4 = 0.51090E-01, A6 = 0.21525E-01, A8 = 0.48727E-02,
A10 = -0.83271E-01, A12 = -0.40499E-01, A14 = 0.38435E-01
4th page
K = -0.50000E + 02, A4 = 0.15141E-01, A6 = 0.11741E + 00, A8 = -0.12071E + 00,
A10 = -0.10087E + 00, A12 = -0.17401E-01, A14 = 0.99259E-01
5th page
K = -0.17370E + 02, A4 = 0.12160E + 00, A6 = 0.29487E-01, A8 = -0.34402E-01,
A10 = 0.13207E-01, A12 = -0.70731E-01, A14 = 0.11898E + 00
6th page
K = 0.17284E + 02, A4 = -0.12750E + 00, A6 = 0.21338E-01, A8 = -0.41553E-01,
A10 = 0.36000E-01, A12 = 0.76601E-01, A14 = -0.39837E-01
7th page
K = 0.00000E + 00, A4 = -0.80607E-01, A6 = -0.22201E-01, A8 = 0.67598E-02,
A10 = -0.25860E-03, A12 = -0.28112E-03, A14 = 0.15083E-01
8th page
K = 0.24016E + 02, A4 = -0.62617E-01, A6 = 0.38178E-01, A8 = -0.15761E-01,
A10 = -0.59179E-02, A12 = 0.86329E-03, A14 = 0.11669E-02
9th page
K = -0.30808E + 01, A4 = -0.69175E-01, A6 = 0.60722E-01, A8 = -0.10030E-01,
A10 = -0.11506E-02, A12 = 0.10993E-03, A14 = 0.64721E-05
10th page
K = -0.46990E + 01, A4 = -0.16736E-01, A6 = 0.85842E-02, A8 = 0.67419E-04,
A10 = -0.23912E-03, A12 = 0.12242E-04, A14 = 0.12284E-05
11th page
K = -0.20494E + 02, A4 = -0.45043E-01, A6 = 0.12681E-01, A8 = -0.28506E-02,
A10 = 0.23806E-03, A12 = -0.35985E-05, A14 = 0.24488E-06
実施例3の単レンズデータを以下の表9に示す。
〔表9〕
レンズ 始面 焦点距離(mm)
1 2 2.617
2 4 -3.942
3 6 13.547
4 8 2.132
5 10 -1.581 The single lens data of Example 3 is shown in Table 9 below.
[Table 9]
Lens Start surface Focal length (mm)
1 2 2.617
2 4 -3.942
3 6 13.547
4 8 2.132
5 10 -1.581
〔表9〕
レンズ 始面 焦点距離(mm)
1 2 2.617
2 4 -3.942
3 6 13.547
4 8 2.132
5 10 -1.581 The single lens data of Example 3 is shown in Table 9 below.
[Table 9]
Lens Start surface Focal length (mm)
1 2 2.617
2 4 -3.942
3 6 13.547
4 8 2.132
5 10 -1.581
図8は、実施例3の撮像レンズ13等の断面図である。撮像レンズ13は、物体側より順に、光軸AX近傍で正の屈折力を有し凸平に近い両凸の第1レンズL1と、光軸AX近傍で負の屈折力を有し物体側に凸面を向けた平凹に近いメニスカス形状を有する第2レンズL2と、光軸AX近傍で正の屈折力を有し物体側に凸面を向けた凸平の第3レンズL3と、光軸AX近傍で正の屈折力を有し像側に凸面を向けたメニスカス形状を有する第4レンズL4と、光軸AX近傍で負の屈折力を有し両凹の第5レンズL5とを備える。全てのレンズL1~L5は、プラスチック材料から形成されている。第1レンズL1の物体側面頂点より像側で物体側面の周辺部より物体側に、開口絞りSが配置されている。第5レンズL5の光射出面と撮像面(像面)Iとの間には、平行平板Fが配置されている。
FIG. 8 is a cross-sectional view of the imaging lens 13 and the like of the third embodiment. The imaging lens 13 includes, in order from the object side, a biconvex first lens L1 that has a positive refractive power near the optical axis AX and is nearly convex, and a negative refractive power near the optical axis AX. A second lens L2 having a meniscus shape close to a plano-concave with a convex surface facing, a convex third lens L3 having a positive refractive power near the optical axis AX and a convex surface facing the object side, and the vicinity of the optical axis AX And a fourth lens L4 having a meniscus shape having a positive refractive power and a convex surface facing the image side, and a biconcave fifth lens L5 having a negative refractive power in the vicinity of the optical axis AX. All the lenses L1 to L5 are made of a plastic material. An aperture stop S is disposed on the image side from the object side vertex of the first lens L1 and on the object side from the periphery of the object side surface. A parallel plate F is disposed between the light exit surface of the fifth lens L5 and the imaging surface (image surface) I.
図9A~9Cは、実施例3の撮像レンズ13の球面収差、非点収差、及び歪曲収差を示し、図9D及び9Eは、撮像レンズ13のメリディオナルコマ収差を示している。
FIGS. 9A to 9C show spherical aberration, astigmatism, and distortion of the imaging lens 13 of Example 3, and FIGS. 9D and 9E show meridional coma aberration of the imaging lens 13. FIG.
(実施例4)
実施例4の撮像レンズの全体諸元を以下に示す。
f=3.7mm
fB=0.41mm
F=2.06
2Y=5.842mm
ENTP=0.39mm
EXTP=-1.95mm
H1=-1.73mm
H2=-3.29mm Example 4
The overall specifications of the imaging lens of Example 4 are shown below.
f = 3.7mm
fB = 0.41mm
F = 2.06
2Y = 5.842mm
ENTP = 0.39mm
EXTP = -1.95mm
H1 = -1.73mm
H2 = -3.29mm
実施例4の撮像レンズの全体諸元を以下に示す。
f=3.7mm
fB=0.41mm
F=2.06
2Y=5.842mm
ENTP=0.39mm
EXTP=-1.95mm
H1=-1.73mm
H2=-3.29mm Example 4
The overall specifications of the imaging lens of Example 4 are shown below.
f = 3.7mm
fB = 0.41mm
F = 2.06
2Y = 5.842mm
ENTP = 0.39mm
EXTP = -1.95mm
H1 = -1.73mm
H2 = -3.29mm
実施例4のレンズ面のデータを以下の表10に示す。
〔表10〕
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1* 1.417 0.491 1.54470 56.2 0.90
2* -159.523 0.020 0.85
3(STOP) infinity 0.020 0.85
4* 11.065 0.170 1.64250 22.5 0.85
5* 2.148 0.450 0.85
6* 11.347 0.351 1.54000 45.0 0.95
7* infinity 0.467 1.08
8* -3.439 0.401 1.54470 56.2 1.24
9* -1.221 0.646 1.50
10* -4.598 0.288 1.54470 56.2 2.29
11* 1.744 0.300 2.45
12 infinity 0.210 1.51630 64.1 2.85
13 infinity 2.90 The lens surface data of Example 4 is shown in Table 10 below.
[Table 10]
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 * 1.417 0.491 1.54470 56.2 0.90
2 * -159.523 0.020 0.85
3 (STOP) infinity 0.020 0.85
4 * 11.065 0.170 1.64250 22.5 0.85
5 * 2.148 0.450 0.85
6 * 11.347 0.351 1.54000 45.0 0.95
7 * infinity 0.467 1.08
8 * -3.439 0.401 1.54470 56.2 1.24
9 * -1.221 0.646 1.50
10 * -4.598 0.288 1.54470 56.2 2.29
11 * 1.744 0.300 2.45
12 infinity 0.210 1.51630 64.1 2.85
13 infinity 2.90
〔表10〕
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1* 1.417 0.491 1.54470 56.2 0.90
2* -159.523 0.020 0.85
3(STOP) infinity 0.020 0.85
4* 11.065 0.170 1.64250 22.5 0.85
5* 2.148 0.450 0.85
6* 11.347 0.351 1.54000 45.0 0.95
7* infinity 0.467 1.08
8* -3.439 0.401 1.54470 56.2 1.24
9* -1.221 0.646 1.50
10* -4.598 0.288 1.54470 56.2 2.29
11* 1.744 0.300 2.45
12 infinity 0.210 1.51630 64.1 2.85
13 infinity 2.90 The lens surface data of Example 4 is shown in Table 10 below.
[Table 10]
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 * 1.417 0.491 1.54470 56.2 0.90
2 * -159.523 0.020 0.85
3 (STOP) infinity 0.020 0.85
4 * 11.065 0.170 1.64250 22.5 0.85
5 * 2.148 0.450 0.85
6 * 11.347 0.351 1.54000 45.0 0.95
7 * infinity 0.467 1.08
8 * -3.439 0.401 1.54470 56.2 1.24
9 * -1.221 0.646 1.50
10 * -4.598 0.288 1.54470 56.2 2.29
11 * 1.744 0.300 2.45
12 infinity 0.210 1.51630 64.1 2.85
13 infinity 2.90
実施例4のレンズ面の非球面係数を以下の表11に示す。
〔表11〕
第1面
K=0.60945E+00, A4=-0.17164E-01, A6=-0.20389E-01, A8=0.70516E-02,
A10=-0.39606E-01, A12=0.78888E-01, A14=-0.70524E-01
第2面
K=0.80000E+02, A3=0.00000E+00, A4=0.21113E-01, A5=0.00000E+00,
A6=0.64864E-01, A7=0.00000E+00, A8=-0.71629E-01, A10=0.99869E-02,
A12=0.40640E-02, A14=-0.20598E-01
第4面
K=-0.33717E+02, A4=-0.32548E-01, A6=0.21007E+00, A8=-0.18777E+00,
A10=-0.42435E-01, A12=0.11417E+00, A14=-0.52121E-01
第5面
K=-0.15716E+02, A3=0.00000E+00, A4=0.16362E+00, A5=0.00000E+00,
A6=-0.18641E-01, A7=0.00000E+00, A8=0.90964E-01, A10=-0.21273E-01,
A12=-0.11677E+00, A14=0.14921E+00
第6面
K=0.20251E+02, A3=-0.14941E-01, A4=-0.15166E-01, A5=-0.20493E+00,
A6=0.23849E-01, A7=0.10664E+00, A8=-0.30767E-01, A10=-0.80772E-01,
A12=0.73562E-03, A14=0.82164E-02
第7面
K=0.00000E+00, A4=-0.89521E-01, A6=-0.70669E-01, A8=-0.45438E-01,
A10=0.24503E-01, A12=-0.19699E-02, A14=-0.16414E-01
第8面
K=-0.46968E+01, A3=-0.44781E-02, A4=-0.23378E-01, A5=-0.14141E-01,
A6=-0.73483E-03, A7=0.57397E-02, A8=-0.42723E-02, A10=-0.24293E-01,
A12=-0.93516E-02, A14=0.71925E-02
第9面
K=-0.31464E+01, A4=-0.87915E-01, A6=0.70235E-01, A8=-0.16324E-01,
A10=0.22373E-02, A12=-0.61879E-03, A14=0.11267E-03
第10面
K=-0.11677E+02, A3=-0.15960E+00, A4=0.10311E-01, A5=0.21485E-01,
A6=0.23314E-02, A7=0.50336E-03, A8=-0.45243E-04, A10=-0.10243E-03,
A12=-0.22571E-04, A14=0.36357E-05
第11面
K=-0.84356E+01, A3=-0.17667E+00, A4=0.87094E-01, A5=-0.29675E-01,
A6=0.45114E-02, A7=0.91882E-03, A8=-0.12265E-02, A10=0.73063E-04,
A12=0.25579E-05, A14=0.52643E-06 The aspherical coefficients of the lens surfaces of Example 4 are shown in Table 11 below.
[Table 11]
First side
K = 0.60945E + 00, A4 = -0.17164E-01, A6 = -0.20389E-01, A8 = 0.70516E-02,
A10 = -0.39606E-01, A12 = 0.78888E-01, A14 = -0.70524E-01
Second side
K = 0.80000E + 02, A3 = 0.00000E + 00, A4 = 0.21113E-01, A5 = 0.00000E + 00,
A6 = 0.64864E-01, A7 = 0.00000E + 00, A8 = -0.71629E-01, A10 = 0.99869E-02,
A12 = 0.40640E-02, A14 = -0.20598E-01
4th page
K = -0.33717E + 02, A4 = -0.32548E-01, A6 = 0.21007E + 00, A8 = -0.18777E + 00,
A10 = -0.42435E-01, A12 = 0.11417E + 00, A14 = -0.52121E-01
5th page
K = -0.15716E + 02, A3 = 0.00000E + 00, A4 = 0.16362E + 00, A5 = 0.00000E + 00,
A6 = -0.18641E-01, A7 = 0.00000E + 00, A8 = 0.90964E-01, A10 = -0.21273E-01,
A12 = -0.11677E + 00, A14 = 0.14921E + 00
6th page
K = 0.20251E + 02, A3 = -0.14941E-01, A4 = -0.15166E-01, A5 = -0.20493E + 00,
A6 = 0.23849E-01, A7 = 0.10664E + 00, A8 = -0.30767E-01, A10 = -0.80772E-01,
A12 = 0.73562E-03, A14 = 0.82164E-02
7th page
K = 0.00000E + 00, A4 = -0.89521E-01, A6 = -0.70669E-01, A8 = -0.45438E-01,
A10 = 0.24503E-01, A12 = -0.19699E-02, A14 = -0.16414E-01
8th page
K = -0.46968E + 01, A3 = -0.44781E-02, A4 = -0.23378E-01, A5 = -0.14141E-01,
A6 = -0.73483E-03, A7 = 0.57397E-02, A8 = -0.42723E-02, A10 = -0.24293E-01,
A12 = -0.93516E-02, A14 = 0.71925E-02
9th page
K = -0.31464E + 01, A4 = -0.87915E-01, A6 = 0.70235E-01, A8 = -0.16324E-01,
A10 = 0.22373E-02, A12 = -0.61879E-03, A14 = 0.11267E-03
10th page
K = -0.11677E + 02, A3 = -0.15960E + 00, A4 = 0.10311E-01, A5 = 0.21485E-01,
A6 = 0.23314E-02, A7 = 0.50336E-03, A8 = -0.45243E-04, A10 = -0.10243E-03,
A12 = -0.22571E-04, A14 = 0.36357E-05
11th page
K = -0.84356E + 01, A3 = -0.17667E + 00, A4 = 0.87094E-01, A5 = -0.29675E-01,
A6 = 0.45114E-02, A7 = 0.91882E-03, A8 = -0.12265E-02, A10 = 0.73063E-04,
A12 = 0.25579E-05, A14 = 0.52643E-06
〔表11〕
第1面
K=0.60945E+00, A4=-0.17164E-01, A6=-0.20389E-01, A8=0.70516E-02,
A10=-0.39606E-01, A12=0.78888E-01, A14=-0.70524E-01
第2面
K=0.80000E+02, A3=0.00000E+00, A4=0.21113E-01, A5=0.00000E+00,
A6=0.64864E-01, A7=0.00000E+00, A8=-0.71629E-01, A10=0.99869E-02,
A12=0.40640E-02, A14=-0.20598E-01
第4面
K=-0.33717E+02, A4=-0.32548E-01, A6=0.21007E+00, A8=-0.18777E+00,
A10=-0.42435E-01, A12=0.11417E+00, A14=-0.52121E-01
第5面
K=-0.15716E+02, A3=0.00000E+00, A4=0.16362E+00, A5=0.00000E+00,
A6=-0.18641E-01, A7=0.00000E+00, A8=0.90964E-01, A10=-0.21273E-01,
A12=-0.11677E+00, A14=0.14921E+00
第6面
K=0.20251E+02, A3=-0.14941E-01, A4=-0.15166E-01, A5=-0.20493E+00,
A6=0.23849E-01, A7=0.10664E+00, A8=-0.30767E-01, A10=-0.80772E-01,
A12=0.73562E-03, A14=0.82164E-02
第7面
K=0.00000E+00, A4=-0.89521E-01, A6=-0.70669E-01, A8=-0.45438E-01,
A10=0.24503E-01, A12=-0.19699E-02, A14=-0.16414E-01
第8面
K=-0.46968E+01, A3=-0.44781E-02, A4=-0.23378E-01, A5=-0.14141E-01,
A6=-0.73483E-03, A7=0.57397E-02, A8=-0.42723E-02, A10=-0.24293E-01,
A12=-0.93516E-02, A14=0.71925E-02
第9面
K=-0.31464E+01, A4=-0.87915E-01, A6=0.70235E-01, A8=-0.16324E-01,
A10=0.22373E-02, A12=-0.61879E-03, A14=0.11267E-03
第10面
K=-0.11677E+02, A3=-0.15960E+00, A4=0.10311E-01, A5=0.21485E-01,
A6=0.23314E-02, A7=0.50336E-03, A8=-0.45243E-04, A10=-0.10243E-03,
A12=-0.22571E-04, A14=0.36357E-05
第11面
K=-0.84356E+01, A3=-0.17667E+00, A4=0.87094E-01, A5=-0.29675E-01,
A6=0.45114E-02, A7=0.91882E-03, A8=-0.12265E-02, A10=0.73063E-04,
A12=0.25579E-05, A14=0.52643E-06 The aspherical coefficients of the lens surfaces of Example 4 are shown in Table 11 below.
[Table 11]
First side
K = 0.60945E + 00, A4 = -0.17164E-01, A6 = -0.20389E-01, A8 = 0.70516E-02,
A10 = -0.39606E-01, A12 = 0.78888E-01, A14 = -0.70524E-01
Second side
K = 0.80000E + 02, A3 = 0.00000E + 00, A4 = 0.21113E-01, A5 = 0.00000E + 00,
A6 = 0.64864E-01, A7 = 0.00000E + 00, A8 = -0.71629E-01, A10 = 0.99869E-02,
A12 = 0.40640E-02, A14 = -0.20598E-01
4th page
K = -0.33717E + 02, A4 = -0.32548E-01, A6 = 0.21007E + 00, A8 = -0.18777E + 00,
A10 = -0.42435E-01, A12 = 0.11417E + 00, A14 = -0.52121E-01
5th page
K = -0.15716E + 02, A3 = 0.00000E + 00, A4 = 0.16362E + 00, A5 = 0.00000E + 00,
A6 = -0.18641E-01, A7 = 0.00000E + 00, A8 = 0.90964E-01, A10 = -0.21273E-01,
A12 = -0.11677E + 00, A14 = 0.14921E + 00
6th page
K = 0.20251E + 02, A3 = -0.14941E-01, A4 = -0.15166E-01, A5 = -0.20493E + 00,
A6 = 0.23849E-01, A7 = 0.10664E + 00, A8 = -0.30767E-01, A10 = -0.80772E-01,
A12 = 0.73562E-03, A14 = 0.82164E-02
7th page
K = 0.00000E + 00, A4 = -0.89521E-01, A6 = -0.70669E-01, A8 = -0.45438E-01,
A10 = 0.24503E-01, A12 = -0.19699E-02, A14 = -0.16414E-01
8th page
K = -0.46968E + 01, A3 = -0.44781E-02, A4 = -0.23378E-01, A5 = -0.14141E-01,
A6 = -0.73483E-03, A7 = 0.57397E-02, A8 = -0.42723E-02, A10 = -0.24293E-01,
A12 = -0.93516E-02, A14 = 0.71925E-02
9th page
K = -0.31464E + 01, A4 = -0.87915E-01, A6 = 0.70235E-01, A8 = -0.16324E-01,
A10 = 0.22373E-02, A12 = -0.61879E-03, A14 = 0.11267E-03
10th page
K = -0.11677E + 02, A3 = -0.15960E + 00, A4 = 0.10311E-01, A5 = 0.21485E-01,
A6 = 0.23314E-02, A7 = 0.50336E-03, A8 = -0.45243E-04, A10 = -0.10243E-03,
A12 = -0.22571E-04, A14 = 0.36357E-05
11th page
K = -0.84356E + 01, A3 = -0.17667E + 00, A4 = 0.87094E-01, A5 = -0.29675E-01,
A6 = 0.45114E-02, A7 = 0.91882E-03, A8 = -0.12265E-02, A10 = 0.73063E-04,
A12 = 0.25579E-05, A14 = 0.52643E-06
実施例4の単レンズデータを以下の表12に示す。
〔表12〕
レンズ 始面 焦点距離(mm)
1 1 2.582
2 4 -4.180
3 6 21.013
4 8 3.267
5 10 -2.285 The single lens data of Example 4 is shown in Table 12 below.
[Table 12]
Lens Start surface Focal length (mm)
1 1 2.582
2 4 -4.180
3 6 21.013
4 8 3.267
5 10 -2.285
〔表12〕
レンズ 始面 焦点距離(mm)
1 1 2.582
2 4 -4.180
3 6 21.013
4 8 3.267
5 10 -2.285 The single lens data of Example 4 is shown in Table 12 below.
[Table 12]
Lens Start surface Focal length (mm)
1 1 2.582
2 4 -4.180
3 6 21.013
4 8 3.267
5 10 -2.285
図10は、実施例4の撮像レンズ14等の断面図である。撮像レンズ14は、物体側より順に、光軸AX近傍で正の屈折力を有し凸平に近い両凸の第1レンズL1と、光軸AX近傍で負の屈折力を有し物体側に凸面を向けたメニスカス形状を有する第2レンズL2と、光軸AX近傍で正の屈折力を有し物体側に凸面を向けた凸平の第3レンズL3と、光軸AX近傍で正の屈折力を有し像側に凸面を向けたメニスカス形状を有する第4レンズL4と、光軸AX近傍で負の屈折力を有し両凹の第5レンズL5とを備える。全てのレンズL1~L5は、プラスチック材料から形成されている。第1レンズL1と第2レンズL2との間には、開口絞りSが配置されている。第5レンズL5の光射出面と撮像面(像面)Iとの間には、平行平板Fが配置されている。
FIG. 10 is a cross-sectional view of the imaging lens 14 and the like of the fourth embodiment. In order from the object side, the imaging lens 14 has a biconvex first lens L1 having a positive refractive power in the vicinity of the optical axis AX and close to a convex plane, and a negative refractive power in the vicinity of the optical axis AX. A second lens L2 having a meniscus shape with a convex surface, a convex third lens L3 having a positive refractive power near the optical axis AX and a convex surface facing the object side, and positive refraction near the optical axis AX And a fourth lens L4 having a meniscus shape having a convex surface facing the image side, and a biconcave fifth lens L5 having a negative refractive power in the vicinity of the optical axis AX. All the lenses L1 to L5 are made of a plastic material. An aperture stop S is disposed between the first lens L1 and the second lens L2. A parallel plate F is disposed between the light exit surface of the fifth lens L5 and the imaging surface (image surface) I.
図11A~11Cは、実施例4の撮像レンズ14の球面収差、非点収差、及び歪曲収差を示し、図11D及び11Eは、撮像レンズ14のメリディオナルコマ収差を示している。
FIGS. 11A to 11C show spherical aberration, astigmatism, and distortion of the imaging lens 14 of Example 4, and FIGS. 11D and 11E show meridional coma aberration of the imaging lens 14. FIG.
以下の表13は、各条件式(1)~(7)に対応する各実施例1~4の値をまとめたものである。
〔表13〕
Table 13 below summarizes the values of Examples 1 to 4 corresponding to the conditional expressions (1) to (7).
[Table 13]
〔表13〕
Table 13 below summarizes the values of Examples 1 to 4 corresponding to the conditional expressions (1) to (7).
[Table 13]
以上、実施形態や実施例に即して本発明を説明したが、本発明は、上記実施形態等に限定されるものではない。上記実施例1~4においては、第3レンズL3及び第4レンズL4が正の屈折力を有しているが、既に述べたように、第1レンズL1~第4レンズL4の合成が正の屈折力となっていれば、ペッツバール和の補正を容易とするため5枚構成のうち2枚以上、すなわち第3レンズL3及び/又は第4レンズL4を負レンズで構成してもよい。また、色収差の補正の容易さを勘案して、第3レンズL3、第4レンズL4のいずれか一方を負レンズとしてもよい。
As mentioned above, although this invention was demonstrated according to embodiment and an Example, this invention is not limited to the said embodiment etc. In the first to fourth embodiments, the third lens L3 and the fourth lens L4 have a positive refractive power, but as described above, the composition of the first lens L1 to the fourth lens L4 is positive. If the refractive power is satisfied, two or more of the five-lens configuration, that is, the third lens L3 and / or the fourth lens L4 may be configured as a negative lens in order to facilitate correction of the Petzval sum. In consideration of ease of correction of chromatic aberration, either the third lens L3 or the fourth lens L4 may be a negative lens.
近年、撮像装置を低コストにかつ大量に実装する方法として、予め半田がポッティングされた基板に対し、ICチップその他の電子部品と光学素子とを載置したままリフロー処理(加熱処理)し、半田を溶融させることにより電子部品と光学素子とを基板に同時実装するという技術が提案されている。このようなリフロー処理を用いて実装を行うためには、電子部品とともに光学素子を約200~260℃に加熱する必要があるが、このような高温下では、熱可塑性樹脂を用いたレンズは熱変形し又は変色して、その光学性能が低下してしまうという問題点がある。このような問題を解決するための方法のひとつとして、耐熱性能に優れたガラスモールドレンズを使用し、小型化と高温環境での光学性能とを両立する技術が提案されているが、熱可塑性樹脂を用いたレンズよりも一般にコストが高い。そのため、撮像装置の低コスト化の要求に応えられないという問題があった。そこで、実施例1~4の撮像レンズ11~14の材料にエネルギー硬化性樹脂を使用することで、ポリカーボネイト系やポリオレフィン系のような熱可塑性樹脂を用いたレンズに比べ、高温に曝されたときの光学性能の低下を小さくすることができる。そのため、撮像レンズ11~14は、リフロー処理に有効であり、かつガラスモールドレンズよりも製造しやすく安価となり、撮像レンズを組み込んだ撮像装置の低コストと量産性とを両立できる。よって、本実施形態のレンズL1~L5を上記エネルギー硬化性樹脂を用いて形成してもよい。なお、エネルギー硬化性樹脂とは、一般的に熱硬化性樹脂、紫外線硬化性樹脂等を指す。
In recent years, as a method for mounting an image pickup apparatus at a low cost and in large quantities, a reflow process (heating process) is performed on a substrate on which a solder has been potted in advance, with an IC chip and other electronic components and optical elements placed on the board. A technique has been proposed in which an electronic component and an optical element are simultaneously mounted on a substrate by melting the substrate. In order to perform mounting using such a reflow process, it is necessary to heat the optical element together with the electronic components to about 200 to 260 ° C. Under such a high temperature, the lens using the thermoplastic resin is heated. There is a problem that the optical performance deteriorates due to deformation or discoloration. As one of the methods for solving such problems, a technology that uses a glass mold lens having excellent heat resistance performance and achieves both miniaturization and optical performance in a high temperature environment has been proposed. Generally, the cost is higher than the lens using the lens. For this reason, there has been a problem that it is impossible to meet the demand for cost reduction of the imaging apparatus. Therefore, when an energy curable resin is used as the material of the imaging lenses 11 to 14 of Examples 1 to 4, when the lens is exposed to a higher temperature than a lens using a thermoplastic resin such as polycarbonate or polyolefin. The decrease in optical performance can be reduced. Therefore, the imaging lenses 11 to 14 are effective for the reflow process, are easier to manufacture than the glass mold lens, are inexpensive, and can achieve both low cost and mass productivity of the imaging device incorporating the imaging lens. Therefore, the lenses L1 to L5 of this embodiment may be formed using the energy curable resin. The energy curable resin generally refers to a thermosetting resin, an ultraviolet curable resin, or the like.
なお、上記実施例1~4は、撮像素子51の撮像面Iに入射する光束の主光線入射角については、撮像面Iの周辺部において必ずしも十分小さい設計になっていない。しかし、最近の技術では、撮像素子51の色フィルターやオンチップマイクロレンズアレイの配列の見直しによって、シェーディングを軽減することができるようになってきた。具体的には撮像素子51の撮像面Iの画素ピッチに対し、色フィルターやオンチップマイクロレンズアレイの配列のピッチをわずかに小さく設定すれば、撮像面Iの周辺部にいくほど各画素に対し色フィルターやオンチップマイクロレンズアレイが撮像レンズ10(11~14)の光軸AX側へシフトするため、斜入射の光束を効率的に各画素の受光部に導くことができる。これにより、撮像素子51で発生するシェーディングを小さく抑えることができる。上記実施例1~4は、上述の要求が緩和された分について、より小型化を目指した設計例となっている。
In Examples 1 to 4, the principal ray incident angle of the light beam incident on the imaging surface I of the image sensor 51 is not necessarily designed to be sufficiently small in the peripheral portion of the imaging surface I. However, with recent technology, it has become possible to reduce shading by reviewing the arrangement of the color filters of the image sensor 51 and the on-chip microlens array. Specifically, if the pitch of the arrangement of the color filters and the on-chip microlens array is set slightly smaller than the pixel pitch of the image pickup surface I of the image pickup device 51, the pixel is closer to the periphery of the image pickup surface I. Since the color filter and the on-chip microlens array are shifted to the optical axis AX side of the imaging lens 10 (11 to 14), the obliquely incident light beam can be efficiently guided to the light receiving portion of each pixel. Thereby, the shading which generate | occur | produces in the image pick-up element 51 can be restrained small. The above-described Examples 1 to 4 are design examples aiming at further miniaturization for the portion in which the above requirement is relaxed.
また、本明細書内で「光軸近傍で凸面」とは、その面の形状を定義している関数の数値によらず、光軸AX上から微小量離れた点(例えば0.05mm)での面のサグ量が、レンズの物体側面であれば正の値、像側面では負の値を取る面のことを意味する。逆に、「光軸近傍で凸面」とは、光軸AX上から微小量離れた点(例えば0.05mm)での面のサグ量が、レンズの物体側面であれば負の値、像側面では正の値を取る面のことを意味する。ここで、レンズの偏芯量の検出や偏芯調整等の目的で、レンズ面中心部に光学面の関数とは異なる不連続な形状を付加している場合には、その不連続な形状は考慮せず、本来の光学面の関数でサグ量を計算するものとする。なお、レンズ中央近傍(具体的には、レンズ外径に対して10%以内の中央領域)での形状測定値を最小自乗法でフィッティングした際の近似曲率半径が正であれば、光軸AX近傍で凸面であるとみなすことができる。また、例えば2次の非球面係数を使用した場合には、非球面定義式の基準曲率半径に2次の非球面係数も勘案した曲率半径を近軸曲率半径とみなすことができる(例えば参考文献として、松居吉哉著「レンズ設計法」(共立出版株式会社)のP41~42を参照のこと)。
Further, in this specification, “convex surface in the vicinity of the optical axis” means a point (for example, 0.05 mm) away from the optical axis AX regardless of the numerical value of the function defining the shape of the surface. If the sag amount of the lens surface is the object side surface of the lens, it means a surface having a positive value and a negative value on the image side surface. Conversely, “convex surface in the vicinity of the optical axis” means a negative value if the sag amount of the surface at a point (for example, 0.05 mm) away from the optical axis AX by a minute amount is an object side surface of the lens. Then, it means a surface that takes a positive value. Here, if a discontinuous shape different from the function of the optical surface is added to the center of the lens surface for the purpose of detecting the amount of eccentricity of the lens or adjusting the eccentricity, the discontinuous shape is The sag amount is calculated by a function of the original optical surface without considering it. If the approximate curvature radius when the shape measurement value near the center of the lens (specifically, the central region within 10% of the lens outer diameter) is fitted by the least square method is positive, the optical axis AX It can be regarded as a convex surface in the vicinity. For example, when a secondary aspherical coefficient is used, a curvature radius that takes into account the secondary aspherical coefficient in the reference curvature radius of the aspherical definition formula can be regarded as a paraxial curvature radius (for example, reference literature). (See pages 41-42 of “Lens Design Method” written by Yoshiya Matsui (Kyoritsu Publishing Co., Ltd.)).
Claims (10)
- 撮像素子の撮像面に被写体像を結像させるための撮像レンズであって、
物体側より順に、
正の屈折力を有する第1レンズと、
光軸近傍で負の屈折力を有し像側に凹面を向けた第2レンズと、
第3レンズと、
第4レンズと、
負の屈折力を有する第5レンズとから実質的になり、
全てのレンズがプラスチック材料から形成され、
前記第3レンズよりも物体側に開口絞りが配置され、
前記第3レンズの像側面のサグ量が周辺部で負の値となっており、
前記第5レンズの像側面が非球面形状であり光軸との交点以外の位置に極値を有し、
以下の条件式を満足する撮像レンズ。
0.55<TTL/2Y<0.80 … (1)
6.0<ν3-ν2<25.0 … (2)
ただし、
TTL:前記第1レンズの物体側面から撮像面までの光軸上の距離
2Y:前記撮像素子の撮像面の対角線長
ν3:前記第3レンズのアッベ数
ν2:前記第2レンズのアッベ数 An imaging lens for forming a subject image on an imaging surface of an imaging element,
From the object side,
A first lens having a positive refractive power;
A second lens having negative refractive power in the vicinity of the optical axis and having a concave surface facing the image side;
A third lens;
A fourth lens;
A fifth lens having a negative refractive power,
All lenses are made of plastic material,
An aperture stop is disposed closer to the object side than the third lens;
The amount of sag on the image side surface of the third lens is a negative value at the periphery,
The image side surface of the fifth lens is aspheric and has an extreme value at a position other than the intersection with the optical axis,
An imaging lens that satisfies the following conditional expression.
0.55 <TTL / 2Y <0.80 (1)
6.0 <ν3-ν2 <25.0 (2)
However,
TTL: distance on the optical axis from the object side surface of the first lens to the imaging surface 2Y: diagonal length of the imaging surface of the imaging element ν3: Abbe number of the third lens ν2: Abbe number of the second lens - 以下の条件式を満足する、請求項1に記載の撮像レンズ。
29.0<ν3<48.0 … (3)
ただし、
ν3:前記第3レンズのアッベ数 The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
29.0 <ν3 <48.0 (3)
However,
ν3: Abbe number of the third lens - 以下の条件式を満足する、請求項1又は2に記載の撮像レンズ。
20.0<ν1-ν2<70.0 … (4)
ただし、
ν1:前記第1レンズのアッベ数
ν2:前記第2レンズのアッベ数 The imaging lens according to claim 1, wherein the imaging lens satisfies the following conditional expression.
20.0 <ν1-ν2 <70.0 (4)
However,
ν1: Abbe number of the first lens ν2: Abbe number of the second lens - 以下の条件式を満足する、請求項1~3のいずれか一項に記載の撮像レンズ。
0.30<r1/f<0.50 … (5)
ただし、
r1:前記第1レンズの物体側面の曲率半径
f:前記撮像レンズ全系の焦点距離 The imaging lens according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
0.30 <r1 / f <0.50 (5)
However,
r1: radius of curvature of object side surface of the first lens f: focal length of the entire imaging lens system - 以下の条件式を満足する、請求項1~4のいずれか一項に記載の撮像レンズ。
0.60<f1/f<0.90 … (6)
ただし、
f1:前記第1レンズの焦点距離
f:前記撮像レンズ全系の焦点距離 The imaging lens according to any one of claims 1 to 4, which satisfies the following conditional expression.
0.60 <f1 / f <0.90 (6)
However,
f1: Focal length of the first lens f: Focal length of the entire imaging lens system - 以下の条件式を満足する、請求項1~5のいずれか一項に記載の撮像レンズ。
-1.70<f2/f<-0.90 … (7)
ただし、
f2:前記第2レンズの焦点距離
f:前記撮像レンズ全系の焦点距離 The imaging lens according to any one of claims 1 to 5, which satisfies the following conditional expression.
−1.70 <f2 / f <−0.90 (7)
However,
f2: focal length of the second lens f: focal length of the entire imaging lens system - 実質的にパワーを持たない光学素子をさらに有する、請求項1~6のいずれか一項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 6, further comprising an optical element having substantially no power.
- 前記開口絞りは、前記第2レンズより物体側に配置される、請求項1~7のいずれか一項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 7, wherein the aperture stop is disposed closer to the object side than the second lens.
- 請求項1~8のいずれか一項に記載の撮像レンズと、前記撮像素子とを備える撮像装置。 An imaging apparatus comprising the imaging lens according to any one of claims 1 to 8 and the imaging element.
- 請求項9に記載の撮像装置を備える携帯端末。 A portable terminal comprising the imaging device according to claim 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015537877A JP6451639B2 (en) | 2013-09-19 | 2014-09-10 | Imaging device and portable terminal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013193848 | 2013-09-19 | ||
JP2013-193848 | 2013-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015041123A1 true WO2015041123A1 (en) | 2015-03-26 |
Family
ID=52688773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/074011 WO2015041123A1 (en) | 2013-09-19 | 2014-09-10 | Imaging lens, imaging device, and portable terminal |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6451639B2 (en) |
WO (1) | WO2015041123A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5922854B1 (en) * | 2016-01-27 | 2016-05-24 | エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. | Imaging lens |
CN105988186A (en) * | 2015-06-09 | 2016-10-05 | 浙江舜宇光学有限公司 | Imaging lens |
JP2016200776A (en) * | 2015-04-14 | 2016-12-01 | カンタツ株式会社 | Imaging lens |
KR20180029938A (en) * | 2016-09-12 | 2018-03-21 | 삼성전기주식회사 | Optical Imaging System |
CN108802968A (en) * | 2017-05-04 | 2018-11-13 | 三星电机株式会社 | Optical imaging system |
CN108957708A (en) * | 2017-05-19 | 2018-12-07 | 信泰光学(深圳)有限公司 | Telephoto lens |
JP2019219476A (en) * | 2018-06-19 | 2019-12-26 | カンタツ株式会社 | Image capturing lens |
WO2020164236A1 (en) * | 2019-02-13 | 2020-08-20 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN111830689A (en) * | 2020-07-30 | 2020-10-27 | 玉晶光电(厦门)有限公司 | Optical imaging lens |
US10816776B2 (en) | 2016-04-04 | 2020-10-27 | Kantatsu Co., Ltd. | Imaging lens |
KR20210127657A (en) * | 2018-02-08 | 2021-10-22 | 삼성전기주식회사 | Camera Module |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5922853B1 (en) * | 2016-01-27 | 2016-05-24 | エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. | Imaging lens |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011227362A (en) * | 2010-04-22 | 2011-11-10 | Konica Minolta Opto Inc | Imaging lens capable of shifting image, imaging optical device, and digital equipment |
JP2012189893A (en) * | 2011-03-11 | 2012-10-04 | Olympus Corp | Imaging optical system and imaging apparatus using the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101782676B (en) * | 2009-01-15 | 2012-04-11 | 大立光电股份有限公司 | Image capturing optical lens assembly |
TWI435107B (en) * | 2012-01-20 | 2014-04-21 | Largan Precision Co Ltd | Image capturing optical system |
TWI561845B (en) * | 2012-02-23 | 2016-12-11 | Hon Hai Prec Ind Co Ltd | Image lens |
TWI476435B (en) * | 2013-03-20 | 2015-03-11 | Largan Precision Co Ltd | Imaging lens assembly |
TWI487937B (en) * | 2013-06-07 | 2015-06-11 | Largan Precision Co Ltd | Imaging lens assembly |
-
2014
- 2014-09-10 WO PCT/JP2014/074011 patent/WO2015041123A1/en active Application Filing
- 2014-09-10 JP JP2015537877A patent/JP6451639B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011227362A (en) * | 2010-04-22 | 2011-11-10 | Konica Minolta Opto Inc | Imaging lens capable of shifting image, imaging optical device, and digital equipment |
JP2012189893A (en) * | 2011-03-11 | 2012-10-04 | Olympus Corp | Imaging optical system and imaging apparatus using the same |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016200776A (en) * | 2015-04-14 | 2016-12-01 | カンタツ株式会社 | Imaging lens |
CN105988186A (en) * | 2015-06-09 | 2016-10-05 | 浙江舜宇光学有限公司 | Imaging lens |
CN105988186B (en) * | 2015-06-09 | 2018-09-07 | 浙江舜宇光学有限公司 | Imaging lens |
JP5922854B1 (en) * | 2016-01-27 | 2016-05-24 | エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. | Imaging lens |
US10816776B2 (en) | 2016-04-04 | 2020-10-27 | Kantatsu Co., Ltd. | Imaging lens |
KR20180029938A (en) * | 2016-09-12 | 2018-03-21 | 삼성전기주식회사 | Optical Imaging System |
KR102425756B1 (en) | 2016-09-12 | 2022-07-29 | 삼성전기주식회사 | Optical Imaging System |
CN108802968A (en) * | 2017-05-04 | 2018-11-13 | 三星电机株式会社 | Optical imaging system |
US12174353B2 (en) | 2017-05-04 | 2024-12-24 | Samsung Electro-Mechanics Co., Ltd. | Optical imaging system |
US10852511B2 (en) | 2017-05-04 | 2020-12-01 | Samsung Electro-Mechanics Co., Ltd. | Optical imaging system |
US11681124B2 (en) | 2017-05-04 | 2023-06-20 | Samsung Electro-Mechanics Co., Ltd. | Optical imaging system |
CN108957708B (en) * | 2017-05-19 | 2021-06-11 | 信泰光学(深圳)有限公司 | Telescope lens |
CN108957708A (en) * | 2017-05-19 | 2018-12-07 | 信泰光学(深圳)有限公司 | Telephoto lens |
KR20230056636A (en) * | 2018-02-08 | 2023-04-27 | 삼성전기주식회사 | Camera Module |
KR102632368B1 (en) | 2018-02-08 | 2024-02-02 | 삼성전기주식회사 | Camera Module |
KR20210127657A (en) * | 2018-02-08 | 2021-10-22 | 삼성전기주식회사 | Camera Module |
KR102423973B1 (en) | 2018-02-08 | 2022-07-22 | 삼성전기주식회사 | Imaging Lens System |
JP7112894B2 (en) | 2018-06-19 | 2022-08-04 | 東京晨美光学電子株式会社 | imaging lens |
JP2019219476A (en) * | 2018-06-19 | 2019-12-26 | カンタツ株式会社 | Image capturing lens |
WO2020164236A1 (en) * | 2019-02-13 | 2020-08-20 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN111830689B (en) * | 2020-07-30 | 2022-04-08 | 玉晶光电(厦门)有限公司 | Optical imaging lens |
CN111830689A (en) * | 2020-07-30 | 2020-10-27 | 玉晶光电(厦门)有限公司 | Optical imaging lens |
Also Published As
Publication number | Publication date |
---|---|
JP6451639B2 (en) | 2019-01-16 |
JPWO2015041123A1 (en) | 2017-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6451639B2 (en) | Imaging device and portable terminal | |
JP6175903B2 (en) | Imaging lens, imaging device, and portable terminal | |
JP6347156B2 (en) | Imaging lens, imaging device, and portable terminal | |
JP6394598B2 (en) | Imaging lens, imaging device, and portable terminal | |
CN113238358B (en) | Camera lens | |
TWI482992B (en) | Image pickup lens, image pickup apparatus and portable terminal | |
JP5348563B2 (en) | Imaging lens, imaging device, and portable terminal | |
CN204256251U (en) | Pick-up lens | |
JP6300183B2 (en) | Imaging lens, imaging device, and portable terminal | |
JP5839038B2 (en) | Imaging lens and imaging apparatus | |
WO2013137312A1 (en) | Image pickup lens, image pickup device, and portable terminal | |
JP5742737B2 (en) | Imaging lens, imaging device, and portable terminal | |
WO2011021271A1 (en) | Imaging lens, imaging device, and portable terminal | |
WO2013039035A1 (en) | Image pick-up lens, image pick-up device, portable terminal and digital instrument | |
CN106483637A (en) | Pick-up lenss | |
JP2013182090A (en) | Imaging lens, imaging apparatus, and portable terminal | |
JP2013156389A (en) | Imaging lens, imaging device and portable terminal | |
JP2015087495A (en) | Imaging lens, imaging apparatus and portable terminal | |
WO2014050476A1 (en) | Image pickup lens, image pickup device, and mobile terminal | |
CN206440879U (en) | Pick-up lens | |
JP2014153574A (en) | Imaging lens, and imaging device and portable terminal | |
JP2013246217A (en) | Imaging lens, imaging apparatus, and portable terminal | |
CN108333715A (en) | Pick-up lens | |
WO2015093444A1 (en) | Imaging lens and imaging device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14845658 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015537877 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14845658 Country of ref document: EP Kind code of ref document: A1 |