JP5962160B2 - Alloy steel for machine structure with excellent wear resistance - Google Patents

Alloy steel for machine structure with excellent wear resistance Download PDF

Info

Publication number
JP5962160B2
JP5962160B2 JP2012090322A JP2012090322A JP5962160B2 JP 5962160 B2 JP5962160 B2 JP 5962160B2 JP 2012090322 A JP2012090322 A JP 2012090322A JP 2012090322 A JP2012090322 A JP 2012090322A JP 5962160 B2 JP5962160 B2 JP 5962160B2
Authority
JP
Japan
Prior art keywords
mass
steel
less
toughness
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012090322A
Other languages
Japanese (ja)
Other versions
JP2012233252A (en
Inventor
克行 一宮
克行 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012090322A priority Critical patent/JP5962160B2/en
Publication of JP2012233252A publication Critical patent/JP2012233252A/en
Application granted granted Critical
Publication of JP5962160B2 publication Critical patent/JP5962160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、建設、土木、鉱山等の分野で用いられる産業機械や運搬機械等に使用され、土砂や岩石との磨耗が問題となるような部材に用いて好適な機械構造用合金鋼に関するものである。   TECHNICAL FIELD The present invention relates to an alloy steel for machine structure that is suitable for use in industrial machinery and transporting machines used in the fields of construction, civil engineering, mining, etc., and that is suitable for members that cause problems with wear on earth and sand or rocks. It is.

土、砂、岩石等による磨耗を受ける部材には、長寿命化のため、耐摩耗性に優れた鋼材が使用される。鋼材の耐摩耗性は高強度化することによって向上することが知られているため、耐摩耗性が要求される部材には、Cr,Mo等の合金元素を多量に添加した鋼材に焼入れ等の熱処理を施し、高硬度化した鋼材が使用されてきた。   Steel members with excellent wear resistance are used for members that are subject to wear due to soil, sand, rocks, etc., in order to extend their life. It is known that the wear resistance of steel materials is improved by increasing the strength. Therefore, for materials that require wear resistance, steel materials to which a large amount of alloy elements such as Cr and Mo are added are hardened. Steel materials that have been heat-treated and hardened have been used.

例えば、特許文献1には、従来の高Ni鋼(JIS SNCM431H)に対して、比較的安価な高靭性耐磨耗鋼として、C増量による強度確保や、P,Sの上限制限による粒界強度向上、Bによる焼入れ性の確保、Niの代わりのNb,Ti添加等による粒界強度改善および靭性向上を図る技術が記載されている。   For example, Patent Document 1 discloses that as a relatively low-priced, high-toughness wear-resistant steel compared to conventional high-Ni steel (JIS SNCM431H), it is possible to ensure the strength by increasing the C content and the grain boundary strength by limiting the upper limits of P and S. Techniques are described for improving, securing hardenability with B, and improving grain boundary strength and toughness by adding Nb and Ti instead of Ni.

特許文献2には、耐磨耗鋼が磨耗性を重視した際に生じ易い、靭性劣化による折損の問題を解消するためになされた発明が開示されており、その技術は、上記折損の破壊箇所が粒界破壊であることに注目し、P,S,Si,Mnをそれぞれ低減することによって粒界脆化を抑制すると伴に、Nbを添加して粒界脆化抑制効果を増加することで、耐折損性の向上を図るものである。   Patent Document 2 discloses an invention made to solve the problem of breakage due to deterioration of toughness, which is likely to occur when wear-resistant steel places importance on wear resistance, and the technique is based on the fracture location of the breakage. Is the grain boundary fracture, and by reducing P, S, Si and Mn respectively, the grain boundary embrittlement is suppressed and Nb is added to increase the grain boundary embrittlement suppression effect. This is intended to improve breakage resistance.

特許文献3では、耐磨耗性の劣化を招く焼戻し軟化の懸念なく、高靭性を供え、さらに優れた耐折損性を示す耐磨耗性強靭鋼が提案されている。この発明では、C量を、0.7〜0.95重量%と高めつつ、P,Sを低減すると共にSiを低レベルに抑えることによって靭性を向上させ、さらに、Cr,Mo,V添加による焼戻し軟化特性の向上を通じて、優れた強度、耐焼戻し軟化性、耐磨耗性および靭性をバランスよく兼ね備えた耐磨耗性強靭鋼を提案している。   Patent Document 3 proposes a wear-resistant tough steel that provides high toughness and exhibits excellent breakage resistance without fear of temper softening that causes deterioration of wear resistance. In this invention, while increasing the amount of C to 0.7 to 0.95% by weight, toughness is improved by reducing P and S and suppressing Si to a low level, and further, temper softening characteristics by adding Cr, Mo and V Through improvements, we have proposed wear-resistant tough steels that have a good balance of excellent strength, tempering softening resistance, wear resistance and toughness.

特許文献4では、HRCで55以上の硬さを有しつつ優れた靭性を持つ耐摩耗用鋼として、AlとNiの複合添加により粒界の強化が可能となることを見出し、靭性を画期的に改善できる技術が提案されている。加えて、SとMnの比率を適正化し、結晶粒界へのSの偏析を軽減して、粒界強度劣化を軽減している。また、脱硫元素の添加や、合金元素の添加を調整し、焼入れ性や焼戻し軟化抵抗の適正化を図っている。   In Patent Document 4, as a wear-resistant steel having an HRC hardness of 55 or higher and excellent toughness, it has been found that grain boundaries can be strengthened by the combined addition of Al and Ni. A technology that can be improved is proposed. In addition, the ratio of S and Mn is optimized, the segregation of S to the crystal grain boundaries is reduced, and the grain boundary strength deterioration is reduced. In addition, the addition of desulfurization elements and the addition of alloy elements are adjusted to optimize the hardenability and temper softening resistance.

さらに、特許文献5では、厚みが0.5mm以下の鋼板に対し、表層に50μm以下かつビッカース硬度:750以上の硬化層を有し、硬化層以外の鋼組織における、旧オーステナイト粒径が10μm以下でかつマルテンサイト分率が90%以上であって、ビッカース硬度が450以上750未満である、強度や、延性、靭性、耐磨耗性に優れた機械構造用鋼が提案されている。   Further, in Patent Document 5, a steel sheet having a thickness of 0.5 mm or less has a hardened layer with a surface layer of 50 μm or less and a Vickers hardness of 750 or more, and the prior austenite grain size in the steel structure other than the hardened layer is 10 μm or less. In addition, a steel for mechanical structures having a martensite fraction of 90% or more and a Vickers hardness of 450 or more and less than 750 and excellent in strength, ductility, toughness, and wear resistance has been proposed.

特公平03−71499号公報Japanese Patent Publication No. 03-71499 特開平05−214485号公報Japanese Patent Laid-Open No. 05-214485 特許第3027927号公報Japanese Patent No. 3027927 特開2003−27181号公報JP 2003-27181 A 特開2007−177317号公報JP 2007-177317 A

しかしながら、上述した特許文献1では、SiやMnなどを低減した状態で、CrやMoを多量に添加していることから、焼戻し後の炭化物の粒径が比較的大きくなり、靭性に悪影響を及ぼす懸念がある。
特許文献2では、粒界強度向上のためにSi,Mnを低減しているが、焼入れ性を確保するために、高価な合金元素を多量に使用するので経済的ではないという問題がある。
特許文献3では、硬度向上のために炭素を増加させているが、その際に、鋼の靭性が大きく低下してしまうという問題がある。
特許文献4では、Alを多量に添加することで、鋼中にAl2O3酸化物が残留する懸念が強く、疲労強度の低下を招くおそれがある。
さらに、特許文献5では、硬化層厚みが50μm以下と薄く、今回、対象としている土、砂および岩石等により磨耗を受けるような部材に対しては、その厚みが不足している。
However, in Patent Document 1 described above, since a large amount of Cr or Mo is added in a state where Si, Mn, or the like is reduced, the grain size of carbide after tempering becomes relatively large, which adversely affects toughness. There are concerns.
In Patent Document 2, Si and Mn are reduced in order to improve the grain boundary strength. However, in order to ensure hardenability, a large amount of expensive alloy elements is used, which is not economical.
In Patent Document 3, carbon is increased in order to improve hardness, but at that time, there is a problem that the toughness of the steel is greatly reduced.
In Patent Document 4, there is a strong concern that Al 2 O 3 oxide remains in the steel by adding a large amount of Al, which may cause a decrease in fatigue strength.
Furthermore, in Patent Document 5, the thickness of the hardened layer is as thin as 50 μm or less, and the thickness of the members that are subject to wear due to the soil, sand, rocks, and the like that are the subject of this time is insufficient.

本発明は、上記の実情に鑑み開発されたものであり、その目的とするところは、耐摩耗性に優れるだけでなく、比較的安価でかつ高い靭性を有する機械構造用合金鋼を提供することにある。   The present invention has been developed in view of the above circumstances, and its object is to provide an alloy steel for machine structure that is not only excellent in wear resistance but also relatively inexpensive and has high toughness. It is in.

発明者らは、上記の課題を解決すべく鋭意研究を重ね、耐磨耗性を有しつつ靭性を向上させるための方法を見出した。
図1に、焼入れ焼戻し後の靭性とSi,Mn,CrおよびMo成分との関係について調べた結果を示す。同図より、(〔%Si〕+〔%Mn〕)/(〔%Cr〕+〔%Mo〕)の値を大きくすることで、靭性が向上する傾向にあることが分かる。その理由は、SiやMnの存在が炭化物の析出を抑制する傾向にあって、それゆえに鋼の強度と靭性とのバランスが一段と向上しているからと考えられる。
なお、図1の結果は、質量%で、0.4%C-0.02%Nb-0.02%Ti-0.002%B鋼を基本として、この基本組成に種々の合金元素を添加し、焼入れ焼戻しを行って得たものである。
The inventors have conducted intensive research to solve the above-mentioned problems, and have found a method for improving toughness while having wear resistance.
FIG. 1 shows the results of examining the relationship between toughness after quenching and tempering and Si, Mn, Cr, and Mo components. From the figure, it can be seen that increasing the value of ([% Si] + [% Mn]) / ([% Cr] + [% Mo]) tends to improve toughness. The reason is considered that the presence of Si and Mn tends to suppress the precipitation of carbides, and therefore the balance between strength and toughness of steel is further improved.
The results shown in FIG. 1 are obtained by mass% and based on 0.4% C-0.02% Nb-0.02% Ti-0.002% B steel, and by adding various alloy elements to this basic composition and quenching and tempering. It is a thing.

本発明は、上記した知見に基づき完成したものであって、本発明の要旨構成は次のとおりである。
1.C:0.35〜0.55質量%、
Si:0.15〜1.0質量%、
Mn:0.40〜1.50質量%、
P:0.02質量%以下、
S:0.012質量%以下、
Al:0.01〜0.06質量%、
Mo:0.30〜0.80質量%、
B:0.0005〜0.0035質量%、
Nb:0.01〜0.05質量%、
Ti:0.005〜0.05質量%および
N:0.0065質量%未満
を含有し、さらに下記(1)式の関係を満足し、残部はFeおよび不可避不純物からなる成分組成であり、表面から深さ15mm以上の硬化層を有しており、前記硬化層の中で、前記表面から深さ:15mmの位置でのビッカース硬度が450以上であることを特徴とする耐摩耗性に優れた機械構造用合金鋼。

(〔%Si〕+〔%Mn〕)/〔%Mo〕 ≧1.50 ・・・・・(1)
ただし、〔%M〕はM元素の含有量(質量%)を示す。
The present invention has been completed based on the above-described findings, and the gist of the present invention is as follows.
1. C: 0.35-0.55 mass%,
Si: 0.15-1.0 mass%,
Mn: 0.40-1.50 mass%,
P: 0.02 mass% or less,
S: 0.012 mass% or less,
Al: 0.01 to 0.06 mass%,
Mo: 0.30 to 0.80 mass%,
B: 0.0005-0.0035 mass%,
Nb: 0.01 to 0.05% by mass,
Ti: 0.005 to 0.05% by mass and N: less than 0.0065% by mass, further satisfying the relationship of the following formula (1), the balance being a component composition consisting of Fe and inevitable impurities, with a depth of 15 mm or more from the surface has a hardened layer, in the cured layer, a depth from the surface: 15 mm machine structural alloy Vickers hardness at the position is excellent in wear resistance, wherein the more than 450 der Turkey of steel.
([% Si] + [% Mn]) / [% Mo] ≧ 1.50 (1)
However, [% M] indicates the content (mass%) of the M element.

2.C:0.35〜0.55質量%、
Si:0.15〜1.0質量%、
Mn:0.40〜1.50質量%、
P:0.02質量%以下、
S:0.012質量%以下、
Al:0.01〜0.06質量%、
Mo:0.32〜0.80質量%、
B:0.0005〜0.0035質量%、
Nb:0.01〜0.05質量%、
Ti:0.005〜0.05質量%および
N:0.0065質量%未満
を含有し、さらに、Cu:0.1〜0.7質量%、Ni:0.1〜1.5質量%、Cr:0.1〜1.0質量%およびV:0.01〜1.0質量%のうちから選んだ1種または2種以上を含有し、かつ下記(1)´式の関係を満足し、残部はFeおよび不可避不純物からなる成分組成であり、表面から深さ15mm以上の硬化層を有しており、前記硬化層の中で、前記表面から深さ:15mmの位置でのビッカース硬度が450以上であることを特徴とする耐摩耗性に優れた機械構造用合金鋼。

(〔%Si〕+〔%Mn〕)/(〔%Cr〕+〔%Mo〕)≧1.50・・・・・(1)´
ただし、〔%M〕はM元素の含有量(質量%)を示す。
2. C: 0.35-0.55 mass%,
Si: 0.15-1.0 mass%,
Mn: 0.40-1.50 mass%,
P: 0.02 mass% or less,
S: 0.012 mass% or less,
Al: 0.01 to 0.06 mass%,
Mo: 0.32 to 0.80 mass%,
B: 0.0005-0.0035 mass%,
Nb: 0.01 to 0.05% by mass,
Ti: 0.005-0.05 mass% and
N: Less than 0.0065% by mass
In addition, Cu: 0.1-0.7% by mass, Ni: 0.1-1.5% by mass, Cr: 0.1-1.0% by mass and V: 0.01-1.0% by mass And the following (1) ′ relationship is satisfied , the balance is a component composition consisting of Fe and inevitable impurities, and has a hardened layer having a depth of 15 mm or more from the surface. the depth from the surface of: 15 mm wear resistance excellent mechanical structural alloy steel Vickers hardness at locations you characterized der Rukoto 450 or more.
([% Si] + [% Mn]) / ([% Cr] + [% Mo]) ≧ 1.50 (1) ′
However, [% M] indicates the content (mass%) of the M element.

本発明によれば、耐摩耗性に優れるだけでなく、焼入れ焼戻し後の靭性にも優れ、工業上極めて有用である。   According to the present invention, not only the wear resistance is excellent, but also the toughness after quenching and tempering is excellent, which is extremely useful industrially.

焼入れ焼戻し後の靭性に及ぼすSi,Mn,CrおよびMo組成バランスの影響を示すグラフである。It is a graph showing the influence of Si, Mn, Cr and Mo composition balance on toughness after quenching and tempering.

以下、本発明の機械構造用合金鋼について具体的に説明する。
まず、本発明において、鋼の成分組成を上記の範囲に限定した理由について、成分毎に詳しく説明する。なお、以下に述べる鋼の成分組成を示す%表示は特に断らない限り質量%を意味する。
C:0.35〜0.55%
Cは、焼入れ時のマトリックス硬度を向上させて耐摩耗性を向上させる最も基本となる元素である。このような効果を得るためには、0.35%以上の含有を必要とする。一方、0.55%を超える含有は、靭性を大きく低下させるため、C量は0.35〜0.55%の範囲に限定する。好ましくは、0.38〜0.50%以下の範囲である。
Hereinafter, the alloy steel for machine structure of the present invention will be specifically described.
First, the reason why the component composition of steel is limited to the above range in the present invention will be described in detail for each component. In addition, unless otherwise indicated, the% display which shows the component composition of the steel described below means the mass%.
C: 0.35-0.55%
C is the most basic element for improving the matrix hardness during quenching and improving the wear resistance. In order to obtain such an effect, the content of 0.35% or more is required. On the other hand, if the content exceeds 0.55%, the toughness is greatly reduced, so the C content is limited to a range of 0.35 to 0.55%. Preferably, it is 0.38 to 0.50% or less of range.

Si:0.15〜1.0%
Siは、固溶強化および焼入れ焼戻し後の炭化物の形成に影響する元素である。この効果を得るには、少なくとも0.15%以上の添加が必要である。しかしながら、過剰の添加は変形抵抗を著しく増大させ、加工性を低下させることから、上限を1.0%とする。好ましくは0.18〜0.85%である。
Si: 0.15-1.0%
Si is an element that affects the formation of carbides after solid solution strengthening and quenching and tempering. To obtain this effect, it is necessary to add at least 0.15% or more. However, excessive addition significantly increases deformation resistance and lowers workability, so the upper limit is made 1.0%. Preferably it is 0.18 to 0.85%.

Mn:0.40〜1.50%
Mnは、焼入性の向上に有効な元素で有り、少なくとも0.40%の添加を必要とする。しかし、過剰な添加は、鋼素材における成分偏析を助長し、靭性や焼入れ時の焼き割れを促進することから上限を1.50%とする。好ましくは0.45〜1.40%の範囲である。
Mn: 0.40 to 1.50%
Mn is an element effective for improving hardenability, and needs to be added at least 0.40%. However, excessive addition promotes component segregation in the steel material and promotes toughness and quenching cracking during quenching, so the upper limit is made 1.50%. Preferably it is 0.45 to 1.40% of range.

P:0.02%以下
Pは、結晶粒界に偏析し、靭性を低下させるため、その含有は低いほど望ましいが、0.02%までは許容される。好ましくは0.016%以下である。
P: 0.02% or less P is segregated at the grain boundaries and lowers the toughness, so its content is preferably as low as possible, but 0.02% is acceptable. Preferably it is 0.016% or less.

S:0.012%以下
Sは、Pと同様に靭性の低下を招くため、上限を0.012%とする。
S: 0.012% or less S, like P, causes a decrease in toughness, so the upper limit is made 0.012%.

Al:0.01〜0.06%
Alは、脱酸剤として使用され、この効果は0.01%以上の添加で認められる。しかしながら、含有量が0.06%を超えると、疲労強度に対して有害なA1203介在物の生成を助長する。従って、Al量は0.01〜0.06%の範囲に限定する。
Al: 0.01-0.06%
Al is used as a deoxidizer, and this effect is observed with addition of 0.01% or more. However, if the content exceeds 0.06%, formation of A1 2 0 3 inclusions harmful to fatigue strength is promoted. Therefore, the Al content is limited to a range of 0.01 to 0.06%.

Mo:0.30〜0.80%
Moは、焼入れ焼戻し後の硬度低下を抑え、硬度と靭性の両立を図る上で、欠かせない元素である。この効果を得るためには少なくとも0.30%以上の添加が必要である。しかし、Moは高価な元素であり、上記の効果は0.80%で飽和する。従って、Mo量は0.30〜0.80%の範囲に限定する。
Mo: 0.30 ~ 0.80%
Mo is an element indispensable for suppressing the decrease in hardness after quenching and tempering and achieving both hardness and toughness. In order to obtain this effect, it is necessary to add at least 0.30% or more. However, Mo is an expensive element, and the above effect is saturated at 0.80%. Therefore, the Mo content is limited to a range of 0.30 to 0.80%.

B:0.0005〜0.0035%
Bは、焼入れ処理時にオーステナイト粒界に偏析することで焼入れ性を高め、素材の硬度上昇に寄与する。また、粒界に対して優先的に偏析することで、不純物元素の粒界偏析を防ぎ、粒界強化による靭性向上にも寄与する。これらの効果を発揮するためには、少なくとも0.0005%の添加が必要である。一方、過剰な添加は、靭性や加工性などの低下を招くことから、上限は0.0035%とする。好ましいB含有量の上限は0.0030%である。
B: 0.0005-0.0035%
B segregates at the austenite grain boundaries during the quenching process, thereby improving the hardenability and contributing to an increase in the hardness of the material. Moreover, by preferentially segregating with respect to the grain boundary, it is possible to prevent the grain boundary segregation of the impurity element and to contribute to improvement of toughness by strengthening the grain boundary. In order to exert these effects, it is necessary to add at least 0.0005%. On the other hand, excessive addition causes a decrease in toughness and workability, so the upper limit is made 0.0035%. A preferable upper limit of the B content is 0.0030%.

Nb:0.01〜0.05%
Nbは、鋼中でNbCを形成し、熱処理時のオーステナイト粒径の粗粒化を阻止する、いわゆるピン止め効果を発現することで靭性の向上に寄与する。この効果を得るためには、少なくとも0.01%の添加が必要である。一方、0.05%を超えて添加をすると、粗大なNbCが析出するために、粗粒化抑制能が低下して、鋼の靭性の劣化を招くおそれがあるので、上限を0.05%とする。好ましくは0.015〜0.045%の範囲である。
Nb: 0.01-0.05%
Nb contributes to the improvement of toughness by forming NbC in steel and exhibiting a so-called pinning effect that prevents coarsening of the austenite grain size during heat treatment. In order to obtain this effect, addition of at least 0.01% is necessary. On the other hand, if added over 0.05%, coarse NbC precipitates, so that the ability to suppress coarsening may be reduced and the toughness of the steel may be deteriorated, so the upper limit is made 0.05%. Preferably it is 0.015 to 0.045% of range.

Ti:0.005〜0.05%
Tiは、Bの焼入れ性を確保するために不可欠な元素である。Tiは、Nと結合しTiNを形成することで、BがBNとなることを防ぐ作用がある。この効果を得るためには、少なくとも0.005%以上の添加が必要である。一方、0.05%を超えて添加すると、粗大なTiNの析出により、靭性や疲労強度の低下を生じるおそれがあるため、その上限は0.05%とする。好ましくは0.007〜0.035%の範囲である。
Ti: 0.005-0.05%
Ti is an indispensable element for ensuring the hardenability of B. Ti combines with N to form TiN, thereby preventing B from becoming BN. In order to obtain this effect, addition of at least 0.005% is necessary. On the other hand, if added over 0.05%, coarse TiN precipitation may cause a decrease in toughness and fatigue strength, so the upper limit is made 0.05%. Preferably it is 0.007 to 0.035% of range.

N:0.0065%未満
Nは、Bの焼入れ性を確保するために、鋼中への混入を極力回避することが好ましい成分である。従って、N量は0.0065%未満とする。
N: Less than 0.0065% N is a component that preferably avoids mixing into steel as much as possible in order to ensure the hardenability of B. Therefore, the N content is less than 0.0065%.

また、本発明では、上記した必須成分に加えて、焼入性を高めるために、Cu:0.1〜0.7%、Ni:0.1〜1.5%、Cr:0.1〜1.0%およびV:0.01〜1.0%のうちから選ばれる1種または2種以上を添加することができる。   In the present invention, in addition to the above essential components, Cu: 0.1 to 0.7%, Ni: 0.1 to 1.5%, Cr: 0.1 to 1.0% and V: 0.01 to 1.0% One or more selected from among them can be added.

Cuは、焼き入れ性の向上に有効な元素であり、その効果を得るためには0.1%以上の添加を必要とするが、多量の添加は鋼材の表面性状の劣化や合金コストの増加を招くため、上限を0.7%とする。   Cu is an element effective in improving hardenability, and in order to obtain the effect, addition of 0.1% or more is required. However, a large amount of addition causes deterioration of the surface properties of steel materials and an increase in alloy costs. Therefore, the upper limit is set to 0.7%.

Crは、焼入性のみならず、焼戻し軟化抵抗の向上に寄与し、さらには炭化物の球状化促進にも有用な元素であるが、添加量が0.1%に満たないとその添加効果に乏しい。一方、その添加が1.0%を超えると、残留オーステナイトの生成を促進し、耐摩耗性に悪影響を与える場合がある。よって、Cr量は1.0%を上限とする。好ましくは0.8%未満である。   Cr is an element that contributes not only to the hardenability but also to the improvement of resistance to temper softening and is also useful for promoting the spheroidization of carbides. However, if the addition amount is less than 0.1%, the addition effect is poor. On the other hand, if the addition exceeds 1.0%, the formation of retained austenite is promoted, and the wear resistance may be adversely affected. Therefore, the upper limit of Cr content is 1.0%. Preferably it is less than 0.8%.

NiおよびVは、焼入れ性や靭性の向上に有効な元素であり、この効果を得るためにはそれぞれ0.1%および0.01%以上の添加が必要であるが、高価であることから、上限をそれぞれ1.5%および1.0%とする。   Ni and V are effective elements for improving hardenability and toughness, and in order to obtain this effect, addition of 0.1% or 0.01% or more is necessary respectively. % And 1.0%.

本発明では、上記した各成分を単に限定するだけでは不十分で、特に、Si,Mn,CrおよびMo量については、以下の式(1)または(1)´を満足させることが肝要である。
(〔%Si〕+〔%Mn〕)/〔%Mo〕≧1.50 ・・・・・(1)
(〔%Si〕+〔%Mn〕)/(〔%Cr〕+〔%Mo〕)≧1.50 ・・・・・(1)´
ただし、〔%M〕はM元素の含有量(質量%)を示す。
前述したように、上記の(〔%Si〕+〔%Mn〕)/〔%Mo〕または(〔%Si〕+〔%Mn〕)/(〔%Cr〕+〔%Mo〕)の値を大きくすることで、鋼の靭性が向上するだけでなく、さらに、SiおよびMnの存在が炭化物の析出を抑制するため、鋼の強度と靭性とのバランスが一段と向上するからである。そのためには、(〔%Si〕+〔%Mn〕)/〔%Mo〕または(〔%Si〕+〔%Mn〕)/(〔%Cr〕+〔%Mo〕)の値が1.50以上である必要がある。一方、(〔%Si〕+〔%Mn〕)/〔%Mo〕または(〔%Si〕+〔%Mn〕)/(〔%Cr〕+〔%Mo〕)の値の上限については、特に限定されるわけではないが、Si,Mnの過剰添加による加工性劣化や成分偏析を防止する観点から、6程度とするのが好ましい。
In the present invention, it is not sufficient to simply limit each of the above-described components. In particular, it is important to satisfy the following formula (1) or (1) ′ for the amounts of Si, Mn, Cr, and Mo. .
([% Si] + [% Mn]) / [% Mo] ≧ 1.50 (1)
([% Si] + [% Mn]) / ([% Cr] + [% Mo]) ≧ 1.50 (1) ′
However, [% M] indicates the content (mass%) of the M element.
As described above, the value of ([% Si] + [% Mn]) / [% Mo] or ([% Si] + [% Mn]) / ([% Cr] + [% Mo]) This is because by increasing the size, not only the toughness of the steel is improved, but also the presence of Si and Mn suppresses the precipitation of carbides, so the balance between the strength and the toughness of the steel is further improved. For that purpose, the value of ([% Si] + [% Mn]) / [% Mo] or ([% Si] + [% Mn]) / ([% Cr] + [% Mo]) is 1.50 or more. There must be. On the other hand, regarding the upper limit of the value of ([% Si] + [% Mn]) / [% Mo] or ([% Si] + [% Mn]) / ([% Cr] + [% Mo]), Although not limited, it is preferably about 6 from the viewpoint of preventing workability deterioration and component segregation due to excessive addition of Si and Mn.

また、本発明では、鋼材表面から15mm位置で、ビッカース硬さが450以上となる硬化層を有することが必要である。それは、岩石等による、衝撃力を含んだ摩擦力を受ける場合に必要な硬化層深さを検討した際、上記15mm位置でのビッカース硬さを450以上とすれば、鋼材の十分な耐磨耗性が得られる、という結果が得られたからである。   In the present invention, it is necessary to have a hardened layer having a Vickers hardness of 450 or more at a position 15 mm from the steel surface. When examining the necessary hardened layer depth when receiving frictional force including impact force due to rocks, etc., if the Vickers hardness at the 15 mm position is set to 450 or more, sufficient wear resistance of the steel material is achieved. It is because the result that sex was obtained was obtained.

本発明における機械構造用合金鋼の製造条件に、特別の限定はなく、従来公知の機械構造用合金鋼の製造方法を用いることができる。   There are no particular limitations on the conditions for producing the alloy steel for machine structure in the present invention, and conventionally known methods for producing alloy steel for machine structure can be used.

次に、本発明の実施例について説明する。
表1に示す成分組成の鋼を溶製し、一旦1150℃以上に加熱した後、170mm×170mm角断面の中間素材とし、更にAc+100℃以上に加熱した後、熱間圧延により直径:60mmの丸棒に成形した。得られた棒鋼について、硬度、衝撃特性および耐磨耗性の評価を行った。
Next, examples of the present invention will be described.
Steel with the composition shown in Table 1 was melted and heated to 1150 ° C or higher, then used as an intermediate material with a 170 mm x 170 mm square cross section, and further heated to Ac 3 + 100 ° C or higher, and then hot rolled to obtain a diameter of 60 mm. It was molded into a round bar. The obtained steel bars were evaluated for hardness, impact characteristics and wear resistance.

Figure 0005962160
Figure 0005962160

ここで、引張り、衝撃特性は、炉加熱による焼入れ焼戻し後および高周波加熱焼入れ後の2種類で評価した。
すなわち、棒鋼の表面から直径の1/4の深さ位置(1/4D位置)より、直径:25mmおよび16mmの熱処理用試験片を採取した。直径:25mmのサンプルは、850℃に加熱後、油焼入れして550℃で焼戻しを行った。一方、直径:16mmのサンプルは、高周波により表面温度を1050℃まで急速加熱後、水焼入れし、170℃、1hの焼戻し処理を行った。
ついで、熱処理後のサンプルから、それぞれJIS 3号シャルピー試験片を採取し、20℃における衝撃値(靱性)測定試験を行った。また、サンプル中央の硬度測定を、ビッカース試験機を用いて荷重:98Nで行った。
Here, the tensile and impact properties were evaluated by two types after quenching and tempering by furnace heating and after induction heating and quenching.
That is, test pieces for heat treatment having diameters of 25 mm and 16 mm were collected from a depth position (1 / 4D position) of 1/4 of the diameter from the surface of the steel bar. A sample with a diameter of 25 mm was heated to 850 ° C., then quenched with oil and tempered at 550 ° C. On the other hand, the sample with a diameter of 16 mm was rapidly heated to 1050 ° C. with a high frequency and then quenched with water and tempered at 170 ° C. for 1 h.
Next, JIS No. 3 Charpy specimens were collected from the heat-treated samples and subjected to an impact value (toughness) measurement test at 20 ° C. Moreover, the hardness measurement of the sample center was performed by the load: 98N using the Vickers tester.

一般に、焼入れ焼戻し後は、硬度がHV350以上、靭性値が55J/cm以上であれば、棒鋼の靭性は良好であるといえる。また、高周波焼入れ焼戻し後は、硬度がHV:615以上、靭性値が45J/cm以上であれば、棒鋼の靭性は良好であるといえる。
なお、高周波焼入れ性については、焼入れ深さの影響を確認することを目的に、直径:60mmの丸棒を使用して、高周波焼入れを施し、170℃、1hの焼戻し後に、表面からの深さ15mm位置の硬さを測定した。この時、硬度がHV450以上であれば、焼入れ性が良好であるとした。
Generally, after quenching and tempering, if the hardness is HV350 or more and the toughness value is 55 J / cm 2 or more, it can be said that the toughness of the steel bar is good. Further, after induction hardening and tempering, if the hardness is HV: 615 or more and the toughness value is 45 J / cm 2 or more, it can be said that the toughness of the steel bar is good.
In addition, with regard to induction hardenability, in order to confirm the effect of the quenching depth, induction hardening was performed using a round bar with a diameter of 60 mm, and the depth from the surface after tempering at 170 ° C. for 1 h. The hardness at the 15 mm position was measured. At this time, if the hardness was HV450 or more, the hardenability was considered good.

次に、耐摩耗性はASTMG65に準拠したラバーホイール磨耗試験によって評価した。試験結果をJIS SCM440の磨耗量と各供試材の磨耗量との比(以下、耐摩耗比という)を耐摩耗性として整理した。ここに、上記比の値が大きいほど、耐摩耗性に優れていて、具体的には耐摩耗比が3.0以上であれば、耐摩耗性が良好であるといえる。
得られた結果を表2に示す。
Next, the abrasion resistance was evaluated by a rubber wheel abrasion test according to ASTM G65. The ratio of the wear amount of JIS SCM440 and the wear amount of each test material (hereinafter referred to as wear resistance ratio) was arranged as the wear resistance. Here, the larger the value of the ratio, the better the wear resistance. Specifically, if the wear resistance ratio is 3.0 or more, it can be said that the wear resistance is good.
The obtained results are shown in Table 2.

Figure 0005962160
Figure 0005962160

表2に示したとおり、本発明に従う発明例(試験No.1〜7)はいずれも、耐摩耗性に優れ、かつ靭性にも優れていることが分かる。これに対し、C量が下限に満たない試験No.8およびMo量が下限に満たない試験No.12は、耐摩耗性などに劣り、C,Si,Mn,BおよびNb量のいずれかが上限を上回っている試験No.9〜11,13および14は、それぞれ靱性などに劣り、Ti,N,SおよびP量のいずれかが上限を上回っている試験No.15〜17および20は、それぞれ耐摩耗性や靱性などに劣っていた。また、SiおよびMn量のいずれかが下限を下回っている試験No.18および19は、耐摩耗性に劣っていた。   As shown in Table 2, it can be seen that all of the inventive examples (Test Nos. 1 to 7) according to the present invention are excellent in wear resistance and toughness. On the other hand, Test No. in which the C amount is less than the lower limit. Test No. 8 and Mo amount less than lower limit. Test No. 12 is inferior in wear resistance and the like, and any of C, Si, Mn, B and Nb amounts exceeds the upper limit. Test Nos. 9 to 11, 13 and 14 are inferior in toughness and the like, and any of Ti, N, S and P amounts exceeds the upper limit. 15-17 and 20 were inferior to abrasion resistance, toughness, etc., respectively. Test No. 1 in which either Si or Mn content is below the lower limit. 18 and 19 were inferior in wear resistance.

Claims (2)

C:0.35〜0.55質量%、
Si:0.15〜1.0質量%、
Mn:0.40〜1.50質量%、
P:0.02質量%以下、
S:0.012質量%以下、
Al:0.01〜0.06質量%、
Mo:0.30〜0.80質量%、
B:0.0005〜0.0035質量%、
Nb:0.01〜0.05質量%、
Ti:0.005〜0.05質量%および
N:0.0065質量%未満
を含有し、さらに下記(1)式の関係を満足し、残部はFeおよび不可避不純物からなる成分組成であり、表面から深さ15mm以上の硬化層を有しており、前記硬化層の中で、前記表面から深さ:15mmの位置でのビッカース硬度が450以上であることを特徴とする耐摩耗性に優れた機械構造用合金鋼。

(〔%Si〕+〔%Mn〕)/〔%Mo〕 ≧1.50 ・・・・・(1)
ただし、〔%M〕はM元素の含有量(質量%)を示す。
C: 0.35-0.55 mass%,
Si: 0.15-1.0 mass%,
Mn: 0.40-1.50 mass%,
P: 0.02 mass% or less,
S: 0.012 mass% or less,
Al: 0.01 to 0.06 mass%,
Mo: 0.30 to 0.80 mass%,
B: 0.0005-0.0035 mass%,
Nb: 0.01 to 0.05% by mass,
Ti: 0.005 to 0.05% by mass and N: less than 0.0065% by mass, further satisfying the relationship of the following formula (1), the balance being a component composition consisting of Fe and inevitable impurities, with a depth of 15 mm or more from the surface has a hardened layer, in the cured layer, a depth from the surface: 15 mm machine structural alloy Vickers hardness at the position is excellent in wear resistance, wherein the more than 450 der Turkey of steel.
([% Si] + [% Mn]) / [% Mo] ≧ 1.50 (1)
However, [% M] indicates the content (mass%) of the M element.
C:0.35〜0.55質量%、
Si:0.15〜1.0質量%、
Mn:0.40〜1.50質量%、
P:0.02質量%以下、
S:0.012質量%以下、
Al:0.01〜0.06質量%、
Mo:0.32〜0.80質量%、
B:0.0005〜0.0035質量%、
Nb:0.01〜0.05質量%、
Ti:0.005〜0.05質量%および
N:0.0065質量%未満
を含有し、さらに、Cu:0.1〜0.7質量%、Ni:0.1〜1.5質量%、Cr:0.1〜1.0質量%およびV:0.01〜1.0質量%のうちから選んだ1種または2種以上を含有し、かつ下記(1)´式の関係を満足し、残部はFeおよび不可避不純物からなる成分組成であり、表面から深さ15mm以上の硬化層を有しており、前記硬化層の中で、前記表面から深さ:15mmの位置でのビッカース硬度が450以上であることを特徴とする耐摩耗性に優れた機械構造用合金鋼。

(〔%Si〕+〔%Mn〕)/(〔%Cr〕+〔%Mo〕)≧1.50・・・・・(1)´
ただし、〔%M〕はM元素の含有量(質量%)を示す。
C: 0.35-0.55 mass%,
Si: 0.15-1.0 mass%,
Mn: 0.40-1.50 mass%,
P: 0.02 mass% or less,
S: 0.012 mass% or less,
Al: 0.01 to 0.06 mass%,
Mo: 0.32 to 0.80 mass%,
B: 0.0005-0.0035 mass%,
Nb: 0.01 to 0.05% by mass,
Ti: 0.005-0.05 mass% and
N: Less than 0.0065% by mass
In addition, Cu: 0.1-0.7% by mass, Ni: 0.1-1.5% by mass, Cr: 0.1-1.0% by mass and V: 0.01-1.0% by mass And the following (1) ′ relationship is satisfied , the balance is a component composition consisting of Fe and inevitable impurities, and has a hardened layer having a depth of 15 mm or more from the surface. the depth from the surface of: 15 mm wear resistance excellent mechanical structural alloy steel Vickers hardness at locations you characterized der Rukoto 450 or more.
([% Si] + [% Mn]) / ([% Cr] + [% Mo]) ≧ 1.50 (1) ′
However, [% M] indicates the content (mass%) of the M element.
JP2012090322A 2011-04-22 2012-04-11 Alloy steel for machine structure with excellent wear resistance Active JP5962160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012090322A JP5962160B2 (en) 2011-04-22 2012-04-11 Alloy steel for machine structure with excellent wear resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011096475 2011-04-22
JP2011096475 2011-04-22
JP2012090322A JP5962160B2 (en) 2011-04-22 2012-04-11 Alloy steel for machine structure with excellent wear resistance

Publications (2)

Publication Number Publication Date
JP2012233252A JP2012233252A (en) 2012-11-29
JP5962160B2 true JP5962160B2 (en) 2016-08-03

Family

ID=47433831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012090322A Active JP5962160B2 (en) 2011-04-22 2012-04-11 Alloy steel for machine structure with excellent wear resistance

Country Status (1)

Country Link
JP (1) JP5962160B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6361279B2 (en) * 2014-05-16 2018-07-25 新日鐵住金株式会社 Medium and high carbon steel
CN104630615A (en) * 2015-01-27 2015-05-20 安徽同盛环件股份有限公司 High-strength alloy steel
CN104630644A (en) * 2015-01-27 2015-05-20 安徽同盛环件股份有限公司 Alloy steel for high negative pressure
KR20190112021A (en) * 2017-01-26 2019-10-02 싸브 테크놀로지 에이비 Quenching of hardened steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841535A (en) * 1994-07-29 1996-02-13 Nippon Steel Corp Production of high hardness wear resistant steel excellent in low temperature toughness
JP3273404B2 (en) * 1995-10-24 2002-04-08 新日本製鐵株式会社 Manufacturing method of thick high hardness and high toughness wear resistant steel
JP2007177317A (en) * 2005-11-30 2007-07-12 Jfe Steel Kk Steel for machine structure having excellent strength, ductility, toughness and abrasion resistance, its production method and metal belt using the same

Also Published As

Publication number Publication date
JP2012233252A (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5966730B2 (en) Abrasion resistant steel plate with excellent impact wear resistance and method for producing the same
JP5866820B2 (en) Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance
KR101671133B1 (en) Case-hardened steel and carburized material
JP4542624B2 (en) High strength thick steel plate and manufacturing method thereof
JP5608145B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
JP6027302B2 (en) High strength tempered spring steel
JP5182642B2 (en) High strength thick steel plate with excellent delayed fracture resistance and weldability and method for producing the same
JP5505263B2 (en) Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
WO2018047955A1 (en) Case-hardened steel, method for producing same, and method for manufacturing gear part
AU2016324658B2 (en) Steel with High Hardness and Excellent Toughness
JP5962160B2 (en) Alloy steel for machine structure with excellent wear resistance
JP5458624B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP2010121191A (en) High-strength thick steel plate having superior delayed fracture resistance and weldability, and method for manufacturing the same
JP7163889B2 (en) Manufacturing method for wear-resistant steel with excellent fatigue resistance
JP4645307B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP5348392B2 (en) Wear resistant steel
JP4847681B2 (en) Ti-containing case-hardened steel
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP7223997B2 (en) Steel with high hardness and excellent toughness
JP5868099B2 (en) Steel with excellent toughness and wear resistance
JP5688742B2 (en) Steel manufacturing method with excellent toughness and wear resistance
JP2012140675A (en) Case-hardening steel excellent in cold-workability, and high fatigue-resistant strength carburized material
JP4645306B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP6791179B2 (en) Non-microalloyed steel and its manufacturing method
JP5526689B2 (en) Carburizing steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5962160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250