JP5960629B2 - High temperature wear resistant material - Google Patents

High temperature wear resistant material Download PDF

Info

Publication number
JP5960629B2
JP5960629B2 JP2013055015A JP2013055015A JP5960629B2 JP 5960629 B2 JP5960629 B2 JP 5960629B2 JP 2013055015 A JP2013055015 A JP 2013055015A JP 2013055015 A JP2013055015 A JP 2013055015A JP 5960629 B2 JP5960629 B2 JP 5960629B2
Authority
JP
Japan
Prior art keywords
comparative example
heat treatment
aging heat
test results
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013055015A
Other languages
Japanese (ja)
Other versions
JP2014181360A (en
Inventor
松野 進
松野  進
忠義 佐保
忠義 佐保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2013055015A priority Critical patent/JP5960629B2/en
Publication of JP2014181360A publication Critical patent/JP2014181360A/en
Application granted granted Critical
Publication of JP5960629B2 publication Critical patent/JP5960629B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、高炉用部材の保護ライナーや、コークス炉から窯出された高温の赤熱コークスを受け取るバケットの内側ライナー等に使用される高温耐摩耗材に関するものである。   The present invention relates to a high-temperature wear-resistant material used for a protective liner of a blast furnace member, an inner liner of a bucket that receives high-temperature red hot coke discharged from a coke oven, and the like.

一般に、鉄鉱石や、石灰、コークス等の装入物を高炉中心部に分配するために用いられる各種部材として、旋回シュート、ムーバブルアーマー、鉱石受け金物などがある。これらの高炉用部材は、その表層部にライナーが埋め込まれており、装入物の落下による衝撃や接触後の摺動による摩耗から保護されている。
これらの高炉用部材のライナーとしては、例えば、高クロム鋼や高クロム鋼と超硬(WC)粒子の鋳ぐるみ材からなる高温耐摩耗材が使用されている(例えば、特許文献1,2参照)。
In general, various members used for distributing charges such as iron ore, lime, and coke to the center of the blast furnace include a swivel chute, movable armor, and ore receiving metal. These blast furnace members have a liner embedded in the surface layer portion thereof, and are protected from impact caused by dropping of the charged material and wear caused by sliding after contact.
As liners for these blast furnace members, for example, high-chromium steel and high-temperature wear-resistant materials made of cast-in materials of high-chromium steel and carbide (WC) particles are used (see, for example, Patent Documents 1 and 2). .

また、高温耐摩耗材として、Ni−Cr鋼が使用される場合もある。例えば、コークス炉から窯出された高温の赤熱コークスを受け取り、コークス乾式消火設備まで運搬するバケットでは、その内面に、高温耐摩耗材からなるライナーが設けられている。バケット用のライナーには、高温での耐摩耗性、耐割れ性、耐腐食性が要求されるため、このNi−Cr鋼が使用されている。   Moreover, Ni-Cr steel may be used as a high temperature wear resistant material. For example, in a bucket that receives high-temperature red hot coke discharged from a coke oven and transports it to a coke dry fire extinguishing facility, a liner made of a high-temperature wear-resistant material is provided on the inner surface thereof. The Ni-Cr steel is used for the liner for the bucket because of high wear resistance, crack resistance and corrosion resistance at high temperatures.

また、高価なNiを減らしてMnを添加したMn−Cr鋼(Mn−Cr系オーステナイト鋼)が使用される場合もある。Mn−Cr鋼の耐摩耗性には、表面に加わる衝撃力、破砕力などの外力を受けて現われる加工硬化も重要な役割を果たす。そのため、例えば、赤熱コークスの落下による衝撃や接触後の摺動などに曝されると、表面に加工硬化層が生じ優れた耐摩耗性が発揮される。その結果、摩耗の進行と硬化層の形成とがバランスしながら一定の耐摩耗性が常に持続される。併せて、一定の耐割れ性、耐腐食性を持続して発揮することができる(例えば、特許文献3参照)。   Further, Mn—Cr steel (Mn—Cr austenitic steel) in which expensive Ni is reduced and Mn is added may be used. Work hardening that appears due to external forces such as impact force and crushing force applied to the surface plays an important role in wear resistance of Mn-Cr steel. Therefore, for example, when exposed to impact caused by dropping of red hot coke or sliding after contact, a work hardened layer is formed on the surface, and excellent wear resistance is exhibited. As a result, constant wear resistance is always maintained while balancing the progress of wear and the formation of a hardened layer. In addition, it is possible to continuously exhibit certain crack resistance and corrosion resistance (see, for example, Patent Document 3).

Niに代えて安価なMnの含有量を増加させたMn−Cr鋼としては、例えば、0.3C‐0.7Si‐20Mn‐17Cr‐0.3N−Febal.等が使用されている。   Examples of Mn-Cr steel with an increased Mn content instead of Ni include 0.3C-0.7Si-20Mn-17Cr-0.3N-Febal. Etc. are used.

実開平7−33964号公報Japanese Utility Model Publication No. 7-33964 特開平11−131114号公報JP 11-131114 A 特開2009−221544号公報JP 2009-221544 A

ところで、前述の各種ライナーに用いられるMn−Cr鋼には、通常、Nを添加している。Nを添加しないと、強度が下がり変形が起きやすくなる可能性があるからである。   By the way, N is normally added to the Mn-Cr steel used for the above-mentioned various liners. This is because if N is not added, the strength is lowered and deformation is likely to occur.

しかし、Nを添加した場合、その部材に含まれるNを検査できる鋳造業者に限りがあるため、製造工程におけるタイムスケジュール管理に制約事項が生じやすいという問題がある。また、Nの検査には、その都度、相当の費用が必要である。このため、高温耐摩耗材として製造されるMn−Cr鋼のコストが上昇するという問題がある。また、Nを含有させることで欠陥が生じやすくなり、品質を維持するためのコストが上昇するという問題もある。   However, when N is added, since there is a limit to casting companies that can inspect N contained in the member, there is a problem that restrictions are likely to occur in time schedule management in the manufacturing process. In addition, N inspection requires a considerable cost each time. For this reason, there exists a problem that the cost of Mn-Cr steel manufactured as a high temperature wear-resistant material rises. Moreover, there is a problem that defects are easily caused by containing N, and the cost for maintaining the quality is increased.

さらに、前述のNiを含有しない高温耐摩耗材おいても、さらなる耐摩耗性、耐割れ性の向上が望まれている。   Furthermore, even in the above-described high temperature wear resistant material not containing Ni, further improvement in wear resistance and crack resistance is desired.

そこで、この発明は、高温環境下で優れた耐摩耗性、耐割れ性を発揮し、且つ、安価な高温耐摩耗材とすることを課題とする。   Therefore, an object of the present invention is to provide an inexpensive high-temperature wear-resistant material that exhibits excellent wear resistance and crack resistance in a high-temperature environment.

上記の課題を解決するために、この発明は、C:0.2〜0.5質量%、Si:0.2〜1.5質量%、Mn:10〜24質量%、Cr:12〜20質量%、Ni:0.09質量以下、N:0.1質量%未満を含有し、残部がFe及び不可避的不純物からなる高温耐摩耗材を採用した。 In order to solve the above problems, the present invention provides C: 0.2 to 0.5 mass %, Si: 0.2 to 1.5 mass %, Mn: 10 to 24 mass %, Cr: 12 to 20 A high-temperature wear-resistant material containing mass %, Ni: 0.09 mass % or less , N: less than 0.1 mass %, and the balance consisting of Fe and inevitable impurities was employed.

すなわち、鋳造時にNを添加しないことで、完成品に対するNの検査を省略し、安価な高温耐摩耗材を実現した。また、鋳造時にNを添加しないことに加え、他の合金元素の含有量を上記の範囲に限定することで、所定の高温環境下で、従来品と変わりない耐摩耗性、耐割れ性を発揮できることを確認した。ここで、鋳造時にNを添加しないとは、意図的にNを添加しないことを意味し、空気中のNが入り込むことを排除するものではない。   That is, by not adding N at the time of casting, the inspection of N on the finished product was omitted, and an inexpensive high temperature wear resistant material was realized. In addition to adding N at the time of casting, the content of other alloy elements is limited to the above range, thereby exhibiting wear resistance and crack resistance that are the same as conventional products in a predetermined high temperature environment. I confirmed that I can do it. Here, not adding N at the time of casting means that N is not added intentionally, and does not exclude the entry of N in the air.

ここで、各合金元素の含有量を上記の範囲に限定した理由について説明する。   Here, the reason why the content of each alloy element is limited to the above range will be described.

Cは、高温強度及び耐摩耗性の向上に有効な元素であり、強度及び耐摩耗性を確保するために0.2質量%以上含有させる。一方、含有量が多くなると靭性が低下するため、靭性不足による割れが生じないように、上限は0.5質量%とする。 C is an element effective for improving high-temperature strength and wear resistance, and is contained in an amount of 0.2% by mass or more in order to ensure strength and wear resistance. On the other hand, since the toughness decreases as the content increases, the upper limit is set to 0.5% by mass so that cracking due to insufficient toughness does not occur.

Siは、鋼の溶製時に脱酸剤として作用するとともに、湯流れが良くなり、鋳造性が向上し、耐熱性が向上するため、0.2質量%以上含有させる。一方、含有量が多くなると、靭性が低下し、割れの可能性が高くなるため、上限を1.5質量%とする。 Si acts as a deoxidizer during the melting of steel, improves the flow of hot water, improves castability, and improves heat resistance. Therefore, Si is contained in an amount of 0.2% by mass or more. On the other hand, if the content increases, the toughness decreases and the possibility of cracking increases, so the upper limit is made 1.5 mass %.

Mnは、脱酸作用を有し、またSを固定して無害化する元素であり、オーステナイト相を安定させ、強度、加工硬化性を向上させるので、10質量%以上含有させる。特に、Niが含有されていない場合、あるいは含有量が少ない場合は、オーステナイト相の安定性を保つため、Mnは、14質量%以上含有させることが望ましい。一方、過剰に含有させると、価格の上昇を招くため、上限を24質量%としている。 Mn is an element having a deoxidizing action and detoxifying by fixing S, and stabilizes the austenite phase and improves strength and work curability, so it is contained in an amount of 10% by mass or more. In particular, when Ni is not contained or when the content is small, it is desirable to contain 14% by mass or more of Mn in order to maintain the stability of the austenite phase. On the other hand, if it is excessively contained, the price increases, so the upper limit is set to 24% by mass .

Crは、Mnとの相乗効果によりオーステナイトを安定化させ、耐酸化性及び耐熱性を向上させるために、12質量%以上含有させる必要がある。一方、過剰に含有させると靭性が低下するため、上限を20質量%としている。なお、Niは、0.09質量%以下とする。 Cr needs to be contained in an amount of 12% by mass or more in order to stabilize austenite by a synergistic effect with Mn and improve oxidation resistance and heat resistance. On the other hand, when it is contained excessively, the toughness decreases, so the upper limit is set to 20% by mass . In addition, Ni shall be 0.09 mass% or less .

Nは、オーステナイト相を安定させ、強度を向上させるために、従来は、0.1質量%以上含有させる必要があるとされてきた。しかし、この発明では、Nを0.1質量%未満としても、他の合金元素の含有量を上記の範囲に限定したことで、所定の機械的性質を実現している。ただし、Nは理論上0質量%とすることもできるが、通常は、空気中にNが介在するため、意図的にNを添加しない場合でも、完成品は僅かながらNを含有する。
ここで、前述のように、Nが全く含有されていないと、強度が下がり変形が起きやすくなる可能性があるので、Nの下限を0.01質量%と設定することもできる。
Conventionally, N has been required to be contained in an amount of 0.1% by mass or more in order to stabilize the austenite phase and improve the strength. However, in the present invention, even if N is less than 0.1% by mass , the predetermined mechanical properties are realized by limiting the content of other alloy elements to the above range. However, N can theoretically be 0% by mass, but normally, since N is present in the air, even if N is not added intentionally, the finished product contains a small amount of N.
Here, as described above, if N is not contained at all, the strength may decrease and deformation may easily occur. Therefore, the lower limit of N can be set to 0.01% by mass .

Sは、Mnと結合してMnSとなるので、Sの過度の含有は靱性を劣化させる。このため、Sは、0.1質量%以下とすることが望ましい。また、Pは、0.1質量%以下とすることが望ましい。S及びPは、ここでは不可避的不純物として位置づける。 Since S combines with Mn to become MnS, excessive inclusion of S deteriorates toughness. For this reason, S is desirably 0.1% by mass or less. P is preferably 0.1% by mass or less. Here, S and P are positioned as inevitable impurities.

この発明は、鋳造時にNを添加しないことで、完成品に対するNの検査を省略し、安価な高温耐摩耗材を実現した。また、鋳造時にNを添加しないことに加え、他の合金元素の含有量を所定の範囲に限定することで、所定の高温環境下で、従来品と変わりない耐摩耗性、耐割れ性を発揮できることを確認した。   In the present invention, N is not added at the time of casting, so that inspection of N on the finished product is omitted, and an inexpensive high temperature wear resistant material is realized. In addition to adding N at the time of casting, the content of other alloy elements is limited to a specified range, thereby exhibiting the same wear resistance and crack resistance as conventional products in a specified high-temperature environment. I confirmed that I can do it.

この発明の実施形態を示す化学成分表(表1a)Chemical composition table (Table 1a) showing an embodiment of the present invention この発明の実施形態を示す化学成分表(表1b)Chemical composition table (Table 1b) showing an embodiment of the present invention 試験に用いた30tYブロックの切断図で、(a)は側面図、(b)は正面図It is a cutaway view of the 30tY block used in the test, (a) is a side view, (b) is a front view. 試験片の採取位置を示し、(a)は側面図、(b)は正面図Shows the sampling position of the test piece, (a) is a side view, (b) is a front view 試験片の採取位置を示し、(a)は側面図、(b)は正面図Shows the sampling position of the test piece, (a) is a side view, (b) is a front view Uノッチシャルピー衝撃試験片を示し、(a)は側面図、(b)は正面図、(c)は切欠き部の要部拡大図A U-notch Charpy impact test piece is shown, (a) is a side view, (b) is a front view, and (c) is an enlarged view of a main part of a notch. 常温引張試験片を示す正面図Front view showing a room temperature tensile test piece 高温引張試験片を示し、(a)は正面図、(b)は要部拡大図A high temperature tensile test piece is shown, (a) is a front view, (b) is an enlarged view of the main part. (a)は時効熱処理前の常温でのUノッチシャルピー衝撃試験結果を示す表(表2)、(b)は時効処理前の常温でのUノッチシャルピー衝撃試験結果を示す表(表3)(A) is a table showing U-notch Charpy impact test results at room temperature before aging heat treatment (Table 2), and (b) is a table showing U-notch Charpy impact test results at room temperature before aging treatment (Table 3). (a)は時効処理後の常温でのUノッチシャルピー衝撃試験結果を示す表(表4)、(b)は時効処理後の常温でのUノッチシャルピー衝撃試験結果を示す表(表5)(A) is a table showing U-notch Charpy impact test results at room temperature after aging treatment (Table 4), (b) is a table showing U-notch Charpy impact test results at room temperature after aging treatment (Table 5). 時効熱処理前後の常温でのUノッチシャルピー衝撃値を示すグラフ図Graph showing U-notch Charpy impact value at room temperature before and after aging heat treatment 時効熱処理前の500℃でのUノッチシャルピー衝撃試験結果を示す表(表6)Table showing U-notch Charpy impact test results at 500 ° C. before aging heat treatment (Table 6) 時効熱処理後の500℃でのUノッチシャルピー衝撃試験結果を示す表(表7)Table showing U-notch Charpy impact test results at 500 ° C. after aging heat treatment (Table 7) 時効熱処理前後の500℃でのUノッチシャルピー衝撃値を示すグラフ図Graph showing U-notch Charpy impact value at 500 ° C before and after aging heat treatment (a)は水靱処理後の700℃でのUノッチシャルピー衝撃試験結果を示す表(表8)、(b)は時効処理前の700℃でのUノッチシャルピー衝撃試験結果を示す表(表9)(A) is a table (Table 8) showing the U-notch Charpy impact test results at 700 ° C. after water toughening treatment, and (b) is a table (Table) showing the U-notch Charpy impact test results at 700 ° C. before aging treatment. 9) (a)は時効熱処理後の700℃でのUノッチシャルピー衝撃試験結果を示す表(表10)、(b)は時効処理後の700℃でのUノッチシャルピー衝撃試験結果を示す表(表11)(A) is a table showing the U-notch Charpy impact test results at 700 ° C. after aging heat treatment (Table 10), and (b) is a table showing the U-notch Charpy impact test results at 700 ° C. after aging treatment (Table 11). ) 水靱処理前後の700℃でのUノッチシャルピー衝撃値を示すグラフ図Graph showing the U-notch Charpy impact value at 700 ° C before and after water toughness treatment (a)は時効熱処理前の常温での引張試験結果を示す表(表12)、(b)は時効処理前の常温での引張試験結果を示す表(表13)(A) is a table showing the tensile test results at room temperature before aging heat treatment (Table 12), (b) is a table showing the tensile test results at room temperature before aging treatment (Table 13). (a)は時効処理後の常温での引張試験結果を示す表(表14)、(b)は時効処理後の常温での引張試験結果を示す表(表15)(A) is a table showing the tensile test results at room temperature after aging treatment (Table 14), (b) is a table showing the tensile test results at room temperature after aging treatment (Table 15). 時効熱処理前後の常温での引張強さを示すグラフ図Graph showing tensile strength at room temperature before and after aging heat treatment 時効熱処理前後の常温での0.2%耐力を示すグラフ図Graph showing 0.2% proof stress at normal temperature before and after aging heat treatment 時効熱処理前後の常温での伸びを示すグラフ図Graph showing the elongation at normal temperature before and after aging heat treatment 時効熱処理前後の常温での絞りを示すグラフ図Graph showing normal temperature drawing before and after aging heat treatment 時効熱処理前の500℃での引張試験結果を示す表(表16)Table showing the results of a tensile test at 500 ° C. before aging heat treatment (Table 16) 時効熱処理後の500℃での引張試験結果を示す表(表17)Table showing the results of a tensile test at 500 ° C. after aging heat treatment (Table 17) 時効熱処理前後の500℃での引張り強さを示すグラフ図Graph showing tensile strength at 500 ° C before and after aging heat treatment 時効熱処理前後の500℃での0.2%耐力を示すグラフ図Graph showing 0.2% yield strength at 500 ° C before and after aging heat treatment 時効熱処理前後の500℃での伸びを示すグラフ図Graph showing elongation at 500 ° C before and after aging heat treatment 時効熱処理前後の500℃での絞りを示すグラフ図Graph showing the drawing at 500 ° C before and after aging heat treatment 時効熱処理前の700℃での引張試験結果を示す表(表18)Table showing the results of a tensile test at 700 ° C. before aging heat treatment (Table 18) 時効熱処理後の700℃での引張試験結果を示す表(表19)Table showing the results of a tensile test at 700 ° C. after aging heat treatment (Table 19) 水靱処理前後の700℃での引張り強さを示すグラフ図Graph showing the tensile strength at 700 ° C before and after water toughness treatment 水靱処理前後の700℃での0.2%耐力を示すグラフ図Graph showing 0.2% yield strength at 700 ° C before and after water toughness treatment 水靱処理前後の700℃での伸びを示すグラフ図Graph showing elongation at 700 ° C before and after water toughness treatment 水靱処理前後の700℃での絞りを示すグラフ図Graph showing the drawing at 700 ° C before and after water toughness treatment (a)は水靱処理後の常温硬さを示す表(表20)、(b)は水靱処理、時効処理後の常温硬さを示す表(表21)、(c)は、Yブロック熱処理前後の硬さ試験結果を示す表(表22)(A) is a table showing normal temperature hardness after water toughness treatment (Table 20), (b) is a table (Table 21) showing normal temperature hardness after water toughness treatment and aging treatment, and (c) is a Y block. Table showing hardness test results before and after heat treatment (Table 22) (a)はミクロ組織試験片(兼、硬さ試験片)の採取位置を示し、(a)は側面図、(b)は正面図、(c)は硬さ試験位置を示す要部拡大図(A) shows the sampling position of a microstructure test piece (also serves as a hardness test piece), (a) is a side view, (b) is a front view, and (c) is an enlarged view of the main part showing the hardness test position. 時効熱処理前後の常温硬さを示すグラフ図Graph showing normal temperature hardness before and after aging heat treatment

以下、本発明の実施形態を説明する。図1a(表1a)及び図1b(表1b)は、実施形態のMn−Cr系オーステナイト鋼(実施例)と、従来のMn−Cr系オーステナイト鋼(比較例)の組成を示している。なお、C、Sは赤外線吸収法、Nは不活性ガス融解熱伝導度法、Siは二酸化けい素重量法、Pはモリブドりん酸青吸光光度法、Crはペルオキソ二硫酸アンモニウム酸化KMnO法、それ以外の元素は誘導プラズマ発光分光分析法により分析を行った。 Embodiments of the present invention will be described below. FIG. 1a (Table 1a) and FIG. 1b (Table 1b) show the compositions of the Mn—Cr austenitic steel of the embodiment (Example) and the conventional Mn—Cr austenitic steel (Comparative Example). C and S are infrared absorption methods, N is an inert gas melting thermal conductivity method, Si is a silicon dioxide gravimetric method, P is a molybdophosphate blue absorptiometric method, Cr is an ammonium peroxodisulfate oxide KMnO 4 method, The other elements were analyzed by induction plasma emission spectroscopy.

実施例と比較例の材料に対して、その性能を確認するための各種試験を行った。   Various tests for confirming the performance were performed on the materials of Examples and Comparative Examples.

各種試験には、まず、図1a及び図1bに示した組成の溶解金属を、30tYブロック用の砂型に注湯して得られた鋳放し品を、下記の条件で熱処理し、必要なサイズに切断して試験片を作成した。   In various tests, first, as-cast products obtained by pouring molten metal having the composition shown in FIGS. 1a and 1b into a sand mold for a 30 tY block were heat-treated under the following conditions to obtain the required size. A test piece was prepared by cutting.

(熱処理条件)
加熱温度:常温あるいはそのときの温度から1100℃まで加熱
加熱速度:100℃/時間
保持時間:5.5時間
冷却方法:水冷(スクリューで撹拌)
(Heat treatment conditions)
Heating temperature: Heated from room temperature or from that temperature to 1100 ° C Heating rate: 100 ° C / hour Holding time: 5.5 hours Cooling method: Water cooling (stirring with screw)

ここで、図2(a)(b)に示すように、30tYブロックの押し湯を切断し、水靱処理を行い、さらに2等分に切断して、片方について時効熱処理を行った。   Here, as shown in FIGS. 2 (a) and 2 (b), the hot water of the 30tY block was cut, subjected to water toughness treatment, further cut into two equal parts, and aging heat treatment was performed on one side.

(時効熱処理条件)
加熱温度:常温付近から900℃まで加熱
加熱速度:100℃/時間
保持時間:200時間
冷却方法:炉から取出し大気放冷
(Aging heat treatment conditions)
Heating temperature: Heated from around normal temperature to 900 ° C Heating rate: 100 ° C / hour Holding time: 200 hours Cooling method: Taken out of furnace and allowed to cool to air

(Uノッチシャルピー衝撃試験結果)
次に、常温及び高温環境での衝撃に対する靭性を確認するために、常温、500℃及び700℃において、衝撃試験を実施した。図3(a)(b)に、比較例1〜11、実施例1〜2の各試験片の採取位置を示す。図4(a)(b)に、比較例6の試験片の採取位置を示す。図5(a)(b)(c)に、Uノッチシャルピー衝撃試験片、図6に常温引張試験片、図7(a)(b)に高温引張試験片の寸法を示す。
(U-notch Charpy impact test results)
Next, in order to confirm the toughness against impacts at normal temperature and high temperature environment, impact tests were performed at normal temperature, 500 ° C. and 700 ° C. 3A and 3B show the sampling positions of the test pieces of Comparative Examples 1 to 11 and Examples 1 and 2. 4A and 4B show the sampling position of the test piece of Comparative Example 6. FIG. 5A, 5B, and 5C show the dimensions of a U-notch Charpy impact test piece, FIG. 6 shows a normal temperature tensile test piece, and FIGS. 7A and 7B show the high temperature tensile test piece.

衝撃試験は、JIS Z 2242に規定されているシャルピー衝撃試験方法を用いて行い、同じく、JIS Z 2242に規定されているUノッチ試験片からシャルピー衝撃値を求めた。   The impact test was performed using the Charpy impact test method defined in JIS Z 2242. Similarly, the Charpy impact value was determined from a U-notch test piece defined in JIS Z 2242.

(時効熱処理前後の常温でのUノッチシャルピー衝撃試験結果)
試験結果を図8(a)(表2)、図8(b)(表3)、図9(a)(表4)、図9(b)(表5)、及び、図10に示す。図8(a)(b)は、時効熱処理前の常温でのUノッチシャルピー衝撃試験結果を、図9(a)(b)は、時効熱処理後の常温でのUノッチシャルピー衝撃試験結果を示す。また、図10は、時効熱処理前後(データは、図8(a)及び図9(a)に相当)の常温でのUノッチシャルピー衝撃試験結果をプロットしたグラフ図である。
(U-notch Charpy impact test results at normal temperature before and after aging heat treatment)
The test results are shown in FIG. 8 (a) (Table 2), FIG. 8 (b) (Table 3), FIG. 9 (a) (Table 4), FIG. 9 (b) (Table 5), and FIG. 8A and 8B show the results of a U-notch Charpy impact test at room temperature before aging heat treatment, and FIGS. 9A and 9B show the results of a U-notch Charpy impact test at room temperature after aging heat treatment. . FIG. 10 is a graph plotting U-notch Charpy impact test results at normal temperatures before and after aging heat treatment (data corresponds to FIG. 8 (a) and FIG. 9 (a)).

これらの試験結果により、時効熱処理前において、比較例4、比較例8の試験片以外はいずれも比較例1の素材の測定値以上を満たしていることがわかった。
また、時効熱処理後では、すべての材料の衝撃値は大きく低下している。被熱後の常温での耐割れ性は、比較例4、比較例6、比較例8、比較例11の試験片以外は、いずれも比較例1の素材の測定値と同等以上である。
From these test results, it was found that all of the materials other than the test pieces of Comparative Example 4 and Comparative Example 8 satisfied the measured values of the material of Comparative Example 1 before the aging heat treatment.
In addition, after the aging heat treatment, the impact values of all materials are greatly reduced. The crack resistance at normal temperature after heating is equal to or greater than the measured value of the material of Comparative Example 1 except for the test pieces of Comparative Example 4, Comparative Example 6, Comparative Example 8, and Comparative Example 11 .

ここで、比較例5は、Niを6質量%含有しているため、衝撃値は増加するのではないかとも考えられたが、結果は、Niが2質量%である比較例2よりも低下していた。この低下理由は不明である。 Here, since Comparative Example 5 contains 6% by mass of Ni, it was thought that the impact value might increase, but the result was lower than that of Comparative Example 2 in which Ni was 2% by mass. Was. The reason for this decline is unknown.

また、実施例1のCを増加させた比較例4の衝撃値は、大きく低下した。N及びNiが無添加(Nに関しては、空気中の微量のNが含有されている場合も含む)の場合、C量の増加が衝撃値の低下を促進することがわかった。 Moreover, the impact value of the comparative example 4 which increased C of Example 1 fell significantly. It has been found that when N and Ni are not added (N includes a case where a small amount of N in the air is contained), an increase in the amount of C promotes a decrease in impact value.

また、実施例2のように、比較例6をベースとしてNを無添加(同じく、空気中の微量のNが含有されている場合も含む。以下同じ。)にすることで、大きく衝撃値が増加することがわかった。これにより、Nを無添加にすることで、常温での耐割れ性が向上するものと推定される。 Further, as in Example 2 , the impact value is greatly increased by adding N based on Comparative Example 6 without addition of N (also including the case where a small amount of N in the air is contained. The same applies hereinafter). It turned out to increase. Thereby, it is estimated that the crack resistance at normal temperature is improved by adding no N.

(時効熱処理前後の500℃でのUノッチシャルピー衝撃試験結果)
試験結果を図11(表6)、図12(表7)、及び図13に示す。図11は、時効熱処理前の500℃でのUノッチシャルピー衝撃試験結果を、図12は、時効熱処理後の500℃でのUノッチシャルピー衝撃試験結果を示す。また、図13は、時効熱処理前後(データは、図11及び図12に相当)の500℃でのUノッチシャルピー衝撃試験結果をプロットしたグラフ図である。
(U-notch Charpy impact test results at 500 ° C before and after aging heat treatment)
The test results are shown in FIG. 11 (Table 6), FIG. 12 (Table 7), and FIG. FIG. 11 shows the results of U-notch Charpy impact test at 500 ° C. before aging heat treatment, and FIG. 12 shows the results of U-notch Charpy impact test at 500 ° C. after aging heat treatment. FIG. 13 is a graph plotting U-notch Charpy impact test results at 500 ° C. before and after aging heat treatment (data corresponds to FIGS. 11 and 12).

これらの試験結果により、時効熱処理前後において、比較例4以外は比較例1の素材の測定値以上を満たしていることがわかった。
また、時効熱処理後では、同じくすべての材料の衝撃値は大きく低下している。ただし、時効熱処理後においても、比較例4以外は、いずれも比較例1の素材の測定値と同等以上であることがわかった。つまり、被熱後の常温での耐割れ性は、比較例4以外は、比較例1の測定値と同等以上である。
From these test results, before and after the aging heat treatment, it was found that except for Comparative Example 4 , the measured values of the material of Comparative Example 1 were satisfied.
In addition, after the aging heat treatment, the impact values of all the materials are greatly reduced. However, after the aging heat treatment, it was found that all of the materials except Comparative Example 4 were equal to or more than the measured values of the material of Comparative Example 1. That is, the crack resistance at room temperature after being heated is equal to or greater than the measured value of Comparative Example 1 except for Comparative Example 4 .

(時効熱処理前後の700℃でのUノッチシャルピー衝撃試験結果)
試験結果を図14(a)(表8)、図14(b)(表9)、図15(a)(表10)、図15(b)(表11)、及び、図16に示す。図14(a)(b)は、時効熱処理前の700℃でのUノッチシャルピー衝撃試験結果を、図15(a)(b)は、時効熱処理後の700℃でのUノッチシャルピー衝撃試験結果を示す。図16は、時効熱処理前後(データは、図14(a)及び図15(a)に相当)の700℃でのUノッチシャルピー衝撃試験結果をプロットしたグラフ図である。
(U-notch Charpy impact test results at 700 ° C before and after aging heat treatment)
The test results are shown in FIG. 14 (a) (Table 8), FIG. 14 (b) (Table 9), FIG. 15 (a) (Table 10), FIG. 15 (b) (Table 11), and FIG. 14A and 14B show the results of a U-notch Charpy impact test at 700 ° C. before aging heat treatment, and FIGS. 15A and 15B show the results of the U-notch Charpy impact test at 700 ° C. after aging heat treatment. Indicates. FIG. 16 is a graph plotting U-notch Charpy impact test results at 700 ° C. before and after aging heat treatment (data corresponds to FIG. 14A and FIG. 15A).

これらの試験結果により、時効熱処理後では、同じくすべての材料の衝撃値は大きく低下している。また、時効熱処理後において、比較例4、比較例5、比較例6、比較例8の試験片を除く、比較例3、比較例2、実施例1、実施例2、比較例7、比較例9、比較例10、比較例11の試験片は、いずれも規格値(比較例1の素材の測定値)よりも衝撃値が高いことがわかった。
したがって、700℃にて割れが発生する環境では、これらの材料は、比較例1と同等以上の耐割れ性を有していると考えられる。逆に、比較例4、比較例5、比較例6、比較例8は、700℃での耐割れ性が、比較例1よりも劣っていると考えられる。
According to these test results, the impact values of all the materials are greatly reduced after the aging heat treatment. In addition, after the aging heat treatment, except for the test pieces of Comparative Example 4, Comparative Example 5, Comparative Example 6, and Comparative Example 8 , Comparative Example 3, Comparative Example 2 , Example 1, Example 2, Comparative Example 7, and Comparative Example 9, it was found that the test pieces of Comparative Example 10 and Comparative Example 11 all had an impact value higher than the standard value (measured value of the material of Comparative Example 1).
Therefore, in an environment where cracking occurs at 700 ° C., these materials are considered to have crack resistance equal to or higher than that of Comparative Example 1. On the contrary, Comparative Example 4, Comparative Example 5, Comparative Example 6, and Comparative Example 8 are considered to be inferior in crack resistance at 700 ° C. to Comparative Example 1.

(引張試験結果)
常温及び高温環境での機械的強度を確認するために、常温、500℃及び700℃において、引張試験を実施した。引張試験は、JIS Z 2241(常温)、JIS G 0567(500℃,700℃)に規定されている引張試験方法を用いて行い、その結果から、引張強度、耐力、伸び、絞りを求めた。
(Tensile test result)
In order to confirm the mechanical strength at normal temperature and high temperature environment, a tensile test was performed at normal temperature, 500 ° C. and 700 ° C. The tensile test was performed using the tensile test method prescribed | regulated to JISZ2241 (normal temperature) and JISG0567 (500 degreeC, 700 degreeC), and the tensile strength, the yield strength, elongation, and the drawing were calculated | required from the result.

(時効熱処理前後の常温での引張試験結果)
試験結果を図17(a)(表12)、図17(b)(表13)、図18(a)(表14)、図18(b)(表15)、及び、図19〜22に示す。図17(a)(b)は、時効熱処理前の常温での引張試験結果を、図18(a)(b)は、時効熱処理後の常温での引張試験結果を示す。図19〜22は、それぞれ、時効熱処理前後(データは、図17(a)及び図18(a)に相当)の常温での引張試験結果に基づく、引張強さ、0.2%耐力、伸び、絞りをプロットしたグラフ図である。
(Tensile test results at normal temperature before and after aging heat treatment)
The test results are shown in FIG. 17 (a) (Table 12), FIG. 17 (b) (Table 13), FIG. 18 (a) (Table 14), FIG. 18 (b) (Table 15), and FIGS. Show. 17 (a) and 17 (b) show the tensile test results at normal temperature before aging heat treatment, and FIGS. 18 (a) and 18 (b) show the tensile test results at normal temperature after aging heat treatment. FIGS. 19 to 22 show tensile strength, 0.2% proof stress, and elongation based on tensile test results at normal temperatures before and after aging heat treatment (data correspond to FIGS. 17 (a) and 18 (a)), respectively. It is the graph which plotted the aperture_diaphragm | restriction.

これらの試験結果により、時効熱処理を施すことで、比較例7比較例8の試験片を除く全ての試験片で引張強さはほぼ同じであるかあるいは増加し、それに対して、伸び、絞りは低下している。ただし、比較例3、比較例2、比較例5、実施例1、比較例4、実施例2、比較例9の0.2%耐力が低下しているが、この理由は不明である。また、時効熱処理前において、比較例1の測定値を全て満足しているのは、比較例6と、比較例7、比較例8、比較例9、比較例10、比較例11である。
時効熱処理前後において、比較例6、比較例8、比較例10、比較例11の試験片を除く全ての材料の0.2%耐力は、比較例1よりも低いため、常温での耐変形性も、比較例6、比較例8、比較例10、比較例11の試験片を除く全ての材料は、比較例1よりも劣っていると考えられる。時効熱処理前後において、常温での伸び、絞りについては、比較例4を除く全ての試験片で比較例1の測定値を上回っている(図21,22参照)。
According to these test results, by performing an aging heat treatment, the tensile strength is almost the same or increased in all the test pieces except for the test pieces of Comparative Example 7 and Comparative Example 8 , whereas the tensile strength is increased. Is falling. However, although the 0.2% proof stress of Comparative Example 3, Comparative Example 2, Comparative Example 5 , Example 1, Comparative Example 4, Example 2, and Comparative Example 9 is reduced, the reason is unknown. Moreover, it is Comparative Example 6, Comparative Example 7, Comparative Example 8, Comparative Example 9, Comparative Example 10, and Comparative Example 11 that satisfy all the measured values of Comparative Example 1 before aging heat treatment.
Before and after the aging heat treatment, the 0.2% proof stress of all the materials except the test pieces of Comparative Example 6, Comparative Example 8, Comparative Example 10, and Comparative Example 11 is lower than that of Comparative Example 1, and therefore, deformation resistance at room temperature. However, all the materials except the test pieces of Comparative Example 6, Comparative Example 8, Comparative Example 10, and Comparative Example 11 are considered to be inferior to Comparative Example 1. Before and after the aging heat treatment, the elongation and drawing at normal temperature exceeded the measured values of Comparative Example 1 for all the test pieces except Comparative Example 4 (see FIGS. 21 and 22).

(時効熱処理前後の500℃での引張試験結果)
試験結果を図23(表16)、図24(表17)、及び、図25〜28に示す。図23は、時効熱処理前の500℃での引張試験結果を、図24は、時効熱処理後の500℃での引張試験結果を示す。図25〜28は、それぞれ、時効熱処理前後(データは、図23及び図24に相当)の500℃での引張試験結果に基づく、引張強さ、0.2%耐力、伸び、絞りをプロットしたグラフ図である。
(Results of tensile test at 500 ° C before and after aging heat treatment)
The test results are shown in FIG. 23 (Table 16), FIG. 24 (Table 17), and FIGS. FIG. 23 shows the tensile test results at 500 ° C. before aging heat treatment, and FIG. 24 shows the tensile test results at 500 ° C. after aging heat treatment. FIGS. 25 to 28 plot the tensile strength, 0.2% proof stress, elongation and drawing based on the tensile test results at 500 ° C. before and after aging heat treatment (data corresponds to FIGS. 23 and 24), respectively. FIG.

これらの試験結果により、引張強さ及び0.2%耐力は、時効熱処理前後で大きな差異は見られないが、伸び及び絞りは、時効熱処理を施すことで低下している。時効熱処理前後において、図23〜28に挙げた全ての材料の0.2%耐力は、比較例1よりも低いため、500℃での耐変形性も、図23〜28に挙げた全ての材料は、比較例1よりも劣っていると考えられる。   According to these test results, the tensile strength and the 0.2% proof stress are not significantly different between before and after the aging heat treatment, but the elongation and drawing are reduced by performing the aging heat treatment. Before and after the aging heat treatment, the 0.2% proof stress of all the materials listed in FIGS. 23 to 28 is lower than that of Comparative Example 1, so that the deformation resistance at 500 ° C. is all the materials listed in FIGS. Is considered inferior to Comparative Example 1.

(時効熱処理前後の700℃での引張試験結果)
試験結果を図29(表18)、図30(表19)、及び、図31〜34に示す。図29は、時効熱処理前の700℃での引張試験結果を、図30は、時効熱処理後の700℃での引張試験結果を示す。図31〜34は、それぞれ、時効熱処理前後(データは、図29及び図30に相当)の700℃での引張試験結果に基づく、引張強さ、0.2%耐力、伸び、絞りをプロットしたグラフ図である。
(Results of tensile test at 700 ° C before and after aging heat treatment)
The test results are shown in FIG. 29 (Table 18), FIG. 30 (Table 19), and FIGS. FIG. 29 shows the tensile test results at 700 ° C. before aging heat treatment, and FIG. 30 shows the tensile test results at 700 ° C. after aging heat treatment. 31 to 34 plot the tensile strength, 0.2% proof stress, elongation, and drawing based on the tensile test results at 700 ° C. before and after aging heat treatment (data corresponds to FIG. 29 and FIG. 30), respectively. FIG.

これらの試験結果により、引張強さ及び0.2%耐力は、時効熱処理前後で大きな差異は見られないことがわかった。伸びは、時効熱処理を施すことで低下したが、絞りは、逆の傾向が比較例3、比較例4、実施例2の試験片で見られた。時効熱処理前後において、図29〜34に挙げた全ての材料の0.2%耐力は、比較例1よりも低いため、700℃での耐変形性も、図29〜34に挙げた全ての材料は、比較例1よりも劣っていると考えられる。 From these test results, it was found that there was no significant difference in tensile strength and 0.2% yield strength before and after aging heat treatment. Although the elongation decreased by applying an aging heat treatment, the reverse tendency of the drawing was observed in the test pieces of Comparative Example 3, Comparative Example 4, and Example 2 . Before and after the aging heat treatment, the 0.2% proof stress of all the materials listed in FIGS. 29 to 34 is lower than that of Comparative Example 1, so that the deformation resistance at 700 ° C. is all the materials listed in FIGS. Is considered inferior to Comparative Example 1.

(水靱処理、及び、水靱処理、熱処理後の硬さ)
図35(a)(表20)に、水靱処理の常温硬さ(HV10)、及び、図35(b)(表21)に、水靱処理、時効処理後の常温硬さ(HV10)を示す。また、図35(c)(表22)の上段に、Yブロック熱処理前の常温硬さ(HV10)、及び、下段に、Yブロック熱処理後の常温硬さ(HV10)を示す。図36(a)(b)(c)は、試験片の採取位置と、その試験片における硬さ試験実施位置を示す。図37は、時効熱処理前後の常温硬さ(HV10)をプロットしたグラフ図である。
(Hardness after water toughness treatment and after water toughness treatment and heat treatment)
Fig. 35 (a) (Table 20) shows normal temperature hardness after water toughness treatment (HV10), and Fig. 35 (b) (Table 21) shows water toughness treatment and normal temperature hardness after aging treatment (HV10). Indicates. Further, the upper part of FIG. 35 (c) (Table 22) shows the normal temperature hardness (HV10) before the Y block heat treatment, and the lower part shows the normal temperature hardness (HV10) after the Y block heat treatment . 36A, 36B, and 36C show the sampling position of the test piece and the hardness test execution position in the test piece. FIG. 37 is a graph plotting the normal temperature hardness (HV10) before and after aging heat treatment.

これらの結果によると、全ての材料で、時効熱処理後の硬さが増加している。これは炭化物が析出したためと考えられる。時効熱処理の前後において、比較例1と同等以上の硬さを示したのは、比較例2、実施例1、比較例4、比較例6、比較例8の試験片である。逆に、時効熱処理の前後いずれかで、比較例1よりも低い硬さを示したのは、比較例3、比較例5、実施例2、比較例7、比較例9、比較例10、比較例11であった。したがって、常温において、比較例1と同等以上の耐摩耗性を有するのは、比較例2、実施例1、比較例4、比較例6、比較例8の試験片と考えられる。 According to these results, the hardness after aging heat treatment is increased in all materials. This is thought to be due to the precipitation of carbides. The specimens of Comparative Example 2, Example 1, Comparative Example 4, Comparative Example 6, and Comparative Example 8 showed hardness equal to or higher than that of Comparative Example 1 before and after aging heat treatment. On the contrary, it was comparative example 3, comparative example 5, example 2, comparative example 7, comparative example 9, comparative example 10, comparative example which showed lower hardness than comparative example 1 either before and after aging heat processing. Example 11 . Therefore, it is considered that the test pieces of Comparative Example 2 , Example 1, Comparative Example 4, Comparative Example 6, and Comparative Example 8 have wear resistance equal to or higher than that of Comparative Example 1 at room temperature.

(まとめ)
時効熱処理後の比較例1と、常温でのシャルピー衝撃値及び0.2%耐力が近いのは比較例6であるため、比較例1に近い特性が必要な場合は、比較例6の使用が望ましいと考えられる。また、Nを添加しない場合、時効熱処理後の常温、500℃、700℃でのシャルピー衝撃値は、比較例3、比較例2、実施例1、実施例2、比較例7、比較例9、比較例10、比較例11の試験片が比較例1と同等であったため、耐割れ性のみを重視する場合は、これらの材料の使用が望ましい。なお、コスト面では、実施例1が最も有利と考えられる。
(Summary)
Since Comparative Example 6 has a similar Charpy impact value and 0.2% proof stress at normal temperature to Comparative Example 1 after aging heat treatment, use of Comparative Example 6 is necessary when characteristics close to Comparative Example 1 are required. It is considered desirable. Further, when N is not added, the Charpy impact values at room temperature, 500 ° C., and 700 ° C. after the aging heat treatment are Comparative Example 3, Comparative Example 2 , Example 1, Example 2, Comparative Example 7, Comparative Example 9, Since the test pieces of Comparative Example 10 and Comparative Example 11 were equivalent to Comparative Example 1, the use of these materials is desirable when importance is attached only to cracking resistance. In terms of cost, Example 1 is considered most advantageous.

Claims (1)

C:0.2〜0.5質量%、Si:0.2〜1.5質量%、Mn:10〜24質量%、Cr:12〜20質量%、Ni:0.09質量以下、N:0.1質量%未満を含有し、残部がFe及び不可避的不純物からなる高温耐摩耗材。 C: 0.2-0.5 mass %, Si: 0.2-1.5 mass %, Mn: 10-24 mass %, Cr: 12-20 mass %, Ni: 0.09 mass % or less , N : High-temperature wear-resistant material containing less than 0.1% by mass, with the balance being Fe and inevitable impurities.
JP2013055015A 2013-03-18 2013-03-18 High temperature wear resistant material Expired - Fee Related JP5960629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013055015A JP5960629B2 (en) 2013-03-18 2013-03-18 High temperature wear resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013055015A JP5960629B2 (en) 2013-03-18 2013-03-18 High temperature wear resistant material

Publications (2)

Publication Number Publication Date
JP2014181360A JP2014181360A (en) 2014-09-29
JP5960629B2 true JP5960629B2 (en) 2016-08-02

Family

ID=51700376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013055015A Expired - Fee Related JP5960629B2 (en) 2013-03-18 2013-03-18 High temperature wear resistant material

Country Status (1)

Country Link
JP (1) JP5960629B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130459A (en) * 1984-11-30 1986-06-18 Sanwa Niidorubearingu Kk High-hardness non-magnetic shaft having superior corrosion resistance
JP3271747B2 (en) * 1997-08-28 2002-04-08 株式会社栗本鐵工所 Protection plate on inner wall of blast furnace chest
JP2007154295A (en) * 2005-12-08 2007-06-21 Kobe Steel Ltd Wear resistant cast steel and its production method
JP5123014B2 (en) * 2008-03-17 2013-01-16 株式会社栗本鐵工所 High temperature wear resistant material

Also Published As

Publication number Publication date
JP2014181360A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
JP6370391B2 (en) Hardening nickel / chromium / iron / titanium / aluminum alloy with good wear resistance, creep resistance, corrosion resistance, and workability
KR102037086B1 (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
JP4590012B2 (en) Abrasion-resistant steel plate excellent in high-temperature wear resistance and bending workability and manufacturing method thereof
BR112015011069B1 (en) MARTENSITIC CAST STEEL AND ITS PRODUCTION METHOD
JP6723210B2 (en) Nickel-based alloy
JP5881276B2 (en) Hot tool steel with excellent toughness, short-time and long-term softening resistance
JP5061455B2 (en) Hot die tool steel for aluminum die casting with reduced cracking from water-cooled holes
JP6473720B2 (en) Liner material for red hot coke conveying bucket and method for producing the same
JP5960629B2 (en) High temperature wear resistant material
CN106636974A (en) Preparation method of fatigue-resistant alloy lining plate for ball mill
JP5123014B2 (en) High temperature wear resistant material
BR112019006254B1 (en) STEEL PLATE
JPWO2014157146A1 (en) Austenitic stainless steel sheet and method for producing high-strength steel using the same
JP2009174017A (en) Alloy to be surface-coating-treated, and sliding member
JP6402843B1 (en) steel sheet
JP6227076B2 (en) Iron-based heat-resistant alloy and method for producing iron-based heat-resistant alloy
JPS6017043A (en) Heat-resistant co alloy
JP6725191B2 (en) Ni-containing high C martensitic heat resistant steel
JP4302480B2 (en) High hardness steel with excellent cold workability
JP2015187304A (en) Heat resistant alloy excellent in high temperature strength, method for producing the same, and heat resistant alloy spring
JP2016079425A (en) Steel sheet excellent in high temperature strength and toughness and manufacturing method therefor
JP6899633B2 (en) Steel for cutting tools with excellent toughness, wear resistance and softening resistance
JP5494090B2 (en) Refractory steel material excellent in reheat embrittlement resistance and low temperature toughness and method for producing the same
JP4364246B2 (en) Dust collecting fan
JP2016079424A (en) Steel sheet excellent in toughness and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160623

R150 Certificate of patent or registration of utility model

Ref document number: 5960629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees