JP2009174017A - Alloy to be surface-coating-treated, and sliding member - Google Patents

Alloy to be surface-coating-treated, and sliding member Download PDF

Info

Publication number
JP2009174017A
JP2009174017A JP2008014700A JP2008014700A JP2009174017A JP 2009174017 A JP2009174017 A JP 2009174017A JP 2008014700 A JP2008014700 A JP 2008014700A JP 2008014700 A JP2008014700 A JP 2008014700A JP 2009174017 A JP2009174017 A JP 2009174017A
Authority
JP
Japan
Prior art keywords
alloy
surface coating
coated
sliding member
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008014700A
Other languages
Japanese (ja)
Inventor
Kenji Yokoyama
健児 横山
Kunichika Kubota
邦親 久保田
Toshihiro Uehara
利弘 上原
Takehiro Ono
丈博 大野
Katsuhiko Oishi
勝彦 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008014700A priority Critical patent/JP2009174017A/en
Publication of JP2009174017A publication Critical patent/JP2009174017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alloy to be surface-coated by which, even if the additive quantities of alloying elements are markedly decreased, the necessity of surface hardening treatment such as carburizing can be obviated because an excellent hardness not lower than 55 HRC can be maintained in the case of heating up to a temperature as high as 400 to 500 °C and also to provide a sliding member obtained by applying coating of a hard film to the surface of the above alloy to be surface-coated. <P>SOLUTION: This alloy is an alloy to be surface-treated, whose surface is to be subjected to coating with a hard film. This alloy to be surface-treated is; an alloy to be surface-coated which has a composition consisting of, by mass, 0.5 to 1.2% C, ≤2.0% Si, ≤1.0% Mn, 1.0 to 5.0% Cr, 0.3 to 3.0% of (Mo+1/2W) and the balance essentially Fe; and preferably an alloy to be surface-coated which has a composition containing, by mass, 0.6 to 0.85% C, 0.1 to 1.5% Si, 0.6 to 0.8% Mn, 2.0 to 4.0% Cr and 0.4 to 2.0% of (Mo+1/2W). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、表面に硬質皮膜を被覆する、表面被覆用合金と該表面被覆用合金の表面に、硬質皮膜を被覆した摺動部材に関するものである。   The present invention relates to a surface coating alloy for coating a surface with a hard coating, and a sliding member having a hard coating coated on the surface of the surface coating alloy.

金属製の部材表面に、例えばDLC(Diamond like Carbon)やセラミック系の硬質皮膜を被覆(コーティング)した材料は、耐摩耗性や摺動性等の特性を向上させることができるため、過酷な環境で使用される部材に適用されている。中でも、DLC膜で被覆した摺動部材は、耐磨耗性、摺動性に優れているため、幅広く使用されてきている。
しかしながら、例えば、表面被覆用合金にDLC膜をP−CVD(プラズマCVD)やPVD法によって成膜する場合には、密着性に問題があり、密着性を向上させるためには、成膜時に基材を高温に加熱する必要がある。即ち、表面被覆用合金は400〜500℃の高温に加熱される。もし加熱時に材料が軟化した場合、DLC膜が剥離し易くなるため、500℃の高温であっても軟化し難い材質の表面被覆用合金を選ぶ必要がある。
そのため、P−CVD(プラズマCVD)やPVD法を用いてDLC膜を被覆する表面被覆用合金としては、高温でも55HRC以下に軟化しない高速度工具鋼が好んで用いられる(特開2003−27236号公報)。高速度工具鋼は、Mo、W、V、Nb等の合金元素を多量に含有して、これらの合金元素の効果により、例えばDLC膜をP−CVD(プラズマCVD)やPVD法によって成膜する場合であっても、素材の硬さを高硬度に維持できるものである。
特開2003−27236号公報
For example, DLC (Diamond like Carbon) or ceramic hard coating on the metal member surface can improve the characteristics such as wear resistance and slidability. It is applied to the member used in. Among them, a sliding member coated with a DLC film has been widely used because of its excellent wear resistance and sliding property.
However, for example, when a DLC film is formed on a surface coating alloy by P-CVD (plasma CVD) or PVD method, there is a problem in adhesion, and in order to improve the adhesion, The material needs to be heated to a high temperature. That is, the surface coating alloy is heated to a high temperature of 400 to 500 ° C. If the material softens during heating, the DLC film becomes easy to peel off. Therefore, it is necessary to select a surface coating alloy that is difficult to soften even at a high temperature of 500 ° C.
Therefore, as a surface coating alloy for coating a DLC film using P-CVD (plasma CVD) or PVD method, high-speed tool steel that does not soften to 55 HRC or less even at high temperatures is preferably used (Japanese Patent Laid-Open No. 2003-27236). Publication). High-speed tool steel contains a large amount of alloy elements such as Mo, W, V, and Nb, and, for example, a DLC film is formed by P-CVD (plasma CVD) or PVD by the effect of these alloy elements. Even in this case, the hardness of the material can be maintained at a high hardness.
JP 2003-27236 A

高速度工具鋼製の表面被覆用合金は、高価な合金元素を多量に含有している。最近では、合金元素の価格が大幅に上昇していることから、安価な部材確保のために、添加する合金元素の種類を少なくするか、或いは更に、合金元素の添加量を減らしても、所望の特性が得られる表面被覆用合金が求められている。
しかし、例えば、低合金鋼のJIS SUP12やJIS SUJ2等では500℃の高温に加熱すると55HRC以下に軟化してしまい、DLC膜が剥離し易くなるため、表面被覆用合金としては不向きである。
そこで、これらの低合金鋼を使用するためには、浸炭などの表面硬化処理を実施した上でDLC成膜を行う必要がある。
本発明の目的は、低合金鋼を改良し、400〜500℃の高温に加熱した場合において55HRC以上の良好な硬さを維持することで、浸炭などの表面硬化処理を必要とせずに済む、表面被覆用合金と、表面被覆用合金の表面に、硬質皮膜を被覆した摺動部材を提供することである。
The surface coating alloy made of high-speed tool steel contains a large amount of expensive alloy elements. In recent years, the price of alloy elements has increased significantly, so that it is desirable to reduce the number of alloy elements to be added or to reduce the amount of alloy elements added in order to secure inexpensive members. There is a need for a surface coating alloy that provides these properties.
However, for example, JIS SUP12, JIS SUJ2, and the like, which are low alloy steels, are not suitable as a surface coating alloy because they are softened to 55HRC or lower when heated to a high temperature of 500 ° C. and the DLC film is easily peeled off.
Therefore, in order to use these low alloy steels, it is necessary to perform DLC film formation after performing a surface hardening treatment such as carburizing.
The object of the present invention is to improve the low alloy steel and maintain a good hardness of 55 HRC or higher when heated to a high temperature of 400 to 500 ° C., thereby eliminating the need for surface hardening treatment such as carburization. The object is to provide a surface coating alloy and a sliding member in which a hard coating is coated on the surface of the surface coating alloy.

本発明は、上述した課題に鑑みてなされたものである。
すなわち本発明は、表面に硬質皮膜を被覆する、表面処理用合金であって、該表面処理用合金は、質量%で、C:0.5〜1.2%、Si:2.0%以下、Mn:1.0%以下、Cr:1.0〜5.0%、Mo+1/2W:0.3〜3.0%を含有し、残部は実質的にFeでなる表面被覆用合金である。
好ましくは、質量%で、C:0.6〜0.85%、Si:0.1〜1.5%、Mn:0.5〜0.8%、Cr:2.0〜4.0%、Mo+1/2W:0.4〜2.0%を含有することを特徴とする請求項1に記載の表面被覆用合金。
また本発明は、質量%で0.1%以下のSを更に含有する表面被覆用合金である。
また、上記の表面被覆用合金表面に被覆される硬質皮膜は、DLC膜である表面被覆用合金である。
また本発明は、上記の表面被覆用合金の表面に、硬質皮膜が被覆されている摺動部材である。
好ましくは、上記摺動部材に被覆される硬質皮膜は、DLC膜である摺動部材である。
The present invention has been made in view of the above-described problems.
That is, the present invention is a surface treatment alloy that covers a hard film on the surface, and the surface treatment alloy is, by mass, C: 0.5 to 1.2%, Si: 2.0% or less. , Mn: 1.0% or less, Cr: 1.0-5.0%, Mo + 1 / 2W: 0.3-3.0%, the balance being an alloy for surface coating substantially consisting of Fe .
Preferably, in mass%, C: 0.6 to 0.85%, Si: 0.1 to 1.5%, Mn: 0.5 to 0.8%, Cr: 2.0 to 4.0% Mo + 1 / 2W: 0.4-2.0% is contained, The surface coating alloy of Claim 1 characterized by the above-mentioned.
Moreover, this invention is an alloy for surface coating which further contains 0.1% or less of S by mass%.
Further, the hard coating coated on the surface coating alloy surface is a surface coating alloy which is a DLC film.
Moreover, this invention is a sliding member by which the hard film is coat | covered on the surface of said surface coating alloy.
Preferably, the hard film coated on the sliding member is a sliding member that is a DLC film.

本発明の表面被覆用合金は、高速度工具鋼と比較して合金元素の添加量を大幅に低減しても、400〜500℃の高温に加熱した場合において55HRC以上の良好な硬さを維持できることから、浸炭などの表面硬化処理を必要とせずに済むので、硬質皮膜を被覆する摺動部材用の素材に好適である。   The surface coating alloy of the present invention maintains a good hardness of 55 HRC or higher when heated to a high temperature of 400 to 500 ° C. even when the amount of alloy elements added is greatly reduced compared to high-speed tool steel. Since it does not require surface hardening treatment such as carburization, it is suitable for a material for a sliding member that covers a hard film.

上述したように、本発明の重要な特徴は高速度工具鋼と比較して合金元素の添加量を大幅に低減しても、400〜500℃の高温に加熱しても良好な硬さを維持できる合金組成にある。以下に詳しく本発明を説明する。なお、特に記載の無い限り、各元素の含有量は質量%で記す。
C:0.5〜1.2%
Cは、表面被覆用合金の基地の硬さを高め、高温焼戻しによってCrやMoとの炭化物を被覆して表面被覆用合金の耐磨耗性を確保するための重要な元素であるため必須で含有する。
しかし、Cが1.2%を超えると表面被覆用合金の靭性を劣化させ、0.5%未満であると、上述のCの添加効果が得られない。そのため、Cの範囲は0.5〜1.2%に限定する。上述の効果を確実に得るための好ましいCの範囲は0.6〜0.85%である。更に好ましくは、Cの下限を0.6%とし、上限を0.7%とする。
As described above, the important feature of the present invention is that it maintains a good hardness even when it is heated to a high temperature of 400 to 500 ° C. even if the amount of alloying elements is greatly reduced as compared with high-speed tool steel. The alloy composition can be. The present invention is described in detail below. Unless otherwise specified, the content of each element is expressed in mass%.
C: 0.5 to 1.2%
C is essential because it is an important element for increasing the hardness of the surface coating alloy base and coating the carbide with Cr or Mo by high-temperature tempering to ensure the wear resistance of the surface coating alloy. contains.
However, if C exceeds 1.2%, the toughness of the surface coating alloy is deteriorated, and if it is less than 0.5%, the above-mentioned effect of adding C cannot be obtained. Therefore, the range of C is limited to 0.5 to 1.2%. A preferable C range for reliably obtaining the above-described effects is 0.6 to 0.85%. More preferably, the lower limit of C is 0.6% and the upper limit is 0.7%.

Si:2.0%以下
Siは、脱酸元素として添加する他、本発明においては高温焼戻しの硬さを高める効果があるので2.0%以下の範囲において必須で添加する。Siを2.0%を超えて添加しても、Siの高温焼戻しの硬さを高める効果の向上は望めず、かえって靭性や熱間加工性を阻害する。そのため、Siは2.0%以下の範囲に規定する。
なお、Siの高温焼戻しの硬さを高める効果を確実に実現するために、好ましくは、Siの下限を0.1%、上限を1.5%とする。
Si: 2.0% or less In addition to being added as a deoxidizing element, Si has the effect of increasing the hardness of high-temperature tempering in the present invention, so it is essential in the range of 2.0% or less. Even if Si is added in excess of 2.0%, improvement in the effect of increasing the hardness of Si at high temperature tempering cannot be expected, but the toughness and hot workability are adversely affected. Therefore, Si is specified in the range of 2.0% or less.
In order to reliably realize the effect of increasing the hardness of high-temperature tempering of Si, preferably, the lower limit of Si is 0.1% and the upper limit is 1.5%.

Mn:1.0%以下
Mnは、添加すると靭性を劣化させることなく鋼の強さを増すことができ、高温焼戻しの硬さも改善される。但し、過剰量のMnが含まれると、加工性、低温靭性が低下する。また、同時に加工硬化性が高くなるので、加工時に材料の弾性限界点、降伏点、引っ張り強さ、疲労限界などが増加し、伸び、絞りなどが減少する。更に1.0%以上では焼戻し時に脆性が発生するので、1.0%以下に規定する。鋼の強度を確保するために、好ましくは、Mnの下限を0.5%、上限を0.8%とする。
Mn: 1.0% or less When Mn is added, the strength of the steel can be increased without degrading toughness, and the hardness of high-temperature tempering can be improved. However, when an excessive amount of Mn is contained, workability and low temperature toughness are lowered. At the same time, the work hardenability increases, so that the elastic limit point, yield point, tensile strength, fatigue limit, etc. of the material increase during processing, and elongation, drawing, etc. decrease. Further, if it is 1.0% or more, brittleness occurs during tempering, so it is specified to be 1.0% or less. In order to ensure the strength of the steel, preferably, the lower limit of Mn is 0.5% and the upper limit is 0.8%.

Cr:1.0〜5.0%
Crは焼入れ性を増し、高温焼戻しの硬さが大きくなるので、その効果が現れる1.0%を下限に規定する。また、耐食性を向上させる効果もあるが、多く添加してしまうと1次炭化物の増加による靭性の劣化などが起こるため、5%を上限と規定する。高温焼戻しの硬さを高める効果を確実に得るにはCrの下限を2.0%、上限を4.0%とするのが好ましい。
Cr: 1.0-5.0%
Cr increases hardenability and increases the hardness of high-temperature tempering, so 1.0% at which the effect appears is defined as the lower limit. Moreover, although there exists an effect which improves corrosion resistance, since the deterioration of toughness by the increase in a primary carbide will occur if many are added, 5% is prescribed | regulated as an upper limit. In order to reliably obtain the effect of increasing the hardness of high temperature tempering, it is preferable to set the lower limit of Cr to 2.0% and the upper limit to 4.0%.

Mo+1/2W:0.3%〜3.0%
Mo及びWは、固溶強化により高温焼戻し後の軟化抵抗を向上させ、耐摩耗性、耐熱疲労性を改善するために単独または複合で添加できる。更に、硬質な炭化物を作り、硬さを向上させる。
WはMoの約2倍の原子量であることからMo+1/2Wで規定する(当然、何れか一方のみの添加としても良いし、双方を共添加することもできる)。Mo、Wが少ないと高温焼戻しの硬さの改善が得られなくなるため、下限を0.3%に規定する。但し、添加量が3.0%を超えても上記の効果の向上はあまり望めなく、表面被覆用合金の価格を高くしてしまうので、Mo+1/2Wの上限を3.0%に規定する。好ましくはMo+1/2Wの下限を0.4%、上限を2.0%とすれば良い。
Mo + 1 / 2W: 0.3% to 3.0%
Mo and W can be added alone or in combination to improve softening resistance after high-temperature tempering by solid solution strengthening and to improve wear resistance and heat fatigue resistance. Furthermore, a hard carbide is made and the hardness is improved.
Since W has an atomic weight approximately twice that of Mo, it is defined by Mo + 1 / 2W (of course, either one may be added, or both may be added together). If the amount of Mo and W is small, improvement in the hardness of high temperature tempering cannot be obtained. However, even if the addition amount exceeds 3.0%, the above effect cannot be expected so much and the price of the surface coating alloy is increased. Therefore, the upper limit of Mo + 1 / 2W is regulated to 3.0%. Preferably, the lower limit of Mo + 1 / 2W may be 0.4% and the upper limit may be 2.0%.

残部は実質的にFe
本発明では、上述した元素の他は実質的にFeとする。残部は、Fe以外に製造上不可避的に混入する元素は当然含有する。また、上記以外に、軟化抵抗を向上させ、硬さと強さ、靭性と言った特性を向上させる効果のあるVは、1.0%以下の範囲で、耐食性と言った特性を向上させる効果のあるCuは、0.5%以下の範囲で、高温焼戻し時の結晶粒粗大化を防ぐ効果のあるNbは、0.3%以下の範囲で、Mn等との硫化物を形成し、被削性を改善するSは、0.1%以下の範囲で、Alなどと析出による硬さを向上させる効果のあるNiは、2.0%以下の範囲で、Niなどと析出による硬さを向上させる効果のあるAlは、1.0%以下の範囲で、それぞれ含有しても良い。
特にSは、微量添加すると、Mn等との硫化物を形成し、被削性を改善するため、必要に応じて添加できる。一方でSを多量に添加すると、熱間加工性、耐溶接高温割れ性、耐食性に悪影響を及ぼして異常酸化の起点にもなるため、0.1%以下と規定する。被削性の改善に好ましくは、Sの下限を0.03%、上限を0.08%とすれば良い。
The balance is substantially Fe
In the present invention, in addition to the elements described above, substantially Fe. The balance naturally contains elements inevitably mixed in addition to Fe. In addition to the above, V, which has the effect of improving the softening resistance and improving the properties such as hardness, strength, and toughness, has the effect of improving the properties such as corrosion resistance within a range of 1.0% or less. Certain Cu is in the range of 0.5% or less, and Nb, which has the effect of preventing crystal grain coarsening during high-temperature tempering, forms sulfides with Mn and the like in the range of 0.3% or less, and the cutting S, which improves the property, is within 0.1% or less, and Ni, which has the effect of improving the hardness due to precipitation, improves the hardness due to precipitation, such as Ni, within a range of 2.0% or less. Al having an effect to be made may be contained within a range of 1.0% or less.
In particular, when S is added in a small amount, it forms a sulfide with Mn and improves machinability, so that it can be added as necessary. On the other hand, when S is added in a large amount, it adversely affects hot workability, weld hot cracking resistance, and corrosion resistance and becomes a starting point for abnormal oxidation. For improving machinability, the lower limit of S is preferably 0.03% and the upper limit is 0.08%.

上記の表面被覆用合金は、400〜500℃の高温に加熱しても55HRC以上の良好な硬さを維持できることから、この範囲で硬質皮膜を被覆するP−CVD(プラズマCVD)やPVD法用の素材として最適である。
P−CVD(プラズマCVD)やPVD法を適用するとTiN、TiC、Al、DLC等の硬質皮膜を被覆することができる。中でも、DLC膜を被覆する場合、表面被覆用合金は400〜500℃程度に加熱されること、そして、更にDLC膜は優れた摺動性を付与することができることから、本発明合金の最適な組合わせであり、特に好ましい。
Since the above surface coating alloy can maintain a good hardness of 55 HRC or higher even when heated to a high temperature of 400 to 500 ° C., it is used for P-CVD (plasma CVD) or PVD method for coating a hard film in this range. Ideal as a material for
When a P-CVD (plasma CVD) or PVD method is applied, a hard film such as TiN, TiC, Al 2 O 3 , or DLC can be coated. Among these, when coating a DLC film, the surface coating alloy is heated to about 400 to 500 ° C., and further, the DLC film can impart excellent slidability, so that the alloy of the present invention is optimal. A combination is particularly preferred.

以下の実施例で本発明を更に詳しく説明する。
表1に示した化学組成の本発明と比較例の10kg鋼塊を真空溶解で作製し、表面被覆用合金を得た。作製した表面被覆用合金の化学組成を表1に示す。
なお、今回はMo、Wのうち、Moのみを添加した。
The following examples further illustrate the present invention.
10 kg steel ingots of the present invention and comparative examples having the chemical compositions shown in Table 1 were produced by vacuum melting to obtain an alloy for surface coating. Table 1 shows the chemical composition of the produced surface coating alloy.
In addition, only Mo was added among Mo and W this time.

Figure 2009174017
Figure 2009174017

作製した表面被覆用合金を真空炉にて均質化焼鈍した後、1100℃で熱間鍛造し、15mm×15mm×1000mmの表面被覆用合金鍛造材を得た。
その後、780℃で3時間の焼鈍を行った。更に、焼鈍した表面被覆用合金から15mm×15mm×15mmの表面被覆用合金試験片を作製した。
この試験片を大気炉内で表2に示した焼入れ温度で加熱保持し、油冷にて焼入れを行った。焼入れ後に試験片の両面を平行研磨し、DLC成膜温度の上限の、500℃の焼戻し後にロックウェル硬さCスケールにて硬さを測定した。その結果を表2に示す。
The produced surface coating alloy was homogenized and annealed in a vacuum furnace, and then hot forged at 1100 ° C. to obtain a surface coating alloy forging of 15 mm × 15 mm × 1000 mm.
Thereafter, annealing was performed at 780 ° C. for 3 hours. Further, a 15 mm × 15 mm × 15 mm surface coating alloy specimen was prepared from the annealed surface coating alloy.
The test piece was heated and held at the quenching temperature shown in Table 2 in an atmospheric furnace and quenched with oil cooling. After quenching, both surfaces of the test piece were polished in parallel, and the hardness was measured on a Rockwell hardness C scale after tempering at 500 ° C., the upper limit of the DLC film formation temperature. The results are shown in Table 2.

Figure 2009174017
Figure 2009174017

表2に示すように、本発明の表面被覆用合金は、高速度工具鋼のSKH51と比較して合金元素の添加量を大幅に低減しているにもかかわらず500℃での焼戻し後の硬さが55HRC以上なっていることが分る。一方、比較例のSUP12とSUJ2のような合金では、55HRCを大きく下回っていることがわかる。
以上のことから、本発明の表面被覆用合金は、DLC膜の成膜温度の上限である、500℃程度の温度域でも高い硬さを維持でき、浸炭などの表面硬化処理を実施せずとも、表面被覆用合金の表面に、硬質皮膜を被覆すれば高い密着性を維持できるので摺動部材として用いることが可能である。
As shown in Table 2, the surface coating alloy of the present invention has a hardness after tempering at 500 ° C. even though the addition amount of the alloy element is greatly reduced as compared with SKH51 of high speed tool steel. It can be seen that is over 55 HRC. On the other hand, it can be seen that the alloys such as SUP12 and SUJ2 in the comparative example are far below 55HRC.
From the above, the surface coating alloy of the present invention can maintain high hardness even in a temperature range of about 500 ° C., which is the upper limit of the DLC film deposition temperature, and without performing surface hardening treatment such as carburizing. If the surface of the surface coating alloy is coated with a hard film, high adhesion can be maintained, so that it can be used as a sliding member.

本発明合金は、高温加熱時に高い硬さが不可欠な用途に適用できる。同時に、高価な合金の使用量を大幅に抑えることができる上に、浸炭などの表面硬化処理を必要とせずに済むので、これまで高価な合金を使用していた従来のものに比べて経済的で広い範囲での応用を期待することができる。   The alloy of the present invention can be applied to uses where high hardness is indispensable during high-temperature heating. At the same time, the amount of expensive alloys used can be greatly reduced, and it is not necessary to perform surface hardening treatment such as carburizing, so it is more economical than conventional products that used expensive alloys. And can be expected to be applied in a wide range.

Claims (6)

表面に硬質皮膜を被覆する、表面処理用合金であって、該表面処理用合金は、質量%で、C:0.5〜1.2%、Si:2.0%以下、Mn:1.0%以下、Cr:1.0〜5.0%、Mo+1/2W:0.3〜3.0%を含有し、残部は実質的にFeでなることを特徴とする表面被覆用合金。 An alloy for surface treatment that covers a hard film on the surface, and the alloy for surface treatment is, by mass%, C: 0.5 to 1.2%, Si: 2.0% or less, Mn: 1. An alloy for surface coating, comprising 0% or less, Cr: 1.0 to 5.0%, Mo + 1 / 2W: 0.3 to 3.0%, and the balance being substantially made of Fe. 好ましくは、質量%で、C:0.6〜0.85%、Si:0.1〜1.5%、Mn:0.5〜0.8%、Cr:2.0〜4.0%、Mo+1/2W:0.4〜2.0%を含有することを特徴とする請求項1に記載の表面被覆用合金。 Preferably, in mass%, C: 0.6 to 0.85%, Si: 0.1 to 1.5%, Mn: 0.5 to 0.8%, Cr: 2.0 to 4.0% Mo + 1 / 2W: 0.4-2.0% is contained, The surface coating alloy of Claim 1 characterized by the above-mentioned. 質量%で0.1%以下のSを更に含有することを特徴とする請求項1または2に記載の表面被覆用合金。 The alloy for surface coating according to claim 1 or 2, further comprising 0.1% or less of S by mass%. 請求項1乃至3の何れかに記載の表面被覆用合金表面に被覆される硬質皮膜は、DLC膜であることを特徴とする表面被覆用合金。 The surface coating alloy according to any one of claims 1 to 3, wherein the hard coating coated on the surface coating alloy surface is a DLC film. 請求項1乃至3の何れかに記載の表面被覆用合金の表面に、硬質皮膜が被覆されていることを特徴とする摺動部材。 A sliding member, wherein the surface of the surface coating alloy according to any one of claims 1 to 3 is coated with a hard film. 請求項5に記載の摺動部材に被覆される硬質皮膜は、DLC膜であることを特徴とする摺動部材。 The sliding member according to claim 5, wherein the hard film covered with the sliding member is a DLC film.
JP2008014700A 2008-01-25 2008-01-25 Alloy to be surface-coating-treated, and sliding member Pending JP2009174017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008014700A JP2009174017A (en) 2008-01-25 2008-01-25 Alloy to be surface-coating-treated, and sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008014700A JP2009174017A (en) 2008-01-25 2008-01-25 Alloy to be surface-coating-treated, and sliding member

Publications (1)

Publication Number Publication Date
JP2009174017A true JP2009174017A (en) 2009-08-06

Family

ID=41029406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008014700A Pending JP2009174017A (en) 2008-01-25 2008-01-25 Alloy to be surface-coating-treated, and sliding member

Country Status (1)

Country Link
JP (1) JP2009174017A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672466B2 (en) * 2011-02-21 2015-02-18 日立金属株式会社 Cold work tool steel with excellent machinability
WO2018056282A1 (en) * 2016-09-20 2018-03-29 日立金属株式会社 Sliding component, sliding structure, and method for sliding sliding structure
WO2023053822A1 (en) * 2021-09-28 2023-04-06 株式会社不二越 Alloy steel, electrolytic corrosion-proof component obtained using same, and method for producing same
WO2023074653A1 (en) * 2021-10-27 2023-05-04 株式会社不二越 Alloy steel for rolling bearing component; and raceway ring for rolling bearing, rolling bearing, and method for manufacturing raceway ring for rolling bearing in which said alloy steel for rolling bearing component is used

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672466B2 (en) * 2011-02-21 2015-02-18 日立金属株式会社 Cold work tool steel with excellent machinability
WO2018056282A1 (en) * 2016-09-20 2018-03-29 日立金属株式会社 Sliding component, sliding structure, and method for sliding sliding structure
JPWO2018056282A1 (en) * 2016-09-20 2018-10-04 日立金属株式会社 Sliding parts, sliding structure and sliding method of sliding structure
WO2023053822A1 (en) * 2021-09-28 2023-04-06 株式会社不二越 Alloy steel, electrolytic corrosion-proof component obtained using same, and method for producing same
WO2023074653A1 (en) * 2021-10-27 2023-05-04 株式会社不二越 Alloy steel for rolling bearing component; and raceway ring for rolling bearing, rolling bearing, and method for manufacturing raceway ring for rolling bearing in which said alloy steel for rolling bearing component is used

Similar Documents

Publication Publication Date Title
CA2615682C (en) Corrosion-resistant, cold-formable, machinable, high strength, martensitic stainless steel
TWI440726B (en) Method for producing cold-work die
JP5143531B2 (en) Cold mold steel and molds
JP7252761B2 (en) Precipitation hardening steel and its manufacture
JP5974623B2 (en) Age-hardening bainite non-tempered steel
JP2019167630A (en) Martensitic stainless steel member
JP2014177710A (en) Hardening method for steel
JP5076535B2 (en) Carburized parts and manufacturing method thereof
JP2007314815A (en) Thick-sized high strength martensitic stainless steel wire and wire rod having excellent spring cold formability and method for producing steel wire
JP2019077911A (en) Steel member and manufacturing method of steel member
JP5316425B2 (en) Alloy for surface coating treatment and sliding member
JP2009174017A (en) Alloy to be surface-coating-treated, and sliding member
JP4645307B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
JP5351528B2 (en) Cold mold steel and molds
JP2002327246A (en) Hot work tool steel superior in erosion resistance and high temperature strength, and member made thereof for high temperature use
JP7205112B2 (en) carbonitriding steel
JP2001089826A (en) Hot working tool steel excellent in wear resistance
JPH10245656A (en) Martensitic stainless steel excellent in cold forgeability
JP6903468B2 (en) Nitriding powder high speed tool steel with excellent wear resistance
JP2021091932A (en) Tool composed of high toughness cold tool steel excellent in surface treatment property
JP2004315840A (en) Cold working tool steel superior in machinability, and manufacturing method therefor
JP2022098655A (en) Case hardened steel for warm forging and forged blank manufactured using the same
JP2005082820A (en) Fatigue strength-improved steel and its production method
JP2021006660A (en) Steel component and method for producing the same
CN118389950A (en) Precipitation hardening steel and its manufacture