JP5958225B2 - Method for quantifying aluminum oxide ion, method for quantifying moisture in molten salt, method for producing aluminum structure - Google Patents

Method for quantifying aluminum oxide ion, method for quantifying moisture in molten salt, method for producing aluminum structure Download PDF

Info

Publication number
JP5958225B2
JP5958225B2 JP2012206539A JP2012206539A JP5958225B2 JP 5958225 B2 JP5958225 B2 JP 5958225B2 JP 2012206539 A JP2012206539 A JP 2012206539A JP 2012206539 A JP2012206539 A JP 2012206539A JP 5958225 B2 JP5958225 B2 JP 5958225B2
Authority
JP
Japan
Prior art keywords
molten salt
aluminum
salt
moisture
quantifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012206539A
Other languages
Japanese (ja)
Other versions
JP2014062278A (en
Inventor
哲 土子
哲 土子
健吾 後藤
健吾 後藤
大濱 理
理 大濱
崇康 杉原
崇康 杉原
細江 晃久
晃久 細江
西村 淳一
淳一 西村
奥野 一樹
一樹 奥野
弘太郎 木村
弘太郎 木村
英彰 境田
英彰 境田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012206539A priority Critical patent/JP5958225B2/en
Publication of JP2014062278A publication Critical patent/JP2014062278A/en
Application granted granted Critical
Publication of JP5958225B2 publication Critical patent/JP5958225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

本発明は溶融塩に含まれるアルミニウム酸化物イオン及び水分の定量方法、特にアルミニウムめっきに用いられる溶融塩浴中の水分定量方法、水分管理方法、および同管理方法を用いるアルミニウム構造体の製造方法に関する。   The present invention relates to a method for quantifying aluminum oxide ions and water contained in a molten salt, and more particularly to a method for quantifying water in a molten salt bath used for aluminum plating, a water management method, and a method for producing an aluminum structure using the management method. .

アルミニウムは導電性、耐腐食性に優れており、また軽量な材料であるから種々の用途に使用されている。例えばリチウムイオン電池にはアルミニウム箔の表面にコバルト酸リチウム等の活物質を塗布したものが正極材料として使用されている。またアルミニウム箔に代えて、アルミニウムの多孔体を正極材料に使用することで電池の大容量化を行うことも検討されている。   Aluminum is excellent in conductivity and corrosion resistance, and is a lightweight material and is used in various applications. For example, a lithium ion battery in which an active material such as lithium cobaltate is applied to the surface of an aluminum foil is used as the positive electrode material. In addition, it has been studied to increase the capacity of a battery by using an aluminum porous body as a positive electrode material instead of an aluminum foil.

アルミニウムのめっきは、アルミニウムの酸素に対する親和力が大きく電位が水素より低いために水溶液系のめっき浴で電気めっきを行うことが困難である。このため従来より、非水溶液系のめっき浴でアルミニウムを電気めっきすることが検討されている。例えば金属の表面の酸化防止などの目的でアルミニウムをめっきする技術として、特許文献1にはオニウムハロゲン化物とアルミニウムハロゲン化物とを混合溶融した低融点組成物(溶融塩)をめっき浴として用い、陰極にアルミニウムを析出させることを特徴とする電気アルミニウムめっき方法が開示されている。   Aluminum plating is difficult to perform in an aqueous plating bath because aluminum has a high affinity for oxygen and a lower potential than hydrogen. For this reason, conventionally, electroplating of aluminum in a non-aqueous plating bath has been studied. For example, as a technique for plating aluminum for the purpose of preventing oxidation of a metal surface, for example, Patent Document 1 uses a low melting point composition (molten salt) obtained by mixing and melting onium halide and aluminum halide as a plating bath. An aluminum electroplating method characterized in that aluminum is deposited on the substrate is disclosed.

めっき浴中に水分が混入すると化学特性が変化して電気めっき性に悪影響を及ぼす。特許文献1には、赤外分光光度計を用いて3360cm−1付近のO−H伸縮振動波数を測定してめっき浴中の水分量を測定することが記載されている。 If water is mixed in the plating bath, the chemical characteristics change and adversely affect the electroplating properties. Patent Document 1 describes that the amount of water in the plating bath is measured by measuring the OH stretching vibration wave number around 3360 cm −1 using an infrared spectrophotometer.

特許第3202072号公報Japanese Patent No. 3202072

有機塩と塩化アルミニウムの混合塩である溶融塩は吸湿性が高い。溶融塩中に水分が混入すると下記式(1)で示される反応が起こり、アルミニウム水酸化物イオンが生成する。特許文献1ではこのようにして生成したアルミニウム水酸化物イオンに由来するO−H結合に基づく吸収スペクトルを測定して水分量を定量している。
AlCl+HO → Al(OH)Cl +H+Cl・・・(1)
Molten salt, which is a mixed salt of organic salt and aluminum chloride, has high hygroscopicity. When moisture is mixed in the molten salt, a reaction represented by the following formula (1) occurs, and aluminum hydroxide ions are generated. In Patent Document 1, the amount of water is quantified by measuring an absorption spectrum based on the O—H bond derived from the aluminum hydroxide ion thus generated.
AlCl 4 + H 2 O → Al (OH) Cl 3 + H + + Cl (1)

しかし溶融塩中に水分が混入すると式(1)で示される反応だけでなく式(2)で示される反応が起こり、アルミニウム水酸化物イオンだけでなくアルミニウム酸化物イオンが生成する。特に水分が混入した後で時間が経つとアルミニウム酸化物イオン量が増加する。アルミニウム酸化物イオンに由来するAl−O結合に基づく吸収スペクトルは790cm−1付近に現れる。
Al(OH)Cl → AlOCl +H+Cl・・・(2)
However, when water is mixed in the molten salt, not only the reaction represented by the formula (1) but also the reaction represented by the formula (2) occurs, and not only aluminum hydroxide ions but also aluminum oxide ions are generated. In particular, the amount of aluminum oxide ions increases as time passes after moisture is mixed. An absorption spectrum based on Al—O bonds derived from aluminum oxide ions appears in the vicinity of 790 cm −1 .
Al (OH) Cl 3 → AlOCl 2 + H + + Cl (2)

溶融塩めっき浴を赤外分光光度計で分析する場合、溶融塩めっき浴は反応性が高いため、溶融塩めっき浴との反応が起こらない耐腐食性の高い窓材を選択する必要がある。このような窓材としてシリコン、ダイヤモンド、フッ化カルシウム等が挙げられるが、フッ化カルシウムは900cm−1以下の波長の赤外光を透過しない。またシリコン及びダイヤモンドは屈折率が高く干渉縞ノイズが出やすい。そこで本発明は、赤外分光光度計を用いた簡便な方法でアルミニウム酸化物イオンを定量し、溶融塩中の水分量を精度良く定量するための分析方法を提供することを課題とする。 When analyzing a molten salt plating bath with an infrared spectrophotometer, the molten salt plating bath is highly reactive, and therefore it is necessary to select a highly corrosion-resistant window material that does not react with the molten salt plating bath. Examples of such window materials include silicon, diamond, calcium fluoride, and the like, but calcium fluoride does not transmit infrared light having a wavelength of 900 cm −1 or less. Silicon and diamond have a high refractive index, and interference fringe noise tends to occur. Then, this invention makes it a subject to provide the analysis method for quantifying aluminum oxide ion by the simple method using an infrared spectrophotometer, and quantifying the moisture content in molten salt accurately.

本発明は、有機塩と塩化アルミニウムとの混合塩である溶融塩に含まれる水分に由来するアルミニウム酸化物イオンの定量方法であって、窓材としてシリコン又はダイヤモンドを用い、2枚の前記窓材を平行から0.3°〜0.7°の角度で傾斜するように対向させたセル内に前記溶融塩を導入し、赤外分光光度計で790cm−1付近のAl−O結合に基づく吸収スペクトルを測定して定量することを特徴とする、アルミニウム酸化物イオンの定量方法である。 The present invention is a method for quantifying aluminum oxide ions derived from moisture contained in a molten salt, which is a mixed salt of an organic salt and aluminum chloride, using silicon or diamond as a window material, and the two window materials Is introduced into cells facing each other so as to incline at an angle of 0.3 ° to 0.7 ° from parallel, and absorption based on Al—O bonds in the vicinity of 790 cm −1 with an infrared spectrophotometer. A method for quantifying aluminum oxide ions, characterized by measuring and quantifying a spectrum.

シリコン、ダイヤモンドは900cm−1以下の波数でも赤外光を透過し、また溶融塩に対する耐腐食性が高いため窓材として適している。しかしシリコン、ダイヤモンドは屈折率が高く赤外光が反射しやすいため光の干渉による干渉縞ノイズが高いという問題がある。そこで2枚の窓材を平行から0.3°〜0.7°の角度で傾斜するように対向させて測定することで干渉縞を低減し、Al−O結合に基づく790cm−1付近の吸収スペクトルを精度良く測定できることを見出した。これにより溶融塩に含まれるアルミニウム酸化物イオンを定量できる。なおアルミニウム酸化物イオンとはAlOCl 等、Al、O、Clを含むイオンを指すものとする。 Silicon and diamond are suitable as window materials because they transmit infrared light even at a wave number of 900 cm −1 or less and have high corrosion resistance against molten salt. However, since silicon and diamond have a high refractive index and easily reflect infrared light, there is a problem that interference fringe noise due to light interference is high. Therefore, interference fringes are reduced by measuring the two window materials facing each other so as to be inclined at an angle of 0.3 ° to 0.7 ° from parallel, and absorption near 790 cm −1 based on Al—O bonds. It was found that the spectrum can be measured with high accuracy. Thereby, the aluminum oxide ion contained in molten salt can be quantified. The aluminum oxide ion refers to an ion containing Al, O, Cl, such as AlOCl 2 .

また本発明は、有機塩と塩化アルミニウムとの混合塩である溶融塩に含まれる水分を定量する水分定量方法であって、上記の定量方法によってアルミニウム酸化物イオンを定量すると共に、溶融塩の3360cm−1付近のAl−OH結合(アルミニウムに配位したO−H結合)に基づく吸収スペクトルを測定して溶融塩に含まれる水分に由来するアルミニウム水酸化物イオンを定量し、前記アルミニウム酸化物イオンの定量結果と前記アルミニウム水酸化物イオンの定量結果に基づいて前記溶融塩に含まれる水分量を定量する、溶融塩中の水分定量方法を提供する。アルミニウム酸化物イオン、アルミニウム水酸化物イオンを赤外分光光度計で測定することにより簡便な方法で溶融塩中の水分量を定量できる。なおアルミニウム水酸化物イオンとはAl(OH)Cl 等、Al、(OH)、Clを含むイオンを指すものとする。 The present invention is also a moisture quantification method for quantifying moisture contained in a molten salt that is a mixed salt of an organic salt and aluminum chloride, wherein the aluminum oxide ion is quantified by the quantification method described above, and 3360 cm of the molten salt. An aluminum hydroxide ion derived from moisture contained in the molten salt by measuring an absorption spectrum based on an Al—OH bond in the vicinity of −1 (OH bond coordinated to aluminum), and the aluminum oxide ion A method for determining the amount of water in a molten salt is provided, in which the amount of water contained in the molten salt is quantified based on the result of determining the amount of aluminum hydroxide ions. By measuring aluminum oxide ions and aluminum hydroxide ions with an infrared spectrophotometer, the amount of water in the molten salt can be quantified by a simple method. The aluminum hydroxide ion refers to an ion containing Al, (OH), or Cl, such as Al (OH) Cl 3 .

さらに、サイクリックボルタンメトリー法(CV法)により溶融塩に含まれる水分量を定量し、CV法により得られた水分量と上記の方法によって得られた水分量とを合計すると好ましい。溶融塩中に混入した水分は上記のアルミニウム酸化物イオン、アルミニウム水酸化物イオンになるとともに、水(HO)そのものの形でも存在する。CV法によりこの水分量を測定することで、さらに精度良く溶融塩中の水分量を定量できる。 Furthermore, the amount of water contained in the molten salt is quantified by a cyclic voltammetry method (CV method), and the amount of water obtained by the CV method and the amount of water obtained by the above method are preferably summed. The water mixed in the molten salt becomes the above aluminum oxide ions and aluminum hydroxide ions, and also exists in the form of water (H 2 O) itself. By measuring the water content by the CV method, the water content in the molten salt can be quantified more accurately.

本願の別な発明は、有機塩と塩化アルミニウムとの混合塩である溶融塩浴を用いてアルミニウムをめっきすることによるアルミニウム構造体の製造方法であって、前記溶融塩浴から溶融塩をサンプリングし、上記いずれかの水分定量方法により前記溶融塩に含まれる水分を定量するとともに、前記溶融塩に含まれる水分量が2.7体積%以下となるように水分量を管理することを特徴とするアルミニウム構造体の製造方法である。上記の水分定量方法により溶融塩浴中の水分量を管理することにより、安定してアルミニウムめっきを行うことが可能となる。溶融塩としてはイミダゾリウム塩と塩化アルミニウムとの混合塩が好ましく用いられる。   Another invention of the present application is a method for producing an aluminum structure by plating aluminum using a molten salt bath that is a mixed salt of an organic salt and aluminum chloride, and samples the molten salt from the molten salt bath. The water content in the molten salt is quantified by any one of the water content determination methods, and the water content is controlled so that the water content in the molten salt is 2.7% by volume or less. It is a manufacturing method of an aluminum structure. By controlling the amount of water in the molten salt bath by the above moisture determination method, it is possible to stably perform aluminum plating. As the molten salt, a mixed salt of an imidazolium salt and aluminum chloride is preferably used.

本発明によれば溶融塩中に含まれる水分の量を簡便な方法で精度良く定量することができる。   According to the present invention, the amount of water contained in the molten salt can be accurately determined by a simple method.

赤外分光光度計測定に用いるセルの断面模式図である。It is a cross-sectional schematic diagram of the cell used for an infrared spectrophotometer measurement. CV法による水分測定方法の構成を説明する図である。It is a figure explaining the structure of the moisture measuring method by CV method. 溶融塩めっきによるアルミニウム連続めっき工程の一例を説明する図である。It is a figure explaining an example of the aluminum continuous plating process by molten salt plating. 本発明の方法による赤外吸収スペクトルと、窓材にCaFを用いた場合の赤外吸収スペクトル測定結果を示す図である。Infrared absorption spectrum by the method of the present invention, showing the infrared absorption spectrum measurement result using CaF 2 in window material. 窓材にシリコンを用い、窓材を平行に対向させて測定した場合と、窓材を平行から5°傾斜させて測定した場合の赤外吸収スペクトル測定結果を示す図である。It is a figure which shows the infrared-absorption-spectrum measurement result at the time of measuring when using a silicon | silicone for a window material and making a window material oppose in parallel, and inclining a window material 5 degrees from parallel.

以下、本発明の実施の形態をウレタン発泡体等の樹脂多孔体表面にアルミニウムをめっきするための溶融塩めっき浴を分析対象として説明する。なお本発明はこれに限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   Hereinafter, an embodiment of the present invention will be described using a molten salt plating bath for plating aluminum on the surface of a porous resin body such as a urethane foam as an analysis target. The present invention is not limited to this, but is defined by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.

溶融塩としては塩化アルミニウムと有機塩との混合塩(共晶塩)を使用する。比較的低温で溶融する有機溶融塩浴を使用すると基材である樹脂多孔体を分解することなくめっきができ好ましい。有機塩としてはイミダゾリウム塩、ピリジニウム塩等が使用できる。なかでも1−エチル−3−メチルイミダゾリウムクロライド(EMIC)、ブチルピリジニウムクロライド(BPC)が好ましく使用できる。アルミニウムを平滑にめっきするため、この溶融塩中に1,10−フェナントロリンを0.25g/l以上7g/l以下添加することが好ましい。   As the molten salt, a mixed salt (eutectic salt) of aluminum chloride and an organic salt is used. Use of an organic molten salt bath that melts at a relatively low temperature is preferable because plating can be performed without decomposing the porous resin body as a base material. As the organic salt, imidazolium salt, pyridinium salt and the like can be used. Of these, 1-ethyl-3-methylimidazolium chloride (EMIC) and butylpyridinium chloride (BPC) can be preferably used. In order to plate aluminum smoothly, it is preferable to add 1,10-phenanthroline to the molten salt in an amount of 0.25 g / l to 7 g / l.

上記の溶融塩試料を採取し、赤外分光光度計を用いて吸収スペクトルを測定する。測定セルには2枚の窓材を使用し2枚の窓材の間に溶融塩試料を挟んで測定する。図1は赤外分光光度計に用いる測定セルの断面模式図である。窓材にはシリコン又はダイヤモンドを使用する。2枚の窓材1を対向させる。2枚の窓材1の間にスペーサ2を入れて、2枚の窓材同志の角度が平行から0.3°以上0.7°以下の範囲となるように調整する。スペーサにはセル内を密閉する効果もある。溶融塩試料は吸湿しやすい材料であり測定中に特性が変化する可能性があるため、水分吸収量が少ないと共に、溶融塩試料に腐食されにくい、ポリテトラフルオロエチレン(PTFE)、ポリフルオロアルコキシフッ素樹脂(PFA)等のフッ素樹脂をスペーサに使用するのが好ましい。2枚の窓材とスペーサに挟まれた空間である試料注入部3に溶融塩試料を入れ、赤外吸収スペクトルを測定する。   The molten salt sample is collected and the absorption spectrum is measured using an infrared spectrophotometer. Two window materials are used in the measurement cell, and a molten salt sample is sandwiched between the two window materials. FIG. 1 is a schematic cross-sectional view of a measurement cell used in an infrared spectrophotometer. Silicon or diamond is used for the window material. Two window materials 1 are made to oppose each other. The spacer 2 is inserted between the two window materials 1 and adjusted so that the angle between the two window materials is in a range of 0.3 ° to 0.7 ° from parallel. The spacer also has an effect of sealing the inside of the cell. Since the molten salt sample is a material that easily absorbs moisture and its characteristics may change during measurement, the amount of moisture absorption is low, and the molten salt sample is less susceptible to corrosion. Polytetrafluoroethylene (PTFE), polyfluoroalkoxy fluorine It is preferable to use a fluorine resin such as resin (PFA) for the spacer. A molten salt sample is put into the sample injection part 3 which is a space sandwiched between two window materials and a spacer, and an infrared absorption spectrum is measured.

Al−O結合に基づく790cm−1付近のピーク高さから溶融塩試料に含まれるアルミニウム酸化物イオンを定量する。また、Al−OH結合(Alに配位したO−H結合)に基づく3360cm−1付近のピーク高さから溶融塩試料に含まれるアルミニウム水酸化物イオンを定量する。アルミニウム酸化物イオンの量とアルミニウム水酸化物イオンの量に基づいて溶融塩試料に含まれる水分を定量する。例えば、あらかじめ水分濃度を適宜変更して作製した標準試料の赤外吸収スペクトルを測定して検量線を作成し、この検量線に基づいて水分量を定量する。溶融塩めっき浴に含まれる水分量が2体積%以下となるように水分量を管理してアルミニウムをめっきする。 The aluminum oxide ions contained in the molten salt sample are quantified from the peak height near 790 cm −1 based on the Al—O bond. Moreover, the aluminum hydroxide ion contained in the molten salt sample is quantified from the peak height near 3360 cm −1 based on the Al—OH bond (OH bond coordinated to Al). The moisture contained in the molten salt sample is quantified based on the amount of aluminum oxide ions and the amount of aluminum hydroxide ions. For example, a calibration curve is created by measuring an infrared absorption spectrum of a standard sample prepared by appropriately changing the moisture concentration in advance, and the moisture content is quantified based on the calibration curve. Aluminum is plated while controlling the amount of water so that the amount of water contained in the molten salt plating bath is 2% by volume or less.

さらに、溶融塩試料中にイオン化していない水(HO)として含まれる水分量をサイクリックボルタンメトリー(CV)法で定量することができる。図2はCV法による水分測定方法の構成を説明する図である。ここでは、ポテンショスタットを用いたサイクリックボルタンメトリーについて説明する。水分測定の対象となる溶融塩浴4の中に、作用電極5、参照電極6,対電極7の3本の電極を置く。作用電極または/および対電極は、白金、パラジウム、イリジウム、ロジウム等の貴金属とすることが好ましい。参照電極は対象となる溶融塩浴中のイオン成分と共通する元素で構成されていると電位安定性に優れることから、アルミニウムを用いることが好ましい。それぞれの電極は測定器であるポテンショスタット8に接続される。各電極には作用電極5と参照電極6の電位差が測定者の意図する値になるようにポテンショスタットにより電圧が印加調整され、参照電極6には実質的に電流が流れない。ここで作用電極5と溶融塩浴4との境界面に生じる電圧によって、作用電極5の表面で溶融塩浴4中の遊離水分が電気分解され、対電極には電流が流れる。かかる電流の変化から電気分解の量、すなわち水分量を測定することができる。 Furthermore, the amount of water contained as non-ionized water (H 2 O) in the molten salt sample can be quantified by a cyclic voltammetry (CV) method. FIG. 2 is a diagram for explaining the configuration of a moisture measuring method by the CV method. Here, cyclic voltammetry using a potentiostat will be described. Three electrodes of a working electrode 5, a reference electrode 6 and a counter electrode 7 are placed in a molten salt bath 4 to be subjected to moisture measurement. The working electrode and / or counter electrode is preferably a noble metal such as platinum, palladium, iridium or rhodium. Since the reference electrode is excellent in potential stability when it is composed of an element common to the ionic component in the target molten salt bath, it is preferable to use aluminum. Each electrode is connected to a potentiostat 8 which is a measuring instrument. A voltage is applied to each electrode by a potentiostat so that the potential difference between the working electrode 5 and the reference electrode 6 becomes a value intended by the operator, and substantially no current flows through the reference electrode 6. Here, due to the voltage generated at the boundary surface between the working electrode 5 and the molten salt bath 4, the free water in the molten salt bath 4 is electrolyzed on the surface of the working electrode 5, and a current flows through the counter electrode. The amount of electrolysis, that is, the amount of water can be measured from the change in current.

具体的には、測定電流値の水分量への換算は次の様に行う。まず、測定対象とする溶融塩浴中に予め既知の水分を加えた試料を準備する。異なる水分量を加えた複数の試料を準備すると良い。かかる試料について実際に用いようとする前述のような測定系を構成し、電極間に電圧を印加して流れる電流値を測定する。この測定は一般的な電気化学測定装置および手法を用いることができる。サイクリックボルタンメトリーは一般に多用されている手法であり、必要な装置等も一般に入手可能なものを利用できる。一般には電圧を掃引した際の電流の変化から特定の電流値を読み出すことが行われる。準備した複数の試料について同様の測定を行い、得られた電流値と既知の水分量との関係をグラフ化、あるいは数式化等することで、検量線を得る。実際の水分測定においては、水分量が未知である測定対象について同様に測定された電流値と、先に求めた検量線から、水分量を算出することができる。赤外吸収スペクトル測定により求めた水分量とCV法により求めた水分量とを合計することにより、溶融塩中の水分をより正確に定量することができる。   Specifically, the measurement current value is converted into the amount of water as follows. First, a sample is prepared by adding known moisture in advance to a molten salt bath to be measured. It is preferable to prepare a plurality of samples to which different amounts of water are added. A measurement system as described above that is actually used for such a sample is constructed, and the value of the flowing current is measured by applying a voltage between the electrodes. For this measurement, a general electrochemical measurement apparatus and method can be used. Cyclic voltammetry is a commonly used technique, and necessary apparatuses can be used that are generally available. In general, a specific current value is read from a change in current when the voltage is swept. The same measurement is performed on the plurality of prepared samples, and a calibration curve is obtained by graphing or formulating the relationship between the obtained current value and the known water content. In actual moisture measurement, the moisture content can be calculated from the current value measured in the same manner for a measurement object whose moisture content is unknown and the calibration curve obtained previously. By summing the water content determined by infrared absorption spectrum measurement and the water content determined by the CV method, the water content in the molten salt can be quantified more accurately.

次に、この溶融塩めっき浴を用いてアルミニウム構造体を製造する方法について説明する。図3は帯状樹脂に対してアルミニウムめっき処理を連続的に行うための装置の構成を模式的に示す図である。表面が導電化された帯状樹脂22が、図の左から右に送られる構成を示す。第1のめっき槽21aは、円筒状電極24と容器内壁に設けられた正電極25およびめっき浴23から構成される。帯状樹脂22は円筒状電極24に沿ってめっき浴23の中を通過することにより、樹脂全体に均一に電流が流れやすく、均一なめっきを得ることが出来る。めっき槽21bは、さらにめっきを厚く均一に付けるための槽であり複数の槽で繰り返しめっきされるように構成されている。表面に薄く金属層が設けられた帯状樹脂22を送りローラと槽外給電負極を兼ねた電極ローラ26により順次送りながら、めっき浴28に通過させることでめっきを行う。複数の槽内には樹脂の両面にめっき浴28を介して設けられた正電極27があり、樹脂の両面により均一なめっきを付けることができる。   Next, a method for producing an aluminum structure using this molten salt plating bath will be described. FIG. 3 is a diagram schematically showing a configuration of an apparatus for continuously performing the aluminum plating process on the belt-shaped resin. A configuration in which the belt-like resin 22 whose surface is made conductive is sent from the left to the right in the figure. The first plating tank 21 a includes a cylindrical electrode 24, a positive electrode 25 provided on the inner wall of the container, and a plating bath 23. By passing the strip-shaped resin 22 along the cylindrical electrode 24 through the plating bath 23, current can easily flow uniformly throughout the resin, and uniform plating can be obtained. The plating tank 21b is a tank for applying a thick and uniform plating, and is configured to be repeatedly plated in a plurality of tanks. Plating is performed by passing the belt-like resin 22 having a thin metal layer on the surface through a plating bath 28 while sequentially feeding the belt-like resin 22 by an electrode roller 26 that also serves as a feeding roller and a negative electrode outside the tank. In the plurality of tanks, there are positive electrodes 27 provided on both surfaces of the resin via the plating bath 28, and uniform plating can be applied to both surfaces of the resin.

このようなめっき工程において、めっき液である溶融塩を適宜サンプリングして赤外吸収スペクトルを測定する。赤外吸収スペクトル測定により溶融塩中のアルミニウム酸化物イオン量及びアルミニウム水酸化物イオン量を定量でき、この値から溶融塩中の水分量を定量できる。さらに、めっき浴である溶融塩浴中に作用電極12、参照電極13、対電極14をそれぞれ配置し、測定器15によって測定することにより溶融塩浴中の水分を測定することが可能である。このように簡便な測定系によって水分量が管理された製造装置により、低コストで安定した品質のアルミニウムめっきが可能となる。   In such a plating step, an infrared absorption spectrum is measured by appropriately sampling a molten salt as a plating solution. The amount of aluminum oxide ions and the amount of aluminum hydroxide ions in the molten salt can be determined by infrared absorption spectrum measurement, and the amount of water in the molten salt can be determined from this value. Furthermore, the working electrode 12, the reference electrode 13, and the counter electrode 14 are arranged in a molten salt bath that is a plating bath, and the water in the molten salt bath can be measured by measuring with the measuring device 15. Thus, the manufacturing apparatus in which the amount of water is controlled by a simple measurement system enables aluminum plating with stable quality at low cost.

次に、本発明を実施例に基づいてさらに詳細に説明する。実施例は本発明の範囲を限定するものではない。   Next, the present invention will be described in more detail based on examples. The examples are not intended to limit the scope of the invention.

(実施例)
塩化アルミニウム(AlCl)と3−メチルイミダゾリウムクロライドとを67mol%:33mol%の割合で混合した溶融塩を測定対象とする。かかる溶融塩に水分を(A)1.0%、(B)2.0%、(C)2.5%(それぞれ体積%)加えた試料を作成した。さらに、(A)〜(C)の試料を60℃で18時間加熱した液を試料(D)〜(F)とした。
(Example)
A molten salt obtained by mixing aluminum chloride (AlCl 3 ) and 3-methylimidazolium chloride at a ratio of 67 mol%: 33 mol% is used as a measurement target. Samples were prepared by adding water (A) 1.0%, (B) 2.0%, and (C) 2.5% (each volume%) to the molten salt. Further, liquids obtained by heating the samples (A) to (C) at 60 ° C. for 18 hours were used as samples (D) to (F).

(赤外吸収スペクトル測定による水分量測定:アルミニウム水酸化物イオン(Al−OH)検量線の作成)
塩化アルミニウム(AlCl)と3−メチルイミダゾリウムクロライドとを67mol%:33mol%の割合で混合した溶融塩に対し、水を0%、0.5%、1.0%、1.5%(それぞれ体積%)加えた4種類の試料を作成し、2枚のシリコン板が平行から0.5°傾斜するようにスペーサ(PTFE)で調整したセル内に試料を封入して赤外吸収スペクトルを測定した。3360cm−1付近のピーク強度を読み取り、含有水分に対する吸光度の増加率(近似曲線の傾き)及び初期水分量(近似曲線の切片)を算出してアルミニウム水酸化物イオンの検量線を作成した。
(Moisture content measurement by infrared absorption spectrum measurement: preparation of aluminum hydroxide ion (Al-OH) calibration curve)
0%, 0.5%, 1.0%, 1.5% of water is added to the molten salt in which aluminum chloride (AlCl 3 ) and 3-methylimidazolium chloride are mixed at a ratio of 67 mol%: 33 mol%. 4% of each sample was added, and the sample was enclosed in a cell adjusted with a spacer (PTFE) so that the two silicon plates were inclined 0.5 ° from parallel, and the infrared absorption spectrum was obtained. It was measured. A peak intensity in the vicinity of 3360 cm −1 was read, and the absorbance increase rate (slope of the approximate curve) and the initial moisture content (intercept of the approximate curve) relative to the contained water were calculated to prepare a calibration curve for aluminum hydroxide ions.

(赤外吸収スペクトル測定による水分量測定:アルミニウム酸化物イオン(Al−O)検量線の作成)
上記の4種類の試料を100℃で2時間加熱した後、アルミニウム水酸化物イオン検量線の作成時と同様に赤外吸収スペクトルを測定した。790cm−1付近のピーク強度を読み取り、含有水分に対する吸光度の増加率(近似曲線の傾き)及び初期水分量(近似曲線の切片)を算出してアルミニウム酸化物イオンの検量線を作成した。
(Measurement of water content by infrared absorption spectrum measurement: creation of aluminum oxide ion (Al-O) calibration curve)
After heating the above four types of samples at 100 ° C. for 2 hours, infrared absorption spectra were measured in the same manner as when preparing an aluminum hydroxide ion calibration curve. A peak intensity in the vicinity of 790 cm −1 was read, and an increase rate of absorbance with respect to the contained water (slope of the approximate curve) and initial water content (intercept of the approximate curve) were calculated to prepare a calibration curve for aluminum oxide ions.

(赤外吸収スペクトル測定による水分量測定)
2枚のシリコン板が平行から0.5°傾斜するようにスペーサ(PTFE)で調整したセル内に(A)〜(F)の試料をそれぞれ封入して赤外吸収スペクトルを測定した。得られたスペクトルチャートから790cm−1付近のピーク強度と3360cm−1付近のピーク強度を読み取り、アルミニウム酸化物イオン検量線及びアルミニウム水酸化物イオン検量線を元にしてアルミニウム酸化物イオン量に基づいた水分量とアルミニウム水酸化物イオン量に基づいた水分量を求めた。
(Moisture content measurement by infrared absorption spectrum measurement)
Samples (A) to (F) were each enclosed in a cell adjusted with a spacer (PTFE) so that the two silicon plates were inclined by 0.5 ° from parallel, and the infrared absorption spectrum was measured. The peak intensity around 790 cm −1 and the peak intensity around 3360 cm −1 were read from the obtained spectrum chart, and based on the aluminum oxide ion amount based on the aluminum oxide ion calibration curve and the aluminum hydroxide ion calibration curve. The amount of water based on the amount of water and the amount of aluminum hydroxide ions was determined.

(CV法による水分量測定)
作用電極に白金電極、参照電極にアルミニウム電極、対電極に白金電極を用い、サイクリックボルタンメトリー法により水分量を測定した。測定には、ポテンショスタットとしてプリンストンアプライドリサーチ社製VersaSTAT4、作用電極としてBAS社製白金ディスク電極(φ3.0mm)、参照電極および対電極としてニラコ社製純金属(線)を使用した。電圧を+1.1Vから低電位側に、掃引速度10mV/秒となるように作用電極の電位を変化させ、その際に流れる反応電流を計測した。水の電気分解反応が1.0V〜0.5Vの範囲で電流ピークを示すことから、この反応が起こらず、かつ無駄な測定電位範囲が最小となるように、反応が起こるより0.1V高い電位として初期電位の1.1Vを設定した。掃引速度は100mV/秒とすると電位の変化に電気分解反応速度が追従できず、測定誤差が大きくなること、1mV/秒とすると測定時間が長時間化するほか、液の流れや温度変化など外乱による測定誤差の増大に繋がることが確認できたため、10mV/秒と設定した。
(Measurement of water content by CV method)
Using a platinum electrode as a working electrode, an aluminum electrode as a reference electrode, and a platinum electrode as a counter electrode, the water content was measured by cyclic voltammetry. For the measurement, VersaSTAT4 manufactured by Princeton Applied Research was used as a potentiostat, a platinum disk electrode (φ3.0 mm) manufactured by BAS was used as a working electrode, and a pure metal (wire) manufactured by Niraco was used as a reference electrode and a counter electrode. The potential of the working electrode was changed from +1.1 V to the low potential side so that the sweep speed was 10 mV / sec, and the reaction current flowing at that time was measured. Since the water electrolysis reaction shows a current peak in the range of 1.0 V to 0.5 V, this reaction does not occur and is 0.1 V higher than the reaction so that the useless measurement potential range is minimized. The initial potential of 1.1 V was set as the potential. If the sweep rate is 100 mV / sec, the electrolysis reaction rate cannot follow the potential change, resulting in a large measurement error. If the sweep rate is 1 mV / sec, the measurement time becomes longer, and disturbance such as liquid flow and temperature changes. Since it was confirmed that this would lead to an increase in measurement error due to the above, it was set to 10 mV / second.

(アルミニウム構造体の製造:導電化)
樹脂多孔体として厚み1mm、気孔率95%、気孔径300μmのウレタン発泡体を準備し、80mm×50mm角に切断した。ウレタン発泡体をカーボン懸濁液に浸漬し乾燥することで、表面全体にカーボン粒子が付着した導電層を形成した。懸濁液の成分は、黒鉛+カーボンブラック25%を含み、樹脂バインダー、浸透剤、消泡剤を含む。カーボンブラックの粒径は0.5μmとした。
(Manufacturing aluminum structure: Conductive)
A urethane foam having a thickness of 1 mm, a porosity of 95%, and a pore diameter of 300 μm was prepared as a resin porous body, and cut into 80 mm × 50 mm squares. By immersing the urethane foam in a carbon suspension and drying, a conductive layer having carbon particles attached to the entire surface was formed. The components of the suspension include graphite + carbon black 25%, and include a resin binder, a penetrating agent, and an antifoaming agent. The particle size of carbon black was 0.5 μm.

(アルミニウム構造体の製造:溶融塩めっき)
表面に導電層を形成したウレタン発泡体をワークとして、給電機能を有する治具にセットした後、アルゴン雰囲気かつ低水分(露点−30℃以下)としたグローブボックス内に入れ、上記(A)〜(F)の溶融塩浴(33mol%EMIC−67mol%AlCl)に浸漬した。ワークをセットした治具を整流器の陰極側に接続し、対極のアルミニウム板(純度99.99%)を陽極側に接続し、直流電流を印加してアルミニウムをめっきした。電流密度は10ASD、めっき浴の温度は45℃とした。得られた多孔質アルミニウム構造体を顕微鏡で観察し、表面が平滑で良好にめっきできているものは○、表面に凹凸があったり変色が生じたものを×とした。以上の結果を表1に示す。
(Manufacture of aluminum structures: molten salt plating)
A urethane foam having a conductive layer formed on the surface is used as a work, set in a jig having a power feeding function, and then placed in a glove box having an argon atmosphere and low moisture (dew point -30 ° C. or lower). They were immersed in (F) of a molten salt bath (33mol% EMIC-67mol% AlCl 3). A jig on which a workpiece was set was connected to the cathode side of the rectifier, a counter aluminum plate (purity 99.99%) was connected to the anode side, and a direct current was applied to plate aluminum. The current density was 10 ASD, and the temperature of the plating bath was 45 ° C. When the obtained porous aluminum structure was observed with a microscope, the surface was smooth and the surface was satisfactorily plated, and the surface was uneven or discolored. The results are shown in Table 1.

水分量合計が2.9体積%である試料(C)と、水分量合計が3.0体積%である試料(F)はめっき状態が悪い。これに対し、水分量合計が2.7体積%以下である試料(A)(B)(D)(F)は良好にめっき可能であり、溶融塩中の水分量を2.7体積%以下に管理しながらめっきを行うことで良好にアルミニウムめっきできることがわかる。   The sample (C) having a total water content of 2.9% by volume and the sample (F) having a total water content of 3.0% by volume have poor plating conditions. On the other hand, samples (A), (B), (D), and (F) having a total water content of 2.7% by volume or less can be plated well, and the water content in the molten salt is 2.7% by volume or less. It can be seen that the aluminum plating can be satisfactorily performed by performing the plating while managing the film.

試料(C)、試料(F)は、Al−OHに基づく水分量はそれぞれ2.67%、1.56%であり、2.7体積%以下であり、実際に添加した水分量に比べて低い値となっている。特に加熱処理をした試料(F)ではその差が顕著であり、Al−OHの吸収スペクトルのみから推定した水分量は実際の水分量と差がある。本発明の方法によりアルミニウム酸化物イオンのAl−Oに基づく水分量が測定可能となり、従来のよりも精度良く溶融塩に含まれる水分量を定量できることがわかる。   In samples (C) and (F), the amounts of water based on Al-OH are 2.67% and 1.56%, respectively, and are 2.7% by volume or less, compared to the amount of water actually added. The value is low. In particular, the difference is significant in the heat-treated sample (F), and the water amount estimated from the Al—OH absorption spectrum alone is different from the actual water amount. It can be seen that the amount of water based on Al—O of aluminum oxide ions can be measured by the method of the present invention, and the amount of water contained in the molten salt can be quantified more accurately than in the past.

(比較例1)
窓材としてフッ化カルシウム(CaF)を用い、2枚の窓材を平行に対向させたセルを用いて上記の溶融塩試料(A)の赤外吸収スペクトルを測定した。実施例で測定した赤外吸収スペクトルと比較例1の赤外吸収スペクトルとを、図4に示す。
(Comparative Example 1)
Calcium fluoride (CaF 2 ) was used as the window material, and the infrared absorption spectrum of the molten salt sample (A) was measured using a cell in which two window materials were opposed in parallel. The infrared absorption spectrum measured in the examples and the infrared absorption spectrum of Comparative Example 1 are shown in FIG.

(比較例2)
窓材としてシリコンを用い、2枚の窓材を平行に対向させたセルを用いて上記の溶融塩試料(A)の赤外吸収スペクトルを測定した。実施例で測定した赤外吸収スペクトルと比較例2の赤外吸収スペクトルとを図5に示す。
(Comparative Example 2)
Silicon was used as the window material, and the infrared absorption spectrum of the molten salt sample (A) was measured using a cell in which two window materials were opposed in parallel. The infrared absorption spectrum measured in the examples and the infrared absorption spectrum of Comparative Example 2 are shown in FIG.

窓材としてフッ化カルシウム(CaF)を用いた比較例1の赤外吸収スペクトルは1000cm−1以下の領域ではノイズが大きく790cm−1付近のピークを観察することができない。これに対し、実施例の赤外吸収スペクトルは1000cm−1以下でも良好に測定でき、790cm−1付近のピークを観察できる。また2枚のシリコン窓材を平行に対向させたセルを用いた比較例2では全体にノイズが大きい。これは干渉縞の影響によると思われる。 Infrared absorption spectrum of Comparative Example 1 using the calcium fluoride (CaF 2) at 1000 cm -1 following areas can not be observed a peak of noise is large 790cm around -1 as a window material. In contrast, infrared absorption spectra of Examples, even 1000 cm -1 or less can favorably measure, can be observed a peak around 790 cm -1. Further, in Comparative Example 2 using a cell in which two silicon window members are opposed in parallel, noise is large as a whole. This seems to be due to the influence of interference fringes.

1 窓材
2 スペーサ
3 試料注入部
4 溶融塩浴
5,12 作用電極
6,13 参照電極
7,14 対電極
8,15 測定器
21a,21b めっき槽
22 帯状樹脂
23,28 めっき浴
24 円筒状電極
25,27 正電極
26 電極ローラ
DESCRIPTION OF SYMBOLS 1 Window material 2 Spacer 3 Sample injection | pouring part 4 Molten salt bath 5,12 Working electrode 6,13 Reference electrode 7,14 Counter electrode 8,15 Measuring device 21a, 21b Plating tank 22 Strip-like resin 23, 28 Plating bath 24 Cylindrical electrode 25, 27 Positive electrode 26 Electrode roller

Claims (5)

有機塩と塩化アルミニウムとの混合塩である溶融塩に含まれる水分に由来するアルミニウム酸化物イオンの定量方法であって、
窓材としてシリコン又はダイヤモンドを用い、2枚の前記窓材を平行から0.3°〜0.7°の角度で傾斜するように対向させたセル内に前記溶融塩を導入し、赤外分光光度計で790cm−1付近のAl−O結合に基づく吸収スペクトルを測定して定量することを特徴とする、アルミニウム酸化物イオンの定量方法。
A method for quantifying aluminum oxide ions derived from moisture contained in a molten salt that is a mixed salt of an organic salt and aluminum chloride,
Silicon or diamond is used as the window material, and the molten salt is introduced into a cell in which the two window materials are opposed to each other at an angle of 0.3 ° to 0.7 ° from parallel, and infrared spectroscopy is performed. A method for quantifying aluminum oxide ions, comprising measuring and quantifying an absorption spectrum based on an Al-O bond in the vicinity of 790 cm -1 with a photometer.
有機塩と塩化アルミニウムとの混合塩である溶融塩に含まれる水分を定量する水分定量方法であって、
請求項1に記載の方法によってアルミニウム酸化物イオンを定量すると共に、
前記溶融塩の3360cm−1付近のAl−OH結合に基づく吸収スペクトルを測定して溶融塩に含まれる水分に由来するアルミニウム水酸化物イオンを定量し、
前記アルミニウム酸化物イオンの定量結果と前記アルミニウム水酸化物イオンの定量結果に基づいて前記溶融塩に含まれる水分を定量する、溶融塩中の水分定量方法。
A moisture determination method for determining moisture contained in a molten salt that is a mixed salt of an organic salt and aluminum chloride,
Quantifying aluminum oxide ions by the method of claim 1,
Measure the absorption spectrum of the molten salt based on the Al—OH bond near 3360 cm −1 to quantify aluminum hydroxide ions derived from moisture contained in the molten salt,
A method for quantifying moisture in a molten salt, wherein the moisture contained in the molten salt is quantified based on a quantification result of the aluminum oxide ions and a quantification result of the aluminum hydroxide ions.
さらに、サイクリックボルタンメトリー法(CV法)により溶融塩に含まれる水分量を定量し、CV法により得られた水分量と請求項2の方法によって得られた水分量とを合計することを特徴とする、溶融塩中の水分定量方法。   Further, the amount of water contained in the molten salt is quantified by a cyclic voltammetry method (CV method), and the amount of water obtained by the CV method and the amount of water obtained by the method of claim 2 are totaled. A method for determining moisture in molten salt. 有機塩と塩化アルミニウムとの混合塩である溶融塩浴を用いてアルミニウムをめっきすることによるアルミニウム構造体の製造方法であって、前記溶融塩浴から溶融塩をサンプリングし、請求項2又は請求項3の水分定量方法により前記溶融塩に含まれる水分を定量するとともに、前記溶融塩に含まれる水分量が2.7体積%以下となるように水分量を管理することを特徴とする、アルミニウム構造体の製造方法。   A method for producing an aluminum structure by plating aluminum using a molten salt bath, which is a mixed salt of an organic salt and aluminum chloride, wherein the molten salt is sampled from the molten salt bath. The aluminum structure characterized in that the moisture contained in the molten salt is quantified by the moisture quantification method of No. 3, and the moisture content is controlled so that the moisture content contained in the molten salt is 2.7% by volume or less. Body manufacturing method. 前記溶融塩はイミダゾリウム塩と塩化アルミニウムとの混合塩である、請求項4に記載のアルミニウム構造体の製造方法。   The method for producing an aluminum structure according to claim 4, wherein the molten salt is a mixed salt of an imidazolium salt and aluminum chloride.
JP2012206539A 2012-09-20 2012-09-20 Method for quantifying aluminum oxide ion, method for quantifying moisture in molten salt, method for producing aluminum structure Active JP5958225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012206539A JP5958225B2 (en) 2012-09-20 2012-09-20 Method for quantifying aluminum oxide ion, method for quantifying moisture in molten salt, method for producing aluminum structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012206539A JP5958225B2 (en) 2012-09-20 2012-09-20 Method for quantifying aluminum oxide ion, method for quantifying moisture in molten salt, method for producing aluminum structure

Publications (2)

Publication Number Publication Date
JP2014062278A JP2014062278A (en) 2014-04-10
JP5958225B2 true JP5958225B2 (en) 2016-07-27

Family

ID=50617780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012206539A Active JP5958225B2 (en) 2012-09-20 2012-09-20 Method for quantifying aluminum oxide ion, method for quantifying moisture in molten salt, method for producing aluminum structure

Country Status (1)

Country Link
JP (1) JP5958225B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6641171B2 (en) * 2015-12-14 2020-02-05 株式会社堀場製作所 Absorbance meter
CN108007902B (en) * 2016-10-27 2020-06-19 核工业北京地质研究院 Method for calculating Al-OH absorption position of muscovite by using hyperspectral data
JP7249031B2 (en) * 2019-07-30 2023-03-30 株式会社フジキン Anomaly detection method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272196A (en) * 1991-02-28 1992-09-28 Sumitomo Metal Ind Ltd Electrolytic plating method for molten salt
JP3202072B2 (en) * 1992-09-21 2001-08-27 三菱化学株式会社 Electric aluminum plating method
JPH07114939A (en) * 1993-10-15 1995-05-02 Mitsubishi Chem Corp Manufacture of high purity normal temperature fused salt
JPH0815133A (en) * 1994-06-29 1996-01-19 Hitachi Ltd Analytic element
JP2002296231A (en) * 2001-03-30 2002-10-09 Seiko Epson Corp Concentration measuring method and measuring device for additive for plating liquid
JPWO2007063840A1 (en) * 2005-11-30 2009-05-07 エーザイ・アール・アンド・ディー・マネジメント株式会社 Method for measuring moisture content of dried objects
JP4650833B2 (en) * 2006-02-09 2011-03-16 三洋電機株式会社 Anode body, manufacturing method thereof, and solid electrolytic capacitor
JP4901707B2 (en) * 2007-12-12 2012-03-21 日本電信電話株式会社 Sample for component concentration measurement

Also Published As

Publication number Publication date
JP2014062278A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
Aromaa et al. Evaluation of the electrochemical activity of a Ti–RuO2–TiO2 permanent anode
Badawy et al. Effect of nickel content on the electrochemical behavior of Cu–Al–Ni alloys in chloride free neutral solutions
Imokawa et al. Fabrication and characterization of nanostructured Pd hydride pH microelectrodes
US8016987B2 (en) Evaluation of the corrosion inhibiting activity of a coating
Habibi et al. A carbon nanotube modified electrode for determination of caffeine by differential pulse voltammetry
Nagy et al. Electrochemical behavior of ferrocene in ionic liquid media
Hafezi et al. A sensitive and fast electrochemical sensor based on copper nanostructures for nitrate determination in foodstuffs and mineral waters
Bajat et al. Corrosion stability of oxide coatings formed by plasma electrolytic oxidation of aluminum: optimization of process time
Serizawa et al. Ag (I)/Ag electrode reaction in amide-type room-temperature ionic liquids
JP5958225B2 (en) Method for quantifying aluminum oxide ion, method for quantifying moisture in molten salt, method for producing aluminum structure
Qin et al. Effects of the geometry and operating temperature on the stability of Ti/IrO 2–SnO 2–Sb 2 O 5 electrodes for O 2 evolution
Paczosa-Bator et al. Application of graphene supporting platinum nanoparticles layer in electrochemical sensors with potentiometric and voltammetric detection
Jayanthi et al. Sensing behavior of room temperature amperometric H2 sensor with Pd electrodeposited from ionic liquid electrolyte as sensing electrode
Elterman et al. Electrodeposition of aluminium from the chloroaluminate ionic liquid 1-ethyl-3-methylimidazolium chloride
Esterle et al. Evidence for enhanced capacitance and restricted motion of an ionic liquid confined in 2 nm diameter Pt mesopores
Pathiraja et al. Oxygen evolution reaction of Ti/IrO 2–SnO 2 electrode: a study by cyclic voltammetry, Tafel lines, EIS and SEM
Li et al. Controlling surface contact, oxygen transport, and pitting of surface oxide via single-channel scanning electrochemical cell microscopy
Vargas-Barbosa et al. Time-resolved determination of the potential of zero charge at polycrystalline Au/ionic liquid interfaces
Petrović et al. Barrier and semiconducting properties of thin anodic films on chromium in an acid solution
Tsujioka et al. Voltammetry of ion transfer across the electrochemically polarized micro liquid-liquid interface between water and a room-temperature ionic liquid, tetrahexylammonium bis (trifluoromethylsulfonyl) imide, using a glass capillary micropipette
CN110361313A (en) A kind of electrochemical test method of quantitative assessment phosphatization membrane porosity
Jiang et al. Deposition mechanism of aluminum on uranium in AlCl 3-1-ethyl-3-methylimidazolium chloride ionic liquid by galvanic displacement
Stancheva et al. Interfacial and bulk processes during oxide growth on titanium in ethylene glycol-based electrolytes
Ostanina et al. Determination of the surface of dendritic electrolytic zinc powders and evaluation of its fractal dimension
Zhou et al. Electrodeposition of Au@ NiO nanotube arrays for highly sensitive non-enzymatic glucose sensing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R150 Certificate of patent or registration of utility model

Ref document number: 5958225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250