JP5958211B2 - Water-based paint for metal packaging materials and metal packaging materials - Google Patents

Water-based paint for metal packaging materials and metal packaging materials Download PDF

Info

Publication number
JP5958211B2
JP5958211B2 JP2012199201A JP2012199201A JP5958211B2 JP 5958211 B2 JP5958211 B2 JP 5958211B2 JP 2012199201 A JP2012199201 A JP 2012199201A JP 2012199201 A JP2012199201 A JP 2012199201A JP 5958211 B2 JP5958211 B2 JP 5958211B2
Authority
JP
Japan
Prior art keywords
wax
aqueous
water
epoxy resin
metal packaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012199201A
Other languages
Japanese (ja)
Other versions
JP2014055204A (en
Inventor
勝幸 尾田
勝幸 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Toyochem Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Toyochem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd, Toyochem Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2012199201A priority Critical patent/JP5958211B2/en
Publication of JP2014055204A publication Critical patent/JP2014055204A/en
Application granted granted Critical
Publication of JP5958211B2 publication Critical patent/JP5958211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、金属包装材用水性塗料、及び金属包装材に関し、金属素材に直接または下地塗料上等の被覆に好適に用いられる水性塗料に関する。   The present invention relates to a water-based paint for a metal packaging material and a metal packaging material, and relates to a water-based paint suitably used for coating a metal material directly or on a base paint.

飲料や食品等を収容する金属缶は、金属板に予め印刷、塗装を行った後、得られた塗装板に様々な成型加工(絞り加工、打抜き加工、巻締め加工、折曲げ加工等を指し、総称して製缶とも言う)を施すことで製造される。特に、缶蓋部分は、金属板に塗料を塗装した後、多段階に渡る成型加工を加え、タブの取り付け等の工程を経て製造される(塗装後の工程を総称して製蓋工程と言う)。
このため、製蓋工程では塗膜に大きな物理的負荷が加わるため、塗膜の、下地金属からの剥離、または塗膜欠損(塗膜が欠けること)が生じる場合がある。特に、缶蓋の外面側では蓋外周付近に塗膜欠損が生じるばかりか、時には基材である下地金属までもが削られることもある(この現象をカットエッジラフと言う)。さらには、削られた金属粉が製蓋機の金型部分に付着すると製蓋不良が生じ、連続製蓋が困難となってしまう。
Metal cans that contain beverages and foods are printed and painted in advance on metal plates, and then various molding processes (drawing, punching, winding, folding, etc.) , Collectively referred to as can making). In particular, the can lid part is manufactured through a multi-stage molding process after coating a metal plate with paint, and the process of attaching tabs and the like (the process after painting is collectively referred to as the lid making process) ).
For this reason, since a large physical load is applied to the coating film in the lid making process, the coating film may be peeled off from the base metal or the coating film may be lost (the coating film may be missing). In particular, on the outer surface side of the can lid, not only the coating film defect occurs in the vicinity of the outer periphery of the lid, but also the base metal as the base material is sometimes scraped (this phenomenon is called cut edge rough). Furthermore, when the scraped metal powder adheres to the mold part of the lid making machine, a lid making failure occurs, and continuous lid making becomes difficult.

また、連続して製蓋した場合に塗膜の最表面に存在するワックス成分が製蓋機の金型部分に付着堆積するという問題もしばしば発生する(この現象をワックス堆積と言う)。この場合、製蓋された蓋に堆積したワックスが再転移したり、あるいは堆積したワックスにより蓋の寸法が変化してしまい製蓋自体を困難にしたりすることがある。   In addition, when the lid is continuously formed, there is often a problem that the wax component existing on the outermost surface of the coating film is deposited on the mold portion of the lid making machine (this phenomenon is called wax deposition). In this case, the wax deposited on the lid that has been made may retransfer, or the dimensions of the lid may change due to the deposited wax, making the lid itself difficult.

一般に、缶蓋部分の塗装は、コイル状の鉄板やアルミニウム板(アルミニウム合金板を含む)に塗料を連続塗装し、焼付を行う、いわゆるコイルコーティングで行うことが多い。従来、製造コスト低減のため、塗装ラインの高速化が実施されており、その塗装方式としては、金属板の流れ方向に対してアプリケーターロールが逆方向に回転して塗装が行われるリバースコート方式が用いられている。また近年では、ラインのさらなる高速化に伴って、塗装焼付工程で、従来に比して高温且つ短時間での焼付が行われるようになっており、これにより塗装欠陥発生の問題が顕在化するようになっている。   In general, painting of the can lid portion is often performed by so-called coil coating, in which a paint is continuously applied to a coiled iron plate or aluminum plate (including an aluminum alloy plate) and baked. Conventionally, coating lines have been sped up to reduce manufacturing costs. The coating method is a reverse coating method in which the applicator roll rotates in the reverse direction with respect to the flow direction of the metal plate. It is used. In recent years, as the line speed increases further, baking is performed in a coating baking process at a higher temperature and in a shorter time than before, which causes the problem of coating defects. It is like that.

リバースコート方式における塗装欠陥としては、塗装時の塗料のピックアップ不良やロール間の転移不良により生じる「ムラ」、ロール間で発生した塗料のリブ模様が金属板に移行することにより生じる「ロール目」、塗膜の焼付け時に表面に発泡の痕跡が残ったままの状態で硬化する「ワキ」、その他、塗料構成成分の不均一性に由来する「ハジキ」等が挙げられ、多くの場合、これらの塗装欠陥は使用する塗料の粘度特性が適切でない場合に生じる。   The coating defects in the reverse coating method include “unevenness” caused by poor paint pick-up and poor transfer between rolls during painting, and “roll eyes” caused by the transition of the rib pattern of the paint generated between rolls to the metal plate. `` Waki '' that cures while leaving traces of foam remaining on the surface when the coating is baked, and `` Repel '' derived from the non-uniformity of the paint components, etc. A coating defect occurs when the viscosity characteristics of the paint used are not appropriate.

上記のような状況から缶蓋外面を被覆する塗料には、高速化の進むリバースコート方式に対応できる優れた塗装性と、製蓋工程時におけるカットエッジラフやワックス堆積等のトラブルを防ぐ高い塗膜性能が求められている。   From the above situation, the paint that covers the outer surface of the can lid has excellent paintability that can be applied to the reverse coating method, which is increasing in speed, and high coating that prevents troubles such as cut edge rough and wax accumulation during the lid making process. Membrane performance is required.

一方、缶用塗料は、省資源、省エネルギーあるいは環境公害等の観点から、水系への移行が望まれており、蓋用塗料の場合も例外ではない。そこで、蓋用の水性塗料としては、アクリル変性エポキシ樹脂、ワックス等の潤滑剤、及びその他の添加剤から構成されるものが広く検討されている。   On the other hand, from the viewpoints of resource saving, energy saving, environmental pollution, etc., can coatings are desired to be shifted to water systems, and lid coatings are no exception. Therefore, as the water-based paint for the lid, those composed of an acrylic-modified epoxy resin, a lubricant such as wax, and other additives have been widely studied.

このような水性塗料は、通常、樹脂やワックス等の含有成分のそれぞれを個々別々の手法により予め水中、もしくは親水性溶剤中に分散させておき、その後、これらを配合することにより得られる。   Such a water-based paint is usually obtained by dispersing each of the components such as resin and wax in advance in water or a hydrophilic solvent by individual methods, and then blending them.

そこで、特許文献1では、特定の構造を有する樹脂により水性分散させたワックス、及びこれを含む水性被覆剤が開示されている。また、特許文献2では、特定の樹脂により乳化分散したワックスと、親水性溶剤中に分散したワックス、及び変性エポキシ樹脂とを含有する水性分散体組成物が開示されている。また、特許文献3では、特定の融点及び粒径のワックスを含有する缶蓋外面用水性塗料組成物が開示されている。   Therefore, Patent Document 1 discloses a wax dispersed in water with a resin having a specific structure, and an aqueous coating agent containing the wax. Patent Document 2 discloses an aqueous dispersion composition containing a wax emulsified and dispersed with a specific resin, a wax dispersed in a hydrophilic solvent, and a modified epoxy resin. Patent Document 3 discloses a water-based paint composition for can lid outer surfaces containing a wax having a specific melting point and particle size.

特開平11−279489号公報Japanese Patent Laid-Open No. 11-279489 特開平11−343455号公報Japanese Patent Laid-Open No. 11-343455 特開2011−153247号公報JP 2011-153247 A

しかし、従来の水性塗料は、水分散体であるが故、その粘性は特有の非ニュートン流動性を有している。そのため、塗装が低速の時には発生しなかった塗膜欠陥が、高速になると発生する傾向があった。また、例えば、塗装にリバースコート方式を使用した場合は、その粘性により塗膜欠陥(塗膜の外観不良)が生じやすくなり、さらには塗装欠陥が要因となって、加工性、金属密着性、滑り性、耐磨耗性等の塗膜性能が低下することがあった。また、製蓋工程においてカットエッジラフやワックス堆積が発生し、連続生産が難しいという問題があった。   However, since the conventional water-based paint is an aqueous dispersion, its viscosity has a characteristic non-Newtonian fluidity. For this reason, coating film defects that did not occur when the coating was performed at a low speed tended to occur at a high speed. In addition, for example, when a reverse coating method is used for painting, a coating film defect (appearance defect of the coating film) is likely to occur due to its viscosity, and further, due to the coating defect, workability, metal adhesion, The film performance such as slipperiness and abrasion resistance may be deteriorated. In addition, there is a problem that cut edge rough and wax accumulation occur in the lid making process, making continuous production difficult.

本発明は、高速塗装時の塗装欠陥を抑制し、加工性、金属密着性、耐レトルト性、滑り性、および耐摩耗性等の塗膜性能に優れ、さらに製蓋工程においてカットエッジラフやワックス堆積が生じにくい金属包装材用水性塗料の提供を目的とする。   The present invention suppresses coating defects during high-speed coating, has excellent coating performance such as workability, metal adhesion, retort resistance, slipperiness, and wear resistance, and further, cut edge rough and wax in the lid making process. An object of the present invention is to provide a water-based paint for metal packaging materials that is unlikely to accumulate.

本発明は、アクリル変性エポキシ樹脂(A)の水分散体、及び分散粒子の平均粒子径が0.01〜15μmであるワックス水性分散体(B)を含み、25℃でのせん断速度10000s-1における粘度ηHが20〜100mPa・sであり、且つ、せん断速度0.1s-1における粘度ηLと、せん断速度10000s-1における粘度ηHとの比ηL/ηHが1〜8であることを特徴とする金属包装材用水性塗料であり、ワックス水性分散体(B)の平均粒子径を0.01〜15μmにし、水性塗料を所定の粘性にすることである。 The present invention includes an aqueous dispersion of an acrylic-modified epoxy resin (A) and an aqueous wax dispersion (B) having an average particle diameter of 0.01 to 15 μm and a shear rate of 10,000 s −1 at 25 ° C. in a viscosity eta H is 20~100mPa · s, and a viscosity eta L at a shear rate of 0.1s -1, the ratio η L / η H and viscosity eta H at a shear rate of 10000s -1 is 1-8 It is a water-based paint for metal packaging materials, characterized in that the average particle size of the aqueous wax dispersion (B) is 0.01 to 15 μm, and the water-based paint has a predetermined viscosity.

上記構成の本発明によれば、水性塗料の高せん断速度の粘度を所定範囲内にし、さらに低せん断速度の粘度と高せん断速度の粘度の比を所定範囲内に制御することで、高速塗工時に塗膜欠陥が生じにくくなると同時に、製蓋工程時のワックス堆積やカットエッジラフを抑制することが可能となった。   According to the present invention having the above-described configuration, the high-speed coating is achieved by controlling the viscosity of the high-shear rate of the water-based paint within a predetermined range and further controlling the ratio of the low-shear rate viscosity to the high-shear rate viscosity within the predetermined range. At the same time, coating film defects are less likely to occur, and at the same time, it is possible to suppress wax accumulation and cut edge roughness during the lid making process.

本発明により、高速塗装時においても塗装欠陥が生じることがなく、加工性、金属密着性、耐レトルト性、滑り性、及び耐摩耗性等の塗膜性能に優れ、さらに製蓋工程においてカットエッジラフやワックス堆積等が発生しない金属包装材用水性塗料を提供できる。   With the present invention, coating defects do not occur even during high-speed coating, and the coating performance such as workability, metal adhesion, retort resistance, slipperiness, and wear resistance is excellent. It is possible to provide a water-based paint for metal packaging materials that does not cause rough or wax accumulation.

本発明の金属包装材用水性塗料は、アクリル変性エポキシ樹脂(A)の水分散体と分散粒子の平均粒子径が0.01〜15μmであるワックス水性分散体(B)を含んでなり、25℃での高せん断速度の粘度が特定範囲内にあり、且つ、低せん断速度と高せん断速度の粘度の比が特定範囲内にあることが特徴である。そのため、当該金属包装材用水性塗料は、高速塗工装置、例えば、リバースコート方式、ダイコート方式で塗装したときに塗装性に優れ、その硬化塗膜は、塗装欠陥が生じにくく平滑で均一な塗膜表面が得られる。さらに製蓋工程においてカットエッジラフやワックス堆積の発生を抑制することができる。   The aqueous coating material for metal packaging material of the present invention comprises an aqueous dispersion of an acrylic-modified epoxy resin (A) and an aqueous wax dispersion (B) having an average particle diameter of 0.01 to 15 μm, 25 The high shear rate viscosity at 0 ° C. is in a specific range, and the ratio between the low shear rate and the high shear rate viscosity is in a specific range. Therefore, the water-based paint for metal packaging materials is excellent in paintability when applied by a high-speed coating apparatus, for example, a reverse coat method or a die coat method, and the cured coating film has a smooth and uniform coating with little occurrence of coating defects. A membrane surface is obtained. Furthermore, it is possible to suppress the occurrence of cut edge rough and wax accumulation in the lid making process.

本発明の金属包装材用水性塗料(以下、単に水性塗料ともいう)は、その粘度特性を特定範囲内にすることが重要である。詳しくは、25℃条件、せん断速度10000s-1の高せん断速度条件において、その粘度ηHが20〜100mPa・sであることが好ましい。この範囲にある水性塗料は、例えばリバースコート方式の塗装において、塗料のピックアップ性、あるいはロールとロールの間の塗料転移性が良好になり優れた塗装性を発現する。せん断速度10000s-1の粘度ηHが20mPa・s未満だとリバースコート方式による塗装において、塗料のピックアップ量が不足したり、ロール間の塗料の転移不足が発生したりし、形成される硬化塗膜の塗膜量が少なくなってしまい、塗膜の加工性や耐摩耗性が低下する。また、ロール間の塗料転移が不均一になる場合もあり、ムラの塗装欠陥が発生する。粘度ηHが100mPa・sよりも大きいとロール間の塗料転移量が過剰となってしまい、硬化塗膜の塗膜量が多くなりすぎたり、塗膜形成時に水性媒体等の揮発性物質が泡として塗膜中に留まり、ワキが発生したりする。 It is important that the viscosity characteristics of the water-based paint for metal packaging materials of the present invention (hereinafter also simply referred to as water-based paint) be within a specific range. Specifically, the viscosity η H is preferably 20 to 100 mPa · s under the conditions of 25 ° C. and high shear rate of 10,000 s −1 . Water-based paints in this range exhibit excellent paintability because, for example, in reverse-coat paint, the paint pick-up property or paint transfer property between rolls is good. When the viscosity η H at a shear rate of 10000 s -1 is less than 20 mPa · s, a cured coating that is formed due to insufficient paint pick-up or insufficient paint transfer between rolls in reverse coating. The coating amount of the film is reduced, and the workability and wear resistance of the coating film are reduced. In addition, the paint transfer between the rolls may be non-uniform, resulting in uneven coating defects. If the viscosity η H is greater than 100 mPa · s, the amount of paint transfer between rolls becomes excessive, the coating amount of the cured coating film becomes excessive, or volatile substances such as an aqueous medium are foamed when the coating film is formed. It stays in the coating film and causes cracking.

さらに、本発明の水性塗料はせん断速度0.1s-1の低せん断速度条件の粘度ηLと、前述のせん断速度10000s-1における粘度ηHとの粘度比ηL/ηHが1〜8であることが好ましい。粘度比がこの範囲内にある塗料は、リバースコート方式の塗装において優れた塗装性を示し、特に、硬化塗膜の表面が平滑かつ均一になりやすい。ηL/ηHが8を超える場合は、塗装直後のレベリング性が著しく悪くなり、一方ロールから他方のロールに塗料を転移したときに生じる、いわゆるリブ模様が硬化塗膜に残存する恐れがある。また、ηL/ηHが1未満、即ち一般にダイラタンシーと呼ばれる流動性の場合は、塗装時の粘度が塗料を静置している時の粘度よりも高くなるため、塗装機上での塗料の流動安定性が著しく低下する。そのため塗膜量の調整が困難となったり、平滑な塗装表面が得られない場合がある。 Further, the aqueous coating of the present invention is a viscosity eta L of the low shear rate conditions shear rate 0.1s -1, the viscosity ratio η L / η H and viscosity eta H at a shear rate 10000s -1 previously described 1-8 It is preferable that A paint having a viscosity ratio within this range exhibits excellent paintability in reverse coating, and particularly, the surface of the cured coating film tends to be smooth and uniform. When η L / η H exceeds 8, the leveling property immediately after coating is remarkably deteriorated, and a so-called rib pattern generated when the paint is transferred from one roll to the other roll may remain in the cured coating film. . In addition, when η L / η H is less than 1, that is, fluidity generally called dilatancy, the viscosity at the time of painting becomes higher than the viscosity when the paint is left standing, so that the paint on the coating machine Flow stability is significantly reduced. Therefore, it may be difficult to adjust the coating amount or a smooth painted surface may not be obtained.

尚、本発明の水性塗料のηL/ηHを調整するには様々な方法を挙げることができ、一例として、アクリル変性エポキシ樹脂(A)の樹脂構造制御、各種レオロジー制御剤の添加、水性塗料中に含有される溶剤の組成調整等を示すことができる。ηL/ηHを高くするためには、例えば、アクリル変性エポキシ樹脂(A)の樹脂構造について言及すれば、(1)アクリル樹脂部分の分子量を大きくする。(2)アクリル樹脂部分の比率を高くする。(3)エポキシ当量の低いエポキシ樹脂を使用する。(4)後述するエステル化反応においてその反応程度を高くする、等の方法がある。(5)アクリル変性エポキシ樹脂(A)の水分散体の分散粒径を小さくすることもηL/ηHを高くするには有効である。一方で、ηL/ηHを低くするように調整するには、上記とは逆の所作を行うことが効果的である。
また、レオロジー制御剤では、いわゆるチキソトロピック剤の使用がηL/ηHを高めるのに有効であり、例えば、セルロース類やポリウレタン類、ポリアクリル酸類、ポリアマイド類等が挙げられる。
さらに、水性塗料中の溶剤組成では、親水性の高い溶剤を多く用いれば一般にηL/ηHが低くなり、比較的疎水性の溶剤組成となればηL/ηHは高くなる傾向にある。
Various methods can be used to adjust η L / η H of the water-based paint of the present invention. Examples include control of the resin structure of the acrylic-modified epoxy resin (A), addition of various rheology control agents, The composition adjustment of the solvent contained in the paint can be shown. In order to increase η L / η H , for example, referring to the resin structure of the acrylic-modified epoxy resin (A), (1) the molecular weight of the acrylic resin portion is increased. (2) Increase the ratio of the acrylic resin portion. (3) An epoxy resin having a low epoxy equivalent is used. (4) There are methods such as increasing the degree of reaction in an esterification reaction described later. (5) Reducing the dispersed particle size of the aqueous dispersion of the acrylic-modified epoxy resin (A) is also effective for increasing η L / η H. On the other hand, in order to adjust η L / η H to be low, it is effective to perform an operation opposite to the above.
In rheology control agents, the use of so-called thixotropic agents is effective in increasing η L / η H , and examples thereof include celluloses, polyurethanes, polyacrylic acids, and polyamides.
Furthermore, the solvent composition in the aqueous paint, generally η L / η H is reduced By using many highly hydrophilic solvent, a relatively if the hydrophobic solvent composition η L / η H is higher tendency .

尚、本発明において特定のせん断速度における粘度は、25℃条件の下、Anton Paar社製レオメーター「Physica MCR301」により、直径50mm、コーン角度1°のコーンローターを使用して測定した。ηLはせん断速度0.1s-1において60秒間保持後、及びηHはせん断速度10000s-1において10秒間保持後の粘度をそれぞれ測定したものである。 In the present invention, the viscosity at a specific shear rate was measured with a rheometer “Physica MCR301” manufactured by Anton Paar under a condition of 25 ° C. using a cone rotor having a diameter of 50 mm and a cone angle of 1 °. η L is a viscosity measured after holding for 60 seconds at a shear rate of 0.1 s −1 , and η H is a viscosity measured after holding for 10 seconds at a shear rate of 10000 s −1 .

続いて、本発明で使用するアクリル変性エポキシ樹脂(A)、ワックス水性分散体(B)、カルボキシル基含有モノマーを含むエチレン性不飽和モノマー(C)、エポキシ樹脂(D)について詳細に説明する。尚、以下の説明においては、カルボキシル基含有モノマーを含むエチレン性不飽和モノマー(C)を、単にエチレン性不飽和モノマー(C)と省略して記載する場合がある。   Next, the acrylic-modified epoxy resin (A), aqueous wax dispersion (B), ethylenically unsaturated monomer (C) containing a carboxyl group-containing monomer, and epoxy resin (D) used in the present invention will be described in detail. In the following description, the ethylenically unsaturated monomer (C) containing a carboxyl group-containing monomer may be simply abbreviated as ethylenically unsaturated monomer (C).

本発明において用いられるアクリル変性エポキシ樹脂(A)は、エチレン性不飽和モノマー(C)とエポキシ樹脂(D)とを使用して得られた複合樹脂であることが好ましい。   The acrylic-modified epoxy resin (A) used in the present invention is preferably a composite resin obtained by using an ethylenically unsaturated monomer (C) and an epoxy resin (D).

本発明において用いるエチレン性不飽和モノマー(C)は、カルボキシル基含有モノマー、及び他のエチレン性不飽和モノマーを使用することが好ましい。
カルボキシル基含有モノマーとしては、(メタ)アクリル酸〔「アクリル酸」と「メタクリル酸」とを併せて「(メタ)アクリル酸」と表記する。以下同様。〕、マレイン酸、イタコン酸、フマル酸等が挙げられる。
その他のエチレン性不飽和モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート、
ヒドロキシメチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ヒドロキシペンチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート等の水酸基を有するエチレン性不飽和モノマー、
スチレン、メチルスチレン等の芳香族系モノマー、
N−ヒドロキシメチル(メタ)アクリルアミド、Nーヒドロキシエチル(メタ)アクリルアミド、N−ヒドロキシブチル(メタ)アクリルアミド等のN−ヒドロキシアルキル(メタ)アクリルアミド、N−メトキシメチル(メタ)アクリルアミド、N−エトキシメチル(メタ)アクリルアミド、N−(n−,イソ)ブトキシメチル(メタ)アクリルアミド、N−メトキシエチル(メタ)アクリルアミド、N−エトキシエチル(メタ)アクリルアミド、N−(n−、イソ)ブトキシエチル(メタ)アクリルアミド等のN−アルコキシアルキル(メタ)アクリルアミド、及び(メタ)アクリルアミド等のアミド系モノマーが挙げられる。
The ethylenically unsaturated monomer (C) used in the present invention is preferably a carboxyl group-containing monomer and other ethylenically unsaturated monomers.
As the carboxyl group-containing monomer, (meth) acrylic acid ["acrylic acid" and "methacrylic acid" are collectively referred to as "(meth) acrylic acid". The same applies hereinafter. ], Maleic acid, itaconic acid, fumaric acid and the like.
Other ethylenically unsaturated monomers include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, alkyl (meth) acrylates such as t-butyl (meth) acrylate, hexyl (meth) acrylate, ethylhexyl (meth) acrylate,
Hydroxyl groups such as hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, hydroxypentyl (meth) acrylate, and hydroxyhexyl (meth) acrylate An ethylenically unsaturated monomer having
Aromatic monomers such as styrene and methylstyrene,
N-hydroxymethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-hydroxyalkyl (meth) acrylamide such as N-hydroxybutyl (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (Meth) acrylamide, N- (n-, iso) butoxymethyl (meth) acrylamide, N-methoxyethyl (meth) acrylamide, N-ethoxyethyl (meth) acrylamide, N- (n-, iso) butoxyethyl (meta) ) N-alkoxyalkyl (meth) acrylamide such as acrylamide, and amide monomers such as (meth) acrylamide.

エチレン性不飽和モノマー(C)は、アクリル変性エポキシ樹脂(A)の溶液安定性、塗料の流動特性、塗膜を形成した際の加工性や金属密着性を考慮すると、そのカルボキシル基濃度が2.7〜7.1mmol/gとなるように配合することが好ましい。カルボキシル基濃度が2.7mmol/g未満であると、水分散性が低下して水性塗料としての保存安定性が損なわれることがある。また、せん断速度10000s-1のような高せん断速度の粘度が低下し、塗装時に十分な塗膜量が確保できなかったり、ムラのような塗装欠陥が生じたりすることがある。一方、カルボキシル基濃度が7.1mmol/gより大きいと塗膜を形成した際の加工性、金属密着性、耐レトルト性が得にくい場合がある。尚、本発明におけるカルボキシル基濃度は、エチレン性不飽和モノマー(C)の配合組成中に含まれるカルボキシル基含有モノマー量から求められる理論値であり、単位重量当たりに存在するカルボキシル基のモル数を指すものである。 The ethylenically unsaturated monomer (C) has a carboxyl group concentration of 2 in consideration of the solution stability of the acrylic-modified epoxy resin (A), the fluidity of the paint, the workability when forming the coating film, and the metal adhesion. It is preferable to mix | blend so that it may become 0.7-7.1 mmol / g. When the carboxyl group concentration is less than 2.7 mmol / g, the water dispersibility may be lowered, and the storage stability as an aqueous paint may be impaired. In addition, the viscosity at a high shear rate such as a shear rate of 10000 s -1 may decrease, and a sufficient coating amount may not be ensured during coating, or coating defects such as unevenness may occur. On the other hand, when the carboxyl group concentration is higher than 7.1 mmol / g, it may be difficult to obtain processability, metal adhesion, and retort resistance when a coating film is formed. The carboxyl group concentration in the present invention is a theoretical value determined from the amount of the carboxyl group-containing monomer contained in the blended composition of the ethylenically unsaturated monomer (C), and represents the number of moles of carboxyl groups present per unit weight. It is what you point to.

エチレン性不飽和モノマー(C)は、後述のエポキシ樹脂(D)との重量比にして、(C)/(D)=10/90〜50/50となるように使用することが好ましい。エチレン性不飽和モノマー(C)の重量比が10よりも小さいと、溶液安定性が低下したり、高せん断速度粘度が低くなって水性塗料の塗装性が劣ったりすることがある。また、エチレン性不飽和モノマー(C)の重量比が50よりも大きいと、塗膜を形成した際の加工性、金属密着性、耐レトルト性が劣る傾向にある。また、低せん断速度粘度が高くなり、低せん断速度粘度と高せん断速度粘度の比が大きくなるため、ロール目等の塗装欠陥が発生し、良好な塗膜表面が得られない場合もある。   The ethylenically unsaturated monomer (C) is preferably used so that the weight ratio with the later-described epoxy resin (D) is (C) / (D) = 10/90 to 50/50. If the weight ratio of the ethylenically unsaturated monomer (C) is less than 10, the solution stability may be lowered, or the high shear rate viscosity may be lowered, resulting in poor paintability of the aqueous paint. Moreover, when the weight ratio of the ethylenically unsaturated monomer (C) is larger than 50, the workability, metal adhesion, and retort resistance when a coating film is formed tend to be inferior. In addition, since the low shear rate viscosity increases and the ratio of the low shear rate viscosity to the high shear rate viscosity increases, coating defects such as rolls may occur, and a good coating surface may not be obtained.

本発明で使用するエポキシ樹脂(D)は、ビスフェノール型、ノボラック型、ナフタレン型、ビフェニル型等のエポキシ樹脂が好ましい。これらの中でも、塗膜にした際の加工性、耐レトルト性、金属密着性を考慮すると、ビスフェノールA型エポキシ樹脂がより好ましい。   The epoxy resin (D) used in the present invention is preferably an epoxy resin such as bisphenol type, novolac type, naphthalene type, or biphenyl type. Among these, bisphenol A type epoxy resin is more preferable in consideration of workability, retort resistance, and metal adhesion when formed into a coating film.

本発明においてエポキシ樹脂(D)は、重量平均分子量が2500〜70000であるものが好ましい。重量平均分子量が2500に満たない場合は、ビスフェノールA等の未反応物の残存量が多くなり、加工性、耐レトルト性が悪化する場合がある。一方、重量平均分子量が70000を越えると、金属密着性が悪化する場合がある。   In the present invention, the epoxy resin (D) preferably has a weight average molecular weight of 2500 to 70000. When the weight average molecular weight is less than 2500, the remaining amount of unreacted materials such as bisphenol A increases, and the workability and retort resistance may deteriorate. On the other hand, when the weight average molecular weight exceeds 70000, metal adhesion may be deteriorated.

本発明においてエポキシ樹脂(D)の市販品としては、例えば、三菱化学(株)製のJER1007、JER1009、JER1010等が挙げられる。   In the present invention, examples of commercially available epoxy resin (D) include JER1007, JER1009, and JER1010 manufactured by Mitsubishi Chemical Corporation.

アクリル変性エポキシ樹脂(A)は、前述の通り、エチレン性不飽和モノマー(C)とエポキシ樹脂(D)とを使用して得られた複合樹脂であることが好ましく、その製造方法の例として、(ア)グラフト重合法、(イ)エステル化法、(ウ)直接重合法等が挙げられる。即ち、
(ア)グラフト重合法:エポキシ樹脂(D)の存在下でラジカル重合開始剤を用いて、(メタ)アクリル酸等のカルボキシル基含有モノマーを必須成分とするエチレン性不飽和モノマー(C)を重合することにより、アクリル共重合体がエポキシ樹脂にグラフトしたアクリル変性エポキシ樹脂(A)を得る方法である。
(イ)エステル化法:(メタ)アクリル酸等のカルボキシル基含有モノマーを必須成分とするエチレン性不飽和モノマー(C)を重合してカルボキシル基を有するアクリル重合体を得、このカルボキシル基の一部と、エポキシ樹脂(D)中のエポキシ基の一部とを塩基性化合物の存在下にエステル化反応することによりアクリル変性エポキシ樹脂(A)を得る方法である。
(ウ)直接重合法:エポキシ樹脂(D)中のエポキシ基の一部を、(メタ)アクリル酸等のカルボキシル基含有モノマーのカルボキシル基と反応せしめ、この化合物とカルボキシル基含有モノマーを必須成分とするエチレン性不飽和モノマー(C)を共重合することによってアクリル変性エポキシ樹脂(A)を得る方法である。
As described above, the acrylic-modified epoxy resin (A) is preferably a composite resin obtained using the ethylenically unsaturated monomer (C) and the epoxy resin (D). (A) Graft polymerization method, (b) esterification method, (c) direct polymerization method and the like. That is,
(A) Graft polymerization method: polymerization of ethylenically unsaturated monomer (C) having a carboxyl group-containing monomer such as (meth) acrylic acid as an essential component using a radical polymerization initiator in the presence of epoxy resin (D). This is a method for obtaining an acrylic-modified epoxy resin (A) in which an acrylic copolymer is grafted onto an epoxy resin.
(A) Esterification method: An ethylenically unsaturated monomer (C) having a carboxyl group-containing monomer such as (meth) acrylic acid as an essential component is polymerized to obtain an acrylic polymer having a carboxyl group. Part and an epoxy group in epoxy resin (D) are esterified in the presence of a basic compound to obtain an acrylic-modified epoxy resin (A).
(C) Direct polymerization method: A part of the epoxy group in the epoxy resin (D) is reacted with a carboxyl group of a carboxyl group-containing monomer such as (meth) acrylic acid, and this compound and the carboxyl group-containing monomer are used as essential components. This is a method for obtaining an acrylic-modified epoxy resin (A) by copolymerizing an ethylenically unsaturated monomer (C).

また、アクリル変性エポキシ樹脂(A)は上記の手法を組み合わせても得ることが可能である。例えば、エポキシ樹脂(D)の存在下でエチレン性不飽和モノマー(C)を重合してグラフト重合を行った後、塩基性化合物を加えてエステル化反応する方法や、エポキシ樹脂(D)と(メタ)アクリル酸等との反応生成物の存在下、エチレン性不飽和モノマー(C)を共重合して直接重合を行い、次いで、エステル化反応する方法等が挙げられる。   The acrylic-modified epoxy resin (A) can also be obtained by combining the above methods. For example, after carrying out graft polymerization by polymerizing the ethylenically unsaturated monomer (C) in the presence of the epoxy resin (D), an esterification reaction may be carried out by adding a basic compound, and the epoxy resin (D) and ( Examples thereof include a method in which an ethylenically unsaturated monomer (C) is copolymerized in the presence of a reaction product with (meth) acrylic acid or the like to perform direct polymerization and then esterify.

上記方法において、重合に使用するラジカル重合開始剤としては、例えば、有機過酸化物、過硫酸塩、アゾビス化合物、及びこれらと還元剤とを組み合わせたレドックス系を用いることが好ましい。本発明においては、過酸化物系開始剤が好ましく、特に過酸化ベンゾイルが好ましい。   In the above method, as the radical polymerization initiator used for polymerization, for example, an organic peroxide, a persulfate, an azobis compound, and a redox system in which these are combined with a reducing agent are preferably used. In the present invention, a peroxide-based initiator is preferable, and benzoyl peroxide is particularly preferable.

ラジカル重合開始剤は、エチレン性不飽和モノマー(C)の合計100重量部に対して1〜10重量部用いることが好ましく、1〜6重量部がより好ましい。
尚、重合時の温度、時間等の反応条件は特別なものではなく、公知の条件を用いることができる。水性塗料とした時の粘度特性が最適なものとなるよう適宜反応条件を調整し、アクリル変性エポキシ樹脂(A)を得ることが肝要である。
The radical polymerization initiator is preferably used in an amount of 1 to 10 parts by weight, more preferably 1 to 6 parts by weight, based on 100 parts by weight of the total amount of the ethylenically unsaturated monomer (C).
The reaction conditions such as temperature and time during the polymerization are not special, and known conditions can be used. It is important to obtain the acrylic-modified epoxy resin (A) by appropriately adjusting the reaction conditions so that the viscosity characteristics when the water-based paint is obtained are optimal.

また、上記方法において、エステル化反応の際に用いる塩基性化合物としては、ジメチルエタノールアミン(ジメチルアミノエタノール)、エタノールアミン、ジエタノールアミン、アミノメチルプロパノール等のアルコールアミン類や、
トリメチルアミン、トリエチルアミン、ブチルアミン等のアルキルアミン類、
モルホリン、アンモニア等の揮発性アミン等が挙げられる。
塩基性化合物は、カルボキシル基含有モノマー100モル%に対して、1〜80モル%、より好ましくは5〜60モル%の割合で反応に使用することが好ましい。尚、エステル化反応時の温度、時間等の反応条件は特別なものではなく、公知の条件を用いて行うことができるが、得られる水性塗料の流動性を最適なものとするように適宜反応条件を調整し、アクリル変性エポキシ樹脂(A)を得ることが重要である。
In the above method, as the basic compound used in the esterification reaction, alcohol amines such as dimethylethanolamine (dimethylaminoethanol), ethanolamine, diethanolamine, aminomethylpropanol,
Alkylamines such as trimethylamine, triethylamine, butylamine,
Examples include volatile amines such as morpholine and ammonia.
The basic compound is preferably used in the reaction in a proportion of 1 to 80 mol%, more preferably 5 to 60 mol%, based on 100 mol% of the carboxyl group-containing monomer. The reaction conditions such as temperature and time during the esterification reaction are not special, and can be carried out using known conditions, but the reaction is appropriately performed so as to optimize the fluidity of the resulting aqueous paint. It is important to obtain the acrylic-modified epoxy resin (A) by adjusting the conditions.

得られたアクリル変性エポキシ樹脂(A)を水分散体とするには、常法の手法と同様にして得ることができる。詳しくは、アクリル変性エポキシ樹脂(A)中に存在するカルボキシル基を、塩基性化合物等で中和して、親水性を付与する方法である。さらに詳しくは、アクリル変性エポキシ樹脂(A)に塩基性化合物を加えた後、水等の水性媒体を添加して水分散体とする方法や、アクリル変性エポキシ樹脂(A)に、塩基性化合物を含有する水等の水性媒体を添加して水分散体とする方法等が例示できる。   In order to make the obtained acrylic modified epoxy resin (A) into an aqueous dispersion, it can be obtained in the same manner as a conventional method. Specifically, this is a method of imparting hydrophilicity by neutralizing a carboxyl group present in the acrylic-modified epoxy resin (A) with a basic compound or the like. More specifically, after adding a basic compound to the acrylic-modified epoxy resin (A), an aqueous medium such as water is added to form an aqueous dispersion, or the basic compound is added to the acrylic-modified epoxy resin (A). Examples thereof include a method of adding an aqueous medium such as water to make an aqueous dispersion.

本発明で用いるワックス水性分散体(B)とは、ワックスを水性媒体中に分散したものである。その分散粒子の平均粒子径は、0.01〜15μmであることが好ましい。ワックス水性分散体(B)の平均粒子径が前記範囲内にあることで、滑り性や耐摩耗性等の塗膜性能と、製蓋時におけるワックス堆積やカットエッジラフの抑制を両立しやすくなる。
尚、本発明においてワックス水性分散体(B)の分散粒子の平均粒子径は、日機装(株)製「ナノトラックUPA−EX150」、PARTICLE SIZING SYSTEMS社製「AccuSizer780」を用いて測定したものである。
The aqueous wax dispersion (B) used in the present invention is a dispersion of wax in an aqueous medium. The average particle diameter of the dispersed particles is preferably 0.01 to 15 μm. When the average particle diameter of the aqueous wax dispersion (B) is within the above range, it is easy to achieve both coating performance such as slipperiness and wear resistance, and suppression of wax accumulation and cut edge roughness during lid making. .
In the present invention, the average particle size of the dispersed particles of the aqueous wax dispersion (B) is measured using “Nanotrack UPA-EX150” manufactured by Nikkiso Co., Ltd., and “Acucizer780” manufactured by PARTICLE SIZING SYSTEMS. .

本発明のワックス水性分散体(B)の水性媒体には、アルコール類、グリコール類、グリコールエーテル類、アセテート類の各種親水性溶剤等や水が挙げられ、これらを単独で用いても良いし、それぞれを混合して使用しても良い。   Examples of the aqueous medium of the aqueous wax dispersion (B) of the present invention include alcohols, glycols, glycol ethers, various hydrophilic solvents such as acetates and water, and these may be used alone. You may mix and use each.

本発明のワックス水性分散体(B)は、その性状から乳化型と非乳化型の2種類に大別される。この特徴として、乳化型は分散粒子の平均粒子径が小さく、0.01〜1μm程度であり、被乳化型は平均粒子径が大きく、0.5〜15μm程度である。乳化型は分散粒子の平均粒子径が小さいため分散安定性に富み、また、塗膜を形成する際に塗膜樹脂の表面を比較的均一に被覆できるという特徴を有する。非乳化型は平均粒子径が大きいために塗膜に優れた耐摩耗性が付与できるという特徴を持つ。本発明は、両者を用途に合わせて単独使用、もしくは併用することができる。   The aqueous wax dispersion (B) of the present invention is roughly classified into two types, an emulsified type and a non-emulsified type, depending on its properties. As this feature, the emulsion type has a small average particle diameter of dispersed particles of about 0.01 to 1 μm, and the emulsion type has a large average particle diameter of about 0.5 to 15 μm. The emulsification type is characterized by being excellent in dispersion stability because the average particle size of the dispersed particles is small, and having a relatively uniform coating on the surface of the coating film resin when forming the coating film. The non-emulsifying type has a feature that it can impart excellent abrasion resistance to the coating film because of its large average particle size. In the present invention, both can be used alone or in combination according to the application.

本発明のワックス水性分散体(B)のワックスには、天然ワックスと、合成ワックスを挙げることができる。   Examples of the wax of the aqueous wax dispersion (B) of the present invention include natural wax and synthetic wax.

天然ワックスとしては、例えば蜜蝋、ラノリンワックス、鯨蝋、キャンデリラワックス、カルナバワックス、ライスワックス、木蝋、ホホバ油等の動植物系ワックスを挙げることができる。また、モンタンワックス、オゾゲライト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、ペトロラタム等の鉱物、石油系ワックス等を挙げることができる。これらの中でも塗膜を形成した際の滑り性、耐摩耗性を考慮すると、カルナバワックス、キャンデリラワックス、ライスワックス、ラノリンワックス、マイクロクリスタリンワックスが好ましい。   Examples of natural waxes include animal and plant waxes such as beeswax, lanolin wax, whale wax, candelilla wax, carnauba wax, rice wax, wood wax, jojoba oil and the like. In addition, examples include minerals such as montan wax, ozogelite, ceresin, paraffin wax, microcrystalline wax, petrolatum, petroleum wax, and the like. Of these, carnauba wax, candelilla wax, rice wax, lanolin wax, and microcrystalline wax are preferred in consideration of slipperiness and abrasion resistance when a coating film is formed.

合成ワックスとしては、フィッシャー・トロプシュワックス、ポリエチレンワックス、酸化ポリエチレンワックス、酸化ポリプロピレンワックス等の合成炭化水素系ワックス、
モンタンワックス誘導体、パラフィンワックス誘導体、マイクロクリスタリンワックス誘導体等の変性ワックス、
硬化ヒマシ油、硬化ヒマシ油誘導体等の水素化ワックス、
ポリテトラフロロエチレン(PTFE)ワックス等が挙げられる。硬化塗膜の滑り性、耐摩耗性を考慮すると、ポリエチレンワックス、マイクロクリスタリンワックス誘導体が好ましい。
Synthetic waxes include synthetic hydrocarbon waxes such as Fischer-Tropsch wax, polyethylene wax, oxidized polyethylene wax, oxidized polypropylene wax,
Modified waxes such as montan wax derivatives, paraffin wax derivatives, microcrystalline wax derivatives,
Hydrogenated waxes such as hardened castor oil, hardened castor oil derivatives,
Examples include polytetrafluoroethylene (PTFE) wax. In consideration of the slipperiness and wear resistance of the cured coating film, polyethylene wax and microcrystalline wax derivatives are preferred.

本発明におけるワックス水性分散体(B)の市販品としては、
Shamrock Technologies社製のHydrocer100(ポリエチレンワックス)、Hydrocer257(ポリエチレンワックス)、Hydrocer600(マイクロクリスタリン/ポリエチレン混合ワックス)、Hydrocer901(ポリエチレン/パラフィン混合ワックス)、Hydrocerf9174(PTFE)、Fluoro AQ60(PTFE)、Hydrocer EC98(乳化カルナバワックス)、Hydrocer EE95(乳化ポリエチレンワックス)Hydrocer EM08(乳化マイクロクリスタリンワックス)、Hydrocer EP91(乳化パラフィンワックス)、
BYK社製のCERACOL39(ポリエチレンワックス)、CERACOL79(カルナバワックス)、CERACOL601(カルナバワックス)、AQUACER498(乳化パラフィンワックス)、AQUACER507(乳化ポリエチレンワックス)、AQUACER1547(乳化ポリエチレンワックス)、
エレメンティス・ジャパン(株)製のSL506(カルナバワックス)、SL508(カルナバワックス)、SL19(ポリエチレンワックス)、SL145E(乳化パラフィンワックス)、SL535E(乳化カルナバワックス)、SL330E(乳化ポリエチレンワックス)、
東邦化学工業(株)製のHYTEC E−5403P(乳化ポリエチレンワックス)、HYTEC E−8237(乳化ポリエチレンワックス)、E−1000(乳化ポリエチレンワックス)、HYTEC E−4A)、
MICRO POWDERS社製のMicrospersion215−50(ポリエチレンワックス)、Microspersion250(ポリエチレンワックス)、Microspersion930(ポリエチレンワックス)、Microspersion190−50(ポリエチレン/PTFE混合ワックス)、Microspersion411(ポリエチレン/PTFE混合ワックス)等が例示できる。
As a commercially available product of the aqueous wax dispersion (B) in the present invention,
Hydrocer 100 (polyethylene wax), Hydrocer 257 (polyethylene wax), Hydrocer 600 (microcrystalline / polyethylene mixed wax), Hydrocer 901 (polyethylene / paraffin mixed wax), Hydrocerf 9174 (PTFE), Fluor 60E, Fluor 60E Emulsified carnauba wax), Hydrocer EE95 (emulsified polyethylene wax) Hydrocer EM08 (emulsified microcrystalline wax), Hydrocer EP91 (emulsified paraffin wax),
BYK's CERACOL39 (polyethylene wax), CERACOL79 (carnauba wax), CERACOL601 (carnauba wax), AQUACER498 (emulsified paraffin wax), AQUACER507 (emulsified polyethylene wax), AQUACER1547 (emulsified polyethylene wax),
SL506 (carnauba wax), SL508 (carnauba wax), SL19 (polyethylene wax), SL145E (emulsified paraffin wax), SL535E (emulsified carnauba wax), SL330E (emulsified polyethylene wax), manufactured by Elementis Japan Co., Ltd.
HYTEC E-5403P (emulsified polyethylene wax), HYTEC E-8237 (emulsified polyethylene wax), E-1000 (emulsified polyethylene wax), HYTEC E-4A) manufactured by Toho Chemical Industries, Ltd.
Examples thereof include Microspersion 215-50 (polyethylene wax), Microspersion 250 (polyethylene wax), Microspersion 930 (polyethylene wax), Microspersion 190-50 (polyethylene / PTFE mixed wax), Microspersion 411 (polyethylene / PTFE mixed wax) manufactured by MICRO POWDERS.

本発明のワックス水性分散体(B)は、酸価が100〜500mgKOH/gであり、数平均分子量が2000〜50000である樹脂を高分子界面活性剤として用い、ワックスを水性媒体中に乳化分散させたワックス水性分散体(b1)を含むことが好ましい。   In the aqueous wax dispersion (B) of the present invention, a resin having an acid value of 100 to 500 mgKOH / g and a number average molecular weight of 2000 to 50000 is used as a polymer surfactant, and the wax is emulsified and dispersed in an aqueous medium. It is preferable to contain the wax aqueous dispersion (b1).

前記樹脂は、樹脂中のカルボキシル基等を後述する塩基性化合物で中和することにより、高分子界面活性剤として使用できる。前記樹脂の酸価が100mgKOH/g未満であると、中和後の乳化機能が小さく、ワックスを安定に分散し難くなり、ワックス水性分散体(b1)中にワックスの凝集物を生成する場合がある。一方、酸価が500mgKOH/gを超えるとワックス水性分散体(b1)を含有する本発明の水性分散体組成物から得られる塗膜の耐水性が低下する場合がある。また、前記樹脂は数平均分子量が2000〜50000になることでワックスをさらに乳化、または分散しやすくなる。前記樹脂の数平均分子量は2000〜20000がより好ましい。該樹脂は、カルボキシル基を有するアクリル樹脂、もしくはカルボキシル基を有するポリエステル樹脂のうち少なくとも1種であることが好ましい。   The resin can be used as a polymer surfactant by neutralizing a carboxyl group or the like in the resin with a basic compound described later. When the acid value of the resin is less than 100 mg KOH / g, the emulsification function after neutralization is small, and it becomes difficult to stably disperse the wax, and a wax aggregate may be formed in the aqueous wax dispersion (b1). is there. On the other hand, when the acid value exceeds 500 mgKOH / g, the water resistance of the coating film obtained from the aqueous dispersion composition of the present invention containing the aqueous wax dispersion (b1) may be lowered. Moreover, it becomes easier to emulsify or disperse the wax when the resin has a number average molecular weight of 2000 to 50000. The number average molecular weight of the resin is more preferably 2000 to 20000. The resin is preferably at least one of an acrylic resin having a carboxyl group or a polyester resin having a carboxyl group.

ワックス水性分散体(b1)は、樹脂とワックスとの合計100重量部中、樹脂は1〜50重量部、ワックスは50〜99重量部であることが好ましい。樹脂とワックスを前記の配合量で使用すると、分散安定性及び塗膜性能を両立しやすくなる。尚、樹脂は2〜20重量部であることがより好ましい。   The aqueous wax dispersion (b1) is preferably 1 to 50 parts by weight of resin and 50 to 99 parts by weight of wax in a total of 100 parts by weight of resin and wax. When the resin and the wax are used in the above amounts, it is easy to achieve both dispersion stability and coating film performance. In addition, it is more preferable that resin is 2-20 weight part.

ワックス水性分散体(b1)に用いられる樹脂のうち、カルボキシル基を有するアクリル樹脂は、上段で説明したエチレン性不飽和モノマー(C)を重合することにより得られる。   Among the resins used in the aqueous wax dispersion (b1), the acrylic resin having a carboxyl group is obtained by polymerizing the ethylenically unsaturated monomer (C) described above.

ワックス水性分散体(b1)に用いられる樹脂のうち、カルボキシル基を有するポリエステル樹脂は、常法に従い、多価アルコール成分と多塩基酸成分との反応により得ることができる。
多価アルコール成分としては、エチレングリコール、プロピレングリコール、1,3−ブチレングリコール、1,6−ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、トリエチレングリコール等の2価アルコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリスヒドロキシメチルアミノエタン、ペンタエリスリット、ジペンタエリトリット、ジグリセリン等の2価以上のアルコール等のアルコール成分が挙げられる。
多塩基酸成分としては(無水)フタル酸、イソフタル酸、テレフタル酸、(無水)コハク酸、アジピン酸、アゼライン酸、セバシン酸、テトラヒドロ(無水)フタル酸、ヘキサヒドロ(無水)フタル酸、(無水)ハイミック酸、(無水)マレイン酸、フマル酸、イタコン酸、(無水)トリメリット酸、メチレンジクロヘキセントリカルボン酸(無水物)、(無水)ピロメリット酸等の多価カルボン酸もしくはその無水物、及び必要に応じて併用する安息香酸やt−ブチル安息香酸等の一塩基酸等が挙げられる。
反応においては、これらを単独で用いても良いし、2種以上を併用しても良い。
Among the resins used in the aqueous wax dispersion (b1), a polyester resin having a carboxyl group can be obtained by a reaction between a polyhydric alcohol component and a polybasic acid component according to a conventional method.
Examples of the polyhydric alcohol component include ethylene glycol, propylene glycol, 1,3-butylene glycol, 1,6-hexanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, triethylene glycol, and other dihydric alcohols, glycerin, and trimethylol. Examples include alcohol components such as ethane, trimethylolpropane, trishydroxymethylaminoethane, pentaerythritol, dipentaerythritol, and diglycerin.
The polybasic acid components include (anhydrous) phthalic acid, isophthalic acid, terephthalic acid, (anhydrous) succinic acid, adipic acid, azelaic acid, sebacic acid, tetrahydro (anhydrous) phthalic acid, hexahydro (anhydrous) phthalic acid, (anhydrous) Polyhydric carboxylic acids such as highmic acid, (anhydrous) maleic acid, fumaric acid, itaconic acid, (anhydrous) trimellitic acid, methylene dicyclohexylene carboxylic acid (anhydride), (anhydrous) pyromellitic acid, or anhydrides thereof, and Examples thereof include monobasic acids such as benzoic acid and t-butylbenzoic acid, which are used in combination as necessary.
In the reaction, these may be used alone or in combination of two or more.

この他、カルボキシル基を有するポリエステル樹脂としては、前記のアルコール成分と酸成分に加えてヒマシ油、脱水ヒマシ油、桐油、サフラワー油、大豆油、アマニ油、トール油、ヤシ油等、及びそれらの脂肪酸のうちの1種もしくは2種以上の混合物である油成分を、上記酸成分及びアルコール成分に加えて、3成分を反応させて得られるアルキッド樹脂が挙げられる。また、不飽和結合を有するポリエステル樹脂にアクリル樹脂をグラフトすることにより変性したグラフト変性ポリエステル樹脂も挙げられる。   In addition, the polyester resin having a carboxyl group includes castor oil, dehydrated castor oil, tung oil, safflower oil, soybean oil, flaxseed oil, tall oil, coconut oil, and the like in addition to the alcohol component and acid component. An alkyd resin obtained by reacting three components by adding an oil component which is one or a mixture of two or more fatty acids to the acid component and the alcohol component. Moreover, the graft modified polyester resin modified | denatured by grafting an acrylic resin to the polyester resin which has an unsaturated bond is also mentioned.

ワックス水性分散体(b1)は、上記の特定の酸価、及び数平均分子量の樹脂の中和物を高分子界面活性剤として利用することによって、ワックスを水性媒体中に分散せしめたものである。中和には塩基性化合物を用い、特に揮発性を有するものが好ましく、アンモニアの他、エチルアミン、ジエチルアミン、トリエチルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、ジメチルエタノールアミン(ジメチルアミノエタノール)、シクロヘキシルアミン等のアミン類を挙げることができる。   The aqueous wax dispersion (b1) is obtained by dispersing a wax in an aqueous medium by using a neutralized resin having a specific acid value and a number average molecular weight as a polymer surfactant. . For neutralization, basic compounds are used, and those having volatility are preferred. In addition to ammonia, ethylamine, diethylamine, triethylamine, ethanolamine, diethanolamine, triethanolamine, dimethylethanolamine (dimethylaminoethanol), cyclohexylamine, etc. Can be mentioned.

ワックス水性分散体(b1)を得るには種々の手段があるが、一例として、樹脂、ワックス、塩基性化合物、水性媒体をワックスの融点以上の温度で撹拌する方法、樹脂とワックスを溶融混合液とし、これと塩基性化合物及び水性媒体とを撹拌混合する方法、樹脂とワックス、水性媒体を溶融混合液とし、これと塩基性化合物とを撹拌混合する方法、さらに、樹脂と水性媒体、及び塩基性化合物を混合して得られる樹脂水溶液もしくは水分散液と、溶融状態のワックスとを撹拌混合する方法等が挙げられる。   There are various means for obtaining the aqueous wax dispersion (b1). For example, a resin, a wax, a basic compound, a method of stirring an aqueous medium at a temperature not lower than the melting point of the wax, and a molten mixture of the resin and the wax And a method of stirring and mixing this with a basic compound and an aqueous medium, a resin and wax, a method of mixing an aqueous medium with a molten compound, and stirring and mixing this with a basic compound, and a resin, an aqueous medium and a base Examples thereof include a method of stirring and mixing a resin aqueous solution or aqueous dispersion obtained by mixing a functional compound and a molten wax.

樹脂、ワックス、揮発性塩基、及び水性媒体の量、中和の割合、混合条件(混合速度、撹拌条件、温度等)等を種々変えることにより、分散粒子の大きさの異なる種々のワックス水性分散体(b1)を得ることができる。   Various aqueous wax dispersions with different dispersed particle sizes by varying the amount of resin, wax, volatile base, and aqueous medium, neutralization ratio, mixing conditions (mixing speed, stirring conditions, temperature, etc.), etc. The body (b1) can be obtained.

また、上記ワックスの水性媒体中への分散過程で存在する有機溶剤は、必要に応じ減圧下で除去することが可能である。この時、水と有機溶剤とを共沸混合物として除去してもよい。このような場合にはより脱有機溶剤を行い易いもの、即ち比較的低沸点の有機溶剤を使用することがより好ましい。   Moreover, the organic solvent which exists in the dispersion | distribution process in the aqueous medium of the said wax can be removed under reduced pressure as needed. At this time, water and the organic solvent may be removed as an azeotropic mixture. In such a case, it is more preferable to use a solvent that can be easily removed from the organic solvent, that is, an organic solvent having a relatively low boiling point.

ワックス水性分散体(b1)の分散粒子の平均粒子径は、水性媒体中に分散するときの温度や撹拌速度あるいは、用いる樹脂の酸価やワックスとの比率等により変化するが、さらに、良好な分散安定性、及び塗膜を形成した際の良好な滑り性や耐摩耗性を得るためには、平均粒子径は0.1〜1μmが好ましく、さらに好ましくは0.1〜0.5μmであり、0.2〜0.4μmであることが最も好ましい。   The average particle size of the dispersed particles of the aqueous wax dispersion (b1) varies depending on the temperature and stirring speed when dispersed in the aqueous medium, the acid value of the resin used, the ratio with the wax, and the like. In order to obtain dispersion stability and good slipperiness and abrasion resistance when a coating film is formed, the average particle diameter is preferably 0.1 to 1 μm, more preferably 0.1 to 0.5 μm. 0.2 to 0.4 μm is most preferable.

さらに、本発明のワックス水性分散体(B)は、界面活性剤の不存在下でワックスを水性媒体中に分散させたワックス水性分散体(b2)を含むことが好ましい。ワックス水性分散体(b2)は、例えば、高速撹拌されている水性媒体中に、ワックスの融点以上にそれぞれ加熱したワックスと親水性溶剤とを徐々に添加し分散したり、ワックスと親水性溶剤との混合物をワックスの融点以上に加熱し、かかる混合物を同様に高速撹拌下、水性媒体中に徐々に添加し分散したり、あるいは、ワックスと親水性溶剤を含む水性媒体とをワックスの融点以上に加熱して混合溶液とした後、高速撹拌下、これを徐々にワックスの融点以下に冷却して分散したりすることにより得ることができる。   Furthermore, the aqueous wax dispersion (B) of the present invention preferably contains an aqueous wax dispersion (b2) in which a wax is dispersed in an aqueous medium in the absence of a surfactant. For example, the aqueous wax dispersion (b2) is obtained by gradually adding and dispersing a wax and a hydrophilic solvent heated to a melting point of the wax or higher in an aqueous medium that is stirred at a high speed, The mixture is heated to a temperature higher than the melting point of the wax, and the mixture is gradually added and dispersed in the aqueous medium with high-speed stirring, or the aqueous medium containing the wax and the hydrophilic solvent is increased to the temperature higher than the melting point of the wax. After heating to a mixed solution, it can be obtained by gradually cooling and dispersing to below the melting point of the wax under high-speed stirring.

ワックス水性分散体(b2)を製造する際、分散過程に用いられる親水性溶剤としては、水と混合しやすいものが好ましく、アルコール類、グリコール類、グリコールエーテル類、アセテート類を例示できる。また、これらの親水性溶剤はワックスを分散した後、必要に応じて減圧下、もしくは水との共沸によって除去することも好ましい。   In producing the aqueous wax dispersion (b2), the hydrophilic solvent used in the dispersion process is preferably one that is easily mixed with water, and examples thereof include alcohols, glycols, glycol ethers, and acetates. These hydrophilic solvents are preferably removed after the wax is dispersed, if necessary, under reduced pressure or by azeotropy with water.

ワックス水性分散体(b2)は、界面活性剤を含んでいないため、このワックス水性分散体(b2)を含有する水性塗料を用いて塗膜を形成した場合、塗膜の耐水性が優れている。尚、ここで言う界面活性剤とは、ステアリン酸、オレイン酸等の脂肪酸、エチレングリコールモノラウレート、ジエチレングリコールモノステアレート等のポリエチレングリコール脂肪酸エステル類、ポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンノニルフェノール等のポリオキシエチレンアルキルフェノールエーテル類、等の比較的低分子量のものを主として指すが、本発明においては、ワックス水性分散体(b1)に用いられる「酸価100〜500mgKOH/g、数平均分子量2000〜50000である樹脂」も、ここでいう「界面活性剤」に包含されるものとする。   Since the aqueous wax dispersion (b2) does not contain a surfactant, when the aqueous paint containing the aqueous wax dispersion (b2) is used to form a paint film, the water resistance of the paint film is excellent. . Incidentally, the surfactant referred to here is a fatty acid such as stearic acid or oleic acid, a polyethylene glycol fatty acid ester such as ethylene glycol monolaurate or diethylene glycol monostearate, or a polyoxyethylene alkyl ether such as polyoxyethylene lauryl ether. Mainly having a relatively low molecular weight such as polyoxyethylene alkylphenol ethers such as polyoxyethylene nonylphenol, etc. In the present invention, “acid value 100 to 500 mgKOH / g and a resin having a number average molecular weight of 2,000 to 50,000 are also included in the “surfactant” herein.

ワックス水性分散体(b2)に用いられるワックスとしては、前述同様のものを例示できる。但し、ワックス水性分散体(b2)において、合成ワックスを用いる場合には、単独で用いるよりも天然ワックスと併用することが望ましい。天然ワックスが合成ワックスの分散安定化を補助し、水性媒体中で凝集物が発生しにくくなり安定化しやすくなるという効果がある。   Examples of the wax used in the aqueous wax dispersion (b2) are the same as those described above. However, when a synthetic wax is used in the aqueous wax dispersion (b2), it is preferable to use it in combination with a natural wax rather than using it alone. The natural wax assists in stabilizing the dispersion of the synthetic wax, and has an effect that aggregates are less likely to be generated in the aqueous medium and stabilization is facilitated.

ワックス水性分散体(b2)は、良好な分散安定性とこれを含有する水性塗料から形成される塗膜の高硬度と優れた耐摩耗性とを確保するために、その分散粒子の平均粒子径を1〜15μmとすることが好ましく、さらには、1〜10μmとすることが好ましい。   The aqueous wax dispersion (b2) has an average particle diameter of dispersed particles in order to ensure good dispersion stability and high hardness and excellent wear resistance of a coating film formed from an aqueous coating material containing the wax dispersion. Is preferably 1 to 15 μm, and more preferably 1 to 10 μm.

ワックスは、アクリル変性エポキシ樹脂(A)100重量部に対して、0.1〜10重量部用いることが好ましい。ワックスが0.1重量部未満であると、得られる硬化塗膜の滑り性、耐磨耗性が低下する傾向にある。また、ワックスが10重量部を超えると、塗膜に存在するワックス量が増加するのでワックス堆積を引き起こす懸念がある。   It is preferable to use 0.1 to 10 parts by weight of the wax with respect to 100 parts by weight of the acrylic-modified epoxy resin (A). If the wax is less than 0.1 part by weight, the slipping property and wear resistance of the resulting cured coating film tend to be reduced. On the other hand, if the amount of the wax exceeds 10 parts by weight, the amount of the wax present in the coating film increases, which may cause wax deposition.

本発明の水性塗料は、その表面張力が25〜33mN/mであることが好ましい。表面張力が25mN/m未満では、ロール目等の塗装欠陥が生じ場合がある。一方、33mN/mを超えると、金属板に対する水性塗料のヌレ性が悪くなったり、形成される硬化塗膜にハジキ欠陥が生じたりする場合がある。尚、本発明において表面張力は、協和界面科学(株)社製の全自動表面張力計「CBVP−Z型」を用い、測定子に白金プレートを使用したWilhelmy法により測定したものである。   The aqueous paint of the present invention preferably has a surface tension of 25 to 33 mN / m. When the surface tension is less than 25 mN / m, coating defects such as rolls may occur. On the other hand, when it exceeds 33 mN / m, the wettability of the water-based paint with respect to the metal plate may be deteriorated, or a repellency defect may occur in the formed cured coating film. In the present invention, the surface tension is measured by the Wilhelmy method using a fully automatic surface tension meter “CBVP-Z type” manufactured by Kyowa Interface Science Co., Ltd. and using a platinum plate as a probe.

本発明の水性塗料には、塗装性を向上させる目的で有機溶剤を5〜30%含むことが好ましい。有機溶剤は、アクリル変性エポキシ樹脂(A)を得る際、反応工程にて使用したものをそのまま本発明の水性塗料に含有していても良いし、別途、必要に応じて添加しても良い。   The aqueous paint of the present invention preferably contains 5 to 30% of an organic solvent for the purpose of improving paintability. When the organic solvent is used to obtain the acrylic-modified epoxy resin (A), the organic solvent used in the reaction step may be contained in the water-based paint of the present invention as it is, or may be added separately as necessary.

有機溶剤としては、特に限定されるものではないが、下記に示すような比較的親水性の高い溶剤が好ましい。具体的には、例えば、
メタノール、エタノール、n−プロピルアルコール、iso−プロピルアルコール、n−ブチルアルコール、iso−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、n−アミルアルコール、sec−アミルアルコール、n−オクタノール、2−エチル−1−ヘキサノール、トリデカノール等のアルコール類、
エチレングリコール、ジエチレングリコール、1,3−ブチレングリコール等のグリコール類、
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、メチルプロピレングリコール、メチルプロピレンジグリコール、プロピルプロピレングリコール、プロピルプロピレンジグリコール、ブチルプロピレングリコール、ジプロピレングリコールモノメチルエーテル等のグリコールエーテル類、
エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3−メトシブチルアセテート、エチレングリコールモノブチルエーテルアセテート、3−メチル−3−メトキシブチルアセテート等のアセテート類等が例示できる。
本発明では、水性塗料の保存安定性、表面張力の制御効果、塗装時の溶剤揮発速度の観点から、用いられる有機溶剤(E)は、アルキル基の炭素数が1〜6であるアルキレングリコールモノアルキルエーテル、またはアルキル基の炭素数が1〜10であるアルキルアルコールが好ましく、両者を併用することがより好ましい。
Although it does not specifically limit as an organic solvent, The solvent with comparatively high hydrophilicity as shown below is preferable. Specifically, for example,
Methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, iso-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, n-amyl alcohol, sec-amyl alcohol, n-octanol, 2- Alcohols such as ethyl-1-hexanol and tridecanol,
Glycols such as ethylene glycol, diethylene glycol, 1,3-butylene glycol,
Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, methylpropylene glycol, methylpropylene diglycol, propylpropylene glycol, propylpropylene diglycol, butyl Glycol ethers such as propylene glycol and dipropylene glycol monomethyl ether,
Examples thereof include acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methobutyl acetate, ethylene glycol monobutyl ether acetate, and 3-methyl-3-methoxybutyl acetate.
In the present invention, from the viewpoints of storage stability of the water-based paint, surface tension control effect, and solvent volatilization rate at the time of coating, the organic solvent (E) used is an alkylene glycol monoalkyl having 1 to 6 carbon atoms in the alkyl group. An alkyl ether or an alkyl alcohol having 1 to 10 carbon atoms in the alkyl group is preferable, and it is more preferable to use both in combination.

本発明の水性塗料には、さらに、必要に応じて塗膜の硬化性や金属密着性を向上させる目的で、フェノール樹脂、アミノ樹脂等の硬化剤を1種または2種以上添加することができる。   The aqueous coating material of the present invention may further contain one or more curing agents such as phenol resins and amino resins for the purpose of improving the curability and metal adhesion of the coating film as necessary. .

フェノール樹脂やアミノ樹脂は、自己架橋反応する他、アクリル変性エポキシ樹脂(A)中のカルボキシル基と反応し得る。また、アクリル変性エポキシ樹脂(A)が水酸基を有する場合には、フェノール樹脂やアミノ樹脂は、それらの水酸基とも反応し得る。さらに、エチレン性不飽和モノマー(C)がアミド系モノマーを含み、アクリル変性エポキシ樹脂(A)がこのアミド系モノマーに由来する架橋性官能基を有する場合は、これら架橋性官能基とも反応し得る。   A phenol resin or an amino resin can react with a carboxyl group in the acrylic-modified epoxy resin (A) in addition to a self-crosslinking reaction. Further, when the acrylic-modified epoxy resin (A) has a hydroxyl group, the phenol resin or amino resin can react with those hydroxyl groups. Furthermore, when the ethylenically unsaturated monomer (C) contains an amide monomer and the acrylic-modified epoxy resin (A) has a crosslinkable functional group derived from this amide monomer, it can also react with these crosslinkable functional groups. .

本発明においてフェノール樹脂としては、フェノール、m−クレゾール、3,5−キシレノール等の3官能フェノール化合物や、o−クレゾール、p−クレゾール、p−tert−ブチルフェノール等の2官能フェノール化合物とホルムアルデヒドとをアルカリ触媒の存在下で反応させたもの等を挙げることができる。この場合、フェノール化合物は単独あるいは2種以上の組み合わせにて使用される。   In the present invention, as the phenol resin, trifunctional phenol compounds such as phenol, m-cresol and 3,5-xylenol, bifunctional phenol compounds such as o-cresol, p-cresol and p-tert-butylphenol and formaldehyde are used. Examples include those reacted in the presence of an alkali catalyst. In this case, a phenol compound is used individually or in combination of 2 or more types.

本発明においてアミノ樹脂としては、尿素やメラミン、ベンゾグアナミン等のアミノ化合物にホルムアルデヒドを付加反応させたもの等を挙げることができる。この場合、アミノ化合物は単独あるいは2種以上の組み合わせにて使用される。   In the present invention, examples of amino resins include those obtained by addition reaction of formaldehyde with amino compounds such as urea, melamine, and benzoguanamine. In this case, an amino compound is used individually or in combination of 2 or more types.

上記フェノール樹脂やアミノ樹脂は、ホルムアルデヒドの付加により生成したメチロール基の一部ないし全部を、炭素数が1〜12なるアルコール類によってエーテル化した形のものも好適に用いられる。   As the phenol resin and amino resin, those obtained by etherifying some or all of the methylol groups formed by addition of formaldehyde with alcohols having 1 to 12 carbon atoms are also preferably used.

フェノール樹脂やアミノ樹脂を用いる場合には、アクリル変性エポキシ樹脂(A)100重量部に対して、0.5〜20重量部添加することが好ましく、1〜10重量部添加することがより好ましい。   When using a phenol resin or an amino resin, it is preferable to add 0.5-20 weight part with respect to 100 weight part of acrylic modified epoxy resins (A), and it is more preferable to add 1-10 weight part.

本発明の金属包装材用水性塗料は、必要に応じて塗装性を改良するための溶剤、界面活性剤や消泡剤を加えることも可能である。   The water-based coating material for metal packaging material of the present invention can be added with a solvent, a surfactant and an antifoaming agent for improving the paintability as required.

本発明の金属包装材用水性塗料は、種々の基材に適用することができ、金属板上に該水性塗料から形成された塗膜層を有する金属包装材を得ることができる。基材としては、例えばアルミニウム板、鋼板、ブリキ板等の無処理のまたは表面処理された各種金属や、これらの金属にプライマーを塗装した金属、あるいはこれらの金属にポリエステルフィルム(PET)をラミネートしたPET被覆金属等が挙げられる。本発明の金属包装材の用途としては、飲料や食品等を収容する金属缶が好ましい。その種類はDI缶(Drawing&Ironing法により製造された缶)、DR缶(Drawing&Redrawing法により製造された缶)、各種3ピース缶、フィルムラミネート缶等がある。   The water-based coating material for metal packaging material of the present invention can be applied to various substrates, and a metal packaging material having a coating layer formed from the water-based coating material on a metal plate can be obtained. As a base material, for example, various kinds of untreated or surface-treated metals such as an aluminum plate, a steel plate, a tin plate, a metal coated with a primer on these metals, or a polyester film (PET) laminated on these metals. Examples include PET-coated metals. As a use of the metal packaging material of the present invention, a metal can that contains beverages, foods and the like is preferable. The types include DI cans (cans manufactured by the drawing & ironing method), DR cans (cans manufactured by the drawing & redrawing method), various three-piece cans, and film laminate cans.

また基材の形状は、板状であっても有底円筒状であってもよい。本発明の金属包装材用水性塗料をこれら基材に塗布、硬化した後に、さらに変形加工を加えてもよい。種々の加工工程を経て、包装材を得ることができる。   Further, the shape of the substrate may be a plate shape or a bottomed cylindrical shape. After applying the aqueous coating material for metal packaging materials of the present invention to these substrates and curing, further deformation may be applied. A packaging material can be obtained through various processing steps.

本発明の金属包装材用水性塗料を基材に塗装する方法としては、公知の各種の方法、例えばロールコータ塗装、スプレー塗装、浸漬塗装や電着塗装等が適用できる。塗装した塗料の乾燥条件としては、通常、基材の表面温度が120〜300℃となる条件で10秒〜30分間が好ましい。   Various known methods such as roll coater coating, spray coating, dip coating, electrodeposition coating, and the like can be applied as a method for coating the base material with the water-based coating material for metal packaging material of the present invention. As drying conditions for the coated paint, it is usually preferable that the surface temperature of the substrate is 120 to 300 ° C. for 10 seconds to 30 minutes.

乾燥後の塗膜量は用途によって適宜選定すればよいが、通常5〜200mg/dm2程度が好ましい。特に、蓋の外面部として使用する場合は、10〜100mg/dm2が好ましい。 Coating amount after drying may be appropriately selected depending on the application, but usually about 5 to 200 mg / dm 2 is preferred. In particular, when used as the outer surface portion of the lid, 10 to 100 mg / dm 2 is preferable.

また、本発明の金属包装材は、その塗膜層の表面自由エネルギーが25〜45mN/mであることが好ましい。塗膜層の表面自由エネルギーが25mN/m未満であると、塗膜層に存在するワックス量が過多となり、ワックス堆積を引き起こす可能性がある。また、塗膜層の表面自由エネルギーが45mN/mよりも大きいと、塗膜層に存在するワックス量が少なくなる傾向にあり、塗膜の滑り性が低下したり、耐摩耗性が低下したりする懸念がある。尚、本発明における塗膜層の表面自由エネルギーとは、塗膜と液体試料の接触角を測定し算出したものである。測定には協和界面科学(株)製の自動接触角計「CA−V型」を使用し、液体試料に水、ヨウ化メチレン、n−ヘキサデカンを用い、それぞれの接触角を計測した。   The metal packaging material of the present invention preferably has a surface free energy of 25 to 45 mN / m of the coating layer. If the surface free energy of the coating layer is less than 25 mN / m, the amount of wax present in the coating layer becomes excessive, which may cause wax deposition. Also, if the surface free energy of the coating layer is greater than 45 mN / m, the amount of wax present in the coating layer tends to decrease, and the slipperiness of the coating layer decreases and the wear resistance decreases. There are concerns. The surface free energy of the coating layer in the present invention is calculated by measuring the contact angle between the coating and the liquid sample. For the measurement, an automatic contact angle meter “CA-V type” manufactured by Kyowa Interface Science Co., Ltd. was used, and water, methylene iodide, and n-hexadecane were used as liquid samples, and the respective contact angles were measured.

以下に、実施例により本発明を更に具体的に説明するが、これは本発明の権利範囲を何ら制限するものではない。尚、実施例中「部」、「%」はそれぞれ「重量部」、「重量%」を示す。   EXAMPLES The present invention will be described more specifically with reference to the following examples. However, this does not limit the scope of rights of the present invention. In the examples, “parts” and “%” indicate “parts by weight” and “% by weight”, respectively.

[製造例1]
<アクリル変性エポキシ樹脂(A−1)の合成>
撹拌機、温度計、還流冷却管、滴下槽、及び窒素ガス導入管を備えた反応容器に、JER1009(三菱化学(株)製ビスフェノールA型エポキシ樹脂)を210.0部、エチレングリコールモノブチルエーテル80部、n−ブタノール75部を仕込んで、120℃まで昇温して溶解させた。反応容器内の温度を120℃に保ちながら、メタクリル酸28.0部、スチレン35.0部、アクリル酸エチル7.0部、及び過酸化ベンゾイル2.8部からなる混合物を滴下槽から1時間にわたって連続滴下した。滴下終了から1時間後、及び2時間後に過酸化ベンゾイル0.4部をそれぞれ添加し、滴下終了から3時間にわたって反応を続け、その後に90℃まで冷却した。続いて、ジメチルアミノエタノール10.2部を添加して10分間撹拌した後、水485部を1時間かけて滴下し、不揮発分30%のアクリル変性エポキシ樹脂(A−1)の水分散体を得た。
[Production Example 1]
<Synthesis of acrylic modified epoxy resin (A-1)>
In a reaction vessel equipped with a stirrer, thermometer, reflux condenser, dropping tank, and nitrogen gas inlet tube, 210.0 parts of JER1009 (Mitsubishi Chemical Corporation bisphenol A type epoxy resin), ethylene glycol monobutyl ether 80 Part and 75 parts of n-butanol were charged and heated to 120 ° C. to dissolve. While maintaining the temperature in the reaction vessel at 120 ° C., a mixture of 28.0 parts of methacrylic acid, 35.0 parts of styrene, 7.0 parts of ethyl acrylate, and 2.8 parts of benzoyl peroxide was added from the dropping tank for 1 hour. It was dripped continuously over. After 1 hour and 2 hours from the end of dropping, 0.4 parts of benzoyl peroxide was added, and the reaction was continued for 3 hours from the end of dropping, and then cooled to 90 ° C. Subsequently, after 10.2 parts of dimethylaminoethanol was added and stirred for 10 minutes, 485 parts of water was added dropwise over 1 hour, and an aqueous dispersion of acrylic modified epoxy resin (A-1) having a nonvolatile content of 30% was obtained. Obtained.

[製造例2]
<アクリル変性エポキシ樹脂(A−2)の合成>
製造例1同様の反応容器に、JER1009を210.0部、エチレングリコールモノブチルエーテル80部、n−ブタノール75部を仕込んで、120℃まで昇温して溶解させた。反応容器内の温度を120℃に保ちながら、メタクリル酸28.0部、スチレン35.0部、アクリル酸エチル7.0部、及び過酸化ベンゾイル2.8部からなる混合物を滴下槽から1時間にわたって連続滴下した。滴下終了から1時間後、及び2時間後に過酸化ベンゾイル0.4部をそれぞれ添加し、滴下終了から3時間にわたって反応を続け、その後に90℃まで冷却した。
続いて、ジメチルアミノエタノール5.8部、水5.8部を混合して添加し、90℃で1時間エステル化反応を行った。
反応終了後にジメチルアミノエタノール4.4部を添加して10分間撹拌した後、水479部を1時間かけて滴下し、不揮発分30%のアクリル変性エポキシ樹脂(A−2)の水分散体を得た。
[Production Example 2]
<Synthesis of acrylic modified epoxy resin (A-2)>
In a reaction vessel similar to Production Example 1, 210.0 parts of JER1009, 80 parts of ethylene glycol monobutyl ether, and 75 parts of n-butanol were charged and heated to 120 ° C. for dissolution. While maintaining the temperature in the reaction vessel at 120 ° C., a mixture of 28.0 parts of methacrylic acid, 35.0 parts of styrene, 7.0 parts of ethyl acrylate, and 2.8 parts of benzoyl peroxide was added from the dropping tank for 1 hour. It was dripped continuously over. After 1 hour and 2 hours from the end of dropping, 0.4 parts of benzoyl peroxide was added, and the reaction was continued for 3 hours from the end of dropping, and then cooled to 90 ° C.
Subsequently, 5.8 parts of dimethylaminoethanol and 5.8 parts of water were mixed and added, and an esterification reaction was performed at 90 ° C. for 1 hour.
After completion of the reaction, 4.4 parts of dimethylaminoethanol was added and stirred for 10 minutes, and then 479 parts of water was added dropwise over 1 hour to prepare an aqueous dispersion of an acrylic-modified epoxy resin (A-2) having a nonvolatile content of 30%. Obtained.

[製造例3]
<アクリル変性エポキシ樹脂(A−3)の合成>
メタクリル酸を17.5部、スチレンを46.9部、アクリル酸エチルを5.6部とした以外は製造例1と同様にして、不揮発分30%のアクリル変性エポキシ樹脂(A−3)の水分散体を得た。
[Production Example 3]
<Synthesis of acrylic modified epoxy resin (A-3)>
The acrylic modified epoxy resin (A-3) having a nonvolatile content of 30% was prepared in the same manner as in Production Example 1 except that 17.5 parts of methacrylic acid, 46.9 parts of styrene, and 5.6 parts of ethyl acrylate were used. An aqueous dispersion was obtained.

[製造例4]
<アクリル変性エポキシ樹脂(A−4)の合成>
メタクリル酸を42.0部、スチレンを18.9部、アクリル酸エチルを9.1部とした以外は製造例1と同様にして、不揮発分30%のアクリル変性エポキシ樹脂(A−4)の水分散体を得た。
[Production Example 4]
<Synthesis of acrylic modified epoxy resin (A-4)>
The acrylic modified epoxy resin (A-4) having a nonvolatile content of 30% was prepared in the same manner as in Production Example 1 except that 42.0 parts of methacrylic acid, 18.9 parts of styrene, and 9.1 parts of ethyl acrylate were used. An aqueous dispersion was obtained.

[製造例5]
<アクリル変性エポキシ樹脂(A−5)の合成>
製造例1同様の反応容器に、JER1009を238.0部、エチレングリコールモノブチルエーテル80部、n−ブタノール75部を仕込んで、120℃まで昇温して溶解させた。反応容器内の温度を120℃に保ちながら、メタクリル酸16.8部、スチレン21.0部、アクリル酸エチル4.2部、及び過酸化ベンゾイル1.7部からなる混合物を滴下槽から1時間にわたって連続滴下した。滴下終了から1時間後、及び2時間後に過酸化ベンゾイル0.3部をそれぞれ添加し、滴下終了から3時間にわたって反応を続け、その後に90℃まで冷却した。続いて、ジメチルアミノエタノール10.2部を添加して10分間撹拌した後、水486部を1時間かけて滴下し、不揮発分30%のアクリル変性エポキシ樹脂(A−5)の水分散体を得た。
[Production Example 5]
<Synthesis of acrylic modified epoxy resin (A-5)>
In a reaction vessel similar to Production Example 1, 238.0 parts of JER1009, 80 parts of ethylene glycol monobutyl ether, and 75 parts of n-butanol were charged and heated to 120 ° C. for dissolution. While maintaining the temperature in the reaction vessel at 120 ° C., a mixture of 16.8 parts of methacrylic acid, 21.0 parts of styrene, 4.2 parts of ethyl acrylate, and 1.7 parts of benzoyl peroxide was added from the dropping tank for 1 hour. It was dripped continuously over. After 1 hour and 2 hours from the end of dropping, 0.3 part of benzoyl peroxide was added, and the reaction was continued for 3 hours from the end of dropping, and then cooled to 90 ° C. Subsequently, after 10.2 parts of dimethylaminoethanol was added and stirred for 10 minutes, 486 parts of water was added dropwise over 1 hour, and an aqueous dispersion of acrylic modified epoxy resin (A-5) having a nonvolatile content of 30% was obtained. Obtained.

[製造例6]
<アクリル変性エポキシ樹脂(A−6)の合成>
製造例1同様の反応容器に、JER1009を168.0部、エチレングリコールモノブチルエーテル80部、n−ブタノール75部を仕込んで、120℃まで昇温して溶解させた。反応容器内の温度を120℃に保ちながら、メタクリル酸44.8部、スチレン56.0部、アクリル酸エチル11.2部、及び過酸化ベンゾイル4.5部からなる混合物を滴下槽から1時間にわたって連続滴下した。滴下終了から1時間後、及び2時間後に過酸化ベンゾイル0.7部をそれぞれ添加し、滴下終了から3時間にわたって反応を続け、その後に90℃まで冷却した。続いて、ジメチルアミノエタノール10.2部を添加して10分間撹拌した後、水482部を1時間かけて滴下し、不揮発分30%のアクリル変性エポキシ樹脂(A−6)の水分散体を得た。
[Production Example 6]
<Synthesis of acrylic modified epoxy resin (A-6)>
In a reaction vessel similar to Production Example 1, 168.0 parts of JER1009, 80 parts of ethylene glycol monobutyl ether, and 75 parts of n-butanol were charged and heated to 120 ° C. to be dissolved. While maintaining the temperature in the reaction vessel at 120 ° C., a mixture of 44.8 parts of methacrylic acid, 56.0 parts of styrene, 11.2 parts of ethyl acrylate, and 4.5 parts of benzoyl peroxide was added from the dropping tank for 1 hour. It was dripped continuously over. After 1 hour and 2 hours from the end of dropping, 0.7 part of benzoyl peroxide was added, and the reaction was continued for 3 hours from the end of dropping, and then cooled to 90 ° C. Subsequently, after 10.2 parts of dimethylaminoethanol was added and stirred for 10 minutes, 482 parts of water was added dropwise over 1 hour, and an aqueous dispersion of acrylic modified epoxy resin (A-6) having a nonvolatile content of 30% was obtained. Obtained.

[製造例7]
<アクリル変性エポキシ樹脂(A−7)の合成>
製造例1同様の反応容器に、JER1009を210.0部、エチレングリコールモノブチルエーテル80部、n−ブタノール75部を仕込んで、120℃まで昇温して溶解させた。反応容器内の温度を120℃に保ちながら、メタクリル酸28.0部、スチレン35.0部、アクリル酸エチル7.0部、及び過酸化ベンゾイル4.2部からなる混合物を滴下槽から1時間にわたって連続滴下した。滴下終了から1時間後、及び2時間後に過酸化ベンゾイル0.6部をそれぞれ添加し、滴下終了から3時間にわたって反応を続け、その後に90℃まで冷却した。続いて、ジメチルアミノエタノール8.7部を添加して10分間撹拌した後、水484部を1時間かけて滴下し、不揮発分30%のアクリル変性エポキシ樹脂(A−7)の水分散体を得た。
[Production Example 7]
<Synthesis of acrylic modified epoxy resin (A-7)>
In a reaction vessel similar to Production Example 1, 210.0 parts of JER1009, 80 parts of ethylene glycol monobutyl ether, and 75 parts of n-butanol were charged and heated to 120 ° C. for dissolution. While maintaining the temperature in the reaction vessel at 120 ° C., a mixture of 28.0 parts of methacrylic acid, 35.0 parts of styrene, 7.0 parts of ethyl acrylate, and 4.2 parts of benzoyl peroxide was added from the dropping tank for 1 hour. It was dripped continuously over. After 1 hour and 2 hours from the end of dropping, 0.6 parts of benzoyl peroxide was added, and the reaction was continued for 3 hours from the end of dropping, and then cooled to 90 ° C. Subsequently, after adding 8.7 parts of dimethylaminoethanol and stirring for 10 minutes, 484 parts of water was added dropwise over 1 hour, and an aqueous dispersion of acrylic modified epoxy resin (A-7) having a nonvolatile content of 30% was obtained. Obtained.

[製造例8]
<アクリル変性エポキシ樹脂(A−8)の合成>
製造例1同様の反応容器に、JER1009を210.0部、エチレングリコールモノブチルエーテル80部、n−ブタノール75部を仕込んで、120℃まで昇温して溶解させた。反応容器内の温度を120℃に保ちながら、メタクリル酸28.0部、スチレン35.0部、アクリル酸エチル7.0部、及び過酸化ベンゾイル2.8部からなる混合物を滴下槽から1時間にわたって連続滴下した。滴下終了から1時間後、及び2時間後に過酸化ベンゾイル0.4部をそれぞれ添加し、滴下終了から3時間にわたって反応を続け、その後に90℃まで冷却した。
続いて、ジメチルアミノエタノール10.2部、水10.2部を混合して添加し、90℃で2時間エステル化反応を行った。
反応終了後に水474部を1時間かけて滴下し、不揮発分30%のアクリル変性エポキシ樹脂(A−8)の水分散体を得た。
[Production Example 8]
<Synthesis of acrylic modified epoxy resin (A-8)>
In a reaction vessel similar to Production Example 1, 210.0 parts of JER1009, 80 parts of ethylene glycol monobutyl ether, and 75 parts of n-butanol were charged and heated to 120 ° C. for dissolution. While maintaining the temperature in the reaction vessel at 120 ° C., a mixture of 28.0 parts of methacrylic acid, 35.0 parts of styrene, 7.0 parts of ethyl acrylate, and 2.8 parts of benzoyl peroxide was added from the dropping tank for 1 hour. It was dripped continuously over. After 1 hour and 2 hours from the end of dropping, 0.4 parts of benzoyl peroxide was added, and the reaction was continued for 3 hours from the end of dropping, and then cooled to 90 ° C.
Subsequently, 10.2 parts of dimethylaminoethanol and 10.2 parts of water were mixed and added, and an esterification reaction was performed at 90 ° C. for 2 hours.
After completion of the reaction, 474 parts of water was added dropwise over 1 hour to obtain an aqueous dispersion of an acrylic-modified epoxy resin (A-8) having a nonvolatile content of 30%.

[製造例9]
<ワックス分散用アクリル樹脂溶液(f)の合成>
撹拌機、温度計、還流冷却管、滴下槽、及び窒素ガス導入管を備えた反応容器に、n−ブタノール590部を仕込み110℃に昇温した。メタクリル酸90部、スチレン105部、アクリル酸エチル105部、n−ブタノール100部、過酸化ベンゾイル5部の混合物を滴下槽から3時間にわたって連続滴下した。滴下終了から1時間後、及び2時間後に過酸化ベンゾイル0.5部をそれぞれ添加し、滴下終了から3時間にわたって反応を続け、数平均分子量17000、酸価195mgKOH/g、不揮発分30%のアクリル樹脂溶液を得た。これをワックス分散用アクリル樹脂溶液(f)とする。
[Production Example 9]
<Synthesis of acrylic resin solution (f) for wax dispersion>
590 parts of n-butanol was charged into a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, a dropping tank, and a nitrogen gas introduction tube, and the temperature was raised to 110 ° C. A mixture of 90 parts of methacrylic acid, 105 parts of styrene, 105 parts of ethyl acrylate, 100 parts of n-butanol and 5 parts of benzoyl peroxide was continuously added dropwise from a dropping tank over 3 hours. After 1 hour and 2 hours from the end of the dropwise addition, 0.5 parts of benzoyl peroxide was added, and the reaction was continued for 3 hours after the completion of the dropwise addition. Acrylic having a number average molecular weight of 17000, an acid value of 195 mgKOH / g, and a nonvolatile content of 30% A resin solution was obtained. This is designated as an acrylic resin solution (f) for wax dispersion.

[製造例10]
<ワックス水性分散体(B−1)の製造>
撹拌機、温度計、還流冷却管、滴下槽、及び窒素ガス導入管を備えた反応容器に、精製カルナバワックス100部、製造例4で得られたワックス分散用アクリル樹脂溶液(f)16.2部を仕込み、90℃に昇温して混合溶解した。次いで、ジメチルアミノエタノール3.1部を加えて撹拌した後、反応容器内の温度を85〜90℃に保持しながら水880部を徐々に添加することで乳化した。添加終了後、1時間かけて40℃まで冷却して不揮発分11%、ワックス分濃度10%、平均粒子径0.3μmのワックス分散体を得た。これをワックス水性分散体(B−1)とする。
[Production Example 10]
<Production of aqueous wax dispersion (B-1)>
In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, a dripping tank, and a nitrogen gas introduction tube, 100 parts of purified carnauba wax, acrylic resin solution (f) 16.2 for wax dispersion obtained in Production Example 4 The portion was charged and heated to 90 ° C. and dissolved by mixing. Next, 3.1 parts of dimethylaminoethanol was added and stirred, and then emulsified by gradually adding 880 parts of water while maintaining the temperature in the reaction vessel at 85 to 90 ° C. After completion of the addition, the mixture was cooled to 40 ° C. over 1 hour to obtain a wax dispersion having a nonvolatile content of 11%, a wax content concentration of 10%, and an average particle size of 0.3 μm. This is designated as wax aqueous dispersion (B-1).

[製造例11]
<ワックス水性分散体(B−2)の製造>
撹拌機、温度計、還流冷却管、滴下槽、及び窒素ガス導入管を備えた反応容器に、「S394−N5」(Shamrock Technologies社製ポリエチレンワックス)80部、精製カルナバワックス20部、エチレングリコールモノブチルエーテル900部を仕込み、120℃に昇温して混合溶解した後、ジメチルアミノエタノール2.1部を仕込み撹拌した。次いで、界面活性剤の不存在の条件で、高速撹拌下において反応容器内の混合溶解物を1時間かけて60℃まで序序に冷却してワックスを析出させ、さらに40℃まで冷却して不揮発分10%、平均粒子径8μmのワックス分散体を得た。これをワックス水性分散体(B−2)とする。
[Production Example 11]
<Production of aqueous wax dispersion (B-2)>
In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, a dripping tank, and a nitrogen gas introduction tube, 80 parts of “S394-N5” (polyethylene wax manufactured by Shamrock Technologies), 20 parts of purified carnauba wax, ethylene glycol mono After adding 900 parts of butyl ether and heating to 120 ° C. to dissolve the mixture, 2.1 parts of dimethylaminoethanol was added and stirred. Next, under the absence of a surfactant, the mixed solution in the reaction vessel is gradually cooled to 60 ° C. over 1 hour under high-speed stirring to precipitate wax, and further cooled to 40 ° C. to become non-volatile. A wax dispersion having a content of 10% and an average particle size of 8 μm was obtained. This is designated as wax aqueous dispersion (B-2).

[製造例12]
<ワックス水性分散体(B−3)の製造>
撹拌機、温度計を備えた反応容器に、「S394−N5」20部、エチレングリコールモノブチルエーテル80部を仕込み撹拌して、不揮発分20%、平均粒子径18μmのワックス分散体を得た。これをワックス水性分散体(B−3)とする。
[Production Example 12]
<Production of aqueous wax dispersion (B-3)>
In a reaction vessel equipped with a stirrer and a thermometer, 20 parts of “S394-N5” and 80 parts of ethylene glycol monobutyl ether were charged and stirred to obtain a wax dispersion having a non-volatile content of 20% and an average particle diameter of 18 μm. This is designated as wax aqueous dispersion (B-3).

[実施例1]
製造例1で得られたアクリル変性エポキシ樹脂(A−1)の水分散体を100部、「Hydrocer257」(Shamrock Technologies社製ポリエチレンワックス水性分散体、平均粒子径5μm、不揮発分50%)を0.60部、「SL506」(エレメンティス・ジャパン株式会社製カルナバワックス水性分散体、平均粒子径2μm、不揮発分18.5%)を1.62部、水7部を添加し、不揮発分28%の金属包装材用水性塗料を得た。得られた塗料のせん断速度10000s-1における粘度ηH(以下、単にηHと言う)は47mPa・sであり、せん断速度0.1s-1の低せん断速度条件の粘度ηLと、前述のせん断速度10000s-1における粘度ηHとの粘度比ηL/ηH(以下、単にηL/ηHと言う)は3.2であった。表面張力は27.1mN/mであった。
[Example 1]
100 parts of an aqueous dispersion of the acrylic-modified epoxy resin (A-1) obtained in Production Example 1 and “Hydrocer 257” (polyethylene wax aqueous dispersion manufactured by Shamrock Technologies, average particle diameter of 5 μm, non-volatile content of 50%) .60 parts, "SL506" (Carnauba wax aqueous dispersion manufactured by Elementis Japan Co., Ltd., average particle diameter 2 μm, nonvolatile content 18.5%) 1.62 parts, water 7 parts, nonvolatile content 28% The water-based paint for metal packaging materials was obtained. The obtained coating material has a viscosity η H (hereinafter simply referred to as η H ) at a shear rate of 10,000 s −1 of 47 mPa · s, a viscosity η L under a low shear rate condition with a shear rate of 0.1 s −1 , The viscosity ratio η L / η H (hereinafter simply referred to as η L / η H ) with the viscosity η H at a shear rate of 10,000 s −1 was 3.2. The surface tension was 27.1 mN / m.

[実施例2]
実施例1で得られた金属包装材用水性塗料100部の撹拌下に、粘度調整剤としてジメチルアミノエタノールを0.1部添加し、不揮発分28%の金属包装材用水性塗料を得た。得られた塗料のηHは68mPa・sであり、ηL/ηHは4.5であった。表面張力は26.9mN/mであった。
[Example 2]
While stirring 100 parts of the water-based coating material for metal packaging material obtained in Example 1, 0.1 part of dimethylaminoethanol as a viscosity modifier was added to obtain a water-based coating material for metal packaging material having a nonvolatile content of 28%. Η H of the obtained coating material was 68 mPa · s, and η L / η H was 4.5. The surface tension was 26.9 mN / m.

[実施例3]
実施例1で得られた金属包装材用水性塗料100部の撹拌下に、ジメチルアミノエタノール0.3部を撹拌混合し、不揮発分28%の金属包装材用水性塗料を得た。得られた塗料のηHは98mPa・sであり、ηL/ηHは5.2であった。表面張力は27.0mN/mであった。
[Example 3]
Under stirring of 100 parts of the aqueous coating material for metal packaging material obtained in Example 1, 0.3 part of dimethylaminoethanol was stirred and mixed to obtain an aqueous coating material for metal packaging material having a nonvolatile content of 28%. Η H of the obtained paint was 98 mPa · s, and η L / η H was 5.2. The surface tension was 27.0 mN / m.

[実施例4]
アクリル変性エポキシ樹脂(A−1)の代わりに、アクリル変性エポキシ樹脂(A−2)の水分散体を100部用いた以外は、実施例1同様にして不揮発分28%の金属包装材用水性塗料を得た。得られた塗料のηHは45mPa・sであり、ηL/ηHは7.6であった。表面張力は26.7mN/mであった。
[Example 4]
Instead of the acrylic modified epoxy resin (A-1), an aqueous solution for metal packaging material having a non-volatile content of 28% was obtained in the same manner as in Example 1 except that 100 parts of an aqueous dispersion of the acrylic modified epoxy resin (A-2) was used. A paint was obtained. Η H of the obtained paint was 45 mPa · s, and η L / η H was 7.6. The surface tension was 26.7 mN / m.

[実施例5]
「SL506」の代わりにワックス水性分散体(B−1)を3部用い、水を6部添加した以外は、実施例1と同様にして不揮発分28%の金属包装材用水性塗料を得た。得られた塗料のηHは43mPa・sであり、ηL/ηHは3.3であった。表面張力は26.8mN/mであった。
[Example 5]
An aqueous coating material for metal packaging materials having a nonvolatile content of 28% was obtained in the same manner as in Example 1 except that 3 parts of the aqueous wax dispersion (B-1) was used instead of “SL506” and 6 parts of water was added. . Η H of the obtained paint was 43 mPa · s, and η L / η H was 3.3. The surface tension was 26.8 mN / m.

[実施例6]
「Hydrocer257」の代わりにワックス水性分散体(B−2)を3部用い、水を5部添加した以外は、実施例1と同様にして不揮発分28%の金属包装材用水性塗料を得た。得られた塗料のηHは51mPa・sであり、ηL/ηHは3.2であった。表面張力は26.9mN/mであった。
[Example 6]
An aqueous coating material for metal packaging materials having a nonvolatile content of 28% was obtained in the same manner as in Example 1 except that 3 parts of the aqueous wax dispersion (B-2) was used instead of “Hydrocer 257” and 5 parts of water was added. . Η H of the obtained paint was 51 mPa · s, and η L / η H was 3.2. The surface tension was 26.9 mN / m.

[実施例7]
「SL506」、「Hydrocer257」の代わりにワックス水性分散体(B−1)を3部、ワックス水性分散体(B−2)を3部それぞれ用い、水を3部添加した以外は、実施例1と同様にして不揮発分28%の金属包装材用水性塗料を得た。得られた塗料のηHは49mPa・sであり、ηL/ηHは3.5であった。表面張力は27.0mN/mであった。
[Example 7]
Example 1 except that 3 parts of the aqueous wax dispersion (B-1) and 3 parts of the aqueous wax dispersion (B-2) were used instead of “SL506” and “Hydrocer 257” respectively, and 3 parts of water was added. In the same manner as above, an aqueous coating material for metal packaging material having a nonvolatile content of 28% was obtained. Η H of the obtained paint was 49 mPa · s, and η L / η H was 3.5. The surface tension was 27.0 mN / m.

[実施例8]
アクリル変性エポキシ樹脂(A−1)の代わりに、アクリル変性エポキシ樹脂(A−3)の水分散体を100部用いた以外は、実施例1と同様にして不揮発分28%の金属包装材用水性塗料を得た。得られた塗料のηHは39mPa・sであり、ηL/ηHは3.3であった。表面張力は27.3mN/mであった。
[Example 8]
For metal packaging materials having a non-volatile content of 28% in the same manner as in Example 1 except that 100 parts of an aqueous dispersion of acrylic modified epoxy resin (A-3) was used instead of acrylic modified epoxy resin (A-1). An aqueous paint was obtained. Η H of the obtained paint was 39 mPa · s, and η L / η H was 3.3. The surface tension was 27.3 mN / m.

[実施例9]
アクリル変性エポキシ樹脂(A−1)の代わりに、アクリル変性エポキシ樹脂(A−4)の水分散体を100部用いた以外は、実施例1と同様にして不揮発分28%の金属包装材用水性塗料を得た。得られた塗料のηHは59mPa・sであり、ηL/ηHは3.8であった。表面張力は27.2mN/mであった。
[Example 9]
For metal packaging materials having a non-volatile content of 28% in the same manner as in Example 1 except that 100 parts of an aqueous dispersion of acrylic modified epoxy resin (A-4) was used instead of acrylic modified epoxy resin (A-1). An aqueous paint was obtained. Η H of the obtained paint was 59 mPa · s, and η L / η H was 3.8. The surface tension was 27.2 mN / m.

[実施例10]
アクリル変性エポキシ樹脂(A−1)の代わりに、アクリル変性エポキシ樹脂(A−5)の水分散体を100部用いた以外は、実施例1と同様にして不揮発分28%の金属包装材用水性塗料を得た。得られた塗料のηHは40mPa・sであり、ηL/ηHは2.8であった。表面張力は27.4mN/mであった。
[Example 10]
For metal packaging materials having a non-volatile content of 28% in the same manner as in Example 1 except that 100 parts of an aqueous dispersion of acrylic modified epoxy resin (A-5) was used instead of acrylic modified epoxy resin (A-1). An aqueous paint was obtained. Η H of the obtained paint was 40 mPa · s, and η L / η H was 2.8. The surface tension was 27.4 mN / m.

[実施例11]
アクリル変性エポキシ樹脂(A−1)の代わりに、アクリル変性エポキシ樹脂(A−6)の水分散体を100部用いた以外は、実施例1と同様にして不揮発分28%の金属包装材用水性塗料を得た。得られた塗料のηHは52mPa・sであり、ηL/ηHは5.8であった。表面張力は27.1mN/mであった。
[Example 11]
For metal packaging materials having a non-volatile content of 28% in the same manner as in Example 1 except that 100 parts of an aqueous dispersion of acrylic modified epoxy resin (A-6) was used instead of acrylic modified epoxy resin (A-1). An aqueous paint was obtained. Η H of the obtained paint was 52 mPa · s, and η L / η H was 5.8. The surface tension was 27.1 mN / m.

[実施例12]
実施例1で得た金属包装材用水性塗料100部の撹拌下に、「PR−C−10」(住友ベークライト(株)製フェノール樹脂溶液、不揮発分50%)1.65部、水1部を添加し、不揮発分が28%の金属包装材用水性塗料を得た。得られた塗料のηHは48mPa・sであり、ηL/ηHは3.5であった。表面張力は27.0mN/mであった。
[Example 12]
Under stirring of 100 parts of the water-based coating for metal packaging material obtained in Example 1, 1.65 parts of “PR-C-10” (Sumitomo Bakelite Co., Ltd. phenol resin solution, nonvolatile content 50%), 1 part of water Was added to obtain a water-based paint for metal packaging materials having a nonvolatile content of 28%. Η H of the obtained paint was 48 mPa · s, and η L / η H was 3.5. The surface tension was 27.0 mN / m.

[比較例1]
アクリル変性エポキシ樹脂(A−1)の代わりに、アクリル変性エポキシ樹脂(A−7)の水分散体を100部用いた以外は、実施例1と同様にして不揮発分28%の金属包装材用水性塗料を得た。得られた塗料のηHは18mPa・sであり、ηL/ηHは2.5であった。表面張力は26.9mN/mであった。
[Comparative Example 1]
For metal packaging materials having a non-volatile content of 28% in the same manner as in Example 1 except that 100 parts of an aqueous dispersion of acrylic modified epoxy resin (A-7) was used instead of acrylic modified epoxy resin (A-1). An aqueous paint was obtained. Η H of the obtained paint was 18 mPa · s, and η L / η H was 2.5. The surface tension was 26.9 mN / m.

[比較例2]
アクリル変性エポキシ樹脂(A−1)の代わりに、アクリル変性エポキシ樹脂(A−8)の水分散体を100部用いた以外は、実施例1と同様にして不揮発分28%の金属包装材用水性塗料を得た。得られた塗料のηHは46mPa・sであり、ηL/ηHは8.6であった。表面張力は27.5mN/mであった。
[Comparative Example 2]
For metal packaging materials having a non-volatile content of 28% in the same manner as in Example 1 except that 100 parts of an aqueous dispersion of acrylic modified epoxy resin (A-8) was used instead of acrylic modified epoxy resin (A-1). An aqueous paint was obtained. Η H of the obtained paint was 46 mPa · s, and η L / η H was 8.6. The surface tension was 27.5 mN / m.

[比較例3]
実施例1で得られた金属包装材用水性塗料100部の撹拌下に、ジメチルアミノエタノール0.6部を撹拌混合し、不揮発分28%の金属包装材用水性塗料を得た。得られた塗料のηHは119mPa・sであり、ηL/ηHは5.6であった。表面張力は27.4mN/mであった。
[Comparative Example 3]
Under stirring of 100 parts of the water-based coating material for metal packaging material obtained in Example 1, 0.6 part of dimethylaminoethanol was stirred and mixed to obtain a water-based coating material for metal packaging material having a nonvolatile content of 28%. Η H of the obtained paint was 119 mPa · s, and η L / η H was 5.6. The surface tension was 27.4 mN / m.

[比較例4]
「Hydrocer257」の代わりにワックス水性分散体(B−3)を1.5部用い、水を6部添加した以外は、実施例1と同様にして不揮発分28%の金属包装材用水性塗料を得た。得られた塗料のηHは49mPa・sであり、ηL/ηHは3.5であった。表面張力は26.9mN/mであった。
[Comparative Example 4]
An aqueous coating material for metal packaging materials having a nonvolatile content of 28% was obtained in the same manner as in Example 1 except that 1.5 parts of the aqueous wax dispersion (B-3) was used instead of “Hydrocer 257” and 6 parts of water was added. Obtained. Η H of the obtained paint was 49 mPa · s, and η L / η H was 3.5. The surface tension was 26.9 mN / m.

[物性の評価]
実施例1〜12、比較例1〜4で得られた金属包装材用水性塗料の塗装性を評価した。また、各水性塗料を塗装して試験パネルを作成し、下記に示す項目において塗膜の諸物性を評価した。尚、試験パネルは、0.26mm厚のアルミ板上に各水性塗料を乾燥塗膜重量が45mg/dm2となるようバーコーターで塗装し、次いで、250℃に設定されたオーブンにて1分間焼付けて作成した。
[Evaluation of physical properties]
The paintability of the water-based paints for metal packaging materials obtained in Examples 1 to 12 and Comparative Examples 1 to 4 was evaluated. In addition, each water-based paint was applied to prepare a test panel, and various physical properties of the coating film were evaluated in the following items. The test panel was prepared by coating each water-based paint on a 0.26 mm thick aluminum plate with a bar coater so that the dry coating weight was 45 mg / dm 2, and then in an oven set at 250 ° C. for 1 minute. Created by baking.

<塗装性>
リバースコーターを用い、実施例1〜12、及び比較例1〜4で得られた金属包装材用水性塗料の塗装性を確認した。室温26℃で塗膜量45mg/dm2になるように、リバースコーターの条件を「周速比:バックアップロール/アプリケーションロール/ピックアップロール=1/1.1〜1.7/0.3」として塗装しその塗膜状態を目視にて評価した。塗装は、バックアップロール上に貼付した、枚葉状のアルミニウム板を基材としておこなった。評価基準は下記のとおりである。
◎:塗装欠陥なし。良好。
○:ごくわずかに塗装ムラ、ロール目、ワキのいずれかがある。実用上問題なし。
△:はっきりと塗装ムラ、ロール目、ワキのいずれかがある。使用できない。
×:著しい塗装ムラ、ロール目、ワキのいずれかがある。使用できない。
<Paintability>
Using a reverse coater, the paintability of the water-based paints for metal packaging materials obtained in Examples 1 to 12 and Comparative Examples 1 to 4 was confirmed. The condition of the reverse coater is “peripheral speed ratio: backup roll / application roll / pickup roll = 1 / 1.1 to 1.7 / 0.3” so that the coating amount is 45 mg / dm 2 at room temperature of 26 ° C. It was painted and its coating state was visually evaluated. The coating was performed using a sheet-like aluminum plate affixed on a backup roll as a base material. The evaluation criteria are as follows.
A: There is no coating defect. Good.
○: There is very little coating unevenness, roll eyes, or armpits. There is no practical problem.
Δ: Clearly any of coating unevenness, roll eyes, or armpits. I can not use it.
X: There are any significant coating unevenness, roll eyes, or armpits. I can not use it.

<動摩擦係数>
試験パネルの塗膜面に、3個の鋼球がついた重さ1kgの錘を、鋼球が塗膜面と接するようにして乗せ、この錘を150cm/分の速さで引っ張り、このときの動摩擦係数を測定した。動摩擦係数が小さいほど滑り性は良好である。
<Dynamic friction coefficient>
A weight of 1 kg with three steel balls attached to the coating surface of the test panel was placed so that the steel balls were in contact with the coating surface, and this weight was pulled at a speed of 150 cm / min. The dynamic friction coefficient of was measured. The smaller the dynamic friction coefficient, the better the slipperiness.

<引っ掻き測定>
トライボギアHEIDON−22H(新東科学(株)製)を使用し、引っ掻き針ダイヤ100ミクロン、引っ掻き長さ50mm、引っ掻き速度300mm/分の条件において、連続的に0〜500gまで荷重を掛けて引っ掻き測定を行った。塗膜に傷が発生し、その傷がアルミ基材に到達した際の荷重を測定した。
◎:傷の発生なし。良好。
○:荷重400g以上。実用上問題なし。
△:荷重300g以上400g未満。使用できない。
×:荷重300g未満。使用できない。
<Scratch measurement>
Using tribogear HEIDON-22H (manufactured by Shinto Kagaku Co., Ltd.), scratch measurement with a scratch needle of 100 microns, a scratch length of 50 mm, and a scratch speed of 300 mm / min. Went. The coating film was scratched, and the load when the scratch reached the aluminum substrate was measured.
(Double-circle): There is no generating of a crack. Good.
○: Load 400 g or more. There is no practical problem.
(Triangle | delta): Load 300g or more and less than 400g. I can not use it.
X: Load is less than 300 g. I can not use it.

<耐摩耗性>
トライボギアHEIDON−22H(新東科学(株)製)を使用し、荷重1000g、往復幅2mm、往復速度300mm/分の条件において、接触子φ3mmのステンレス球を試験パネル上で往復運動させた。塗膜に傷が発生し、その傷がアルミ基材に到達するまでの往復回数を測定した。
◎:往復回数が1000回以上。良好。
○:500回以上1000回未満。実用上問題なし。
△:200回以上500回未満。使用できない。
×:200回未満。使用できない。
<Abrasion resistance>
Using a tribogear HEIDON-22H (manufactured by Shinto Kagaku Co., Ltd.), a stainless steel ball having a contact diameter of 3 mm was reciprocated on the test panel under the conditions of a load of 1000 g, a reciprocating width of 2 mm, and a reciprocating speed of 300 mm / min. The coating film was scratched and the number of reciprocations until the scratch reached the aluminum substrate was measured.
A: The number of round trips is 1000 times or more. Good.
○: 500 times or more and less than 1000 times. There is no practical problem.
Δ: 200 times or more and less than 500 times. I can not use it.
X: Less than 200 times. I can not use it.

<折り曲げ加工性>
試験パネルを大きさ30mm×50mmに切断し、塗膜を外側にして、試験部位が30mmの幅になるように手で予め折り曲げ、この2つ折りにした試験片の間に厚さ0.26mmのアルミ板を5枚はさみ、1kgの荷重を高さ40cmから折り曲げ部に落下させて完全に折り曲げた。次いで、試験片の折り曲げ先端部を濃度1%の食塩水中に浸漬させ、試験片の、食塩水中に浸漬されていない金属部分と、食塩水との間を6.0V×6秒通電した時の電流値を測定した。
塗膜の加工性が乏しい場合、折り曲げ加工部の塗膜がひび割れて、下地の金属板が露出して導電性が高まるため、高い電流値が得られる。
◎:5.0mA未満。良好。
○:5.0mA以上10mA未満。実用上問題なし。
△:10mA以上20mA未満。使用できない。
×:20mA以上。使用できない。
<Bending workability>
The test panel is cut into a size of 30 mm × 50 mm, the coating is on the outside, the hand is previously folded by hand so that the test site has a width of 30 mm, and a thickness of 0.26 mm is placed between the two test pieces. The aluminum plate was sandwiched between 5 sheets, and a 1 kg load was dropped from a height of 40 cm onto the bent portion and completely bent. Next, the bent tip of the test piece was immersed in a 1% strength saline solution, and 6.0 V × 6 seconds was passed between the metal part of the test piece not immersed in the saline solution and the saline solution. The current value was measured.
When the processability of the coating film is poor, the coating film in the bent portion is cracked, the underlying metal plate is exposed, and the conductivity is increased, so that a high current value can be obtained.
A: Less than 5.0 mA. Good.
○: 5.0 mA or more and less than 10 mA. No problem in practical use.
Δ: 10 mA or more and less than 20 mA. I can not use it.
X: 20 mA or more. I can not use it.

<密着性>
試験パネルを水に浸漬したまま、レトルト釜で130℃−1時間レトルト処理を行った。処理後の塗膜面にカッターにてクロスカットをした後、セロハン粘着テープを貼着し、強く剥離した後の塗膜面の剥離状態について評価を行った。
◎:全く剥離なし。良好。
○:5%未満の剥離あり。実用上問題なし。
△:5〜20%の剥離あり。使用できない。
×:20%を超える剥離あり。使用できない。
<Adhesion>
While the test panel was immersed in water, retort treatment was performed in a retort kettle at 130 ° C. for 1 hour. After the cut surface of the coated film was cross-cut with a cutter, a cellophane pressure-sensitive adhesive tape was attached, and the peeled state of the coated surface after being strongly peeled was evaluated.
A: No peeling at all. Good.
○: Less than 5% peeling. No problem in practical use.
(Triangle | delta): There exists peeling of 5-20%. I can not use it.
X: Peeling exceeding 20%. I can not use it.

<耐水性>
試験パネルを水に浸漬したまま、レトルト釜で130℃−1時間レトルト処理を行い、塗膜の外観について目視で評価した。
◎:未処理の塗膜と変化なし。良好。
○:軽微な白化。実用上問題なし。
△:やや白化。使用できない。
×:著しく白化。使用できない。
<Water resistance>
While the test panel was immersed in water, a retort treatment was performed at 130 ° C. for 1 hour in a retort kettle, and the appearance of the coating film was visually evaluated.
A: Untreated coating film and no change. Good.
○: Slight whitening. There is no practical problem.
Δ: Slightly whitened. I can not use it.
X: Remarkably whitened. I can not use it.

<ワックス堆積性>
製蓋プレス機を用いて、各試験パネルにつき200枚の製蓋加工を行った後、試験パネルからプレス金型に付着堆積したワックスについて目視で評価した。
◎:堆積物なし。良好。
○:わずかに堆積物あり。実用上問題なし。
△:堆積物あり。使用できない。
×:著しく堆積物あり。使用できない。
<Wax depositability>
Using a lid-making press, 200 lids were processed for each test panel, and then the wax deposited on the press mold from the test panel was visually evaluated.
(Double-circle): There is no deposit. Good.
○: Slightly deposited. There is no practical problem.
Δ: There is a deposit. I can not use it.
X: Remarkably deposited. I can not use it.

表2に実施例1〜12、及び比較例1〜4で得られた金属包装材用水性塗料の塗装性、及びこれら水性塗料から得られた塗膜物性の評価結果を示す。   Table 2 shows the coating properties of the water-based coatings for metal packaging materials obtained in Examples 1 to 12 and Comparative Examples 1 to 4, and the evaluation results of the coating film properties obtained from these water-based coatings.

Figure 0005958211
Figure 0005958211

Figure 0005958211
Figure 0005958211

表2に示すように、実施例1〜12の金属包装材用水性塗料は、すべての物性が良好であったのに対し、比較例1〜4の金属包装材用水性塗料では物性のいずれかが不良であり、全てが良好となるものは得られなかった。   As shown in Table 2, while the water-based coatings for metal packaging materials of Examples 1 to 12 all had good physical properties, the water-based coatings for metal packaging materials of Comparative Examples 1 to 4 were either of physical properties. However, it was not possible to obtain a product that was all good.

Claims (9)

アクリル変性エポキシ樹脂(A)の水分散体、及び分散粒子の平均粒子径が0.01〜15μmであるワックス水性分散体(B)を含み、
アクリル変性エポキシ樹脂(A)が、カルボキシル基含有モノマーを含むエチレン性不飽和モノマー(C)と、エポキシ樹脂(D)とを使用して得られる複合樹脂であって、
エチレン性不飽和モノマー(C)のカルボキシル基濃度が2.7〜7.1mmol/gであり、
エチレン性不飽和モノマー(C)とエポキシ樹脂(D)との重量比が、(C)/(D)=10/90〜50/50であり、
25℃でのせん断速度10000s-1における粘度ηHが20〜100mPa・sであり、且つ、せん断速度0.1s-1における粘度ηLと、せん断速度10000s-1における粘度ηHとの比ηL/ηHが1〜8であることを特徴とする金属包装材用水性塗料。
An aqueous dispersion of an acrylic-modified epoxy resin (A), and an aqueous wax dispersion (B) having an average particle diameter of 0.01 to 15 μm,
The acrylic-modified epoxy resin (A) is a composite resin obtained by using an ethylenically unsaturated monomer (C) containing a carboxyl group-containing monomer and an epoxy resin (D),
The ethylenically unsaturated monomer (C) has a carboxyl group concentration of 2.7 to 7.1 mmol / g,
The weight ratio of the ethylenically unsaturated monomer (C) and the epoxy resin (D) is (C) / (D) = 10/90 to 50/50,
Viscosity eta H at a shear rate 10000s -1 at 25 ° C. is 20~100mPa · s, and a viscosity eta L at a shear rate of 0.1s -1, the ratio of the viscosity eta H at a shear rate of 10000s -1 eta L / (eta) H is 1-8, The water-based coating material for metal packaging materials characterized by the above-mentioned.
表面張力が25〜33mN/mであることを特徴とする請求項記載の金属包装材用水性塗料。 The surface tension is 25 to 33 mN / m, the water-based paint for metal packaging materials according to claim 1 . アルキル基の炭素数1〜6であるアルキレングリコールモノアルキルエーテル及びアルキル基の炭素数1〜10であるアルキルアルコールを含む有機溶剤(E)を、5〜30重量%含有する請求項1または2記載の金属包装材用水性塗料。 The organic solvent comprising an alkyl alcohol is a C1-10 alkylene glycol monoalkyl ethers and alkyl group is 1-6 carbon atoms alkyl group (E), according to claim 1 or 2, wherein containing 5-30 wt% Water-based paint for metal packaging materials. 前記ワックス水性分散体(B)は、水性媒体とワックスとの乳化分散体であるワックス水性分散体(b2)を含み、かつ前記アクリル変性エポキシ樹脂(A)100重量部に対して、前記ワックスを0.1〜10重量部含む、請求項1〜3いずれか1項に記載の金属包装材用水性塗料。The aqueous wax dispersion (B) includes an aqueous wax dispersion (b2) that is an emulsified dispersion of an aqueous medium and a wax, and the wax is added to 100 parts by weight of the acrylic-modified epoxy resin (A). The water-based coating material for metal packaging materials according to any one of claims 1 to 3, comprising 0.1 to 10 parts by weight. アクリル変性エポキシ樹脂(A)の水分散体、及び分散粒子の平均粒子径が0.01〜15μmであるワックス水性分散体(B)を混合する金属包装材用水性塗料の製造方法であって、An aqueous dispersion of an acrylic-modified epoxy resin (A), and a method for producing a water-based coating for a metal packaging material, comprising mixing an aqueous wax dispersion (B) having an average particle diameter of 0.01 to 15 μm.
前記アクリル変性エポキシ樹脂(A)が、カルボキシル基含有モノマーを含むエチレン性不飽和モノマー(C)と、エポキシ樹脂(D)とを反応させる複合樹脂であり、  The acrylic-modified epoxy resin (A) is a composite resin in which an ethylenically unsaturated monomer (C) containing a carboxyl group-containing monomer and an epoxy resin (D) are reacted.
前記エチレン性不飽和モノマー(C)は、カルボキシル基濃度が2.7〜7.1mmol/gとなるように配合し、The ethylenically unsaturated monomer (C) is blended so that the carboxyl group concentration is 2.7 to 7.1 mmol / g,
前記エチレン性不飽和モノマー(C)と前記エポキシ樹脂(D)との重量比が、(C)/(D)=10/90〜50/50となるように使用し、The weight ratio of the ethylenically unsaturated monomer (C) and the epoxy resin (D) is used so that (C) / (D) = 10/90 to 50/50,
ワックス水性分散体(B)は、酸価100〜500mgKOH/g、数平均分子量2000〜50000である樹脂の存在下で、水性媒体中にワックスを乳化分散するワックス水性分散体(b1)を含み、The aqueous wax dispersion (B) includes an aqueous wax dispersion (b1) in which the wax is emulsified and dispersed in an aqueous medium in the presence of a resin having an acid value of 100 to 500 mgKOH / g and a number average molecular weight of 2000 to 50000,
前記金属包装材用水性塗料は、25℃でのせん断速度10000sThe water-based paint for metal packaging materials has a shear rate of 10,000 s at 25 ° C. -1-1 における粘度ηViscosity at HH が20〜100mPa・s、且つ、せん断速度0.1sIs 20 to 100 mPa · s, and the shear rate is 0.1 s. -1-1 における粘度ηViscosity at LL と、せん断速度10000sAnd a shear rate of 10,000 s. -1-1 における粘度ηViscosity at HH との比ηRatio η LL /η/ Η HH が1〜8である、金属包装材用水性塗料の製造方法。The manufacturing method of the water-based coating material for metal packaging materials whose is 1-8.
前記ワックス水性分散体(B)が、界面活性剤の不存在下で、ワックスを水性媒体中に分散させるワックス水性分散体(b2)を含む、請求項5記載の金属包装材用水性塗料の製造方法 The said wax aqueous dispersion (B) contains the wax aqueous dispersion (b2) which disperse | distributes a wax in an aqueous medium in absence of surfactant, The manufacture of the water-based coating material for metal packaging materials of Claim 5 Way . 前記アクリル変性エポキシ樹脂(A)100重量部に対して、前記ワックス0.1〜10重量部を含む、請求項5または6記載の金属包装材用水性塗料の製造方法。 The manufacturing method of the water-based coating material for metal packaging materials of Claim 5 or 6 which contains the said wax 0.1-10 weight part with respect to 100 weight part of said acrylic modified epoxy resins (A) . フェノール樹脂またはアミノ樹脂を含む、請求項1〜4いずれか1項に記載の金属包装材用水性塗料。 The water-based coating material for metal packaging materials of any one of Claims 1-4 containing a phenol resin or an amino resin. 金属板上に、請求項1〜4、および8いずれか1項に記載の金属包装材用水性塗料の硬化物である塗膜層を有する金属包装材。
The metal packaging material which has a coating film layer which is a hardened | cured material of the aqueous coating material for metal packaging materials of any one of Claims 1-4 and 8 on a metal plate.
JP2012199201A 2012-09-11 2012-09-11 Water-based paint for metal packaging materials and metal packaging materials Active JP5958211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012199201A JP5958211B2 (en) 2012-09-11 2012-09-11 Water-based paint for metal packaging materials and metal packaging materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012199201A JP5958211B2 (en) 2012-09-11 2012-09-11 Water-based paint for metal packaging materials and metal packaging materials

Publications (2)

Publication Number Publication Date
JP2014055204A JP2014055204A (en) 2014-03-27
JP5958211B2 true JP5958211B2 (en) 2016-07-27

Family

ID=50612809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012199201A Active JP5958211B2 (en) 2012-09-11 2012-09-11 Water-based paint for metal packaging materials and metal packaging materials

Country Status (1)

Country Link
JP (1) JP5958211B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107337988A (en) * 2017-07-10 2017-11-10 苏州市三新包装材料科技有限公司 Easy-open end draw ring coating and preparation method thereof
US20200263053A1 (en) * 2017-09-19 2020-08-20 Swimc Llc Coating compositions including a furan-containing polyester, articles, and methods of coating
CN108329799A (en) * 2018-02-28 2018-07-27 佛山市飞时达新材料科技有限公司 A kind of preparation method and applications of high-wearing feature exterior coating
CN109868034B (en) * 2019-01-23 2021-06-08 余姚市亚宇工贸有限公司 Anticorrosive and antibacterial resin coating powder with strong adhesive force and preparation method thereof
CN109868041A (en) * 2019-01-28 2019-06-11 上海嘉宝莉涂料有限公司 A kind of waterproof stain resistant aqueous inner wall paint for kitchen use and preparation method thereof
CN115926588A (en) * 2022-11-23 2023-04-07 上海准浩实业有限公司 Water-based metal paint and coating method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817903B2 (en) * 1998-06-01 2006-09-06 東洋インキ製造株式会社 Aqueous dispersion composition
JP5104375B2 (en) * 2008-02-15 2012-12-19 東洋インキScホールディングス株式会社 Water-based paint composition for outer surface of can and coated can formed by coating the paint composition

Also Published As

Publication number Publication date
JP2014055204A (en) 2014-03-27

Similar Documents

Publication Publication Date Title
JP5958211B2 (en) Water-based paint for metal packaging materials and metal packaging materials
JP2001526716A (en) Aqueous coating composition for metal containers
JP3817903B2 (en) Aqueous dispersion composition
JP2009191284A (en) Metal surface treatment agent
CN111848883A (en) Preparation method of waterborne acrylic modified epoxy resin and coating thereof
JP5104375B2 (en) Water-based paint composition for outer surface of can and coated can formed by coating the paint composition
JP4897733B2 (en) Seamless can printing ink composition
JP4880378B2 (en) Method for producing aqueous dispersion of vinyl-modified epoxy ester resin, and aqueous coating composition using the aqueous dispersion
JP5601853B2 (en) Water-based paint composition
JP5626033B2 (en) Water-based paint for metal packaging material, production method thereof and metal packaging material
JP5015520B2 (en) Water-based paint composition for cans
JP2008231398A (en) Aqueous coating composition and coated product using the same
JP3489641B2 (en) Paint composition for pre-coated steel sheet
JP2004210831A (en) Aqueous coating composition
JP6696712B2 (en) Coating composition for cans
JP5347217B2 (en) Water-based paint containing polymer emulsion
JP4694164B2 (en) Rust-proof coating agent and laminated metal material
JP4056606B2 (en) Water-based coating composition, method for producing the same, and coating film obtained therefrom
KR101657818B1 (en) Black resin coating composition and black resin steel sheet
JP3921793B2 (en) WAX WATER DISPERSION, PROCESS FOR PRODUCING THE SAME AND WATER COATING AGENT CONTAINING THE WAX WATER DISPERSION
JPS63309516A (en) Aqueous resin dispersion
JPH08157772A (en) Aqueous coating material and coating using the same
JPH01217081A (en) Emulsion type aqueous coating compound
JP2020078928A (en) Coated metal plate, and drawn and ironed can
CN113272132A (en) Coated metal sheet and drawn and ironed can

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160426

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R151 Written notification of patent or utility model registration

Ref document number: 5958211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250