JP5957727B2 - Permanent magnet rotating electric machine - Google Patents
Permanent magnet rotating electric machine Download PDFInfo
- Publication number
- JP5957727B2 JP5957727B2 JP2011266501A JP2011266501A JP5957727B2 JP 5957727 B2 JP5957727 B2 JP 5957727B2 JP 2011266501 A JP2011266501 A JP 2011266501A JP 2011266501 A JP2011266501 A JP 2011266501A JP 5957727 B2 JP5957727 B2 JP 5957727B2
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- electromagnetic steel
- steel sheet
- magnetic flux
- type rotating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005291 magnetic effect Effects 0.000 claims description 104
- 229910000831 Steel Inorganic materials 0.000 claims description 76
- 239000010959 steel Substances 0.000 claims description 76
- 230000004907 flux Effects 0.000 claims description 54
- 241000239290 Araneae Species 0.000 claims description 45
- 230000002093 peripheral effect Effects 0.000 claims description 33
- 238000004804 winding Methods 0.000 claims description 23
- 230000035699 permeability Effects 0.000 claims description 12
- 238000010248 power generation Methods 0.000 claims description 9
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000005347 demagnetization Effects 0.000 description 2
- 239000002889 diamagnetic material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002907 paramagnetic material Substances 0.000 description 2
- 229910000576 Laminated steel Inorganic materials 0.000 description 1
- 241001424392 Lucia limbaria Species 0.000 description 1
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Iron Core Of Rotating Electric Machines (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Description
本発明は、永久磁石式回転電機に関する。詳しくは、集中巻の大容量回転電機、特に、定格出力が1000kWを超えるような大型の風力発電用永久磁石式発電機の、回転子に発生する渦電流損失を低減する技術に関する。 The present invention relates to a permanent magnet type rotating electrical machine. More specifically, the present invention relates to a technology for reducing eddy current loss generated in a rotor of a concentrated-winding large-capacity rotating electric machine, particularly a large permanent magnet generator for wind power generation having a rated output exceeding 1000 kW.
永久磁石による複数の磁極を有する回転子と、電機子巻線を磁極に集中的に巻き回された固定子と、を具備したいわゆる集中巻の永久磁石式回転電機が様々な用途に用いられている。
小型モータでは、集中巻は、固定子の磁極に集中的に巻き回された構造のため機械による自動巻きが可能で多く用いられている。このような小型モータでは銅損、鉄損、機械損が損失の中でほとんどを占めるため、回転子に発生する渦電流損失は問題とならないことが多かった。
A so-called concentrated winding permanent magnet type rotating electrical machine having a rotor having a plurality of magnetic poles by permanent magnets and a stator having an armature winding wound around the magnetic poles is used in various applications. Yes.
In small motors, concentrated winding is often used because it can be automatically wound by a machine because of the structure of concentrated winding around the magnetic poles of the stator. In such a small motor, copper loss, iron loss, and mechanical loss account for most of the loss, and eddy current loss generated in the rotor is often not a problem.
これに対して、大型機においては、これまでは、分布巻の固定子が用いられることが多かったが、コイルエンドが小さい集中巻も、大型機において使われることが多くなっている。
特に、ギヤレス型の風力発電システムに永久磁石式発電機を採用する場合、分布巻と比較して、集中巻は、コイルエンドが小さいために軸方向の長さを低減でき、さらに電機子巻線に発生する銅損が小さいため高効率化が実現できるという点で、集中巻を選択することも少なくない。
On the other hand, in large machines, distributed winding stators have been used so far, but concentrated windings with small coil ends are also often used in large machines.
In particular, when a permanent magnet generator is used in a gearless wind power generation system, compared to distributed winding, concentrated winding can reduce the axial length due to the small coil end, and armature winding In many cases, concentrated winding is selected from the viewpoint that high efficiency can be realized because of small copper loss.
上記のように集中巻はコイルエンドが小さいといった長所を持っている一方、電機子巻線に集中巻を使用する場合、極数に対して固定子のスロット数が少なくなるため、分布巻の場合に比べて回転子部の磁束の変化が大きくなり、電機子電流の起磁力に起因する回転子の渦電流損失が分布巻に比べて大きくなるという課題がある。
さらに、希土類磁石のような残留磁束密度と保磁力が高い高性能磁石が大容量機の回転子の磁極として採用する場合、例えば、Nd−Fe−B系の磁石では、磁石自体の導電率が高く、フェライト系の磁石に比べて渦電流が流れやすいという特徴を持っている。
As described above, concentrated winding has the advantage that the coil end is small. On the other hand, when concentrated winding is used for armature winding, the number of stator slots is reduced relative to the number of poles. There is a problem that the change in the magnetic flux of the rotor portion becomes larger than that of the rotor, and the eddy current loss of the rotor due to the magnetomotive force of the armature current becomes larger than that of the distributed winding.
Further, when a high-performance magnet having a high residual magnetic flux density and a high coercive force such as a rare earth magnet is adopted as a magnetic pole of a rotor of a large capacity machine, for example, an Nd-Fe-B magnet has a conductivity of the magnet itself. It is high and has the feature that eddy current flows more easily than a ferrite magnet.
以上のような理由から、集中巻の大容量回転電機、特に、定格出力が1000kWを超えるような大型の風力発電用永久磁石式発電機の場合では、回転子に発生する渦電流損失が無視できないことがある。
すなわち、この渦電流損失により発電機の効率が著しく下がったり、この渦電流損失によって回転子の温度が上昇し、磁石の減磁を招くという課題があった。また、減磁まで至らなくとも温度上昇によって残留磁束密度が低下し、その結果、磁石が発生する磁束が減少する。そのため、温度上昇のない状態と同じ出力を出すためには電機子電流を多く流す必要があり、銅損が増加し、効率が低下してしまうという課題もあった。
For the above reasons, in the case of a concentrated-winding large-capacity rotating electric machine, particularly a large-scale permanent magnet generator for wind power generation with a rated output exceeding 1000 kW, eddy current loss generated in the rotor cannot be ignored. Sometimes.
That is, there is a problem that the efficiency of the generator is significantly lowered due to this eddy current loss, or the temperature of the rotor is increased due to this eddy current loss, leading to demagnetization of the magnet. Moreover, even if it does not reach demagnetization, the residual magnetic flux density decreases due to the temperature rise, and as a result, the magnetic flux generated by the magnet decreases. For this reason, in order to produce the same output as that without temperature rise, it is necessary to flow a large amount of armature current, and there is a problem that copper loss increases and efficiency decreases.
前記のように、大型の風力発電用永久磁石式発電機の場合では、回転子に発生する渦電流損失が無視できないという課題を解決する技術として、従来から回転子のヨークを例えば珪素鋼板のような電磁鋼板を積層する構造とすることにより、渦電流を低減する技術があった。
しかしながら、回転子のヨークとして電磁鋼板を積層する構造にすると、塊状(ソリッド状)のヨークで構成する場合に比べてコスト高になるという問題があると共に、特許文献1に開示されているように、電磁鋼板を積層した場合に、積層した電磁鋼板をボルトで締付けて、一体とする必要があり、この締め付けボルトが鋼製等の強磁性体の場合、この締め付けボルトにも磁束が流れるために渦電流損失が発生してしまうという課題があった。特許文献1では、この課題を解決するために、絶縁ナットと絶縁スタッドにより、締め付けている。
As described above, in the case of a large-scale permanent magnet generator for wind power generation, as a technique for solving the problem that eddy current loss generated in the rotor cannot be ignored, a rotor yoke has been conventionally used as a silicon steel plate, for example. There has been a technique for reducing eddy currents by using a structure in which various electromagnetic steel sheets are laminated.
However, a structure in which electromagnetic steel sheets are laminated as a yoke of a rotor has a problem that the cost is higher than that of a case of a solid (solid) yoke, and as disclosed in
また、特許文献2では、締め付けボルトが通る積層した鉄心に設けられる貫通穴の形状として、積層鉄心を通る主磁束の方向と平行な寸法が積層鉄心を通る主磁束の方向と直交する方向の寸法より大きな形状としたことにより締め付けボルトの渦電流損失を低減する方法が開示されている。
さらには、電磁鋼板を取り付ける塊状(ソリッド状)のスパイダ部分にも磁束が通るため、スパイダ部にも渦電流が発生してしまうという課題もあった。
Moreover, in
Furthermore, since the magnetic flux passes through a massive (solid) spider portion to which the electromagnetic steel plate is attached, there is a problem that an eddy current is also generated in the spider portion.
特許文献1にも開示されているように、大型の回転電機では、回転子や固定子の鉄心について電磁鋼板を積層して構成する場合、プレス装置により、薄い電磁鋼板を1枚の円環形状に打ち抜いて形成したり、積層することが困難となる。そこで、電磁鋼板を扇形状に分割成形したものを、複数枚で円環形状とし、周方向にずらし積みしながら、軸方向に積層し、鉄心全体を締め付けボルトで締め付けて一体構造として構成する。
また、インナーロータ型の回転電機の回転子では、回転子のヨーク部が回転電機の回転軸の支持部を兼ねるので、大型の回転電機では、その部分を積層鋼板で構成することは接合や強度の点で実用上難しいという課題もある。
As disclosed in
Also, in the rotor of an inner rotor type rotating electrical machine, the yoke part of the rotor also serves as a support part of the rotating shaft of the rotating electrical machine. However, there is a problem that it is practically difficult in this respect.
このような場合、回転子の外周部として電磁鋼板を積層して構成し、内周部を塊状のスパイダ部として構成し、ヨーク部の渦電流損失を電磁鋼板を積層する構造で低減し、且つ機械的強度の必要な内周部分は、塊状のスパイダ部として構成する手法が用いられる。
本発明は、電磁鋼板を積層したヨーク部と塊状スパイダ部からなる回転子鉄心に対して、積層した電磁鋼板をボルトで締付けるための締め付けボルトに発生する渦電流損失という第1の課題と、電磁鋼板を取り付ける塊状のスパイダ部分にも磁束が通るため、スパイダ部にも渦電流が発生してしまうという第2の課題との2つの渦電流損失課題を解決するためになされたもので、回転子の渦電流損失を低減することができる永久磁石式回転電機、特に風力発電用永久磁石式発電機を提供することを目的としている。
In such a case, the electromagnetic steel plates are laminated as the outer peripheral portion of the rotor, the inner peripheral portion is constituted as a massive spider portion, the eddy current loss of the yoke portion is reduced by the structure of laminating the magnetic steel plates, and A technique is used in which the inner peripheral portion requiring mechanical strength is configured as a massive spider portion.
The present invention relates to a first problem of loss of eddy current generated in a fastening bolt for fastening a laminated electromagnetic steel sheet with a bolt to a rotor core composed of a yoke part and a massive spider part laminated with electromagnetic steel sheets, and an electromagnetic The magnetic flux also passes through the massive spider part to which the steel plate is attached, so that the eddy current is also generated in the spider part. It is an object of the present invention to provide a permanent magnet type rotating electrical machine, particularly a permanent magnet generator for wind power generation, capable of reducing the eddy current loss.
また、電磁鋼板を積層したヨーク部と塊状スパイダ部からなる回転子鉄心では、電磁鋼板を積層したヨーク部と塊状スパイダ部との、回転時のずれを防止するために、塊状スパイダ部と接する電磁鋼板を積層したヨーク部側に、キー溝が形成され、このキー溝に差し込まれるキーは塊状スパイダ部に固定されている。この締め付けボルトと同様に、材質によってはキーにも渦電流損失が発生するので、締め付けボルトと同様に渦電流損失の低減が課題となる。 In addition, in a rotor core composed of a yoke portion laminated with electromagnetic steel plates and a massive spider portion, an electromagnetic contact with the massive spider portion is prevented in order to prevent the rotation between the yoke portion laminated with electromagnetic steel plates and the massive spider portion during rotation. A key groove is formed on the yoke portion side where the steel plates are laminated, and the key inserted into the key groove is fixed to the massive spider portion. As with the tightening bolt, eddy current loss also occurs in the key depending on the material. Therefore, as with the tightening bolt, reduction of eddy current loss is a problem.
上記課題を解決する本発明の請求項1に係る永久磁石式回転電機は、電機子巻線を集中巻した固定子と、複数枚で円環形状をなし且つ周方向の位置がずれた状態で軸方向に積層された扇形状の電磁鋼板および軸方向に積層された電磁鋼板を一体化するための締め付けボルトを有する外周ヨーク部と、塊状のスパイダ部である内周ヨーク部とからなる回転子と、を備えた永久磁石式回転電機において、前記締め付けボルトと、前記締め付けボルトを挿入する貫通穴と、前記外周ヨーク部と前記内周ヨーク部の回転方向のすべりを防止するキーと、前記キーを挿入するキー溝とを、永久磁石の真下に配置するとともに、前記電磁鋼板の外周部から前記内周ヨーク部に接する前記電磁鋼板の内周部までの磁路としての距離を、当該電磁鋼板の磁束密度が1.5T(テスラ)以下となるように決定することを特徴とする。
上記課題を解決する本発明の請求項2に係る永久磁石式回転電機は、前記電磁鋼板の外周部から前記内周ヨーク部に接する前記電磁鋼板の内周部までの磁路としての距離を、当該電磁鋼板の磁束密度が1.5T(テスラ)となるように決定することを特徴とする。
The permanent magnet type rotating electrical machine according to
The permanent magnet type rotating electrical machine according to
上記課題を解決する本発明の請求項3に係る永久磁石式回転電機は、請求項1又は2に記載の永久磁石式回転電機において、前記締め付けボルトと、前記締め付けボルトを挿入する貫通穴との間に比透磁率の小さい層を設けたことを特徴とする。
The permanent magnet type rotating electrical machine according to
上記課題を解決する本発明の請求項4に係る永久磁石式回転電機は、請求項1,2又は3に記載の永久磁石式回転電機において、前記内周ヨーク部と接する、前記外周ヨーク部における、永久磁石の真下位置の、積層した電磁鋼板の一部が取り除かれたことを特徴とする。 A permanent magnet type rotating electrical machine according to a fourth aspect of the present invention that solves the above problem is the permanent magnet type rotating electric machine according to the first, second, or third aspect, wherein the outer peripheral yoke portion is in contact with the inner peripheral yoke portion. , the position directly below the permanent magnet, characterized in that he partially take dividing the laminated electromagnetic steel plates.
上記課題を解決する本発明の請求項5に係る永久磁石式回転電機は、請求項1,2,3又は4に記載の永久磁石式回転電機において、風力発電用永久磁石式発電機に適用したことを特徴とする。
The permanent magnet type rotating electrical machine according to
請求項1,2に係る発明によれば、永久磁石の真下に配置したため、締め付けボルトおよびキーに流れる、磁束密度が小さくなり、磁束の影響を受けにくく、渦電流損失を低減することができるとともに、電磁鋼板の外周部から電磁鋼板の内周部までの磁路としての距離を長くして、電磁鋼板部分でのみ磁路を確保出来るような寸法としたので、内周ヨーク部での渦電流損失を低減することができる。
請求項3に係る発明によれば、締め付けボルトと、締め付けボルトの挿入される貫通穴の間に比透磁率の小さい層を設けたので、締め付けボルトに流れる、磁束密度が小さくなるため、磁束の影響を受けにくく、渦電流損失を低減することができる。
請求項4に係る発明によれば、電磁鋼板を積層した外周ヨーク部において、磁束密度の最も小さい位置、すなわち磁路として利用されない位置である永久磁石の真下の位置の、塊状スパイダ部分と接している積層した電磁鋼板の一部を取り除くことにより、取り除いた部分の渦電流損失の発生を抑えることができる。
請求項5に係る発明によれば、定格出力が1000kWを超えるような大型の風力発電用永久磁石式発電機での渦電流損失を低減し効率向上が見込まれる。
According to the invention according to
According to the invention of
According to the invention of 請 Motomeko 4, against the outer circumferential yoke portion of laminated magnetic steel sheets, the smallest position of the magnetic flux density, i.e. the position immediately below the permanent magnet is a position which is not utilized as a magnetic path, a massive spider portion By removing a part of the laminated electrical steel sheets, it is possible to suppress the occurrence of eddy current loss in the removed part.
According to the invention which concerns on
締め付けボルトあるいは、キー溝のキーに発生する渦電流損失という課題と、塊状のスパイダ部分に発生する渦電流損失という2つの課題の解決手段について説明する。 Means for solving the two problems of the problem of eddy current loss occurring in the tightening bolt or key of the keyway and the problem of eddy current loss occurring in the massive spider portion will be described.
まず、第1の課題の締め付けボルトあるいは、キー溝のキーに発生する渦電流損失に対する解決手段としては、図1に示すように、電機子巻線1を集中巻した固定子鉄心2と、電磁鋼板を扇形状に分割成形し、周方向にずらし積みしながら、軸方向に積層し、複数枚で円環形状とし、全体を締め付けボルト3で締め付けて一体構造として構成する外周ヨーク部4と、塊状のスパイダ部である内周ヨーク部(以下、塊状スパイダ部分という)5とからなる回転子鉄心6と、外周ヨーク部4の外周面に一定間隔で配置された永久磁石7を備えた永久磁石式回転電機において、最も磁束の変化が少ない磁路として利用されない位置に締め付けボルト3および締め付けボルト3の挿入される貫通穴3aと、外周ヨーク部4と塊状スパイダ部分5の回転方向のすべりを防止するためのキー8およびキー8の挿入されるキー溝(支持溝)8aを配置するものである。これにより、渦電流の発生を低減でき、損失も低減できる。より具体的には、永久磁石7の真下の位置が最も磁路として使われないため、損失を低減できる。貫通穴3aは、積層された電磁鋼板に形成され、キー8は塊状スパイダ部分5の外周面に固定され、キー溝8aは、塊状スパイダ部分5に接する外周ヨーク部4の内周面に形成されている。
First, as means for solving the eddy current loss generated in the tightening bolt or keyway key of the first problem, as shown in FIG. 1, a
ここで言う「永久磁石の真下の位置」とは、図1に示した様に、回転軸方向から透視した回転子に配置された永久磁石7の断面図において、回転軸を通る磁石断面の中心線上の、回転軸中心側の位置と、その近傍を意味する。
また、第1の課題のもうひとつの解決手段は、締め付けボルト3に対しては、積層した電磁鋼板に形成された貫通穴3aと、締め付けボルト3との間に、比透磁率の小さい層を挟むことである。これによって、締め付けボルト3に渦電流が発生することを低減できる。
As used herein, the “position just below the permanent magnet” refers to the center of the cross section of the magnet passing through the rotating shaft in the sectional view of the
Further, another means for solving the first problem is that, for the
次に第2の課題の塊状スパイダ部分5に発生する渦電流損失に対しては、第1の解決手段として、電磁鋼板を取り付ける塊状スパイダ部分5での磁束密度を低減するために、電磁鋼板部分、即ち、外周ヨーク部4での磁路の距離を大きくすることが有効となる。
また、電磁鋼板部分での磁路の距離については電磁鋼板部の磁束密度として、B−H曲線において磁気飽和が顕著でない磁束密度となるように最大磁束密度を選択することにより、スパイダヘの磁束漏れを低減でき、その結果、渦電流損失を低減することができる。
Next, in order to reduce the magnetic flux density in the
In addition, as for the magnetic path distance in the electromagnetic steel sheet portion, the magnetic flux leakage to the spider is selected by selecting the maximum magnetic flux density as the magnetic flux density of the magnetic steel sheet portion so that the magnetic saturation is not remarkable in the BH curve. As a result, eddy current loss can be reduced.
さらに、第2の解決手段としては、電磁鋼板を積層した外周ヨーク部4において、磁束密度の最も小さい位置、すなわち磁路として利用されない位置である永久磁石7の真下の位置の、塊状スパイダ部分5と接している積層した電磁鋼板の一部を取り除くことにより、取り除いた部分の渦電流損失の発生を防止できる。
Further, as a second solution, in the
図2(a)に示すように、電磁鋼板を積層した外周ヨーク部4と塊状スパイダ部分5とからなる回転子の場合において、外周ヨーク部4は、永久磁石7の台金部を兼用するものであり、本発明の第1の課題と第2の課題に対する解決手段を適用した場合の、磁束線をシミュレーションにより計算した結果の一例を図2(b)に示す。
締め付けボルト3は、磁束密度の最も低い位置に配置され、渦電流が流れにくく、永久磁石7の台金部として兼用される電磁鋼板を積層した外周ヨーク部4には、図2(b)に細線で示す通り、高い磁束密度の磁束があるが、塊状スパイダ部分5まではほとんど磁束が進入していないことがわかる。
As shown in FIG. 2 (a), in the case of a rotor composed of an
The
本実施例は、図3に示すように、電機子巻線1を集中巻した固定子鉄心2と、電磁鋼板を積層して全体を締め付けボルト3で締め付けた外周ヨーク部4と、塊状スパイダ部分5とからなる回転子鉄心6と、外周ヨーク部4の外周面に一定間隔で配置された永久磁石7を備えた永久磁石式回転電機において、締め付けボルト3及びその貫通穴3aの取り付け位置を、磁束密度の最も小さい位置、すなわち磁路として利用されない位置である永久磁石7の真下の位置に配置する。
In this embodiment, as shown in FIG. 3, a
また、図3では省略したが、外周ヨーク部4と塊状スパイダ部分5の回転方向のすべりを防止するためのキーおよびキー溝の取付け位置も、締め付けボルトの取り付け位置と同様に、磁路として利用されない位置に配置することで、渦電流の発生を低減でき、損失も低減できる。
ここで言う「永久磁石の真下の位置」とは、図3に示した様に、回転軸方向から透視した回転子に配置された永久磁石の断面図において、回転軸を通る磁石断面の中心線上の、回転軸中心側の位置と、その近傍を意味する。
Although omitted in FIG. 3, the mounting position of the key and the key groove for preventing the
As used herein, the “position directly below the permanent magnet” refers to the center line of the cross section of the magnet passing through the rotating shaft in the sectional view of the permanent magnet disposed on the rotor as seen through from the rotating shaft direction, as shown in FIG. Means the position on the rotation axis center side and the vicinity thereof.
前述した通り、電磁鋼板を積層した場合に、積層した電磁鋼板をボルトで締付けて、一体とする必要があり、この締め付けボルトが鋼製等の強磁性体の場合、この締め付けボルトにも磁束が流れるため渦電流損失が発生してしまうという課題があった。
そこで、図3に示すように、締め付けボルト3の取り付け位置を、磁束密度の最も小さい位置、すなわち磁路として利用されない位置である永久磁石の真下の位置に配置することにより、磁束の影響を受けにくくなるため、渦電流損失を低減することができる。
これに反して、締め付けボルト3の取り付け位置を横にずらして、磁路となっている位置に配置すると、締め付けボルトにも磁束が流れより大きな渦電流損失が発生してしまう。また、キー溝およびキーの取付け位置も、締め付けボルトと同様とした。
As described above, when electromagnetic steel sheets are laminated, it is necessary to tighten the laminated electromagnetic steel sheets with bolts to unite them. When this fastening bolt is made of a ferromagnetic material such as steel, magnetic flux is also applied to this fastening bolt. There is a problem that eddy current loss occurs due to flow.
Therefore, as shown in FIG. 3, the
On the other hand, if the mounting position of the tightening
本実施例では、永久磁石の真下に配置したので、締め付けボルトおよびキーに流れる、磁束密度が小さくなるため、磁束の影響を受けにくく、渦電流損失を低減することができる。 In this embodiment, since the magnetic flux density flowing through the fastening bolt and the key is reduced because it is arranged directly below the permanent magnet, it is difficult to be affected by the magnetic flux, and eddy current loss can be reduced.
本実施例は、図4に示すように締め付けボルト3と、電磁鋼板に形成された貫通穴3aの間に比透磁率の小さいギャップ9を設けるものである。
比透磁率の小さいギャップ9の材質としては、絶縁物等の非磁性体、または、金属材料ではアルミニウム等の常磁性体、または、銅等の反磁性体の、いずれかの材質で構成する。
本実施例では、アルミニウムまたは、銅の管状のパイプでボルトを被覆して、電磁鋼板を締め付けた。また、ボルト自体を比透磁率の小さい材質により被覆したボルトを用いても、同様の効果が得られる。
In this embodiment, as shown in FIG. 4, a gap 9 having a small relative permeability is provided between the
The material of the gap 9 having a small relative magnetic permeability is made of any material such as a non-magnetic material such as an insulator, a paramagnetic material such as aluminum or a diamagnetic material such as copper.
In this example, the bolt was covered with a tubular pipe made of aluminum or copper, and the electromagnetic steel sheet was tightened. The same effect can be obtained by using a bolt that is covered with a material having a small relative permeability.
締め付けボルト3に流れる、磁束密度を小さくすれば、渦電流損失を低減することができる。
したがって、締め付けボルト3に流れる、磁束密度を小さくするためには、磁路となっている積層した電磁鋼板と、締め付けボルトとの間に、絶縁物等の非磁性体、もしくは、比透磁率の小さい層を挟むことによって、締め付けボルト3に渦電流が発生することを低減できる。
このような比透磁率の小さい物としては、真空もしくは空気の層が代表的であるが、金属材料ではアルミニウム等の常磁性体、または、銅等の反磁性体の、いずれかの材質においても、電磁鋼板と比較すれば、千分の一以下となることは、表1の比透磁率の表から明白である。
なお、電磁鋼板は一般的には珪素鋼等の比透磁率の非常に大きい材料を用いる。
If the magnetic flux density flowing through the
Therefore, in order to reduce the magnetic flux density flowing in the
As a material having such a low relative permeability, a vacuum or air layer is typical, but in the case of a metal material, any material such as a paramagnetic material such as aluminum or a diamagnetic material such as copper may be used. It is clear from the table of relative permeability in Table 1 that it is 1 / 1,000 or less as compared with the electromagnetic steel sheet.
The electromagnetic steel sheet is generally made of a material having a very high relative permeability such as silicon steel.
本実施例では、締め付けボルト3と、電磁鋼板に形成された貫通穴3aの間に比透磁率の小さいギャップ9を設けたので、締め付けボルト3に流れる、磁束密度が小さくなるため、磁束の影響を受けにくく、渦電流損失を低減することができる。
In the present embodiment, since the gap 9 having a small relative permeability is provided between the tightening
電磁鋼板を取り付ける塊状スパイダ部分5においても、磁束の変化があれば、渦電流が発生し、損失となる。そこで、渦電流損失を低減するためには、電磁鋼板を取り付ける塊状スパイダ部分5での磁束密度を低減するために、図5に示した様に、電磁鋼板外周部から塊状スパイダ部分5に接している電磁鋼板内周部までの磁路としての距離Lを大きくすることが有効となる。
また、その距離については電磁鋼板部分でのみ磁路を確保出来るような寸法とする。
図6は回転電機に一般的に用いられる無方向性の電磁鋼板のB−H曲線の一例を示したもので、図6のB−H曲線の例では、図中破線で示すように磁束密度が1.5T(テスラ)を超えると飽和が顕著になる。
Even in the
In addition, the distance is set to such a dimension that a magnetic path can be secured only at the electromagnetic steel plate portion.
FIG. 6 shows an example of the BH curve of a non-oriented electrical steel sheet generally used for rotating electrical machines. In the example of the BH curve in FIG. 6, the magnetic flux density as shown by the broken line in the figure. Is more than 1.5T (Tesla), saturation becomes significant.
したがって、図6のB−H曲線の例では、最大磁束密度が1.5T(テスラ)以下になるように磁路の距離Lをとる。
すなわち、本実施例では、使用する電磁鋼板の特性と回転電機の設計仕様から、当該電磁板のB−H曲線の磁気飽和が顕著でない磁束密度となるように最大磁束密度1.5T(テスラ)を選択し、その最大磁束密度1.5T(テスラ)以下となるように、磁路としての距離Lの長さを決定することにより、電磁鋼板部分でのみ磁路を確保してスパイダ部分への磁束漏れが少なくなる。
Therefore, in the example of the BH curve in FIG. 6, the distance L of the magnetic path is set so that the maximum magnetic flux density is 1.5 T (Tesla) or less .
Ie, in this embodiment, from the design specifications of the characteristics and the rotating electrical machine of the electromagnetic steel sheets used, the maximum magnetic flux density as the magnetic saturation of B-H curve of the electromagnetic plate is magnetic flux density is not significant 1.5T ( Tesla) select, so that its maximum magnetic flux density 1.5T (Tesla) or less, by determining the length of the distance L as a magnetic path, the spider portion to secure a magnetic path only in the electromagnetic steel plate portion Magnetic flux leakage to the
塊状スパイダ部分5への磁束の流入が少なくなれば発生する渦電流損失を小さくすることが出来る。従って、塊状スパイダ部分5への磁束の流入を少なくするためには電磁鋼板部分で磁路を確保できるような磁路の距離が必要となる。
磁路の距離については電磁鋼板の磁化B−H曲線において磁気飽和が顕著でない磁束密度となる距離とすることで、電磁鋼板部分でのみ磁路を確保して塊状スパイダ部分5への磁束漏れが少なくなり、塊状スパイダ部分5での磁束密度は低減されるため、渦電流損失を低減することが出来る。言い換えると、電磁鋼板部分の磁路に余裕を持たせることで、塊状スパイダ部分5の渦電流損失はほとんど発生しなくなり、塊状スパイダ部分5は自由な構造をとることが可能となる。
If the flow of magnetic flux into the
About the distance of a magnetic path, it is set as the distance from which magnetic saturation is not remarkable in the magnetization BH curve of an electromagnetic steel plate, a magnetic path is ensured only in an electromagnetic steel plate part, and the magnetic flux leakage to the
本実施例では、電磁鋼板外周部から塊状スパイダ部分に接している電磁鋼板内周部までの磁路としての距離Lを大きくし、電磁鋼板部分でのみ磁路を確保出来るような寸法としたので、塊状スパイダ部分での渦電流損失を低減することができる。 In this embodiment, the distance L as the magnetic path from the outer peripheral part of the electromagnetic steel sheet to the inner peripheral part of the magnetic steel sheet in contact with the massive spider part is increased so that the magnetic path can be secured only in the electromagnetic steel sheet part. The eddy current loss in the massive spider portion can be reduced.
本実施例では、図7に示すように、電磁鋼板を積層した外周ヨーク部4において、磁束密度の最も小さい位置、すなわち磁路として利用されない位置である永久磁石の真下の位置の、塊状スパイダ部分5と接している積層した電磁鋼板の一部(図中斜線を入れて示す)10を取り除くことにより、取り除いた部分の渦電流損失の発生を防止できる。
In this embodiment, as shown in FIG. 7, in the
電磁鋼板を積層した外周ヨーク部4において、永久磁石7の真下にある、塊状スパイダ部分5と接している部分の一部10を図7に示したように取り除くことにより、取り除いた部分の渦電流損失の発生を防止できる。
元々、磁路としては利用されない部分なので、渦電流損失低減の効果は大きくは無いが、取り除いた部分の渦電流損失の発生を防止できる。
さらには副次的な効果として、電磁鋼板により構成された鉄心部分の重量の軽量化の効果と、電磁鋼板が取り除かれた部分が空気の通風路となることから、電磁鋼板および電磁鋼板と接触している塊状のスパイダ部分の冷却効果も向上する。
In the
Since it is originally a part that is not used as a magnetic path, the effect of reducing eddy current loss is not great, but it is possible to prevent eddy current loss from occurring in the removed part.
Furthermore, as a secondary effect, the weight of the iron core part made of the electromagnetic steel sheet is reduced, and the part from which the electromagnetic steel sheet has been removed becomes an air ventilation path. This also improves the cooling effect of the massive spider part.
本実施例では、電磁鋼板を積層したヨーク部分において、永久磁石の真下にある、塊状スパイダ部分と接している積層鋼板の一部を取り除くことにより、電磁鋼板部分での渦電流損失を低減することができる。 In this embodiment, in the yoke part where the electromagnetic steel sheets are laminated, the eddy current loss in the electromagnetic steel sheet part is reduced by removing a part of the laminated steel sheet in contact with the massive spider part, which is directly under the permanent magnet. Can do.
本発明は、集中巻の大容量回転電機、特に、定格出力が1000kWを超えるような大型の風力発電用永久磁石式発電機の、回転子に発生する渦電流損失を低減する技術として広く産業上利用可能なものである。 The present invention is widely used as a technology for reducing eddy current loss generated in a rotor of a concentrated-winding large-capacity rotating electric machine, particularly a large-scale permanent magnet generator for wind power generation having a rated output exceeding 1000 kW. It is available.
1 電機子巻線
2 固定子鉄心
3 締め付けボルト
3a 貫通穴
4 外側ヨーク部
5 内側ヨーク部(塊状スパイダ部分)
6 回転子鉄心
7 永久磁石
8 キー
8a キー溝
9 ギャップ
10 電磁鋼板の一部
DESCRIPTION OF
6
Claims (5)
前記締め付けボルトと、前記締め付けボルトを挿入する貫通穴と、前記外周ヨーク部と前記内周ヨーク部の回転方向のすべりを防止するキーと、前記キーを挿入するキー溝とを、永久磁石の真下に配置するとともに、前記電磁鋼板の外周部から前記内周ヨーク部に接する前記電磁鋼板の内周部までの磁路としての距離を、当該電磁鋼板の磁束密度が1.5T(テスラ)以下となるように決定することを特徴とする永久磁石式回転電機。 A stator in which armature windings are concentrated, a fan-shaped electrical steel sheet laminated in the axial direction in a state in which a plurality of sheets form an annular shape and are displaced in the circumferential direction, and an electromagnetic steel sheet laminated in the axial direction In a permanent magnet type rotating electrical machine comprising a rotor composed of an outer peripheral yoke part having a fastening bolt for integrating the inner peripheral part and an inner peripheral yoke part that is a massive spider part,
The tightening bolt, a through hole into which the tightening bolt is inserted, a key for preventing slippage in the rotation direction of the outer peripheral yoke portion and the inner peripheral yoke portion, and a key groove into which the key is inserted are directly below the permanent magnet. And the distance as a magnetic path from the outer peripheral portion of the electromagnetic steel sheet to the inner peripheral portion of the electromagnetic steel sheet in contact with the inner yoke portion is set such that the magnetic flux density of the electromagnetic steel sheet is 1.5 T (Tesla) or less. A permanent magnet type rotating electrical machine characterized by being determined to be.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011266501A JP5957727B2 (en) | 2011-12-06 | 2011-12-06 | Permanent magnet rotating electric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011266501A JP5957727B2 (en) | 2011-12-06 | 2011-12-06 | Permanent magnet rotating electric machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013121186A JP2013121186A (en) | 2013-06-17 |
JP5957727B2 true JP5957727B2 (en) | 2016-07-27 |
Family
ID=48773613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011266501A Active JP5957727B2 (en) | 2011-12-06 | 2011-12-06 | Permanent magnet rotating electric machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5957727B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002176739A (en) * | 2000-12-11 | 2002-06-21 | Sumitomo Heavy Ind Ltd | Motor with built-in permanent magnet and injection molding machine |
JP5293933B2 (en) * | 2008-04-22 | 2013-09-18 | 株式会社安川電機 | Laminated core of rotor, rotor core, rotor for permanent magnet type synchronous rotating electric machine equipped with the same, permanent magnet type synchronous rotating electric machine, and vehicle, elevator and processing machine using the same |
JP2010252448A (en) * | 2009-04-13 | 2010-11-04 | Toshiba Corp | Rotating electric machine |
JP4771011B1 (en) * | 2011-01-20 | 2011-09-14 | 株式会社安川電機 | Rotating electric machine and wind power generation system |
-
2011
- 2011-12-06 JP JP2011266501A patent/JP5957727B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013121186A (en) | 2013-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8593029B2 (en) | Lundell type rotating machine | |
US10965174B2 (en) | Power generator | |
US20090009012A1 (en) | Assembly and method for magnetization of permanent magnet rotors in electrical machines | |
JP2022044777A (en) | Sleeve rotor synchronous reluctance electric machine | |
JP2013021840A (en) | Rotor of reluctance motor | |
JP2009201343A (en) | Permanent magnet rotating electrical machine | |
CN101795024B (en) | Horizontal magnetic field motor with non-crystalline alloy iron core | |
CN105656228A (en) | Transverse flux permanent magnet motor | |
CN110838779B (en) | Mixed excitation wound rotor and mixed excitation wound synchronous motor | |
KR20120094392A (en) | Axial flux permanent magnet generator | |
CN107124084B (en) | Non-uniform mixed permanent magnet excitation topological structure of permanent magnet linear synchronous motor | |
JP2018519782A (en) | Permanent magnet motor | |
JP2013132124A (en) | Core for field element | |
JP2011125105A (en) | Motor with cleft magnet and method of manufacturing the same | |
US8893375B1 (en) | Methods of manufacturing a stator core | |
JP2005051929A (en) | Motor | |
US9755465B2 (en) | Method for manufacturing a rotor of a synchronous reluctance motor, a rotor of a synchronous reluctance motor, and a synchronous reluctance motor | |
US20180198330A1 (en) | Permanent magnet motor | |
JP5957727B2 (en) | Permanent magnet rotating electric machine | |
CN102522870B (en) | Transverse flux permanent magnet motor topology | |
JP5740250B2 (en) | Permanent magnet rotating electric machine | |
WO2011045842A1 (en) | Permanent magnet dynamo-electric machine | |
JP5404230B2 (en) | Axial gap type motor | |
JP5152957B2 (en) | Stator core and motor stator and motor | |
CN106992645A (en) | A kind of wheel hub motor for electric car |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140916 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160517 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20160517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160530 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5957727 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |