JP5955593B2 - Abnormality detection mechanism and vehicle front illumination device including the same - Google Patents

Abnormality detection mechanism and vehicle front illumination device including the same Download PDF

Info

Publication number
JP5955593B2
JP5955593B2 JP2012058210A JP2012058210A JP5955593B2 JP 5955593 B2 JP5955593 B2 JP 5955593B2 JP 2012058210 A JP2012058210 A JP 2012058210A JP 2012058210 A JP2012058210 A JP 2012058210A JP 5955593 B2 JP5955593 B2 JP 5955593B2
Authority
JP
Japan
Prior art keywords
light
wavelength conversion
conversion member
detection mechanism
abnormality detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012058210A
Other languages
Japanese (ja)
Other versions
JP2013191479A (en
Inventor
金近 正之
正之 金近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012058210A priority Critical patent/JP5955593B2/en
Publication of JP2013191479A publication Critical patent/JP2013191479A/en
Application granted granted Critical
Publication of JP5955593B2 publication Critical patent/JP5955593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/70Prevention of harmful light leakage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Description

本発明は励起源として半導体レーザ素子を用いたヘッドライトやフォグランプ等の車両用前方照明装置に関するもので、特にアイセーフティインターロック用の計装システムのための異常検出機構に関する。   The present invention relates to a vehicle front illumination device such as a headlight or a fog lamp using a semiconductor laser element as an excitation source, and more particularly to an abnormality detection mechanism for an instrumentation system for eye safety interlock.

車両用前方照明装置(以下、前照灯と称する)の光源はハロゲンバルブや高圧水銀系バルブから発光ダイオード(LED)を代替として採用化の試みがなされてきた。近年、一部の高級車にはすでにLED式の前照灯が搭載されたことで実用化の段階にあるといえるが、これらは現状ではロービーム(すれ違いビーム)用としての使用であり、より高い光源輝度が必要なハイビーム(走行ビーム)での採用には至っていない。そこで、さらにより高い輝度の光源として半導体レーザ素子を励起源として用いる研究が盛んになっている。   Attempts have been made to adopt light-emitting diodes (LEDs) instead of halogen bulbs or high-pressure mercury bulbs as light sources for vehicle front lighting devices (hereinafter referred to as headlamps). In recent years, it can be said that some high-end cars are already in the stage of practical application because they already have LED-type headlamps, but these are currently used for low beams (higher beams) and are more expensive. It has not been adopted in high beams (running beams) that require light source brightness. Therefore, research on using a semiconductor laser element as an excitation source as a light source with even higher luminance has become active.

特許文献1では、半導体レーザ素子から離間して設けられた蛍光体を含む発光部を光学的中心として、前記発光部から発生する光を凹面反射鏡により前方に照射するようにすることで輝度の高い光を発生する前照灯が開示されている。   In Patent Document 1, a light emitting part including a phosphor provided apart from a semiconductor laser element is used as an optical center, and light generated from the light emitting part is irradiated forward by a concave reflecting mirror. A headlamp that generates high light is disclosed.

しかしながら半導体レーザ素子からの照射光は空間的・時間的なエネルギー密度が高くなるので、アイセーフの観点から取扱いには注意が必要である。特許文献2では、半導体レーザ素子から離間して設けられた光透光性部材に混和された蛍光体から発光される光を受光素子で検出することで蛍光体層の脱離を感知し、セーフティインターロック処置を施すことでレーザ光による被曝を防ぐことが可能な照明器具用の発光装置が開示されている。   However, the irradiation light from the semiconductor laser element has a high spatial and temporal energy density, so that it must be handled with care from the viewpoint of eye-safety. In Patent Document 2, the light emitting element detects light emitted from a phosphor mixed with a light-transmitting member that is provided apart from the semiconductor laser element, thereby detecting the detachment of the phosphor layer. A light-emitting device for a lighting fixture that can prevent exposure to laser light by performing an interlock treatment is disclosed.

特開2005−150041号公報JP 2005-150041 A 特開2009−16543号公報JP 2009-16543 A

特許文献2は半導体レーザ素子から放射された光が蛍光体を含む透光性樹脂から励起源方向に戻る蛍光の有無を受光素子にて検知して発光停止等の制御を行うものであり、透光部材の脱落および破損の様な完全な使用不可能な状況の判別は可能であるが、蛍光体から発せられて励起源方向に戻る蛍光の有無を利用しているために透光部材内部での損傷(一部のクラック等)については検出不可能であるためレーザ光漏洩等に対するインターロック処置ができない。
更に、受光素子が励起源の半導体レーザ素子の光波長領域に対して受光感度を持たず、蛍光体による波長変換された光波長領域にのみ感度を有するものとしているため、光を選択的に取り込むことが可能な波長選択フィルタを具備することが必要となり、安価なSiフォトダイードが使用できず、コスト高である。
Japanese Patent Laid-Open No. 2004-260688 performs control such as light emission stop by detecting whether or not the light emitted from the semiconductor laser element returns to the excitation source direction from the translucent resin containing the phosphor by the light receiving element. Although it is possible to discriminate completely unusable situations such as dropping and breakage of the optical member, it uses the presence or absence of fluorescence emitted from the phosphor and returning to the excitation source direction. Since it is impossible to detect damage (such as some cracks), it is not possible to perform an interlock process for laser light leakage or the like.
Furthermore, since the light receiving element has no light receiving sensitivity with respect to the light wavelength region of the semiconductor laser device as the excitation source, it has sensitivity only in the light wavelength region wavelength-converted by the phosphor, so that light is selectively captured. It is necessary to provide a wavelength selective filter that can be used, and an inexpensive Si photodiode cannot be used, which is expensive.

本発明は上記問題に鑑みてなされたもので、その目的とする処は、半導体レーザ素子を励起源とした前照灯において、アイセーフティに関するインターロック用の光源部異常検出方法を安価に提供し、ひいては安全性が確保された前照灯を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a light source unit abnormality detection method for interlocking related to eye safety in a headlamp using a semiconductor laser element as an excitation source. In other words, it is to provide a headlamp that ensures safety.

上記目的を達成するため、本発明の請求項1に記載の発明によれば、励起源としての半導体レーザ素子と、半導体レーザ素子からの光の少なくとも一部を波長変換して外部へ白色光として取り出すことが可能な透光性の波長変換部材と、前記波長変換部材の発光部を光源として用いる前照灯において前記発光部の異常を検出する異常検出機構であって、前記波長変換部材は、前記発光部を含む天面と、光入射面である底面と、天面と底面に接する一つ以上の側面を備え、前記半導体レーザ素子からのビーム光の出射方向の前方に設けられ、前記波長変換部材の底面を支持し、前記半導体レーザ素子からのビーム光を通すための開口を持つ支持部材と、前記波長変換部材の側面に間隔をおいて正対するように設置された複数個の受光素子と、前記波長変換部材の天面を覆い、前記波長変換部材の天面の発光部にあたる箇所に開口を持ち、前記支持部材に接合された遮蔽部材と、前記受光素子に接続される前置き増幅器と、前期前置き増幅器に接続される判定器と、を少なくとも含むことを特徴とする前記発光部の異常を検出する異常検出機構とすることで上記した目的は達成される。
In order to achieve the above object, according to the first aspect of the present invention, the semiconductor laser element as the excitation source and the wavelength of at least a part of the light from the semiconductor laser element are converted into white light to the outside. A translucent wavelength conversion member that can be taken out, and an abnormality detection mechanism that detects an abnormality of the light emitting unit in a headlamp that uses the light emitting unit of the wavelength conversion member as a light source , the wavelength converting member, The top surface including the light emitting unit, a bottom surface that is a light incident surface, and one or more side surfaces that are in contact with the top surface and the bottom surface, are provided in front of the emission direction of the beam light from the semiconductor laser element, and the wavelength A support member that supports the bottom surface of the conversion member and has an opening for allowing the light beam from the semiconductor laser element to pass therethrough, and a plurality of light receiving elements that are disposed to face the side surface of the wavelength conversion member with a space therebetween And before Covering the top surface of the wavelength conversion member, having an opening at a position corresponding to the light emitting portion of the top surface of the wavelength conversion member, a shielding member joined to the support member, a preamplifier connected to the light receiving element, The above-described object is achieved by providing an abnormality detection mechanism for detecting an abnormality of the light emitting unit, which includes at least a determination device connected to an amplifier .

本発明の請求項2に記載の発明によれば、前記異常検出機構に用いる受光素子は、Siフォトダイオードであり、前記Siフォトダイオードの動作点が短絡モードに設定されていることとすることにより、暗電流によるノイズの影響を抑制でき、前照灯のような高い温度環境において安定した検出が可能となる。
According to the invention described in claim 2 of the present invention, the light receiving element used in the abnormality detection mechanism is a Si photodiode, and the operating point of the Si photodiode is set to the short-circuit mode. The influence of noise due to dark current can be suppressed , and stable detection can be performed in a high temperature environment such as a headlamp.

本発明の請求項3に記載の発明によれば、上記異常検出機構と、前記異常検出機構の受光素子の検出値が一定の範囲からの増加または低下に基づいて、前記半導体レーザ素子を発光停止あるいは発光強度低下させることが可能な発光制御手段を具備する前照灯とすることで、アイセーフティインターロック用の計装回路が組み込まれた安全性の高い前照灯とすることができる。   According to a third aspect of the present invention, the semiconductor laser element is stopped from emitting light based on an increase or decrease in the abnormality detection mechanism and a light receiving element of the abnormality detection mechanism from a certain range. Or it can be set as the highly safe headlamp by which the instrumentation circuit for eye safety interlocks was incorporated by setting it as the headlamp which comprises the light emission control means which can reduce light emission intensity.

本発明によれば、半導体レーザ素子を励起源とした前照灯において、アイセーフティに関するインターロック用の光源部異常検出方法を安価に提供し、ひいては安全性の高い前照灯を提供することができる。   According to the present invention, in a headlamp using a semiconductor laser element as an excitation source, it is possible to provide a light source unit abnormality detection method for interlocking with respect to eye safety at a low cost, and thus to provide a highly safe headlamp. it can.

図1は、本発明によるインターロック制御用の異常検出機構を組み込んだ前照灯構図の一例を示す図であるFIG. 1 is a diagram showing an example of a headlamp composition incorporating an abnormality detection mechanism for interlock control according to the present invention. 図2は、本発明の要旨となる異常検出機構の光学的電気的つながりを機能ブロック図として示す図である。FIG. 2 is a functional block diagram showing the optical and electrical connections of the abnormality detection mechanism that is the gist of the present invention. 図3は、本発明における異常検出構機構の具体的実施例を示す図である。FIG. 3 is a diagram showing a specific embodiment of the abnormality detection mechanism in the present invention. 図4は、本発明における異常検出構機構の受光素子に組み合せる前置き増幅部の一例を示す図である。FIG. 4 is a diagram showing an example of a preamplifier unit to be combined with the light receiving element of the abnormality detection mechanism in the present invention. 図5は、本発明における異常検出構機構の検出出力値を判定する判定器の一例を示す図である。FIG. 5 is a diagram illustrating an example of a determination unit that determines the detection output value of the abnormality detection mechanism according to the present invention. 図6は、図3に示す実施例に対して、使用する受光素子の員数を削減し、受光素子を三つとした場合の波長変換部材と受光素子の配置関係の一例を示す図である。FIG. 6 is a diagram illustrating an example of an arrangement relationship between the wavelength conversion member and the light receiving elements when the number of the light receiving elements to be used is reduced and the number of the light receiving elements is three with respect to the embodiment illustrated in FIG. 3. 図7は、図6に示した波長変換部の変形例とした場合の受光素子の配置関係の一例を示す図である。FIG. 7 is a diagram illustrating an example of the arrangement relationship of the light receiving elements when the wavelength conversion unit illustrated in FIG. 6 is modified. 図8は、図4に示した前置き増幅部に受光素子を二個並列に接続した状態を示す図である。FIG. 8 is a diagram showing a state in which two light receiving elements are connected in parallel to the preamplifier shown in FIG. 図9は、図8示す前置き増幅部と受光素子の接続状態とした場合における前置き増幅部の配置例を示す図である。FIG. 9 is a diagram illustrating an arrangement example of the preamplifiers when the preamplifiers and the light receiving elements illustrated in FIG. 8 are connected.

(本発明が用いられる前照灯の態様)
図1は本発明によるインターロック制御用の異常検出機構を組み込んだ前照灯構図の一例を示すものである。前照灯1は、半導体レーザ素子10を光源として波長変換部材15を通して白色光に変換され反射鏡21により照明装置前面のプリズムレンズ22により前方へ適正に配光制御された光を照射する。
(Aspect of headlamp in which the present invention is used)
FIG. 1 shows an example of a headlamp composition incorporating an abnormality detection mechanism for interlock control according to the present invention. The headlamp 1 emits light that is converted into white light through the wavelength conversion member 15 by using the semiconductor laser element 10 as a light source and is appropriately light-distributed forward by the reflecting lens 21 by the prism lens 22 on the front surface of the illumination device.

半導体レーザ素子10からの出射光は黒色アルマイト処理されたアルミ材により作成された鏡筒14内部に設置されたコリメータレンズ11により平行化された後、必要に応じて、シリンドリカルレンズやアナモルフィックプリズム等を用いたビーム整形器12をとおしてビーム形状のアスペクト比が調整され、集光レンズ13により板状の波長変換部材15の入射面151へ集光される。尚、ビーム形状の整形は、極端に低アスペクト化するのではなく、前照灯に必要とされる配光に合わせて設定される。   Light emitted from the semiconductor laser element 10 is collimated by a collimator lens 11 installed in a lens barrel 14 made of a black anodized aluminum material, and then, if necessary, a cylindrical lens or an anamorphic prism. The aspect ratio of the beam shape is adjusted through the beam shaper 12 using the above and the like, and the light is condensed on the incident surface 151 of the plate-like wavelength conversion member 15 by the condenser lens 13. In addition, the shaping of the beam shape is not set to an extremely low aspect, but is set in accordance with the light distribution required for the headlamp.

波長変換部15は耐熱性および熱の拡散性を確保するために無機材料をベースとして作成されることが好ましく、例えば蛍光体分散ガラスあるいは透光性蛍光体セラミックプレートで作成されている。蛍光体は熱劣化現象および温度消光現象の程度が低く、耐湿性や硫化水素などによる腐食の懸念がない窒素化物系のCa−αサイアロン系蛍光体が特に好ましい。   The wavelength conversion unit 15 is preferably made based on an inorganic material in order to ensure heat resistance and heat diffusibility, and is made of, for example, a phosphor-dispersed glass or a translucent phosphor ceramic plate. The phosphor is particularly preferably a nitride-based Ca-α sialon-based phosphor that has a low degree of thermal deterioration phenomenon and temperature quenching phenomenon and is free of moisture resistance and corrosion due to hydrogen sulfide.

半導体レーザ素子10は、発光波長を紫〜青色領域に持ち、構造は高出力半導体レーザの基本的構造であるブロードストライプ構造としたものである。従って混在した多数の水平横モードの発振によりビーム断面の強度分布は起伏が複数生じたものとなり、照明用光源として適しているといい難いが、蛍光体を含む波長変換部15により、適度な拡散が生じて平滑化された光強度分布の発光部として機能する。 尚、図示していないが、半導体レーザ素子10は寿命確保の為に、ヒートシンク或いはヒートパイプ等による放熱処置が施されている。   The semiconductor laser device 10 has a light emission wavelength in a purple to blue region, and has a broad stripe structure that is a basic structure of a high-power semiconductor laser. Accordingly, the intensity distribution of the beam cross section has a plurality of undulations due to a large number of mixed horizontal and transverse modes of oscillation, and it is difficult to say that it is suitable as a light source for illumination. Functions as a light-emitting portion having a smoothed light intensity distribution. Although not shown, the semiconductor laser element 10 is subjected to heat radiation treatment with a heat sink or a heat pipe in order to ensure the life.

ここで、板状の波長変換部材15の横方向側面に近接配置された複数の受光素子16、および遮蔽部材17は本発明の要部である異常検出機構部を示すものであって、受光素子16により波長変換部材15の光入射面151に入射したレーザ光の一部を常に波長変換部材15の側面方向への拡散伝搬光として検出させている。   Here, a plurality of light receiving elements 16 and a shielding member 17 which are arranged close to the lateral side surface of the plate-like wavelength conversion member 15 indicate an abnormality detection mechanism part which is a main part of the present invention. 16, a part of the laser light incident on the light incident surface 151 of the wavelength conversion member 15 is always detected as diffuse propagation light in the side surface direction of the wavelength conversion member 15.

受光素子16は、最大感度波長が800nm以上、好ましくは900nm付近であるSiフォトダイオードが望ましい。Siフォトダイオードは400nm以上に感度領域があり、励起源に用いるレーザ光から波長変換されたスペクトル幅の広い光までも光電流に変換出力することが可能である。また、動作点を短絡モードに設定すれば、短絡電流Iscは入射光量に対する直線性が優れ、暗電流によるノイズの発生がなく、ダイナミックレンジも広い。更に最大感度波長より短波長領域となる可視領域の入射光であれば温度による感度の変動特性はほぼゼロである。最大感度波長は温度上昇により短波長側にシフトするが、最大感度波長が常温時で800nm以上あれば、前照灯の温度環境においてもほぼ検出光の波長領域を包含可能と考えられる。   The light receiving element 16 is desirably a Si photodiode having a maximum sensitivity wavelength of 800 nm or more, preferably around 900 nm. The Si photodiode has a sensitivity region of 400 nm or more, and can convert a laser light used as an excitation source into light having a wide spectral width converted into a photocurrent. If the operating point is set to the short-circuit mode, the short-circuit current Isc has excellent linearity with respect to the amount of incident light, does not generate noise due to dark current, and has a wide dynamic range. Further, in the case of incident light in the visible region that is shorter than the maximum sensitivity wavelength, the variation characteristic of sensitivity with temperature is almost zero. Although the maximum sensitivity wavelength shifts to the short wavelength side as the temperature rises, if the maximum sensitivity wavelength is 800 nm or more at room temperature, it is considered that the wavelength region of the detection light can be substantially included even in the temperature environment of the headlamp.

遮蔽部材17は、中央に波長変換部材15の上面の発光部に合わせた開口を設けた板材で、波長変換部材14を開口が設けられた支持部材20に固定するとともに、受光素子16への外乱光やの迷光の入射を防ぐ遮蔽手段としての機能も有するものである。遮蔽部材17は、剛性のある金属材料(例えば、SUS304,SUS305等)で作成し、光の反射散乱を防ぐために、高耐熱性の黒色塗装(つや消しカシュー樹脂塗料やセラミック系チラノコート等)を施す。支持部材20は金属板(例えば、亜鉛メッキ鋼板SECC、SEHC等)で作成し、遮蔽部材17と同様の黒色塗装を施す。
The shielding member 17 is a plate material provided with an opening in the center corresponding to the light emitting portion on the upper surface of the wavelength conversion member 15, and fixes the wavelength conversion member 14 to the support member 20 provided with the opening , and disturbs the light receiving element 16. It also has a function as a shielding means for preventing incidence of light and stray light. The shielding member 17 is made of a rigid metal material (for example, SUS304, SUS305, etc.), and is coated with a highly heat-resistant black paint (matte cashew resin paint, ceramic tyrano coat, etc.) in order to prevent reflection and scattering of light. The support member 20 is made of a metal plate (for example, galvanized steel plate SECC, SEHC, etc.), and is coated with the same black paint as the shielding member 17.

(機能ブロック図)
本発明は図1の例で示す前照灯において集光されたレーザビームにより波長変換部15が損傷を受けた場合に、波長変換部15の横方向への僅かな光伝搬量の変化を受光素子16で検出することで、波長変換部15表面に形成されたアパーレント光源の異常を検出して半導体レーザ光源の駆動部に制御部に含まれる計装回路をとおしてインターロックを作動させることを目的とするものである。
図2に本発明の要旨となる異常検出機構の光学的電気的つながりを機能ブロック図として示す。
(Function block diagram)
The present invention receives a slight change in the amount of light propagation in the lateral direction of the wavelength converter 15 when the wavelength converter 15 is damaged by the laser beam condensed in the headlamp shown in the example of FIG. By detecting with the element 16, the abnormality of the apparent light source formed on the surface of the wavelength conversion unit 15 is detected, and the interlock is operated through the instrumentation circuit included in the control unit in the driving unit of the semiconductor laser light source. It is the purpose.
FIG. 2 is a functional block diagram showing optical and electrical connections of the abnormality detection mechanism that is the gist of the present invention.

図3に波長変換部材15を中心とした本発明における異常検出構機構の具体的実施例を示す。波長変換部材15は正方形の四隅を45度の角度で切り落としたような変形八角形をした板状の部材でレーザ光の光入射面152は支持部材20に当接して遮蔽部材17により加圧固定される。光放射面151には発光中心目標となる凸部が形成されている。レーザビームはこの位置を目標として集光させるように設定される。   FIG. 3 shows a specific embodiment of the anomaly detection mechanism according to the present invention centering on the wavelength conversion member 15. The wavelength conversion member 15 is a plate-like member having a deformed octagonal shape in which the four corners of a square are cut off at an angle of 45 degrees. Is done. The light emitting surface 151 is formed with a convex portion serving as a light emission center target. The laser beam is set to be focused with this position as a target.

遮蔽部材17の中央には開口が設けられ、波長変換部材15の光出射面151上に形成されるアパーレント光源の大きさを規制する。また支持部材20は光入射面152のビーム入射位置に合わせて開口が設けられており、レーザビーム光束の太さを規制する。 An opening is provided in the center of the shielding member 17 to regulate the size of the apparent light source formed on the light emitting surface 151 of the wavelength conversion member 15. The support member 20 is provided with an opening in accordance with the beam incident position on the light incident surface 152, and regulates the thickness of the laser beam.

四つの受光素子16a乃至16dは波長変換部材20の四方位にあたる四つの側面に受光窓が正対するように設置されており、遮蔽部材17は設けられたU字型の切欠きにより受光素子16a乃至16dを位置固定するとともに、受光素子に周囲から侵入する外乱光を遮蔽する。   The four light receiving elements 16a to 16d are installed so that the light receiving windows face the four side faces corresponding to the four directions of the wavelength conversion member 20, and the shielding member 17 is formed by the provided U-shaped cutouts. The position of 16d is fixed, and ambient light entering the light receiving element from the surroundings is shielded.

19は前置き増幅部18a乃至18dが形成される回路基板である。支持部材20からの熱によるあおりを軽減するように、あえて有機基板を用いる。基板19は前記前置き増幅部を構成する電子回路が搭載された後にフッ素樹脂コーティング剤等により防湿コート処理を行う。尚、前置き増幅部から主制御基板(図示せず)上に形成された次段の判定器への接続は、基板19からケーブルにて支持部材20の所定の位置に設けた穴隙を通して配線される。   Reference numeral 19 denotes a circuit board on which the preamplifiers 18a to 18d are formed. An organic substrate is used intentionally so as to reduce the tilt caused by heat from the support member 20. The substrate 19 is subjected to moisture-proof coating with a fluororesin coating agent after the electronic circuit constituting the preamplifier is mounted. The connection from the preamplifier to the next-stage determination device formed on the main control board (not shown) is wired from the board 19 through a hole provided at a predetermined position of the support member 20 by a cable. The

(前置き増幅器)
前述のとおり、受光素子16a〜16dはSiフォトダイオードを用いて、その動作点を短絡モードに設定するのが好ましい。この場合図4に示すように、見かけ上の負荷がゼロとなるように、オペアンプを用いたトランスインピーダンスアンプ回路との組み合わせが最良である。(実際にはRf/A が負荷抵抗に相当する。ここでRf:帰還抵抗、A:オペアンプ開放ゲインである。)
(Preamplifier)
As described above, it is preferable that the light receiving elements 16a to 16d use Si photodiodes and set their operating points to the short-circuit mode. In this case, as shown in FIG. 4, the combination with a transimpedance amplifier circuit using an operational amplifier is the best so that the apparent load becomes zero. (In practice, Rf / A corresponds to the load resistance. Here, Rf is a feedback resistance and A is an operational amplifier open gain.)

ここで用いられるオペアンプは、低入力バイアス電流タイプであるが、低入力バイアス電流タイプとして一般的なFET入力型オペアンプは避けて、バイポーラ型オペアンプから選択すべきである(例えば、アナログデバイス社のAD620、AD706等)。何故なら、本製品が組み込まれる前照灯の環境においては、高温での動作が求められため、高温状態において入力バイアス電流が極端に増加してしまうFET入力型オペアンプでは、光電流の検出誤差が大きくなってしまうからである。   The operational amplifier used here is of a low input bias current type, but it should be selected from bipolar operational amplifiers, for example, avoiding a common FET input operational amplifier as a low input bias current type (for example, AD620 from Analog Devices). AD706 etc.). This is because the operation of the headlamp in which this product is installed requires high-temperature operation, and the FET input type operational amplifier, in which the input bias current increases extremely at high temperatures, has a photocurrent detection error. It will be bigger.

(判定器)
判定器は例えば、図4に示す様なウィンドコンパレータ回路を用いる。図2の様な、検出部の構成の場合には、18a乃至18dの前置き増幅器夫々の出力を判定するために判定器は計四器必要となる。18a乃至18dの前置き増幅器出力は低インピーダンス化されているので、前記ウィンドコンパレータの設置個所は前記18a乃至18dの前置き増幅器から離れてレーザ用CW駆動部及びインターロック計装回路を含む制御部等が搭載される主基板(図示せず)上にあっても良い。
(Determinator)
As the determiner, for example, a window comparator circuit as shown in FIG. 4 is used. In the case of the configuration of the detector as shown in FIG. 2, a total of four determinators are required to determine the outputs of the preamplifiers 18a to 18d. Since the output of the preamplifiers 18a to 18d is reduced in impedance, the installation location of the window comparator is separated from the preamplifiers 18a to 18d by a control unit including a laser CW drive unit and an interlock instrumentation circuit. It may be on a main board (not shown) to be mounted.

図4のウィンドコンパレータでは、平常時は二つに基準電圧(高および低)の間になる様に設定されており出力はHレベルとなっているが、波長変換部材15にクラック等が生じて、受光素子16a乃至16d方向に拡散伝搬される光量が減少するとCOMP2の出力はLとなり制御部への出力もLレベルとなる。また鏡筒14内の光学系の異常による迷走レーザ光の発生や、レーザ光源10自体からの放射出力が何等かの理由(駆動部の定電流ドライバの異常等)で、受光素子16a乃至16d方向に拡散伝搬される光量が増加するとCOMP1の出力はLとなり制御部への出力もLレベルとなる。   In the window comparator of FIG. 4, the two are set to be between two reference voltages (high and low) in normal times and the output is H level, but the wavelength conversion member 15 is cracked or the like. When the amount of light diffused and propagated in the direction of the light receiving elements 16a to 16d decreases, the output of COMP2 becomes L and the output to the control unit also becomes L level. The direction of the light receiving elements 16a to 16d is due to the generation of stray laser light due to an abnormality of the optical system in the lens barrel 14 or the radiation output from the laser light source 10 itself (abnormality of the constant current driver of the driving unit). When the amount of light diffused and propagated increases, the output of COMP1 becomes L and the output to the control unit also becomes L level.

従って、正常時はHレベル、各閾値毎に二つの故障モードによる異常時には、いずれも出力はLレベルとなり制御部以降のインターロック計装回路(例えば、レーザ光出力を本質的安全レベルに抑制、或いは電源供給ライン遮断によるレーザ発光の停止など)へ信号が出力される。   Therefore, when normal, it is H level, and when there is an abnormality due to two failure modes for each threshold, both outputs become L level, and the interlock instrumentation circuit after the control unit (for example, the laser light output is suppressed to an intrinsically safe level, Alternatively, a signal is output to the laser light emission stop due to power supply line interruption.

実施例1は図2により、四つの受光素子を用いた異常検出機構の実施例であったが、受光素子の配置及び員数はこれに拘るものではない。例えば、受光素子を三つとした場合の波長変換部材315と受光素子の配置関係の一例を図6に示す。この場合、波長変換部材315は略正三角から三つの頂点部分を中心方向に対して直角に切り落として三つの平面を設けた形状で、受光素子16a乃至16cは該平面と受光面が正対するように配置してある。前置き増幅部18a乃至18c以降の処置は実施例1と同様である。   Although Example 1 is an example of an abnormality detection mechanism using four light receiving elements as shown in FIG. 2, the arrangement and number of light receiving elements are not limited to this. For example, FIG. 6 shows an example of the arrangement relationship between the wavelength conversion member 315 and the light receiving elements when there are three light receiving elements. In this case, the wavelength converting member 315 has a shape in which three vertex portions are cut off from a substantially regular triangle at right angles to the center direction to provide three planes, and the light receiving elements 16a to 16c are arranged so that the plane and the light receiving surface face each other. It is arranged in. The treatment after the preamplifiers 18a to 18c is the same as that of the first embodiment.

尚、この場合波長変換部材315もこの形状に拘るものではなく、レーザ光の入射位置から横方向へ拡散伝搬される光量の検出効率が高めるように、形状も受光素子の配置に合わせて、適宜形状の最適化を行ってもよい。例えば、図7の波長変換部材3155は図9の波長変換部材315の下地となった包絡形状である正三角形の三つの辺を中心に向かって凹となる曲線で変形したもので、受光素子への正対面にレーザ光の入射位置から横方向へ拡散伝搬される光の集光率向上を図るものである。   In this case, the wavelength converting member 315 is not limited to this shape, and the shape is appropriately determined in accordance with the arrangement of the light receiving elements so that the detection efficiency of the amount of light diffused and propagated from the laser light incident position in the lateral direction is increased. Shape optimization may be performed. For example, the wavelength conversion member 3155 in FIG. 7 is obtained by deforming three sides of an equilateral triangle that is an envelope shape that is a base of the wavelength conversion member 315 in FIG. The condensing rate of the light diffused and propagated in the lateral direction from the incident position of the laser light to the directly facing surface is improved.

実施例1における図2を用いて説明した異常検出機構では四つの受光素子を用いて夫々に前置き増幅器を配置するものであったが、受光素子16a乃至16dと波長変換部材15の配置は元のままで前置き増幅部以降の組数を減らしことも可能である。   In the abnormality detection mechanism described with reference to FIG. 2 in the first embodiment, the preamplifier is arranged using four light receiving elements, but the arrangement of the light receiving elements 16a to 16d and the wavelength conversion member 15 is the original. It is also possible to reduce the number of sets after the preamplifier.

図8は、図4に示した前置き増幅部を基にオペアンプ入力に受光素子を二個並列に接続したものである。本回路において受光素子の動作は短絡モードであり、受光素子は電流源として機能しているので、このような接続でも回路上の問題はない。   FIG. 8 shows a structure in which two light receiving elements are connected in parallel to the operational amplifier input based on the preamplifier shown in FIG. In this circuit, the operation of the light receiving element is in the short-circuit mode, and the light receiving element functions as a current source.

これにより、受光素子に対して前置き増幅部を個別に設けるのではなく、図2の受光素子の構成であれば、前置き増幅部の数が四つから二つへ減らすことができる。判定器も前置き増幅部と組みとなる構成であるので、同様に四つから二つに減る。
このようにして、図4による前置き増幅器の構成であれば、オペアンプ入力に接続する受光素子を複数個とすることで、前置き増幅部以降の組数を減らすことができる。
Accordingly, the number of the pre-amplifiers can be reduced from four to two if the configuration of the light-receiving element in FIG. 2 is not provided separately for the light-receiving elements. Since the determiner is also configured with the preamplifier, the number is similarly reduced from four to two.
In this way, with the configuration of the preamplifier according to FIG. 4, the number of sets after the preamplifier can be reduced by using a plurality of light receiving elements connected to the operational amplifier input.

但し、図8による結線の場合、異常に対する実質的な検出感度は略1/2に低下するので、オペアンプの入力に接続する受光素子の数は制限なく追加して接続するのではなく、検出マージンを評価しながら個数決定しなければならない。並列に接続される受光素子の数が増えるに従い、判定器の、閾値設定が手間のかかる作業となり、その結果、異常検出機能の安定度を損なうことが予想されるからである。図8のように受光素子はせいぜい二個程度に収めるのが無難であろう。   However, in the case of the connection according to FIG. 8, since the substantial detection sensitivity to the abnormality is reduced to about ½, the number of light receiving elements connected to the input of the operational amplifier is not additionally connected, but a detection margin The number must be determined while evaluating This is because, as the number of light receiving elements connected in parallel increases, the threshold setting of the determination unit becomes a troublesome operation, and as a result, it is expected that the stability of the abnormality detection function is impaired. As shown in FIG. 8, it is safe to accommodate the light receiving elements in about two at most.

前置き増幅部と受光素子を図8による接続としたときの配置例を図9に示す。波長変換部材15および受光素子16a乃至16dは図2の配置と同じである。前置き増幅部のみが418aおよび418bの二つのみとなり、前置き増幅部418aには受光素子16aと16dが、前置き増幅部418bには受光素子16bと16cが接続される。
この例では、組となる受光素子を隣合う二個とした。勿論、前置き増幅部が形成される基板部の配線が複雑になるが組となる受光素子を対向し合う二個としても良い。
FIG. 9 shows an arrangement example when the preamplifier and the light receiving element are connected according to FIG. The wavelength conversion member 15 and the light receiving elements 16a to 16d are the same as the arrangement in FIG. Only the preamplifier unit is 418a and 418b, the light receiving elements 16a and 16d are connected to the preamplifier unit 418a, and the light receiving elements 16b and 16c are connected to the preamplifier unit 418b.
In this example, two adjacent light receiving elements are adjacent to each other. Of course, although the wiring of the substrate portion on which the preamplifier is formed is complicated, the light receiving elements that form a pair may be two facing each other.

上記実施例における波長変換部材と受光素子の配置及び構成、更に導光部材との組み合わせなどは単なる例示にすぎず、これに限定するものではない。例えば、波長変換部材を単なる平板ではなく三次元形状として、受光素子の結合部を保持部材上ではない別の空間に設けてもよい。
本発明をもとに、上記のような処置は当業者であれば容易に可能な変更であろう。
The arrangement and configuration of the wavelength conversion member and the light receiving element in the above embodiment, and the combination of the light guide member are merely examples, and are not limited thereto. For example, the wavelength conversion member may be a three-dimensional shape instead of a simple flat plate, and the coupling portion of the light receiving element may be provided in another space not on the holding member.
Based on the present invention, the above-described procedure will be a possible modification for those skilled in the art.

本発明は、半導体レーザ素子を光源とする高光束の白色照明装置に必要となるセーフティインターロック用の検出機構に係るもので、車両用のヘッドライトやフォグランプの前方照明装置の他、プロジェクタ装置等における光源の異常検出機構としても利用可能である。   The present invention relates to a safety interlock detection mechanism necessary for a high luminous flux white illumination device using a semiconductor laser element as a light source. In addition to a headlight for a vehicle, a front illumination device for a fog lamp, a projector device, etc. It can also be used as a light source abnormality detection mechanism.

1 前照灯
10 半導体レーザ素子
11 コリメータレンズ
12 シリンドリカルレンズ、又はアナモルフィックプリズム
13 集光レンズ
14 鏡筒
15、315、3155 波長変換部材
16、16a、16b、16c、16d、 受光素子
17 遮蔽部材
18a、18b、18c、18d、418a、418b 前置き増幅部
19 回路基板
20 支持部材
21 反射鏡
22 プリズムレンズ
151 波長変換部材の光入射面
152 波長変換部材の光放射面
DESCRIPTION OF SYMBOLS 1 Headlamp 10 Semiconductor laser element 11 Collimator lens 12 Cylindrical lens or anamorphic prism 13 Condensing lens 14 Lens barrel 15,315, 3155 Wavelength conversion member 16,16a, 16b, 16c, 16d, Light receiving element 17 Shielding member 18a, 18b, 18c, 18d, 418a, 418b Preamplifier 19 Circuit board 20 Support member 21 Reflector 22 Prism lens 151 Light incident surface of wavelength conversion member 152 Light emission surface of wavelength conversion member

Claims (3)

励起源としての半導体レーザ素子と、半導体レーザ素子からの光の少なくとも一部を波長変換して外部へ白色光として取り出すことが可能な透光性の波長変換部材と、前記波長変換部材の発光部を光源として用いる車両用前方照明装置において前記発光部の異常を検出する異常検出機構であって、
前記波長変換部材は、前記発光部を含む天面と、光入射面である底面と、天面と底面に接する一つ以上の側面を備え、
前記半導体レーザ素子からのビーム光の出射方向の前方に設けられ、前記波長変換部材の底面を支持し、前記半導体レーザ素子からのビーム光を通すための開口を持つ支持部材と、
前記波長変換部材の側面に間隔をおいて正対するように設置された複数個の受光素子と、
前記波長変換部材の天面を覆い、前記波長変換部材の天面の発光部にあたる箇所に開口を持ち、前記支持部材に接合された遮蔽部材と、
前記受光素子に接続される前置き増幅器と、
前記前置き増幅器に接続される判定器と、
を少なくとも含むことを特徴とする前記発光部の異常を検出する異常検出機構。
Semiconductor laser element as excitation source, translucent wavelength conversion member capable of converting wavelength of at least part of light from semiconductor laser element and taking out to outside as white light, and light emitting portion of said wavelength conversion member An abnormality detection mechanism for detecting an abnormality of the light emitting unit in a vehicle front illumination device using a light source as a light source ,
The wavelength conversion member includes a top surface including the light emitting unit, a bottom surface that is a light incident surface, and one or more side surfaces in contact with the top surface and the bottom surface,
A support member provided in front of the emission direction of the beam light from the semiconductor laser element, supporting a bottom surface of the wavelength conversion member, and having an opening for passing the beam light from the semiconductor laser element;
A plurality of light receiving elements installed so as to face each other on the side surface of the wavelength conversion member,
A shielding member that covers the top surface of the wavelength conversion member, has an opening at a location corresponding to the light emitting portion of the top surface of the wavelength conversion member, and is joined to the support member;
A preamplifier connected to the light receiving element;
A determiner connected to the preamplifier;
An abnormality detection mechanism for detecting an abnormality in the light emitting unit .
前記受光素子は、Siフォトダイオードであり、前記Siフォトダイオードの動作点が短絡モードに設定されていることを特徴とする請求項1に記載の異常検出機構。
The abnormality detection mechanism according to claim 1, wherein the light receiving element is a Si photodiode, and an operating point of the Si photodiode is set in a short-circuit mode .
請求項1および請求項2に記載の異常検出機構と、前記異常検出機構の受光素子の検出値に基づいて、前記半導体レーザ素子を発光停止あるいは発光強度低下させることが可能な発光制御手段を具備することを特徴とする車両用前方照明装置。
An abnormality detection mechanism according to claim 1 and a light emission control means capable of stopping light emission or reducing light emission intensity of the semiconductor laser element based on a detection value of a light receiving element of the abnormality detection mechanism. A vehicle front lighting device characterized by:
JP2012058210A 2012-03-15 2012-03-15 Abnormality detection mechanism and vehicle front illumination device including the same Active JP5955593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012058210A JP5955593B2 (en) 2012-03-15 2012-03-15 Abnormality detection mechanism and vehicle front illumination device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012058210A JP5955593B2 (en) 2012-03-15 2012-03-15 Abnormality detection mechanism and vehicle front illumination device including the same

Publications (2)

Publication Number Publication Date
JP2013191479A JP2013191479A (en) 2013-09-26
JP5955593B2 true JP5955593B2 (en) 2016-07-20

Family

ID=49391510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058210A Active JP5955593B2 (en) 2012-03-15 2012-03-15 Abnormality detection mechanism and vehicle front illumination device including the same

Country Status (1)

Country Link
JP (1) JP5955593B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014202294A1 (en) * 2014-02-07 2015-08-13 Osram Gmbh Lighting device and method for operating a lighting device
DE102014202943A1 (en) * 2014-02-18 2015-08-20 Osram Gmbh Lighting device with primary light source and phosphor volume
DE102015101424B4 (en) 2015-01-30 2017-04-27 pmdtechnologies ag lighting device
FR3034170B1 (en) * 2015-03-24 2018-09-07 Valeo Vision LASER LIGHTING MODULE WITH SAFETY DEVICE
JP6509617B2 (en) * 2015-04-15 2019-05-08 株式会社小糸製作所 Vehicle lamp
WO2017138327A1 (en) * 2016-02-08 2017-08-17 パナソニックIpマネジメント株式会社 Wavelength conversion element and light source device
DE102016207759A1 (en) * 2016-05-04 2017-11-09 Osram Gmbh Detecting damage to a converter device
JP6678517B2 (en) * 2016-05-31 2020-04-08 シャープ株式会社 Lighting equipment
KR20180128151A (en) * 2017-05-23 2018-12-03 현대자동차주식회사 Head lamp apparatus for vehicle
JP6693908B2 (en) * 2017-06-09 2020-05-13 オムロン株式会社 Light source device and distance measuring sensor including the same
JP6471772B2 (en) * 2017-06-09 2019-02-20 オムロン株式会社 Light source device and distance measuring sensor provided with the same
JP6690610B2 (en) 2017-07-28 2020-04-28 日亜化学工業株式会社 Light emitting device
KR102004896B1 (en) * 2018-05-14 2019-07-29 굿아이텍 주식회사 blue laser white light module
JP2022114562A (en) 2021-01-27 2022-08-08 日亜化学工業株式会社 light emitting module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293924A (en) * 2007-05-28 2008-12-04 Sharp Corp Lighting device and liquid crystal display
CN102245080B (en) * 2008-12-15 2015-11-25 奥林巴斯株式会社 Illuminator and endoscope apparatus
JP4975797B2 (en) * 2009-10-14 2012-07-11 シャープ株式会社 LIGHTING DEVICE, VEHICLE LIGHT, AND VEHICLE

Also Published As

Publication number Publication date
JP2013191479A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5955593B2 (en) Abnormality detection mechanism and vehicle front illumination device including the same
US9261259B2 (en) Laser-beam utilization device and vehicle headlight
JP6164518B2 (en) Vehicle headlamp
KR101628454B1 (en) Laser optical system for head lamp
WO2017138412A1 (en) Light source device and projection device
JP2011014535A (en) Lighting system
WO2016039130A1 (en) Illuminating instrument
WO2018212187A1 (en) Vehicular lamp
JP4880637B2 (en) Long distance LED lighting fixture
JP6688182B2 (en) Mobile headlights
JP2014190868A (en) Photoirradiation device
JP2013157241A (en) Lighting system
JP2009110828A (en) Led light source device
JP2009110827A (en) Led light source device
JP2018006133A (en) Light projector
JP2017224594A (en) Lighting module comprising laser element
JP2007311731A (en) Light emitting device employing led
JP2013211252A (en) Solid lighting device
JP2011165765A (en) Lighting device
TWM423203U (en) High-brightness LED lamp structure
KR101842189B1 (en) A searchlight using rgb laserdiode
KR101868417B1 (en) A searchlight using blue laserdiode
US20210162910A1 (en) Lighting Device for a Motor Vehicle Headlight
CN216383988U (en) Optical system and vehicle lamp
KR101406619B1 (en) System and method for lighting head lamp of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160615

R150 Certificate of patent or registration of utility model

Ref document number: 5955593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250