JP2011165765A - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP2011165765A
JP2011165765A JP2010024525A JP2010024525A JP2011165765A JP 2011165765 A JP2011165765 A JP 2011165765A JP 2010024525 A JP2010024525 A JP 2010024525A JP 2010024525 A JP2010024525 A JP 2010024525A JP 2011165765 A JP2011165765 A JP 2011165765A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
light
double
element array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010024525A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Morino
剛志 森野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010024525A priority Critical patent/JP2011165765A/en
Priority to PCT/JP2011/052094 priority patent/WO2011096411A1/en
Priority to CN201180004336.XA priority patent/CN102598325B/en
Priority to EP11739759.6A priority patent/EP2533315B1/en
Publication of JP2011165765A publication Critical patent/JP2011165765A/en
Priority to US13/465,113 priority patent/US8610967B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting device, capable of obtaining high illuminance uniformity. <P>SOLUTION: The lighting device includes: one or more light emitting element array(s) in which a plurality of light emitting elements are arranged on a substrate on the same straight line; a plane mirror connected on the substrate in at least any one side out of both terminals of the light emitting element array perpendicularly to the arranged direction of the plurality of light emitting elements; and a double-sided mirror connected on the substrate at one or more position(s) between the plurality of light emitting elements perpendicularly to the arranged direction of the plurality of light emitting elements so that a difference between the maximum illuminance of the light emitting element array and the minimum illuminance of the light emitting element array falls within the threshold, where the double-sided mirror has a length in an irradiation direction of the light emitting element array smaller than the length of the plane mirror in the irradiation direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、照明装置に関し、より詳細には直線光源を用いた照明装置に関する。   The present invention relates to a lighting device, and more particularly to a lighting device using a linear light source.

印刷物やカード類といった被検物の表面の自動読み取りまたは印刷品質検査の方法としては、搬送装置で被検物を一方向に動かし、結像レンズとラインセンサからなる撮像手段を用いて被検物表面をスキャンする方法が多い。また装置よっては、撮像手段を搬送装置で一方向に動かし被検物の表面をスキャンする方法もある。   As a method of automatic reading of the surface of a test object such as a printed product or cards, or a print quality inspection method, the test object is moved in one direction by a transport device, and the test object is detected by using an imaging means including an imaging lens and a line sensor. There are many ways to scan the surface. In addition, depending on the apparatus, there is also a method of scanning the surface of the object to be detected by moving the imaging means in one direction with the transport device.

どちらの方法においても被検物の表面に光を照射する照明装置が必要であり、さらにこの照明装置には、ラインセンサの光源の配列方向に均一になるような照度分布が求められる。特に、高速かつ高精度な読み取りまたは検査を行う場合には、画像処理や信号処理の負担を軽減するために高い照度均一性が求められる。   Both methods require an illuminating device that irradiates light on the surface of the test object, and the illuminating device is required to have an illuminance distribution that is uniform in the arrangement direction of the light sources of the line sensors. In particular, when performing high-speed and high-precision reading or inspection, high illuminance uniformity is required to reduce the burden of image processing and signal processing.

このような照明装置としては、従来からハロゲン光源と光ファイバーとを用いたライトガイドを組み合わせた照明装置や蛍光灯を用いた光源装置が用いられている。また近年では、LED(Light-Emitting Diode)の光量および発光効率が飛躍的に向上したこともあり、LEDを直線状にあるいはマトリックス状に配列した光源装置が用いられている(例えば、特許文献1参照)。   As such an illuminating device, an illuminating device combining a light guide using a halogen light source and an optical fiber and a light source device using a fluorescent lamp are conventionally used. In recent years, the light quantity and luminous efficiency of LEDs (Light-Emitting Diodes) have been dramatically improved, and a light source device in which LEDs are arranged in a straight line or a matrix is used (for example, Patent Document 1). reference).

特にLEDを用いた光源装置に対しては、発光効率の向上に伴う光源装置の省エネルギー化や、水銀やハロゲン類を使用しないことによる環境負荷軽減、長寿命という特性を生かしたメンテナンスフリー化が期待されている。   In particular, for light source devices using LEDs, it is expected to save energy by improving the light emission efficiency, reduce environmental impact by not using mercury and halogens, and make maintenance-free by taking advantage of the characteristics of long life. Has been.

特開2007−71763号公報JP 2007-71763 A

しかしながら、LED等に代表される発光素子を配列した光源装置では、被検物上の照度分布は1つ1つの発光素子による照度分布を空間的に重ね合わせた分布となる。それゆえ、LEDとレンズとを一体に成型した指向性の高い配光分布を持つ発光素子を用いる場合は、それぞれの発光素子の照度分布が狭い範囲でベル型の照度分布を形成するため、重ね合わせた照度分布は波状となり照度不均一性を生じてしまう問題がある。さらに、発光素子の指向性が高いために、個々の発光素子の位置ずれや角度ずれによって全体的な照度分布にムラが発生しやすい。   However, in a light source device in which light emitting elements such as LEDs are arranged, the illuminance distribution on the test object is a distribution obtained by spatially superimposing the illuminance distributions of the respective light emitting elements. Therefore, when using a light emitting element with a highly directional light distribution obtained by integrally molding an LED and a lens, the illuminance distribution of each light emitting element forms a bell-shaped illuminance distribution in a narrow range. There is a problem that the combined illuminance distribution becomes wavy and causes non-uniform illuminance. Furthermore, since the directivity of the light emitting elements is high, unevenness in the overall illuminance distribution is likely to occur due to the positional deviation or angular deviation of the individual light emitting elements.

一方、LEDとレンズとが一体に成型されていない指向性の低い発光素子を用いた場合は、1つの発光素子が光を照射する領域が広くなる。よって、被検物の中心付近ではその中心から見て両方向から来る光が照射されるが、被検物の端部付近はその端から見てLEDが存在する片方向から来る光しか照射されない。このため中心付近は照度分布が高く、端部に向かうにしたがって照度が落ちていくという照度不均一性が生じてしまう問題がある。   On the other hand, when a light emitting element with low directivity in which the LED and the lens are not integrally molded is used, a region where one light emitting element emits light is widened. Therefore, light coming from both directions is irradiated near the center of the test object, but only light coming from one direction where the LED is present is observed near the end of the test object when viewed from the end. For this reason, the illuminance distribution is high in the vicinity of the center, and there is a problem that illuminance non-uniformity occurs in which the illuminance decreases toward the end.

この照度不均一性を防ぐ方法としては、中心付近の発光素子は少量の電流を流すことで発光量を下げ、端付近の発光素子には多くの電流を流すことで発光量を上げて照度のバランスを取るという手段がある。しかしこの方法では、発光素子の明るさ性能を十分発揮させることができない。
また周辺の発光素子を稠密にして、端付近の発光量を増加し照度の低下を防ぐという方法もあるが、物理的に発光素子単体の大きさ以上に稠密にはできないため、光量の上昇に限度がある。
As a method of preventing this illuminance non-uniformity, the light emitting element near the center reduces the light emission amount by flowing a small amount of current, and the light emitting element near the edge increases the light emission amount by flowing a large amount of current to reduce the illuminance. There is a means of balancing. However, with this method, the brightness performance of the light-emitting element cannot be exhibited sufficiently.
In addition, there is a method to increase the amount of light emission near the edge and prevent the illuminance from decreasing by making the surrounding light emitting elements dense, but it cannot physically be more dense than the size of the light emitting element alone, which increases the amount of light. There is a limit.

本発明は、上述の課題を解決するためになされたものであり、高い照度均一性を得ることができる照明装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an illumination device that can obtain high illuminance uniformity.

上述の課題を解決するため、本発明に係る照明装置は、複数の発光素子が基板に同一直線上に配列された1以上の発光素子アレイと、前記発光素子アレイの両端部の外側の前記基板の少なくともいずれか一方に、前記複数の発光素子の配列方向に垂直に接続される平面鏡と、前記発光素子アレイの最大照度と該発光素子アレイの最小照度との差が閾値以内となるように、前記複数の発光素子間の1以上に、前記複数の発光素子の配列方向に垂直に前記基板に接続される両面鏡であって、前記発光素子アレイの照射方向での前記平面鏡の長さよりも短い該照射方向での長さを有する両面鏡と、を具備することを特徴とする。   In order to solve the above-described problems, an illumination device according to the present invention includes one or more light-emitting element arrays in which a plurality of light-emitting elements are arranged on the same line on the substrate, and the substrate outside both ends of the light-emitting element array. At least one of the plane mirror connected perpendicularly to the arrangement direction of the plurality of light emitting elements, and the difference between the maximum illuminance of the light emitting element array and the minimum illuminance of the light emitting element array is within a threshold value, At least one of the plurality of light emitting elements is a double-sided mirror connected to the substrate perpendicular to the arrangement direction of the plurality of light emitting elements, and is shorter than the length of the plane mirror in the irradiation direction of the light emitting element array And a double-sided mirror having a length in the irradiation direction.

本発明の照明装置によれば、高い照度均一性を得ることができる。   According to the illumination device of the present invention, high illuminance uniformity can be obtained.

第1の実施形態に係る照明装置を示す図。The figure which shows the illuminating device which concerns on 1st Embodiment. 平面鏡および両面鏡を用いない場合の照明装置の照度分布のシミュレーション結果を示す図。The figure which shows the simulation result of the illumination intensity distribution of the illuminating device when not using a plane mirror and a double-sided mirror. 第1の実施形態に係る照明装置の照度分布のシミュレーション結果を示す図。The figure which shows the simulation result of the illumination intensity distribution of the illuminating device which concerns on 1st Embodiment. 第2の実施形態に係る照明装置を示す図。The figure which shows the illuminating device which concerns on 2nd Embodiment. 第2の実施形態に係る照明装置の照度分布のシミュレーション結果を示す図。The figure which shows the simulation result of the illumination intensity distribution of the illuminating device which concerns on 2nd Embodiment. 第3の実施形態に係る照明装置を示す図。The figure which shows the illuminating device which concerns on 3rd Embodiment. 平面鏡および両面鏡を用いない場合の照明装置の照度分布のシミュレーション結果を示す図。The figure which shows the simulation result of the illumination intensity distribution of the illuminating device when not using a plane mirror and a double-sided mirror. 第1の実施形態の配置方法を用いた第3の実施形態に係る照明装置の照度分布のシミュレーション結果を示す図。The figure which shows the simulation result of the illumination intensity distribution of the illuminating device which concerns on 3rd Embodiment using the arrangement | positioning method of 1st Embodiment. 第2の実施形態の配置方法を用いた第3の実施形態に係る照明装置の照度分布のシミュレーション結果を示す図。The figure which shows the simulation result of the illumination intensity distribution of the illuminating device which concerns on 3rd Embodiment using the arrangement | positioning method of 2nd Embodiment.

(第1の実施形態)
以下、図面を参照しながら本発明の実施形態に係る照明装置について詳細に説明する。なお、以下の実施形態では、同一の番号を付した部分については同様の動作を行うものとして、重ねての説明を省略する。
第1の実施形態に係る照明装置について図1を参照して詳細に説明する。
第1の実施形態に係る照明装置100は、基板101、発光素子102、平面鏡103、および両面鏡104を含む。
(First embodiment)
Hereinafter, an illumination device according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that, in the following embodiments, the same numbered portions are assumed to perform the same operation, and repeated description is omitted.
The illumination device according to the first embodiment will be described in detail with reference to FIG.
The illumination device 100 according to the first embodiment includes a substrate 101, a light emitting element 102, a plane mirror 103, and a double-sided mirror 104.

基板101は、被検物106に対して光を照射できるように発光素子102を固定し、さらに電源を供給できるものであればよい。   The substrate 101 may be any substrate as long as it can fix the light emitting element 102 so that the test object 106 can be irradiated with light and can supply power.

発光素子102は、例えばLEDであり、発光素子102を等間隔に配列して複数の発光素子102を含む発光素子アレイ105として基板101に接続される。図1の例では、発光素子アレイ105として発光素子102−1、発光素子102−2などといった5個の発光素子102が配列されている。なお、これに限らず、発光素子102をn個(nは2以上の自然数)用いて発光素子102−1から発光素子102−nまで配列させた発光素子アレイ105でもよい。また、発光素子アレイ105を複数並列させてもよい。   The light emitting element 102 is, for example, an LED, and is connected to the substrate 101 as a light emitting element array 105 including a plurality of light emitting elements 102 with the light emitting elements 102 arranged at equal intervals. In the example of FIG. 1, five light emitting elements 102 such as a light emitting element 102-1 and a light emitting element 102-2 are arranged as the light emitting element array 105. However, the present invention is not limited to this, and a light emitting element array 105 in which n light emitting elements 102 (n is a natural number of 2 or more) is used to arrange the light emitting elements 102-1 to 102-n may be used. A plurality of light emitting element arrays 105 may be arranged in parallel.

平面鏡103は、発光素子アレイ105の端部の外側の基板に、発光素子102の配列方向に垂直となるように基板101と接続される。また平面鏡103は、発光素子アレイ105が存在する側に面した平面が鏡面となる。   The plane mirror 103 is connected to the substrate 101 so as to be perpendicular to the arrangement direction of the light emitting elements 102 to the substrate outside the end of the light emitting element array 105. The plane mirror 103 has a mirror surface that faces the side where the light emitting element array 105 exists.

両面鏡104は、両面が鏡面となっている平面鏡であり、発光素子アレイ105の端部側の発光素子102間に、発光素子102の配列方向に垂直となるように基板101に接続される。図1の例では、両面鏡104は、発光素子アレイ105の発光素子102の中で最も外側にある発光素子102−1と外側から2番目の位置にある発光素子102−2との間に配置されている。また、発光素子アレイ105の照射方向の両面鏡104の長さは、平面鏡103よりも短くする。この理由としては、両面鏡104の発光素子102の照射方向の長さを平面鏡103よりも長くすると、発光素子アレイ105の中心付近の発光素子102から発光素子アレイ105の端部に向かう光を両面鏡104が過度に遮ることとになり、逆に端部の照度が低下してしまうからである。
両面鏡104を基板101に接続する位置としては、例えば発光素子102−1と発光素子102−2との中間点付近に配置すれば放熱の影響を均整化できるため好ましい。さらに、この中間点付近に配置するのは、鏡を保持する手段と発光素子102との構造的な干渉を防ぐためにも好ましい。実際には、発光素子102の大きさや配光の広さ、発光素子102を配列する間隔を考慮して、発光素子アレイ105の最大照度と発光素子アレイ105の最小照度との差が閾値以内となるように発光素子102の間の適切な位置に両面鏡104を接続すればよい。すなわち、図1の例では発光素子102−1と発光素子102−2との間に両面鏡104を配置しているが、最大照度と最小照度との差が閾値以内であれば、発光素子102ー2と外側から3番目の位置にある発光素子との間に両面鏡104を配置してもよい。
また、両面鏡104の大きさは、一般的に大きければ大きいほど効果が高い。しかし、実際には光が照射される被検物106と発光素子102との距離は有限であり、照明装置100全体の大きさも有限であるため、両面鏡104の大きさはこれらの条件に当てはまるように、かつ発光素子アレイ105の照射方向の平面鏡103の長さより短くなるように適切な大きさを選択すればよい。
The double-sided mirror 104 is a plane mirror whose both surfaces are mirror surfaces, and is connected to the substrate 101 between the light emitting elements 102 on the end side of the light emitting element array 105 so as to be perpendicular to the arrangement direction of the light emitting elements 102. In the example of FIG. 1, the double-sided mirror 104 is disposed between the light emitting element 102-1 that is the outermost of the light emitting elements 102 of the light emitting element array 105 and the light emitting element 102-2 that is the second position from the outside. Has been. Further, the length of the double-sided mirror 104 in the irradiation direction of the light emitting element array 105 is made shorter than that of the plane mirror 103. The reason for this is that if the length of the light emitting element 102 in the irradiation direction of the double-sided mirror 104 is made longer than that of the plane mirror 103, the light directed from the light emitting element 102 near the center of the light emitting element array 105 to the end of the light emitting element array 105 is This is because the mirror 104 is excessively blocked, and the illuminance at the end is conversely reduced.
The position where the double-sided mirror 104 is connected to the substrate 101 is preferably disposed, for example, in the vicinity of an intermediate point between the light emitting element 102-1 and the light emitting element 102-2 because the influence of heat radiation can be balanced. Furthermore, the arrangement near the intermediate point is also preferable in order to prevent structural interference between the means for holding the mirror and the light emitting element 102. Actually, the difference between the maximum illuminance of the light emitting element array 105 and the minimum illuminance of the light emitting element array 105 is within a threshold value in consideration of the size of the light emitting element 102, the width of light distribution, and the interval at which the light emitting elements 102 are arranged. The double-sided mirror 104 may be connected to an appropriate position between the light emitting elements 102. That is, in the example of FIG. 1, the double-sided mirror 104 is disposed between the light emitting element 102-1 and the light emitting element 102-2. If the difference between the maximum illuminance and the minimum illuminance is within a threshold value, the light emitting element 102 is used. The double-sided mirror 104 may be disposed between the light emitting element located at the third position from the outer side.
In addition, the larger the size of the double-sided mirror 104, the higher the effect. However, since the distance between the object 106 to which light is irradiated and the light emitting element 102 is actually finite and the size of the entire illumination device 100 is also finite, the size of the double-sided mirror 104 satisfies these conditions. Thus, an appropriate size may be selected so as to be shorter than the length of the plane mirror 103 in the irradiation direction of the light emitting element array 105.

このように平面鏡103および両面鏡104を配置することにより、被検物106上に照射される光としていくつかのパターンが考えられる。例えば、発光素子102にから発光した光のうち直接被検物106上に照射される光、平面鏡103によって反射されて被検物106上に照射される光、両面鏡104によって反射され被検物106上に照射される光、および平面鏡103および両面鏡104によって複数回反射され被検物106上に照射される光が存在する。
これらの光は、平面鏡103および両面鏡104を設置していない場合には、被検物106に照射されないか、例えば発光素子アレイ105の端部の発光素子102がもう一方の端部の真下にある被検物106上面付近を照射してしまい、この端部の真下にある被検物106上面への十分な照度が得られない。しかし、本実施形態では平面鏡103および両面鏡104を配置することで、平面鏡103および両面鏡104による合わせ鏡の効果により、発光素子アレイ105の端部付近の発光素子102の直下にある被検物106上の面を照射することができる。これによって、端部付近の照度分布の低下を防ぐことができ全体的な照度均一性を向上することができる。
なお、平面鏡103および両面鏡104は、発光素子アレイ105のどちらか一方の端部に接続されていればよい。また、2以上の発光素子アレイ105を並列させる場合は、1つの発光素子アレイ105の場合と同様に、2以上の発光素子アレイ105に平面鏡を接続し、発光素子102の間に両面鏡104を接続すればよい。この際、1つの発光素子アレイ105に平面鏡103および両面鏡104を接続した照明装置100を複数並列させた状態のように、平面鏡103および両面鏡104の数が複数でもよいし、1枚の平面鏡103および両面鏡104で2以上の発光素子アレイ105全体にわたって接続されてもよい。
By arranging the plane mirror 103 and the double-sided mirror 104 in this way, several patterns can be considered as light irradiated on the test object 106. For example, of the light emitted from the light emitting element 102, the light directly irradiated on the test object 106, the light reflected by the plane mirror 103 and irradiated on the test object 106, and reflected by the double-sided mirror 104 and the test object There is light irradiated onto the object 106 and light irradiated onto the test object 106 after being reflected a plurality of times by the plane mirror 103 and the double-sided mirror 104.
If the plane mirror 103 and the double-sided mirror 104 are not installed, these lights are not irradiated on the test object 106, or for example, the light emitting element 102 at the end of the light emitting element array 105 is directly below the other end. The vicinity of the upper surface of a certain test object 106 is irradiated, and sufficient illuminance cannot be obtained on the upper surface of the test object 106 immediately below this end. However, in the present embodiment, by arranging the plane mirror 103 and the double-sided mirror 104, the test object located immediately below the light-emitting element 102 near the end of the light-emitting element array 105 due to the effect of the combination mirror by the plane mirror 103 and the double-sided mirror 104. The surface on 106 can be illuminated. As a result, the illuminance distribution near the end can be prevented from being lowered, and the overall illuminance uniformity can be improved.
Note that the plane mirror 103 and the double-sided mirror 104 may be connected to either one end of the light emitting element array 105. When two or more light emitting element arrays 105 are arranged in parallel, a plane mirror is connected to the two or more light emitting element arrays 105 and a double-sided mirror 104 is provided between the light emitting elements 102 as in the case of one light emitting element array 105. Just connect. At this time, the number of the plane mirrors 103 and the double-sided mirrors 104 may be plural, as in the state in which a plurality of lighting devices 100 each having the plane mirror 103 and the double-sided mirror 104 connected to one light emitting element array 105 are arranged in parallel. 103 and the double-sided mirror 104 may be connected across two or more light-emitting element arrays 105.

以上に示した効果を、第1の実施形態に係る照明装置100の照度分布のシミュレーション結果である図2および図3を参照して説明する。
図2は平面鏡103および両面鏡104を設置しなかった場合の照明装置100の照度分布を示す。横軸は、発光素子102の配列方向の相対位置を示し、発光素子アレイ105の端部を示す「0.00」から発光素子アレイ105の中心「0.50」までの相対位置で表される。具体的には、発光素子アレイ105の端部から発光素子アレイ105の中心に向かう距離をX、発光素子アレイ105全体の長さをLとすると、X/Lを計算することにより相対位置を算出する。縦軸は、照明装置100の相対照度を示し、最大値が1である。図2に示すように、発光素子アレイ105の中心から発光素子アレイ105の端部に進むに従って徐々に相対照度が低下し、発光素子アレイ105の相対照度が約0.72まで低下している。
一方、図3は平面鏡103および両面鏡104を設置した場合の照明装置100の照度分布を示す。図3に示すように、平面鏡103および両面鏡104を設置することで、発光素子アレイ105の端部付近の相対照度が低下する特性が改善し、端部付近で約0.84の相対照度を確保することができる。
The effect shown above is demonstrated with reference to FIG. 2 and FIG. 3 which are the simulation results of the illumination distribution of the illuminating device 100 which concerns on 1st Embodiment.
FIG. 2 shows the illuminance distribution of the illumination device 100 when the plane mirror 103 and the double-sided mirror 104 are not installed. The horizontal axis represents the relative position in the arrangement direction of the light emitting elements 102 and is represented by the relative position from “0.00” indicating the end of the light emitting element array 105 to the center “0.50” of the light emitting element array 105. . Specifically, when the distance from the end of the light emitting element array 105 toward the center of the light emitting element array 105 is X and the length of the entire light emitting element array 105 is L, the relative position is calculated by calculating X / L. To do. The vertical axis represents the relative illuminance of the lighting device 100, and the maximum value is 1. As shown in FIG. 2, the relative illuminance gradually decreases from the center of the light emitting element array 105 toward the end of the light emitting element array 105, and the relative illuminance of the light emitting element array 105 decreases to about 0.72.
On the other hand, FIG. 3 shows the illuminance distribution of the illumination device 100 when the plane mirror 103 and the double-sided mirror 104 are installed. As shown in FIG. 3, by installing the plane mirror 103 and the double-sided mirror 104, the characteristic that the relative illuminance near the end of the light emitting element array 105 is reduced is improved, and the relative illuminance near the end is about 0.84. Can be secured.

以上に示した第1の実施形態によれば、発光素子アレイの端部に平面鏡を、発光素子アレイの端部付近の発光素子の間に、発光素子アレイの最大照度と最小照度との差が閾値以内となるように両面鏡をそれぞれ設置することで、発光素子アレイの端部における相対照度の低下を防ぐことができ、高い照度均一性を得ることができる。   According to the first embodiment described above, the difference between the maximum illuminance and the minimum illuminance of the light emitting element array is between the light emitting elements near the end of the light emitting element array and the flat mirror at the end of the light emitting element array. By installing the double-sided mirrors so as to be within the threshold value, it is possible to prevent a decrease in relative illuminance at the end of the light emitting element array, and high illuminance uniformity can be obtained.

(第2の実施形態)
第2の実施形態に係る照明装置は、第1の実施形態に係る照明装置100とほぼ同様であるが、両面鏡104の配置が異なる。
第2の実施形態に係る照明装置400について図2を参照して説明する。
第1の実施形態に係る両面鏡104の場合は、発光素子102間のちょうど中間となるように配置され、図1を例とすると、発光素子102−1と発光素子102−2との中間点を通る直線AA’上に配置される。一方、第2の実施形態に係る両面鏡104は、図2に示すように直線AA’よりも発光素子102−1側に配置される。
(Second Embodiment)
The illumination device according to the second embodiment is substantially the same as the illumination device 100 according to the first embodiment, but the arrangement of the double-sided mirror 104 is different.
An illumination device 400 according to the second embodiment will be described with reference to FIG.
In the case of the double-sided mirror 104 according to the first embodiment, the double-sided mirror 104 is arranged so as to be exactly in the middle between the light-emitting elements 102. Taking FIG. 1 as an example, an intermediate point between the light-emitting elements 102-1 and 102-2. Is arranged on a straight line AA ′ passing through. On the other hand, the double-sided mirror 104 according to the second embodiment is disposed closer to the light emitting element 102-1 than the straight line AA ′ as shown in FIG. 2.

このようにすることで、発光素子アレイ105の端部付近にある発光素子102から被検物106の中心へ向かう光を、両面鏡104を直線AA’上に配置する場合より被検物106の端部付近の面上に集めることができ、全体として照度均一性を高めることができる。また、照明装置400と発光素子アレイ105に沿った筒状のシリンドリカルレンズや反射鏡などの集光手段とを組み合わせ、照射されるビームを絞って用いるような場合でも、さらに照度均一性を高めることができる。   By doing in this way, the light which goes to the center of the to-be-tested object 106 from the light emitting element 102 near the edge part of the light-emitting element array 105 is compared with the case where the double-sided mirror 104 is arrange | positioned on straight line AA '. It can collect on the surface near an edge part, and can improve illuminance uniformity as a whole. Further, even when the illumination device 400 is combined with a condensing means such as a cylindrical cylindrical lens or a reflecting mirror along the light emitting element array 105, the illuminance uniformity is further improved even when the irradiated beam is focused. Can do.

以上に示した効果を、第2の実施形態に係る照明装置400の照度分布のシミュレーション結果である図5を参照して説明する。
図5に示すように、発光素子アレイ105の端部付近の相対照度は約0.90であり、図3に示した端部付近の相対照度よりもさらに高くなっている。さらに、発光素子アレイ105全体でも相対照度が0.90以上であるため高い照度均一性が確保できる。
The effect shown above is demonstrated with reference to FIG. 5 which is a simulation result of the illumination distribution of the illuminating device 400 which concerns on 2nd Embodiment.
As shown in FIG. 5, the relative illuminance near the end of the light emitting element array 105 is about 0.90, which is higher than the relative illuminance near the end shown in FIG. Further, since the relative illuminance is 0.90 or more in the entire light emitting element array 105, high illuminance uniformity can be secured.

以上に示した第2の実施形態によれば、両面鏡を発光素子間の中間点よりも、発光素子アレイの端部にある発光素子側に配置することで、さらに照度均一性を改善することができる。   According to the second embodiment described above, the illuminance uniformity is further improved by arranging the double-sided mirror on the light emitting element side at the end of the light emitting element array rather than the intermediate point between the light emitting elements. Can do.

(第3の実施形態)
第3の実施形態では、平面鏡103および両面鏡104をそれぞれ照明装置の両端部に用いる点が、第1の実施形態および第2の実施形態と異なる。
(Third embodiment)
The third embodiment is different from the first embodiment and the second embodiment in that the plane mirror 103 and the double-sided mirror 104 are used at both ends of the illumination device, respectively.

ここで一例として、第1の実施形態に係る平面鏡103および両面鏡104の配置方法を用いて、平面鏡103および両面鏡104を両端に配置した場合の照明装置600を図6に示す。なお、第2の実施形態に係る平面鏡103および両面鏡104の配置方法でも同様に配置することができる。なお、照明装置の一方の端部には第1の実施形態に係る平面鏡103および両面鏡104の配置方法を用い、もう一方の端部には第2の実施形態に係る平面鏡103および両面鏡104の配置方法を用いてもよい。   Here, as an example, FIG. 6 shows an illumination device 600 when the plane mirror 103 and the double-sided mirror 104 are arranged at both ends using the method for arranging the plane mirror 103 and the double-sided mirror 104 according to the first embodiment. In addition, it can arrange | position similarly also with the arrangement | positioning method of the plane mirror 103 and the double-sided mirror 104 which concern on 2nd Embodiment. Note that the arrangement method of the plane mirror 103 and the double-sided mirror 104 according to the first embodiment is used at one end of the illumination device, and the plane mirror 103 and the double-sided mirror 104 according to the second embodiment are used at the other end. The arrangement method may be used.

第3の実施形態に係る照明装置600の照度分布のシミュレーション結果を図7、図8および図9を参照して説明する。なお、図7から図9までの横軸は、発光素子アレイ105の一方の端部から、反対側の端部までの相対位置であるため「0.00」から「1.00」までとなっている。   A simulation result of the illuminance distribution of the illumination device 600 according to the third embodiment will be described with reference to FIGS. 7, 8, and 9. 7 to 9 is a relative position from one end portion of the light emitting element array 105 to the opposite end portion, and therefore, from “0.00” to “1.00”. ing.

図7は、平面鏡103および両面鏡104を照明装置の両端部に設置しない場合を示す。図7に示されるように、発光素子アレイの中心付近と比較して、照明装置の両端部の相対照度がかなり低下している。   FIG. 7 shows a case where the plane mirror 103 and the double-sided mirror 104 are not installed at both ends of the lighting device. As shown in FIG. 7, the relative illuminance at both ends of the lighting device is considerably reduced as compared with the vicinity of the center of the light emitting element array.

図8は、第1の実施形態に係る平面鏡103および両面鏡104の設置方法を照明装置の両端部に用いた場合(照明装置600)を示す。図8に示されるように、発光素子アレイ105の両端部の相対照度の低下が改善されており、端部付近で約0.84の相対照度を確保できる。   FIG. 8 shows a case where the installation method of the plane mirror 103 and the double-sided mirror 104 according to the first embodiment is used at both ends of the illumination device (illumination device 600). As shown in FIG. 8, the decrease in relative illuminance at both ends of the light emitting element array 105 is improved, and a relative illuminance of about 0.84 can be secured near the ends.

さらに、図9は第2の実施形態に係る平面鏡103および両面鏡104の設置方法を照明装置の両端部に用いた場合であり、端部付近で約0.90の相対照度を確保できる。   Further, FIG. 9 shows a case where the installation method of the plane mirror 103 and the double-sided mirror 104 according to the second embodiment is used at both ends of the lighting device, and a relative illuminance of about 0.90 can be secured near the ends.

以上に示した第3の実施形態によれば、第1の実施形態および第2の実施形態に係る平面鏡および両面鏡を照明装置の両端に配置することで、照明装置全体として照度均一性を高めることができる。   According to the third embodiment described above, the illuminance uniformity is improved as a whole of the lighting device by disposing the plane mirror and the double-sided mirror according to the first and second embodiments at both ends of the lighting device. be able to.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

100,400,600・・・照明装置、101・・・基板、102,102−1,102−2・・・発光素子、103・・・平面鏡、104・・・両面鏡、105・・・発光素子アレイ、106・・・被検物。 DESCRIPTION OF SYMBOLS 100,400,600 ... Illuminating device, 101 ... Board | substrate, 102, 102-1, 102-2 ... Light emitting element, 103 ... Plane mirror, 104 ... Double-sided mirror, 105 ... Light emission Element array, 106 ... test object.

Claims (5)

複数の発光素子が基板に同一直線上に配列された1以上の発光素子アレイと、
前記発光素子アレイの両端部の外側の前記基板の少なくともいずれか一方に、前記複数の発光素子の配列方向に垂直に接続される平面鏡と、
前記発光素子アレイの最大照度と該発光素子アレイの最小照度との差が閾値以内となるように、前記複数の発光素子間の1以上に、前記複数の発光素子の配列方向に垂直に前記基板に接続される両面鏡であって、前記発光素子アレイの照射方向での前記平面鏡の長さよりも短い該照射方向での長さを有する両面鏡と、を具備することを特徴とする照明装置。
One or more light emitting element arrays in which a plurality of light emitting elements are arranged on the same line on the substrate;
A plane mirror connected to at least one of the substrates outside both ends of the light emitting element array perpendicularly to the arrangement direction of the plurality of light emitting elements;
The substrate perpendicular to the arrangement direction of the plurality of light emitting elements is set to one or more between the plurality of light emitting elements such that a difference between the maximum illuminance of the light emitting element array and the minimum illuminance of the light emitting element array is within a threshold value. A double-sided mirror connected to the light-emitting element, the double-sided mirror having a length in the irradiation direction shorter than a length of the plane mirror in the irradiation direction of the light emitting element array.
前記両面鏡は、前記発光素子間の中間点よりも前記端部側に接続されることを特徴とする請求項1に記載の照明装置。   The lighting device according to claim 1, wherein the double-sided mirror is connected to the end side with respect to an intermediate point between the light emitting elements. 前記両面鏡は、前記配列方向にある複数の発光素子のうちの最も外側の第1発光素子と外側から2番目の位置にある第2発光素子との間に接続されるか、または該第2発光素子と外側から3番目の位置にある第3発光素子との間に接続されることを特徴とする請求項1または請求項2に記載の照明装置。   The double-sided mirror is connected between the outermost first light-emitting element and the second light-emitting element located at the second position from the outside among the plurality of light-emitting elements in the arrangement direction, or the second The lighting device according to claim 1, wherein the lighting device is connected between the light emitting element and a third light emitting element at a third position from the outside. 前記平面鏡は前記発光素子アレイの両端部の外側の前記基板に接続され、前記両面鏡は前記発光素子アレイの両端部にある発光素子と該発光素子よりも1つ中心寄りに配置している発光素子との間の前記基板に接続されることを特徴とする請求項1から請求項3のいずれか1項に記載の照明装置。   The plane mirror is connected to the substrate outside the both ends of the light emitting element array, and the double-sided mirror is a light emitting element disposed at both ends of the light emitting element array and one light emitting element disposed closer to the center than the light emitting element. The lighting device according to any one of claims 1 to 3, wherein the lighting device is connected to the substrate between the elements. 2以上の前記発光素子アレイが並列する場合、前記平面鏡および前記両面鏡は、2以上の前記発光素子アレイで張られる平面に垂直かつ前記発光素子による光が射出する面上に接続されることを特徴とする請求項1から請求項4のいずれか1項に記載の照明装置。   When two or more light-emitting element arrays are arranged in parallel, the plane mirror and the double-sided mirror are connected to a plane perpendicular to a plane stretched by the two or more light-emitting element arrays and light emitted from the light-emitting elements. The lighting device according to any one of claims 1 to 4, wherein the lighting device is characterized.
JP2010024525A 2010-02-05 2010-02-05 Lighting device Pending JP2011165765A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010024525A JP2011165765A (en) 2010-02-05 2010-02-05 Lighting device
PCT/JP2011/052094 WO2011096411A1 (en) 2010-02-05 2011-02-02 Illumination device and image-reading device provided with illumination device
CN201180004336.XA CN102598325B (en) 2010-02-05 2011-02-02 Illumination device and image-reading device provided with illumination device
EP11739759.6A EP2533315B1 (en) 2010-02-05 2011-02-02 Illumination device and image-reading device provided with illumination device
US13/465,113 US8610967B2 (en) 2010-02-05 2012-05-07 Illumination apparatus and image reading apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010024525A JP2011165765A (en) 2010-02-05 2010-02-05 Lighting device

Publications (1)

Publication Number Publication Date
JP2011165765A true JP2011165765A (en) 2011-08-25

Family

ID=44596124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010024525A Pending JP2011165765A (en) 2010-02-05 2010-02-05 Lighting device

Country Status (1)

Country Link
JP (1) JP2011165765A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013186977A1 (en) * 2012-06-11 2013-12-19 シャープ株式会社 Light-source device and illumination device
JP2014179183A (en) * 2013-03-14 2014-09-25 Ushio Inc Linear light source device
JP2017156132A (en) * 2016-02-29 2017-09-07 株式会社Screenホールディングス Lighting device and inspection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02750U (en) * 1987-09-11 1990-01-05
JPH03116056U (en) * 1990-03-12 1991-12-02

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02750U (en) * 1987-09-11 1990-01-05
JPH03116056U (en) * 1990-03-12 1991-12-02

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013186977A1 (en) * 2012-06-11 2013-12-19 シャープ株式会社 Light-source device and illumination device
JP5815859B2 (en) * 2012-06-11 2015-11-17 シャープ株式会社 Light source device and lighting device
JP2014179183A (en) * 2013-03-14 2014-09-25 Ushio Inc Linear light source device
JP2017156132A (en) * 2016-02-29 2017-09-07 株式会社Screenホールディングス Lighting device and inspection device

Similar Documents

Publication Publication Date Title
KR101982845B1 (en) Light irradiation device
US20100103661A1 (en) Machine Vision Inspection System and Light Source Module thereof
JP2009266434A (en) Light source module and lighting fixture for vehicle
JP2009266636A (en) Lighting system
JP2008116329A (en) Lighting method for line camera inspection projection, and lighting system
JP2011165765A (en) Lighting device
JP2014190868A (en) Photoirradiation device
JP2012234081A (en) Illumination device and optical device
JP2008026255A (en) Flaw inspection system, and flaw inspection method
JP2016058330A (en) Lighting apparatus
JP2015138761A (en) Lighting device
JP2011199576A (en) Linear illuminator and image reading apparatus
JP2005183148A (en) Lighting system and sorting system
JP4261591B2 (en) Illumination optical apparatus and sample inspection apparatus
JP2011222239A (en) Lighting system and inspection device
JP2015230781A (en) Line-like light irradiation device and operation state inspection method for line-like light irradiation device
JP6917751B2 (en) Drawing device
JP2019195000A (en) Lighting device
KR100707412B1 (en) Optical source for inspection
JP4995342B1 (en) Exposure light source and exposure apparatus using the same
JP6122706B2 (en) Light distribution measuring apparatus and light distribution measuring method
JP2014010428A (en) Line illumination apparatus
KR101015792B1 (en) Test jig for side luminescence type led array
JP5560970B2 (en) Lighting device
KR20200072398A (en) Light source for exposure apparatus, exposure apparatus using the same, and method for controlling light source for exposure apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002