JP5952652B2 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP5952652B2
JP5952652B2 JP2012141081A JP2012141081A JP5952652B2 JP 5952652 B2 JP5952652 B2 JP 5952652B2 JP 2012141081 A JP2012141081 A JP 2012141081A JP 2012141081 A JP2012141081 A JP 2012141081A JP 5952652 B2 JP5952652 B2 JP 5952652B2
Authority
JP
Japan
Prior art keywords
shield
current
fitting portion
sensor
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012141081A
Other languages
Japanese (ja)
Other versions
JP2014006115A (en
Inventor
彬宜 坂本
彬宜 坂本
詩迪 彭
詩迪 彭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2012141081A priority Critical patent/JP5952652B2/en
Publication of JP2014006115A publication Critical patent/JP2014006115A/en
Application granted granted Critical
Publication of JP5952652B2 publication Critical patent/JP5952652B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、シールドの構造に特徴のある電流センサに関する。   The present invention relates to a current sensor characterized by a shield structure.

自動車の車載バッテリと車両電装品とを接続する電流路(例えば、バスバー等)に流れる電流を検出する電流センサは知られている(特許文献1、特許文献2参照)。   A current sensor for detecting a current flowing in a current path (for example, a bus bar or the like) connecting an in-vehicle battery and a vehicle electrical component of an automobile is known (see Patent Document 1 and Patent Document 2).

特許文献1の電流センサ100は、図6(a)及び図6(b)に示す通り、センサ本体200とセンサ本体200に固定されるシールド300とから構成され、センサ本体200とシールド300との間に電流路400を配置して、電流路400に流れる電流を検出している。電流は、センサ本体200に取り付けられた基板210に実装される磁気検出素子220により磁気強度を検出し、それに相当する電力を出力することにより測定される。シールド300は略「コ」字状を成し、電流路400の裏面を完全に包囲している(図6(b)参照)。この構成により、磁気歪み発生が無く信頼度の高い電流センサ100が実現できることが開示されている。尚、図6(b)は、特許文献1に開示されていないが、本発明の構成との相違を明確にするために作図したものである。   As shown in FIGS. 6A and 6B, the current sensor 100 of Patent Document 1 includes a sensor main body 200 and a shield 300 fixed to the sensor main body 200, and includes a sensor main body 200 and a shield 300. The current path 400 is disposed between them, and the current flowing through the current path 400 is detected. The current is measured by detecting the magnetic intensity by the magnetic detection element 220 mounted on the substrate 210 attached to the sensor body 200 and outputting electric power corresponding thereto. The shield 300 has a substantially “U” shape and completely surrounds the back surface of the current path 400 (see FIG. 6B). It is disclosed that with this configuration, a highly reliable current sensor 100 without magnetic distortion can be realized. FIG. 6B is not disclosed in Patent Document 1, but is drawn in order to clarify the difference from the configuration of the present invention.

また、特許文献2の電流センサには、磁気検出素子が電流の流れに対して垂直な幅方向の中央位置から幅方向に所定距離だけ離れた位置に設けられている。これにより、磁気検出素子の周波数特性の帯域を広げて周波数特性を向上させることができる。また、幅方向の磁界を検出することにより、電流路を流れる電流を測定できることが開示されている。   Further, in the current sensor of Patent Document 2, the magnetic detection element is provided at a position away from the center position in the width direction perpendicular to the current flow by a predetermined distance in the width direction. Thereby, the frequency characteristic band of the magnetic detection element can be widened to improve the frequency characteristic. It is also disclosed that the current flowing through the current path can be measured by detecting the magnetic field in the width direction.

特開2010−223868号公報JP 2010-223868 A 特許第4515855号公報Japanese Patent No. 4515855

特許文献1に記載される電流センサ100においては、シールド300が、電流センサ100の取り付け部分において、電流路400を裏面から完全に覆っている。このため、電流路400に流れる電流により生じる渦電流が発生し、磁気検出素子220で検出する磁界の位相が電流の位相より遅れる欠点がある。特に高い周波数の大電流では、シールドの磁気飽和が予想され、磁気検出素子400が検出した磁束密度と電流間の線形関係が崩れ誤差許容内の測定が困難となり、高速応答の信頼性に問題を生じていた。また、特許文献2に記載される電流センサにおいては、磁気検出素子を幅方向にずらしてはいるが、シールドを設けるのではなく、電流路に磁気検出素子を近接させて高い電流感度を得ているため、例えば、三相交流における隣接磁界や近接した電気部品等から発生する磁界の影響を受け易く、正確な電流値を測定し難いという問題があった。   In the current sensor 100 described in Patent Document 1, the shield 300 completely covers the current path 400 from the back surface at the attachment portion of the current sensor 100. For this reason, an eddy current generated by the current flowing in the current path 400 is generated, and there is a drawback that the phase of the magnetic field detected by the magnetic detection element 220 is delayed from the phase of the current. Particularly at a high current of high frequency, the magnetic saturation of the shield is expected, and the linear relationship between the magnetic flux density detected by the magnetic detection element 400 and the current is disrupted, making it difficult to measure within the error tolerance. It was happening. In the current sensor described in Patent Document 2, although the magnetic detection element is shifted in the width direction, a high current sensitivity is obtained by bringing the magnetic detection element close to the current path instead of providing a shield. Therefore, for example, there is a problem that it is easily affected by a magnetic field generated from an adjacent magnetic field in three-phase alternating current or an adjacent electric component, and it is difficult to measure an accurate current value.

本発明は、上述した事情に鑑みてなされたものであり、その目的は、電流路に流れる電流により発生する磁界を検出する高速応答性を向上させ信頼性の高い電流センサを提供することにある。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a highly reliable current sensor by improving high-speed response for detecting a magnetic field generated by a current flowing in a current path. .

前述した目的を達成するために、本発明に係る電流センサは、下記(1)を特徴としている。
(1) 電流が流れる電流路に設置される電流センサであって、
基板と、前記基板に実装される磁気検出素子と、を有するセンサ本体と、
第1シールドと第2シールドとによって対をなす一対のシールドと、
を備え、
前記第1シールドは、平板状の嵌合部と、前記嵌合部の上端部から前記嵌合部に対して略直角方向に延在する平板状の平坦部のみから成り、
前記第2シールドは、平板状の嵌合部のみから成り、
前記第1シールドの嵌合部と前記第2シールドの嵌合部は、前記センサ本体の幅方向の両側にて上下方向に沿って延在し且つ対向するようにそれぞれ固定され、
前記第1シールドの平坦部は、前記第1シールドの嵌合部の上端部から前記センサ本体の幅方向の中央に向かって延在しており、
前記第1シールドの平坦部の端部と前記第2シールドの嵌合部の端部は、離間して配置され、
前記磁気検出素子は、前記センサ本体の幅方向の中央に対して幅方向の前記第2シールド側、且つ、前記第1シールドの平坦部の先端部に対して幅方向の前記第2シールド側に配置されている
ること。
In order to achieve the above-described object, the current sensor according to the present invention is characterized by the following (1).
(1) A current sensor installed in a current path through which current flows,
A sensor body having a substrate and a magnetic detection element mounted on the substrate;
A pair of shields paired by a first shield and a second shield;
With
The first shield is composed of only a flat plate-like fitting portion and a flat plate-like flat portion extending from the upper end portion of the fitting portion in a direction substantially perpendicular to the fitting portion,
The second shield is composed only of a flat fitting portion,
The fitting portion of the first shield and the fitting portion of the second shield are respectively fixed so as to extend along the vertical direction on both sides in the width direction of the sensor body and to face each other.
The flat portion of the first shield extends from the upper end of the fitting portion of the first shield toward the center in the width direction of the sensor body,
On the end portion of the fitting portion of the first and the second shield and the previous end of the flat portion of the shield is spaced apart,
The magnetic detection element is on the second shield side in the width direction with respect to the center in the width direction of the sensor body , and on the second shield side in the width direction with respect to the tip of the flat portion of the first shield. Arranged ,
That.

上記(1)の電流センサによれば、磁気検出素子での磁界位相が遅延せず、高速応答性を向上させることがき、且つ、磁気干渉からの影響を極力防止して、隣接する電流路から漏れる磁束が、垂直方向のみ磁気検出素子に印加されるため磁界位相誤差が軽減され、且つ磁気飽和が軽減される電流センサを提供できる。   According to the current sensor of (1) above, the magnetic field phase in the magnetic detection element is not delayed, the high-speed response can be improved, and the influence from magnetic interference is prevented as much as possible from the adjacent current path. Since the leakage magnetic flux is applied to the magnetic detection element only in the vertical direction, a current sensor can be provided in which the magnetic phase error is reduced and the magnetic saturation is reduced.

本発明によれば、磁気検出素子がシールドの中央位置よりも一方のシールドに寄った位置に配置されていることにより、磁気検出素子での磁界位相が遅延せず、応答性の向上を図り、特に高速応答性に優れた電流センサを提供できる。更に、シールドの形状をL字状としたことにより、磁気検出素子に向かう電磁ノイズによる影響を低減できる。更に、シールドを一対とし各端部を離間させたことにより、磁気飽和が軽減され、大電流であっても精度良く測定することができる。   According to the present invention, since the magnetic detection element is disposed at a position closer to one shield than the central position of the shield, the magnetic field phase in the magnetic detection element is not delayed, and the response is improved. In particular, a current sensor excellent in high-speed response can be provided. Furthermore, the influence of electromagnetic noise directed to the magnetic detection element can be reduced by making the shape of the shield L-shaped. In addition, since the shield is paired and the end portions are separated from each other, magnetic saturation is reduced, and even a large current can be measured with high accuracy.

以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための形態(以下、「実施形態」という。)を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。   The present invention has been briefly described above. Further, the details of the present invention will be further clarified by reading through a mode for carrying out the invention described below (hereinafter referred to as “embodiment”) with reference to the accompanying drawings. .

図1は、本発明に係る電流センサの一実施形態を示す分解斜視図である。FIG. 1 is an exploded perspective view showing an embodiment of a current sensor according to the present invention. 図2は、図1に係る電流センサのA−A断面図である。2 is a cross-sectional view of the current sensor according to FIG. 図3は、図1に係る電流センサのB−B断面図である。3 is a cross-sectional view of the current sensor BB according to FIG. 図4(a)は従来技術の構成と本発明の実施形態による90%―90%応答時間の比較グラフ、図4(b)は90%―90%応答時間を説明するためのグラフである。FIG. 4A is a comparative graph of the 90% -90% response time according to the configuration of the prior art and the embodiment of the present invention, and FIG. 4B is a graph for explaining the 90% -90% response time. 図5は、電流値と磁束密度における性能を示すグラフである。FIG. 5 is a graph showing the performance in terms of current value and magnetic flux density. 図6(a)及び図6(b)は、従来技術の電流センサを示し、図6(a)は分解斜視図、図6(b)は縦断面図である。6 (a) and 6 (b) show a conventional current sensor, FIG. 6 (a) is an exploded perspective view, and FIG. 6 (b) is a longitudinal sectional view.

以下、本発明に係る好適な実施形態を図面に基づいて詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings.

図1から図3に基づいて、本発明の一実施形態である電流センサを説明する。図1は電流センサの斜視図、図2は図1のA−A断面図、図3は図1のB−B断面図である。   A current sensor which is an embodiment of the present invention will be described with reference to FIGS. 1 is a perspective view of the current sensor, FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line BB in FIG.

電流センサ1は、センサ本体2とセンサ本体2に固定されるシールド3とから構成され、センサ本体2に取り付けられる電流路4に流れる電流を検出する。電流センサ1は、例えば、自動車の車載バッテリと車両電装品とを接続する電流路に取り付けられる。   The current sensor 1 includes a sensor main body 2 and a shield 3 fixed to the sensor main body 2, and detects a current flowing through a current path 4 attached to the sensor main body 2. The current sensor 1 is attached to, for example, a current path that connects an in-vehicle battery of an automobile and a vehicle electrical component.

センサ本体2は、絶縁性の合成樹脂等から成形された筺体に、回路等が実装される基板21が収容されている。基板21には、磁気検出素子22とが取り付けられている。磁気検出素子22は、電流路4で生じる磁界を測定する素子であり、例えば、磁場の中のキャリアが受けるローレンツ力による生じるホール効果を利用した半導体ホール素子やアモルファス磁性体による磁気インピーダンス効果を利用した磁気インピーダンス素子、等である。電流センサ1は、基板21に実装された増幅回路等を介して、磁気検出素子22で検出された磁界に比例した値の電圧値を出力する。   In the sensor body 2, a substrate 21 on which a circuit and the like are mounted is accommodated in a casing formed from an insulating synthetic resin or the like. A magnetic detection element 22 is attached to the substrate 21. The magnetic detection element 22 is an element that measures a magnetic field generated in the current path 4, and uses, for example, a semiconductor Hall element using a Hall effect generated by Lorentz force received by carriers in the magnetic field or a magnetic impedance effect by an amorphous magnetic material. Magnetic impedance element, etc. The current sensor 1 outputs a voltage value having a value proportional to the magnetic field detected by the magnetic detection element 22 via an amplification circuit or the like mounted on the substrate 21.

シールド3は、例えば、パーマロイやケイ素鋼板などの高透磁率の材料からなり、薄板で形成されている。また、シールド3は、左右一対であり、センサ本体2の両側にそれぞれ固定されている。電流路4をセンサ本体2の下部に取り付け、シールド3をセンサ本体2の上部から取り付ける。   The shield 3 is made of a high magnetic permeability material such as permalloy or a silicon steel plate, and is formed of a thin plate. The shield 3 is a pair of left and right, and is fixed to both sides of the sensor body 2. The current path 4 is attached to the lower part of the sensor body 2, and the shield 3 is attached from the upper part of the sensor body 2.

シールド3は、第1シールド3Sと第2シールド3Tとを備えている。第1シールド3Sは、センサ本体2の側部に形成された嵌合穴25に嵌合する平板状の嵌合部31Sと、嵌合部31Sに対して略直角方向に延在される平坦部32Sと、を備えている。直角方向とは、センサ本体2の側方から中央にある中心線Xに向かう方向である。一方、第2シールド3Tは、平板状の嵌合部31Tを備えている。そして、第1シールド3Sの平坦部32Sの端部33Sと、第2シールド3Tの嵌合部31Tとの端部33Tとは、対向してかつ離間してセンサ本体2の上部に配置固定される。従って、両シールド3S、3Tは、電流路4を完全に包囲しておらず、開口部分(スリット)を備えていると言える。   The shield 3 includes a first shield 3S and a second shield 3T. The first shield 3S includes a flat fitting portion 31S that fits into a fitting hole 25 formed in the side portion of the sensor body 2, and a flat portion that extends in a direction substantially perpendicular to the fitting portion 31S. 32S. The right angle direction is a direction from the side of the sensor body 2 toward the center line X at the center. On the other hand, the second shield 3T includes a flat fitting portion 31T. The end portion 33S of the flat portion 32S of the first shield 3S and the end portion 33T of the fitting portion 31T of the second shield 3T are arranged and fixed on the upper portion of the sensor body 2 so as to face each other and be separated from each other. . Accordingly, it can be said that the shields 3S and 3T do not completely surround the current path 4 and have an opening (slit).

磁気検出素子22は、センサ本体2の中心線Xより左側(図面上で)に位置づけられている。即ち、第2シールド3Tに近い位置にくるよう基板21に実装されている。換言すれば、センサ本体2の中心線X方向に長さLで突出する平坦部32Sの端部33Sに対して、離れる方向の第2シールド3Tよりに磁気検出素子22が配置されている。尚、第2シールド3Tの端部33Tに平坦部が一部形成されていても良い。   The magnetic detection element 22 is positioned on the left side (in the drawing) of the center line X of the sensor body 2. That is, it is mounted on the substrate 21 so as to be close to the second shield 3T. In other words, the magnetic detection element 22 is arranged from the second shield 3 </ b> T in the direction away from the end 33 </ b> S of the flat portion 32 </ b> S protruding in the center line X direction of the sensor body 2 with the length L. Note that a flat portion may be partially formed at the end portion 33T of the second shield 3T.

電流路4は、交流電流等が流れる平板上に形成されたバスバーや導体などであり、センサ本体2下部に取り付けられる。   The current path 4 is a bus bar or conductor formed on a flat plate through which an alternating current or the like flows, and is attached to the lower part of the sensor body 2.

本発明の電流センサ1によれば、センサ本体2の中心線Xより左側(図面上で)に位置づけられていることによって、磁気検出素子22での磁界位相が遅延せず、特に高速な応答性を実現することができる。また、L字状の第1シールド3Sが電流路4の片側に設けられていることによって、周辺からの磁気干渉を抑制した電流センサ1を提供できる。また、電流路4の断面における均一な電流密度分布が得られ磁気検出素子22の応答性が向上し、残留磁界が抑制されオフセット誤差を低減できる。更に、隣接する相の電流路4から漏れる磁束が、垂直方向のみ磁気検出素子22に印加されるため磁界位相誤差が軽減される。   According to the current sensor 1 of the present invention, the magnetic field phase at the magnetic detection element 22 is not delayed by being positioned on the left side (on the drawing) of the center line X of the sensor body 2, and particularly, high-speed response. Can be realized. In addition, since the L-shaped first shield 3 </ b> S is provided on one side of the current path 4, the current sensor 1 that suppresses magnetic interference from the periphery can be provided. Further, a uniform current density distribution in the cross section of the current path 4 is obtained, the responsiveness of the magnetic detection element 22 is improved, the residual magnetic field is suppressed, and the offset error can be reduced. Further, since the magnetic flux leaking from the current path 4 of the adjacent phase is applied to the magnetic detection element 22 only in the vertical direction, the magnetic field phase error is reduced.

図4(a)は、従来技術の構成と本発明の実施形態による、電流が100A/μSで変動する時の90%―90%応答時間(μs)の比較グラフである。90%―90%応答時間とは、図4(b)に示す通り、電流路4に流れる電流(入力電流)出力90%に対して、それに対応する磁界に比例した電圧値(出力電圧90%)が磁気検出素子22で測定される応答時間のことである。図4(a)に基づく実測結果では、従来技術の応答時間50μsから本発明の応答時間6μs(応答時間6μsは、実測に用いた磁気検出素子の理論値。)に改善(約90%改善)され、シールド3の構成による効果が明らかに現れており、電流の変動が速くなっても磁気検出素子22の応答性が向上し、特に高速応答性を確保できている。   FIG. 4A is a comparative graph of 90% -90% response time (μs) when the current varies at 100 A / μS according to the configuration of the prior art and the embodiment of the present invention. As shown in FIG. 4B, the 90% -90% response time is a voltage value (output voltage 90%) proportional to the corresponding magnetic field with respect to the current (input current) output 90% flowing in the current path 4. ) Is a response time measured by the magnetic detection element 22. In the actual measurement result based on FIG. 4A, the response time of the prior art is improved from 50 μs to the response time of 6 μs of the present invention (the response time of 6 μs is the theoretical value of the magnetic detection element used for the actual measurement) (improvement of about 90%). The effect of the configuration of the shield 3 clearly appears, and the response of the magnetic detection element 22 is improved even when the current fluctuates quickly, and particularly high-speed response can be secured.

図5は、電流値と磁束密度における性能を示すグラフである。   FIG. 5 is a graph showing the performance in terms of current value and magnetic flux density.

嵌合部31と嵌合穴25との嵌合により、シールド3がセンサ本体2に確実に固定される。その結果、平坦部32の突出量(長さL)と磁気検出素子22との相対的位置関係が極めて安定する。特に、長さLの違いによりオフセット誤差の相違があるため、一定の長さLを保つことは重要である。耐震性に優れた固定であるため、最適なオフセット誤差値を維持することが極めて容易となる。   The shield 3 is securely fixed to the sensor body 2 by the fitting of the fitting portion 31 and the fitting hole 25. As a result, the relative positional relationship between the protrusion amount (length L) of the flat portion 32 and the magnetic detection element 22 is extremely stable. In particular, since there is a difference in offset error due to a difference in length L, it is important to maintain a certain length L. Since the fixing is excellent in earthquake resistance, it becomes extremely easy to maintain the optimum offset error value.

図5のグラフでは、縦軸にシールド板内部の磁束密度(mT)を取り、横軸に電流(A)を取っている。このグラフから理解されると通り、電流(A)が大きくなると磁気飽和が発生しやすくなる(曲線参照)が、本発明では、従来と比して、高い周波数の大電流が流れても磁気飽和の発生を抑え、線形性が維持される区間(線形区間)を拡張することができる。   In the graph of FIG. 5, the vertical axis represents the magnetic flux density (mT) inside the shield plate, and the horizontal axis represents the current (A). As understood from this graph, when the current (A) increases, magnetic saturation is likely to occur (see the curve). However, in the present invention, compared to the conventional case, magnetic saturation occurs even when a high-frequency large current flows. It is possible to extend the section where the linearity is maintained (linear section).

尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

1 電流センサ
2 センサ本体
3 シールド(3S 第1シールド、3T 第2シールド)
4 電流路
21 基板
22 磁気検出素子
31 嵌合部
32 平坦部
33 端部
L 長さ
DESCRIPTION OF SYMBOLS 1 Current sensor 2 Sensor main body 3 Shield (3S 1st shield, 3T 2nd shield)
4 Current path 21 Substrate 22 Magnetic detection element 31 Fitting portion 32 Flat portion 33 End portion L Length

Claims (1)

電流が流れる電流路に設置される電流センサであって、
基板と、前記基板に実装される磁気検出素子と、を有するセンサ本体と、
第1シールドと第2シールドとによって対をなす一対のシールドと、
を備え、
前記第1シールドは、平板状の嵌合部と、前記嵌合部の上端部から前記嵌合部に対して略直角方向に延在する平板状の平坦部のみから成り、
前記第2シールドは、平板状の嵌合部のみから成り、
前記第1シールドの嵌合部と前記第2シールドの嵌合部は、前記センサ本体の幅方向の両側にて上下方向に沿って延在し且つ対向するようにそれぞれ固定され、
前記第1シールドの平坦部は、前記第1シールドの嵌合部の上端部から前記センサ本体の幅方向の中央に向かって延在しており、
前記第1シールドの平坦部の端部と前記第2シールドの嵌合部の端部は、離間して配置され、
前記磁気検出素子は、前記センサ本体の幅方向の中央に対して幅方向の前記第2シールド側、且つ、前記第1シールドの平坦部の先端部に対して幅方向の前記第2シールド側に配置されている
ることを特徴とする電流センサ。
A current sensor installed in a current path through which current flows,
A sensor body having a substrate and a magnetic detection element mounted on the substrate;
A pair of shields paired by a first shield and a second shield;
With
The first shield is composed of only a flat plate-like fitting portion and a flat plate-like flat portion extending from the upper end portion of the fitting portion in a direction substantially perpendicular to the fitting portion,
The second shield is composed only of a flat fitting portion,
The fitting portion of the first shield and the fitting portion of the second shield are respectively fixed so as to extend along the vertical direction on both sides in the width direction of the sensor body and to face each other.
The flat portion of the first shield extends from the upper end of the fitting portion of the first shield toward the center in the width direction of the sensor body,
On the end portion of the fitting portion of the first and the second shield and the previous end of the flat portion of the shield is spaced apart,
The magnetic detection element is on the second shield side in the width direction with respect to the center in the width direction of the sensor body , and on the second shield side in the width direction with respect to the tip of the flat portion of the first shield. Arranged ,
A current sensor.
JP2012141081A 2012-06-22 2012-06-22 Current sensor Expired - Fee Related JP5952652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012141081A JP5952652B2 (en) 2012-06-22 2012-06-22 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012141081A JP5952652B2 (en) 2012-06-22 2012-06-22 Current sensor

Publications (2)

Publication Number Publication Date
JP2014006115A JP2014006115A (en) 2014-01-16
JP5952652B2 true JP5952652B2 (en) 2016-07-13

Family

ID=50103971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012141081A Expired - Fee Related JP5952652B2 (en) 2012-06-22 2012-06-22 Current sensor

Country Status (1)

Country Link
JP (1) JP5952652B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515855B2 (en) * 2003-08-05 2010-08-04 旭化成エレクトロニクス株式会社 Current measuring apparatus and current measuring method
JP2009150654A (en) * 2007-12-18 2009-07-09 Yazaki Corp Current sensor
JP5107779B2 (en) * 2008-04-21 2012-12-26 矢崎総業株式会社 Current sensor

Also Published As

Publication number Publication date
JP2014006115A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP6030866B2 (en) Current sensor
JP6372969B2 (en) Current sensor
JP6119296B2 (en) Current sensor
JP6651956B2 (en) Current sensor
US9069016B2 (en) Current sensor
JP6690433B2 (en) Current sensor
JP7367100B2 (en) Current transducer with magnetic field gradient sensor
JPWO2016148022A1 (en) Current sensor
JP2010008050A (en) Current sensor
JP2015137892A (en) Current detection structure
JP2015148470A (en) current detection structure
KR101847011B1 (en) Current sensor
KR101191437B1 (en) 2 channel current sensor
JP6598040B2 (en) Current detection structure
JP6032534B2 (en) Magnetic shield and current detector provided with the same
JP6251967B2 (en) Current sensor
JP2012063285A (en) Current sensor
WO2014045559A1 (en) Current sensor
JP5952652B2 (en) Current sensor
JP2013200301A (en) Current sensor
JP6275941B2 (en) Current sensor
JP2011158337A (en) Current sensor
JP5952650B2 (en) Current sensor
JP2021135186A (en) Current sensor
JP6286219B2 (en) Current sensor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160610

R150 Certificate of patent or registration of utility model

Ref document number: 5952652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees