JP6275941B2 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP6275941B2
JP6275941B2 JP2012163972A JP2012163972A JP6275941B2 JP 6275941 B2 JP6275941 B2 JP 6275941B2 JP 2012163972 A JP2012163972 A JP 2012163972A JP 2012163972 A JP2012163972 A JP 2012163972A JP 6275941 B2 JP6275941 B2 JP 6275941B2
Authority
JP
Japan
Prior art keywords
current path
current
pair
shield
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012163972A
Other languages
Japanese (ja)
Other versions
JP2014025718A (en
Inventor
彬宜 坂本
彬宜 坂本
詩迪 彭
詩迪 彭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2012163972A priority Critical patent/JP6275941B2/en
Publication of JP2014025718A publication Critical patent/JP2014025718A/en
Application granted granted Critical
Publication of JP6275941B2 publication Critical patent/JP6275941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、シールドを備えた電流センサに関する。   The present invention relates to a current sensor provided with a shield.

自動車の車載バッテリと車両電装品とを接続する電流路(例えば、バスバー、等)に流れる電流を検出する電流センサは知られている。この種の電流センサの一例を図7(a)及び図7(b)に示す(特許文献1参照)。   2. Description of the Related Art A current sensor that detects a current flowing in a current path (for example, a bus bar) that connects an in-vehicle battery and a vehicle electrical component is known. An example of this type of current sensor is shown in FIGS. 7A and 7B (see Patent Document 1).

図7(a)及び図7(b)は、従来の電流センサを示し、図7(a)は分解斜視図、図7(b)は要部の拡大縦断面図である。電流センサ100は、センサ本体200とセンサ本体200に固定されるシールド300とから構成され、センサ本体200とシールド300との間に電流路400を配置して、電流路400に流れる電流を検出している。電流は、センサ本体200に取り付けられた基板210に実装される磁気検出素子220により磁気強度を検出し、それに相当する電圧を出力することにより測定される。シールド300は略「コ」字状を成し、電流路400の裏面を完全に包囲している(図7(b)参照)。この構成により、磁気歪み発生が無く信頼度の高い電流センサが実現できることが開示されている。   7 (a) and 7 (b) show a conventional current sensor, FIG. 7 (a) is an exploded perspective view, and FIG. 7 (b) is an enlarged vertical sectional view of a main part. The current sensor 100 includes a sensor main body 200 and a shield 300 fixed to the sensor main body 200, and a current path 400 is disposed between the sensor main body 200 and the shield 300 to detect a current flowing through the current path 400. ing. The current is measured by detecting the magnetic intensity by the magnetic detection element 220 mounted on the substrate 210 attached to the sensor main body 200 and outputting a voltage corresponding to the magnetic intensity. The shield 300 has a substantially “U” shape and completely surrounds the back surface of the current path 400 (see FIG. 7B). It is disclosed that with this configuration, a highly reliable current sensor without magnetic distortion can be realized.

特開2010−223868号公報JP 2010-223868 A

特許文献1に記載される電流センサ100においては、特にシールド300が、電流センサ100の取り付け部分において、電流路400を裏面から完全に覆っている。このため、電流路400に流れる電流により生じる渦電流が発生し、磁気検出素子220で検出する磁界の位相が電流の位相より遅れる欠点がある。特に高い周波数の大電流ではそれが顕著となり、高速応答性に対する要求に合致しない問題を生じていた。   In the current sensor 100 described in Patent Literature 1, in particular, the shield 300 completely covers the current path 400 from the back surface at the mounting portion of the current sensor 100. For this reason, an eddy current generated by the current flowing in the current path 400 is generated, and there is a drawback that the phase of the magnetic field detected by the magnetic detection element 220 is delayed from the phase of the current. This is particularly noticeable at a high frequency and a large current, causing a problem that does not meet the requirements for high-speed response.

本発明は、上述した事情に鑑みてなされたものであり、その目的は、電流路に流れる電流により発生する磁界を検出する高速応答性を向上させ信頼性の高い電流センサを提供することにある。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a highly reliable current sensor by improving high-speed response for detecting a magnetic field generated by a current flowing in a current path. .

前述した目的を達成するために、本発明に係る電流センサは、下記(1)及び(2)を特徴としている。
(1) 平板状の電流路を流れる電流を検出する電流センサであって、
基板と、前記基板に実装されると共に前記電流路の板面の近傍に配置される磁気検出素子と、前記磁気検出素子及び前記電流路を前記電流路の軸線周りに周回するように取り囲む一対のシールド板と、を備え、
前記一対のシールド板は、
前記電流路の板面に直交する直交方向において前記磁気検出素子よりも前記電流路から遠ざかる向きに離れた位置にある素子側スリットと、前記直交方向において前記電流路よりも前記磁気検出素子から遠ざかる向きに離れた位置にある電流路側スリットと、によって互いに隔離され、
前記一対のシールド板は、
前記直交方向に延びる平板状の一対の嵌合部、及び、前記一対の嵌合部の各々の前記電流路側スリット側の端部から前記電流路の板面に沿った方向において互いに近付く向きに延在する一対の平坦部、を有し、且つ、前記一対の平坦部が前記直交方向において前記電流路の一部と重なる位置に存在するように配置されると共に、前記一対の平坦部によって前記電流路側スリットを画成し、前記一対の嵌合部の前記素子側スリット側の端部によって前記素子側スリットを画成し、
前記基板の全体は、
前記直交方向において、前記一対の嵌合部が延在する範囲内に位置し、且つ、前記電流路の板面に沿う方向において、前記一対の嵌合部の間の範囲内に位置している、こと。
(2) 上記(1)の構成の電流センサであって、
前記一対のシールド板が、
前記平坦部の延在方向における長さが同じである、こと。
In order to achieve the above-described object, the current sensor according to the present invention is characterized by the following (1) and (2).
(1) A current sensor for detecting a current flowing through a flat current path,
A substrate, a magnetic detection element mounted on the substrate and disposed near the plate surface of the current path, and a pair of surrounding the magnetic detection element and the current path so as to circulate around an axis of the current path A shield plate,
The pair of shield plates is
An element-side slit located in a direction away from the current path in the orthogonal direction perpendicular to the plate surface of the current path, and a position farther from the magnetic detection element than the current path in the orthogonal direction. Are separated from each other by current path side slits at positions away from each other,
The pair of shield plates is
A pair of flat fitting portions extending in the orthogonal direction, and extending from the end on the current path side slit side of each of the pair of fitting portions toward each other in a direction along the plate surface of the current path. A pair of flat portions, and the pair of flat portions are disposed so as to overlap with a part of the current path in the orthogonal direction. A road-side slit is defined, and the element-side slit is defined by an end of the pair of fitting portions on the element-side slit side,
The entire substrate is
In the orthogonal direction, the pair of fitting portions are positioned within the extending range , and in the direction along the plate surface of the current path, are positioned within the range between the pair of fitting portions. , That.
(2) A current sensor configured as described in (1) above,
The pair of shield plates is
The length in the extending direction of the flat part is the same.

上記(1)の電流センサによれば、電流路に発生する渦電流を抑制して磁気検出素子が検出する磁界位相に発生する遅れが抑制される。これにより、特に、電流路への渦電流の発生が抑制され、磁気検出素子が検出する磁界位相の遅れを解消し得るため、高速応答性の良い電流センサを提供できる。更に、電流路の断面における均一な電流密度分布が得られ磁気検出素子の応答性が向上する。
上記(2)の電流センサによれば、残留磁界が抑制されオフセット誤差を低減できる。
According to the current sensor of (1) above, the eddy current generated in the current path is suppressed and the delay generated in the magnetic field phase detected by the magnetic detection element is suppressed. Thereby, in particular, the generation of eddy currents in the current path is suppressed, and the delay of the magnetic field phase detected by the magnetic detection element can be eliminated, so that a current sensor with good high-speed response can be provided. Furthermore, a uniform current density distribution in the cross section of the current path is obtained, and the responsiveness of the magnetic detection element is improved.
According to the current sensor of (2) above, the residual magnetic field is suppressed and the offset error can be reduced.

本発明によれば、シールドを一対とし該シールドの各端部を離間させたことにより、従来技術で発生する渦電流を抑制して磁気検出素子の検出する磁界の位相遅れを解消し、応答性の向上を図り、特に高速応答性に優れた電流センサを提供できる。   According to the present invention, the shield is paired and the ends of the shield are separated from each other, thereby suppressing the eddy current generated in the prior art and eliminating the phase lag of the magnetic field detected by the magnetic detection element. Thus, it is possible to provide a current sensor excellent in high-speed response.

以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための形態(以下、「実施形態」という。)を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。   The present invention has been briefly described above. Further, the details of the present invention will be further clarified by reading through a mode for carrying out the invention described below (hereinafter referred to as “embodiment”) with reference to the accompanying drawings. .

図1は、本発明に係る電流センサの一実施形態を示す分解斜視図である。FIG. 1 is an exploded perspective view showing an embodiment of a current sensor according to the present invention. 図2は、図1に係る電流センサの横断面図である。FIG. 2 is a cross-sectional view of the current sensor according to FIG. 図3(a)は図1に係る電流センサの縦断面図、図3(b)はシールドの平坦部の長さと位相差との関係を示したグラフである。3A is a longitudinal sectional view of the current sensor according to FIG. 1, and FIG. 3B is a graph showing the relationship between the length of the flat portion of the shield and the phase difference. 図4(a)はシールドのない場合の電流路に発生する磁界を示す説明図、図4(b)は本発明のシールドを備えた場合の磁界を示す説明図である。FIG. 4A is an explanatory diagram showing a magnetic field generated in a current path when there is no shield, and FIG. 4B is an explanatory diagram showing a magnetic field when the shield of the present invention is provided. 図5(a)は従来技術の構成と本発明の実施形態による90%―90%応答時間の比較グラフ、図5(b)は90%―90%応答時間を説明するためのグラフである。FIG. 5A is a comparative graph of 90% -90% response time according to the configuration of the prior art and the embodiment of the present invention, and FIG. 5B is a graph for explaining 90% -90% response time. 図6は、電流値と磁束密度における性能を示すグラフである。FIG. 6 is a graph showing the performance in terms of current value and magnetic flux density. 図7は、従来技術の電流センサを示し、図7(a)は分解斜視図、図7(b)は縦断面図である。7A and 7B show a conventional current sensor, in which FIG. 7A is an exploded perspective view and FIG. 7B is a longitudinal sectional view.

以下、本発明に係る好適な実施形態を図面に基づいて詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings.

図1および図2を参照して、本発明の一実施形態である電流センサを説明する。   With reference to FIG. 1 and FIG. 2, the current sensor which is one Embodiment of this invention is demonstrated.

図1は電流センサ1の分解斜視図であり、図2は電流センサ1の横断面図である。電流センサ1は、センサ本体2と、センサ本体2に固定されるシールド3とから構成され、センサ本体2とシールド3との間に電流路4を配置して、電流路4に流れる電流を検出する。電流センサ1は、例えば、自動車の車載バッテリと車両電装品とを接続する電流路に取り付けられる。   FIG. 1 is an exploded perspective view of the current sensor 1, and FIG. 2 is a cross-sectional view of the current sensor 1. The current sensor 1 is composed of a sensor body 2 and a shield 3 fixed to the sensor body 2, and a current path 4 is arranged between the sensor body 2 and the shield 3 to detect a current flowing in the current path 4. To do. The current sensor 1 is attached to, for example, a current path that connects an in-vehicle battery of an automobile and a vehicle electrical component.

センサ本体2は、絶縁性の合成樹脂等によって成形された筺体に、回路等が実装される基板21が収容されている。基板21には、磁気検出素子22が実装されている。磁気検出素子22は、電流路4で生じる磁界を測定する素子であり、例えば、磁場の中のキャリアが受けるローレンツ力による生じるホール効果を利用した半導体ホール素子やアモルファス磁性体による磁気インピーダンス効果を利用した磁気インピーダンス素子、等である。電流センサ1は、基板21に実装された増幅回路等を介して、磁気検出素子22で検出された磁界に比例した値の電圧値を出力する。   In the sensor main body 2, a substrate 21 on which a circuit or the like is mounted is accommodated in a casing formed of an insulating synthetic resin or the like. A magnetic detection element 22 is mounted on the substrate 21. The magnetic detection element 22 is an element that measures a magnetic field generated in the current path 4, and uses, for example, a semiconductor Hall element using a Hall effect generated by Lorentz force received by carriers in the magnetic field or a magnetic impedance effect by an amorphous magnetic material. Magnetic impedance element, etc. The current sensor 1 outputs a voltage value having a value proportional to the magnetic field detected by the magnetic detection element 22 via an amplification circuit or the like mounted on the substrate 21.

シールド3は、例えば、パーマロイやケイ素鋼板などの高透磁率の材料からなり、略L字状の薄板で形成されている。また、シールド3は、左右一対であり、センサ本体2の両側にそれぞれ固定されている。シールド3の組み付け手順は、電流路4をセンサ本体2の下部に取り付けた後、電流路4を取り囲むようにシールド3をセンサ本体2の下部に取り付けるものである。また、シールド3は、センサ本体2を形作る筐体の側部にそれぞれ嵌合する嵌合部31と、嵌合部31に対して略直角方向に延在する平坦部32と、を備えている。そして、シールド3の各平坦部32は、同一平面上に配置され、平坦部32の各端部33同士は、対向してかつ離間してセンサ本体2の下部(図2参照。)に配置固定される。従って、平坦部32により電流路4の一部を覆い隠している。換言すれば、シールド3は電流路4を裏面から完全に包囲しておらず、開口部分(スリット)を備えていると言える。   The shield 3 is made of a material having a high magnetic permeability such as permalloy or a silicon steel plate, and is formed of a substantially L-shaped thin plate. The shield 3 is a pair of left and right, and is fixed to both sides of the sensor body 2. The procedure for assembling the shield 3 is to attach the shield 3 to the lower part of the sensor body 2 so as to surround the current path 4 after the current path 4 is attached to the lower part of the sensor body 2. In addition, the shield 3 includes a fitting portion 31 that is fitted to each side portion of the housing that forms the sensor body 2, and a flat portion 32 that extends in a direction substantially perpendicular to the fitting portion 31. . And each flat part 32 of the shield 3 is arrange | positioned on the same plane, and each edge part 33 of the flat part 32 opposes and spaces apart, and it is arrange | positioned and fixed to the lower part (refer FIG. 2) of the sensor main body 2. FIG. Is done. Accordingly, a part of the current path 4 is covered with the flat portion 32. In other words, it can be said that the shield 3 does not completely surround the current path 4 from the back surface and has an opening (slit).

電流路4は、交流電流等が流れる平板状に形成されたバスバーや導体などであり、センサ本体2下部(図2参照。)に取り付けられる。   The current path 4 is a bus bar or conductor formed in a flat plate shape through which an alternating current or the like flows, and is attached to the lower part of the sensor body 2 (see FIG. 2).

図3(a)は、電流センサ1の要部を拡大した縦断面図である。図3(b)は、平坦部32の長さLと位相差との関係を示したグラフである。図3(a)左側のシールド3を第1シールド3A、図面右側のシールド3を第2シールド3Bとして説明する。   FIG. 3A is an enlarged vertical cross-sectional view of a main part of the current sensor 1. FIG. 3B is a graph showing the relationship between the length L of the flat portion 32 and the phase difference. 3A, the left shield 3 will be described as a first shield 3A, and the right shield 3 will be described as a second shield 3B.

第1シールド3Aの平坦部32Aの長さをLAとし、第2シールド3Bの平坦部32Bの長さをLBとする。また、第1シールド3Aの端面と第2シールド3Bの端面との距離をWとする。本実施形態では、LA=LBである。この平坦部32の長さL(LA、LB)を変更することにより位相差の最適状態を見いだすことができる。交流電流を流すと電流路4に渦電流が発生し、磁気検出素子22の検出する磁界の位相が、電流路4に流れる電流の位相より遅れるが、平坦部32の長さLを調整してこの位相の遅れを解消することが可能である。   The length of the flat portion 32A of the first shield 3A is LA, and the length of the flat portion 32B of the second shield 3B is LB. Further, the distance between the end face of the first shield 3A and the end face of the second shield 3B is W. In the present embodiment, LA = LB. The optimum state of the phase difference can be found by changing the length L (LA, LB) of the flat portion 32. When an alternating current is passed, an eddy current is generated in the current path 4 and the phase of the magnetic field detected by the magnetic detection element 22 is delayed from the phase of the current flowing in the current path 4, but the length L of the flat portion 32 is adjusted. This phase delay can be eliminated.

図3(b)に示されるグラフは、縦方向に位相差を取り、横方向に平坦部32の長さLを取り、長さLによる中心磁場位相の変化(曲線グラフ参照)の測定結果をグラフ化したものである。位相差の遅れがない点を0°(磁気検出素子22の応答性が良い)とし、曲線と位相差0°の直線との交点における平坦部32の長さLを最適値、曲線の最大値における平坦部32の長さLをMAXとしている。このグラフから、平坦部32の長さLを最適値からMAXまでの範囲とすることが適切(可能範囲)であることが理解される。またグラフから、平坦部32の長さLと応答性の改善効果との間には、強い相関関係が存在していると言える。従って、使用する周波数と最大ピーク電流に基づいて、長さLを調整すれば、最適な位相制御設計を行うことが可能である。   In the graph shown in FIG. 3B, the phase difference is taken in the vertical direction, the length L of the flat portion 32 is taken in the horizontal direction, and the measurement result of the change in the central magnetic field phase by the length L (see the curve graph) is shown. It is a graph. The point where there is no phase difference delay is 0 ° (the response of the magnetic detection element 22 is good), the length L of the flat portion 32 at the intersection of the curve and the straight line with the phase difference of 0 ° is the optimum value, and the maximum value of the curve The length L of the flat portion 32 in FIG. From this graph, it is understood that it is appropriate (possible range) to set the length L of the flat portion 32 within the range from the optimum value to MAX. Moreover, it can be said from the graph that there is a strong correlation between the length L of the flat portion 32 and the response improvement effect. Therefore, if the length L is adjusted based on the frequency to be used and the maximum peak current, it is possible to perform an optimum phase control design.

図4(a)及び図4(b)は、本発明のシールド3により磁界がどのように変化しているかを示す説明図である。   4A and 4B are explanatory diagrams showing how the magnetic field is changed by the shield 3 of the present invention.

電流路4に正弦交流の電流Aが矢印方向(図面手前から後方へ)に進行すると、時間に対する電流の大きさの変化率に応じた強さの磁界Mが発生し、磁界Mの周りに渦電流Qが発生する。磁界Mは、電流Aが交流の場合は時間と共に大きさと方向とが変化を繰り返す交番磁界となる。図4(a)に示されるように電流路4の周囲にシールド3が無いと残留磁界が発生し、磁気検出素子22の検出に遅れを生じる原因となる。一方、電流路4の周辺にシールド3A、3Bを設け(図4(b)参照)、シールド3A、3Bの平坦部32A、32Bを電流路4の中心方向に延在させると、平坦部32Aの端部33Aから他方の平坦部32Bの端部33Bに磁界Nが発生する。この磁界Nが電流路4を横切るとき、電流路4で発生した磁界Mとの間で磁界の打ち消し合いが生じる結果、残留磁界を抑制して渦電流の発生を防止することができる。また、電流路4の断面における電流密度分布も均一にすることが可能となり、磁気検出素子22の検出応答の遅延が解消される。尚、一方向のみの説明をしたが、交流の場合は、短時間に磁界の向きが交互に入れ替わる。   When a sinusoidal alternating current A travels in the direction of the arrow (from the front to the back of the drawing) in the current path 4, a magnetic field M having a strength corresponding to the rate of change of the current with respect to time is generated, and a vortex around the magnetic field M is generated. A current Q is generated. When the current A is alternating current, the magnetic field M is an alternating magnetic field that repeatedly changes in magnitude and direction with time. As shown in FIG. 4A, if there is no shield 3 around the current path 4, a residual magnetic field is generated, which causes a delay in detection of the magnetic detection element 22. On the other hand, when the shields 3A and 3B are provided around the current path 4 (see FIG. 4B) and the flat portions 32A and 32B of the shields 3A and 3B extend in the center direction of the current path 4, the flat portions 32A A magnetic field N is generated from the end portion 33A to the end portion 33B of the other flat portion 32B. When this magnetic field N crosses the current path 4, the magnetic field cancels out with the magnetic field M generated in the current path 4. As a result, the residual magnetic field can be suppressed and the generation of eddy current can be prevented. In addition, the current density distribution in the cross section of the current path 4 can be made uniform, and the delay in detection response of the magnetic detection element 22 is eliminated. Although only one direction has been described, in the case of alternating current, the direction of the magnetic field alternates in a short time.

図5(a)は、従来技術の構成と本発明の実施形態による、電流が100A/μsのスルーレートで変動する時の90%―90%応答時間(μs)の比較グラフである。90%―90%応答時間とは、図5(b)に示す通り、電流路4に流れる電流(入力電流)出力90%に対して、それに対応する磁界に比例した電圧値(出力電圧90%)が磁気検出素子22で測定される応答時間のことである。図5(a)に基づく実測結果では、従来技術の応答時間60μsから本発明の応答時間6μs(応答時間6μsは、実測に用いた磁気検出素子の理論値。)に改善(約90%改善)され、シールド3の構成による効果が明らかに現れており、電流の変動が速くなっても磁気検出素子22の応答性が向上し、特に高速応答性を確保できている。   FIG. 5A is a comparative graph of 90% -90% response time (μs) when the current fluctuates at a slew rate of 100 A / μs according to the configuration of the prior art and the embodiment of the present invention. As shown in FIG. 5B, the 90% -90% response time is a voltage value (output voltage 90%) that is proportional to the corresponding magnetic field with respect to the current (input current) output 90% flowing in the current path 4. ) Is a response time measured by the magnetic detection element 22. In the actual measurement result based on FIG. 5A, the response time of 60 μs of the prior art is improved to the response time of 6 μs of the present invention (the response time of 6 μs is the theoretical value of the magnetic detection element used for the actual measurement) (improvement of about 90%). The effect of the configuration of the shield 3 clearly appears, and the response of the magnetic detection element 22 is improved even when the current fluctuates quickly, and particularly high-speed response can be secured.

図6は、電流値と磁束密度における性能を示すグラフである。   FIG. 6 is a graph showing the performance in terms of current value and magnetic flux density.

図6のグラフでは、縦軸に磁束密度(mT)を取り、横軸に電流(A)を取っている。このグラフから理解されると通り、電流(A)が大きくなると磁気飽和が発生しやすくなる(曲線参照)が、本発明では高い周波数の大電流が流れても磁気飽和の発生を抑え、線形性が維持される区間(線形区間)を拡張することができる。図6における磁束密度(mT)と電流(A)の間で線形性が認められる区間は、図3(b)を参照して説明した平坦部32の長さLに左右される。平坦部32の長さがMAXに近づくほど、拡張された線形区間は0まで縮まる。このように、図6においても、本発明のシールド構成の効果が顕著であることがわかる。   In the graph of FIG. 6, the vertical axis represents magnetic flux density (mT) and the horizontal axis represents current (A). As understood from this graph, magnetic saturation is likely to occur when the current (A) increases (see the curve). However, in the present invention, the occurrence of magnetic saturation is suppressed even when a high-frequency large current flows, and linearity is achieved. It is possible to extend a section (linear section) in which is maintained. The section in which linearity is recognized between the magnetic flux density (mT) and the current (A) in FIG. 6 depends on the length L of the flat portion 32 described with reference to FIG. As the length of the flat portion 32 approaches MAX, the extended linear section is reduced to zero. Thus, also in FIG. 6, it turns out that the effect of the shield structure of this invention is remarkable.

尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

1 電流センサ
2 センサ本体
3 シールド
4 電流路
21 基板
22 磁気検出素子
31 嵌合部
32 平坦部
33 端部
DESCRIPTION OF SYMBOLS 1 Current sensor 2 Sensor main body 3 Shield 4 Current path 21 Board | substrate 22 Magnetic detection element 31 Fitting part 32 Flat part 33 End part

Claims (2)

平板状の電流路を流れる電流を検出する電流センサであって、
基板と、前記基板に実装されると共に前記電流路の板面の近傍に配置される磁気検出素子と、前記磁気検出素子及び前記電流路を前記電流路の軸線周りに周回するように取り囲む一対のシールド板と、を備え、
前記一対のシールド板は、
前記電流路の板面に直交する直交方向において前記磁気検出素子よりも前記電流路から遠ざかる向きに離れた位置にある素子側スリットと、前記直交方向において前記電流路よりも前記磁気検出素子から遠ざかる向きに離れた位置にある電流路側スリットと、によって互いに隔離され、
前記一対のシールド板は、
前記直交方向に延びる平板状の一対の嵌合部、及び、前記一対の嵌合部の各々の前記電流路側スリット側の端部から前記電流路の板面に沿った方向において互いに近付く向きに延在する一対の平坦部、を有し、且つ、前記一対の平坦部が前記直交方向において前記電流路の一部と重なる位置に存在するように配置されると共に、前記一対の平坦部によって前記電流路側スリットを画成し、前記一対の嵌合部の前記素子側スリット側の端部によって前記素子側スリットを画成し、
前記基板の全体は、
前記直交方向において、前記一対の嵌合部が延在する範囲内に位置し、且つ、前記電流路の板面に沿う方向において、前記一対の嵌合部の間の範囲内に位置している、
電流センサ。
A current sensor for detecting a current flowing through a flat current path,
A substrate, a magnetic detection element mounted on the substrate and disposed near the plate surface of the current path, and a pair of surrounding the magnetic detection element and the current path so as to circulate around an axis of the current path A shield plate,
The pair of shield plates is
An element-side slit located in a direction away from the current path in the orthogonal direction perpendicular to the plate surface of the current path, and a position farther from the magnetic detection element than the current path in the orthogonal direction. Are separated from each other by current path side slits at positions away from each other,
The pair of shield plates is
A pair of flat fitting portions extending in the orthogonal direction, and extending from the end on the current path side slit side of each of the pair of fitting portions toward each other in a direction along the plate surface of the current path. A pair of flat portions, and the pair of flat portions are disposed so as to overlap with a part of the current path in the orthogonal direction. A road-side slit is defined, and the element-side slit is defined by an end of the pair of fitting portions on the element-side slit side,
The entire substrate is
In the orthogonal direction, the pair of fitting portions are positioned within the extending range , and in the direction along the plate surface of the current path, are positioned within the range between the pair of fitting portions. ,
Current sensor.
前記一対のシールド板が、
前記平坦部の延在方向における長さが同じである、
ことを特徴とする請求項1に記載した電流センサ。
The pair of shield plates is
The length in the extending direction of the flat portion is the same,
The current sensor according to claim 1.
JP2012163972A 2012-07-24 2012-07-24 Current sensor Active JP6275941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012163972A JP6275941B2 (en) 2012-07-24 2012-07-24 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012163972A JP6275941B2 (en) 2012-07-24 2012-07-24 Current sensor

Publications (2)

Publication Number Publication Date
JP2014025718A JP2014025718A (en) 2014-02-06
JP6275941B2 true JP6275941B2 (en) 2018-02-07

Family

ID=50199511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012163972A Active JP6275941B2 (en) 2012-07-24 2012-07-24 Current sensor

Country Status (1)

Country Link
JP (1) JP6275941B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101817957B1 (en) 2016-02-29 2018-01-12 부산대학교 산학협력단 Current Sensors

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857837A (en) * 1987-12-29 1989-08-15 Eaton Corporation Magneto resistive current sensor with improved fidelity
JP2009150654A (en) * 2007-12-18 2009-07-09 Yazaki Corp Current sensor
JP5107779B2 (en) * 2008-04-21 2012-12-26 矢崎総業株式会社 Current sensor
US9086444B2 (en) * 2009-12-28 2015-07-21 Tdk Corporation Magnetic field detection device and current sensor
JP5692899B2 (en) * 2010-09-24 2015-04-01 矢崎総業株式会社 Current detection device and mounting structure thereof
JP6030866B2 (en) * 2012-06-14 2016-11-24 矢崎総業株式会社 Current sensor

Also Published As

Publication number Publication date
JP2014025718A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP6030866B2 (en) Current sensor
JP6690433B2 (en) Current sensor
JP6651956B2 (en) Current sensor
JP6119296B2 (en) Current sensor
US8952687B2 (en) Current sensor
JP5385996B2 (en) Current measuring device
JP6372969B2 (en) Current sensor
JP6711086B2 (en) Current sensor
JP7367100B2 (en) Current transducer with magnetic field gradient sensor
JP2008102116A (en) Current detector
JPWO2012050048A1 (en) Current sensor
JP2015137892A (en) Current detection structure
JP2015148470A (en) current detection structure
KR101847011B1 (en) Current sensor
JP6598040B2 (en) Current detection structure
WO2016194911A1 (en) Current sensor
JP6275941B2 (en) Current sensor
JP5849914B2 (en) Current sensor
JP2016200438A (en) Current sensor
JP2012063285A (en) Current sensor
JP2013200301A (en) Current sensor
JP2014006181A (en) Current sensor
JP5952650B2 (en) Current sensor
JP5952652B2 (en) Current sensor
JP6671986B2 (en) Current sensor and method of manufacturing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171114

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180111

R150 Certificate of patent or registration of utility model

Ref document number: 6275941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250