JP5948965B2 - Solar cell integrated building materials - Google Patents

Solar cell integrated building materials Download PDF

Info

Publication number
JP5948965B2
JP5948965B2 JP2012045029A JP2012045029A JP5948965B2 JP 5948965 B2 JP5948965 B2 JP 5948965B2 JP 2012045029 A JP2012045029 A JP 2012045029A JP 2012045029 A JP2012045029 A JP 2012045029A JP 5948965 B2 JP5948965 B2 JP 5948965B2
Authority
JP
Japan
Prior art keywords
solar
solar cell
solar cells
integrated building
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012045029A
Other languages
Japanese (ja)
Other versions
JP2013181305A (en
Inventor
好之 橋本
好之 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2012045029A priority Critical patent/JP5948965B2/en
Publication of JP2013181305A publication Critical patent/JP2013181305A/en
Application granted granted Critical
Publication of JP5948965B2 publication Critical patent/JP5948965B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Finishing Walls (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、太陽電池一体型建材に関し、特に、凹凸が繰り返して出現するベース材に太陽電池セルが組み込まれた屋根材や壁材などの建材に関する。   The present invention relates to a solar cell integrated building material, and more particularly to a building material such as a roof material or a wall material in which solar cells are incorporated in a base material in which irregularities appear repeatedly.

現在、住宅用の屋根はスレート瓦、ビルの屋根は防水コンクリートなどが主流であるが、町工場の屋根や軒、カーポートなどには、安価で設置が容易な波板や折板の建材が多用されている。また、町工場や倉庫、カーポートなどの壁にも、波板や折板の壁材が多用されている。この波板や折板の建材は、薄くて軽い建材であるにかかわらず、十分な強度を得ることができるという特徴がある。   Currently, slate tiles are mainly used for residential roofs, and waterproof concrete is used for building roofs, but corrugated and folded building materials that are cheap and easy to install are used for the roofs, eaves, and carports of town factories. It is used a lot. In addition, corrugated and folded wall materials are often used for the walls of town factories, warehouses, and carports. The corrugated sheet or folded sheet building material has a feature that it can obtain a sufficient strength regardless of whether it is a thin and light building material.

また、BIPV(Building Integrated Photovoltaics)と呼ばれる太陽電池を組み込んだ建材も注目されている。このBIPVには薄膜系の太陽電池が使用されるが、薄膜系の太陽電池は、薄さと軽さが特徴であるため、薄膜系の太陽電池を組み込んでも、軽くて強いという建材の特徴を維持することができる。   A building material incorporating a solar cell called BIPV (Building Integrated Photovoltaics) is also attracting attention. Thin-film solar cells are used for this BIPV, but thin-film solar cells are characterized by their thinness and lightness. Therefore, even if thin-film solar cells are incorporated, they maintain the characteristics of building materials that are light and strong. can do.

このような建材に組み込まれる太陽電池に関して、例えば、下記特許文献1には、太陽電池層を有する波板状のソーラ屋根材において、表面の少なくとも凹部にシリコーン層を形成し、そのシリコーン層の上に二酸化チタン含有被膜を形成し、その二酸化チタン含有被膜の水との接触角を10°以下にした構成や、表面の少なくとも凹部に二酸化チタン含有被膜を形成し、その二酸化チタン含有被膜の水との接触角を10°以下にした構成が開示されている。   Regarding solar cells incorporated in such building materials, for example, in Patent Document 1 below, in a corrugated solar roof material having a solar cell layer, a silicone layer is formed in at least a concave portion on the surface, and the top of the silicone layer is The titanium dioxide-containing film is formed on the surface, and the contact angle of the titanium dioxide-containing film with water is 10 ° or less, or the titanium dioxide-containing film is formed at least on the concave portion of the surface. The structure which made the contact angle of 10 degrees or less is disclosed.

また、下記特許文献2には、三角山形突条を並列した三角波型太陽電池パネルが開示されている。この特許文献2には、三角山形突条にすることで、平板型の太陽電池よりも単位設置面積あたりの太陽電池面積を増やし、発電量を高めることができること、太陽方向に対して好適な角度となり、発電効率を向上させることができること、また、三角方向を縦横混在させることにより、太陽光発電の発電量を朝昼夕で平均化できることが記載されている。   Moreover, the following patent document 2 discloses a triangular wave solar cell panel in which triangular ridges are arranged in parallel. In this patent document 2, by using a triangular mountain-shaped ridge, it is possible to increase the solar cell area per unit installation area and to increase the amount of power generation as compared with a flat plate type solar cell, and a suitable angle with respect to the solar direction. Thus, it is described that the power generation efficiency can be improved, and that the power generation amount of photovoltaic power generation can be averaged in the morning and noon by mixing the triangular directions vertically and horizontally.

2001−59314号公報2001-59314 2001−217448号公報2001-217448

従来の太陽電池は、発電量を増やすことを重視しているため、建材上のできるだけ広い領域に太陽電池を搭載しており、例えば、上記特許文献では、建材の全面に太陽電池セルを配置する構造が採用されている。   Since conventional solar cells place importance on increasing the amount of power generation, solar cells are mounted in as wide an area as possible on building materials. For example, in the above-mentioned patent document, solar cells are arranged on the entire surface of building materials. Structure is adopted.

しかしながら、波板や折板の建材は、その構造上、凹部にごみやホコリなどが溜まりやすいという問題があった。この問題に対して、上記特許文献1では、建材の表面に二酸化チタン含有被膜を形成し、水との接触角を10°以下に設定することによって、凹部に溜まったごみやホコリなどが雨などで流れやすくなるようにしている。しかしながら、この方法でも、溜まったごみやホコリなどを長期間放置した場合や、少量の雨が降った場合には、ごみやホコリなどが建材の表面に付着して太陽光の透過を妨げてしまい、太陽電池の発電量を著しく低下させてしまう。   However, the corrugated sheet or folded sheet building material has a problem in that dust, dust, and the like tend to accumulate in the recesses due to its structure. With respect to this problem, in Patent Document 1 described above, by forming a titanium dioxide-containing film on the surface of the building material and setting the contact angle with water to 10 ° or less, dust or dust accumulated in the recesses is rained. To make it easier to flow. However, even if this method is used, if the accumulated dust or dust is left for a long period of time or if a small amount of rain falls, the dust or dust adheres to the surface of the building material and prevents the transmission of sunlight. This significantly reduces the amount of power generated by the solar cell.

また、波板や折板の建材は、その構造上、凹部は凸部の影になりやすく、太陽電池の発電量が低下するという問題があった。この問題に対して、例えば、太陽光を凹凸の傾斜部で反射させて、凹部に設置した太陽電池セルに導く方法が考えられる。しかしながら、この方法でも、太陽の方向によっては太陽光を効率的に反射させることができず、また、太陽光を反射させたとしても、上述したように凹部はごみやホコリなどが溜まりやすいため、やはり、太陽電池の発電量の低下を確実に防止することができない。   In addition, the corrugated sheet or folded sheet building material has a problem in that the concave portion is likely to be a shadow of the convex portion, and the power generation amount of the solar cell is reduced. In order to solve this problem, for example, a method is conceivable in which sunlight is reflected by an uneven inclined portion and led to a solar battery cell installed in the recessed portion. However, even with this method, depending on the direction of the sun, it is not possible to efficiently reflect sunlight, and even if sunlight is reflected, as described above, the recesses tend to accumulate dust, dust, etc. Again, a decrease in the amount of power generated by the solar cell cannot be reliably prevented.

また、上記問題は屋根材に限らず、太陽電池を設置可能な任意の建材に対して同様に生じる。   Moreover, the said problem arises similarly with respect to the arbitrary building materials which can install not only a roofing material but a solar cell.

本発明は、上記問題点に鑑みてなされたものであって、その主たる目的は、凹凸が繰り返して出現する波板や折板の建材に複数の太陽電池セルを組み込む構造において、太陽電池セルの面積あたりの発電量(費用対効果)を向上させることができる太陽電池一体型建材を提供することにある。   The present invention has been made in view of the above problems, and the main object of the present invention is to incorporate a plurality of solar cells into a corrugated or folded plate building material in which irregularities appear repeatedly. The object is to provide a solar cell-integrated building material capable of improving the amount of power generation per area (cost-effectiveness).

上記目的を達成するため、本発明は、一定の方向に延在する凸部及び凹部が繰り返して形成されたベース材に、複数の太陽電池セルが組み込まれてなる太陽電池一体型建材であって、前記凸部の頂部を含む凸領域に、前記太陽電池セルが配置され、隣り合う前記太陽電池セルが、前記凸領域の間の凹領域で電気的に接続され、前記太陽電池セルは、前記凸部の頂部を中心にして非対称に配置されているものである。

In order to achieve the above object, the present invention is a solar cell-integrated building material in which a plurality of solar cells are incorporated in a base material in which convex portions and concave portions extending in a certain direction are repeatedly formed. The solar cells are arranged in a convex region including the top of the convex portion, the adjacent solar cells are electrically connected in a concave region between the convex regions, and the solar cells are They are arranged asymmetrically around the top of the convex part .

本発明の太陽電池一体型建材によれば、凹凸が繰り返して出現する波板や折板の建材に複数の太陽電池セルを組み込む構造において、太陽電池の面積あたりの発電量(費用対効果)を向上させることができる。   According to the solar cell-integrated building material of the present invention, in a structure in which a plurality of solar cells are incorporated in a corrugated or folded plate building material in which irregularities appear repeatedly, the power generation amount (cost-effectiveness) per area of the solar cell is reduced. Can be improved.

その理由は、一定の方向に延在する凸部及び凹部が繰り返して形成されたベース材に、複数の太陽電池セルを組み込む際に、凸部の頂点を含む各々の凸領域に太陽電池セルを配置し、隣り合う太陽電池セルを凸領域の間の凹領域で電気的に接続する構造を採用しているからである。   The reason is that when a plurality of solar cells are incorporated in a base material in which convex portions and concave portions extending in a certain direction are repeatedly formed, solar cells are placed in each convex region including the apex of the convex portions. It is because the structure which arrange | positions and electrically connects the adjacent photovoltaic cell in the recessed area | region between convex areas is employ | adopted.

このように、ごみやホコリなどが溜まりやすい、汚れが付着しやすい、影になりやすいといった太陽光発電にとって不利な凹部を避け、太陽光発電に適した凸部に太陽電池セルを優先的に配置することによって、費用対効果を高めた太陽光発電を行うことができる。   In this way, solar cells are preferentially placed on convex parts suitable for photovoltaic power generation, avoiding concave parts that are disadvantageous for photovoltaic power generation, such as dust and dust that tend to collect, dirt easily adhere, and shadows. By doing so, it is possible to perform solar power generation with improved cost effectiveness.

従来の波板形状の建材(屋根材)を示す図である。It is a figure which shows the conventional corrugated-shaped building material (roof material). 従来の波板形状の建材(屋根材)に太陽電池セルを組み込む場合の太陽電池セルの配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the photovoltaic cell in the case of incorporating a photovoltaic cell in the conventional corrugated-shaped building material (roofing material). 太陽電池セルの配置位置と費用対効果との関係を示す図である。It is a figure which shows the relationship between the arrangement position of a photovoltaic cell, and cost effectiveness. 本発明の一実施例に係る太陽電池一体型建材の構造を示す斜視図、断面図及び部分拡大図である。It is the perspective view, sectional drawing, and partial enlarged view which show the structure of the solar cell integrated building material which concerns on one Example of this invention. 本発明の一実施例に係る太陽電池一体型建材の構造(非対称配置構造)を示す斜視図である。It is a perspective view which shows the structure (asymmetric arrangement | positioning structure) of the solar cell integrated building material which concerns on one Example of this invention. 本発明の一実施例に係る太陽電池一体型建材の設置場所と太陽電池セルの配置との関係を示す断面図である。It is sectional drawing which shows the relationship between the installation place of the solar cell integrated building material which concerns on one Example of this invention, and arrangement | positioning of a photovoltaic cell. 本発明の一実施例に係る太陽電池一体型建材の構造(位置調整機能付きの構造)を示す上面図及び断面図である。It is the top view and sectional drawing which show the structure (structure with a position adjustment function) of the solar cell integrated building material which concerns on one Example of this invention. 本発明の一実施例に係る太陽電池一体型建材の構造(位置調整機能及び位置調整基準付きの構造)を示す断面図及び部分拡大図である。It is sectional drawing and the elements on larger scale which show the structure (structure with a position adjustment function and a position adjustment reference | standard) of the solar cell integrated building material which concerns on one Example of this invention. 本発明の一実施例に係る太陽電池一体型建材における太陽電池セルの配置例を示す斜視図である。It is a perspective view which shows the example of arrangement | positioning of the photovoltaic cell in the solar cell integrated building material which concerns on one Example of this invention.

背景技術で示したように、従来の太陽電池は、屋根材などの建材の大きさあたりの発電量を増やすことを重視し、建材上のできるだけ広い領域に太陽電池を搭載する構造を採用していたが、太陽電池は高価であるため、太陽光発電を普及させるためには、太陽電池を出来るだけ効率的に使用することが求められる。すなわち、出来るだけ少ない太陽電池を用いて、出来るだけ多くの発電量が得られるような構造にすることが望ましい。そのためには、屋根材などの建材の中で最も効率良く発電できる領域を中心にして、太陽電池を配置することが効果的である。   As shown in the background art, conventional solar cells place importance on increasing the amount of power generation per size of building materials such as roofing materials, and adopt a structure in which solar cells are mounted in the widest possible area on building materials. However, since solar cells are expensive, in order to spread solar power generation, it is required to use solar cells as efficiently as possible. In other words, it is desirable to use a structure that can produce as much power as possible using as few solar cells as possible. For that purpose, it is effective to arrange the solar cells around the region where the power can be generated most efficiently among the building materials such as roofing materials.

また、太陽電池モジュールは、モジュール内に複数の太陽電池セルを搭載しており、太陽電池セル同士を直列若しくは並列に接続することによって電圧値や電流値を高め、実用的な電圧や電流が得られるようにしている。従って、太陽電池セル間の接続領域は太陽電池モジュールには必須であるが、この接続領域は太陽電池セル同士を接続する配線部材を配置する領域であり、発電には寄与しない領域となるため、太陽電池セルを組み込む場合には、太陽光発電に有利な領域に太陽電池セルを配置し、太陽光発電に不利な領域に配線部材を配置することが望ましい。   Moreover, the solar cell module has a plurality of solar cells mounted in the module, and by connecting the solar cells in series or in parallel, the voltage value and the current value are increased, and a practical voltage and current are obtained. I am trying to do it. Therefore, although the connection region between the solar cells is essential for the solar cell module, this connection region is a region in which the wiring member that connects the solar cells is arranged, and it does not contribute to power generation. When incorporating solar cells, it is desirable to arrange the solar cells in a region advantageous for solar power generation and to arrange the wiring member in a region disadvantageous for solar power generation.

そこで、本発明の一実施の形態では、一定の方向に延在する凸部及び凹部が繰り返して形成された波板形状や折板形状のベース材に、複数の太陽電池セルを組み込む構造において、凸部の頂部を含む各々の凸領域に凹凸形状に沿って太陽電池セルを配置し、凸領域の間の凹領域で隣り合う太陽電池セルを接続する構造とし、波板形状や折板形状の建材が持つ良い特徴(安価であり、雨音の消音効果があるなどの特徴)を損なうことなく、効率的に太陽光発電ができるようにする。   Therefore, in one embodiment of the present invention, in a structure in which a plurality of solar cells are incorporated in a corrugated plate-shaped or folded plate-shaped base material in which convex portions and concave portions extending in a certain direction are repeatedly formed, In each convex region including the top of the convex portion, solar cells are arranged along the concavo-convex shape, and the adjacent solar cells are connected in the concave region between the convex regions. Enable efficient solar power generation without compromising the good features of building materials (features such as low cost and the ability to silence rain).

また、太陽電池セルの配置を、建材が設置される場所や向きに応じて、凸部の頂部を中心にして非対称に配置する(すなわち、左右どちらかに不均等にずらす)ことができる構造とし、より効率的に太陽光発電ができるようにする。更に、複数の建材を組み合わせて使用する場合には、複数の建材を重ね合わせる領域の凸領域には太陽電池セルを配置しないようにして、波板形状や折板形状の建材が持つ良い特徴(施工が容易であるなどの特徴)を損なうことのない太陽電池一体型建材が提供できるようにする。   In addition, according to the location and orientation of the building material, the solar cells can be arranged asymmetrically around the top of the convex portion (that is, unevenly shifted to the left or right). To enable more efficient solar power generation. Furthermore, when using a plurality of building materials in combination, the solar cell is not disposed in the convex region of the region where the plurality of building materials are overlapped, and the corrugated plate-shaped or folded plate-shaped building material has a good feature ( It is possible to provide a solar cell-integrated building material that does not impair features such as easy construction.

上記した本発明の実施の形態についてさらに詳細に説明すべく、本発明の一実施例に係る太陽電池一体型建材について、図1乃至図9を参照して説明する。図1は、従来の波板形状の建材(屋根材)の構造を示す図である。また、図2は、従来の波板形状の建材(屋根材)に太陽電池セルを組み込む場合における太陽電池セルの配置例を示す図であり、図3は、太陽電池セルの配置位置と費用対効果との関係を示す図である。また、図4は、本実施例の太陽電池一体型建材の基本構造を示す図であり、図5乃至図9は、本実施例の太陽電池一体型建材の変形構造を示す図である。   In order to describe the above-described embodiment of the present invention in more detail, a solar cell integrated building material according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a view showing the structure of a conventional corrugated building material (roof material). FIG. 2 is a diagram showing an arrangement example of solar cells in the case where solar cells are incorporated in a conventional corrugated plate-shaped building material (roof material), and FIG. It is a figure which shows the relationship with an effect. Moreover, FIG. 4 is a figure which shows the basic structure of the solar cell integrated building material of a present Example, and FIG. 5 thru | or FIG. 9 is a figure which shows the deformation | transformation structure of the solar cell integrated building material of a present Example.

なお、本明細書において、太陽電池発電装置は、太陽電池モジュールと太陽電池モジュールから出力される電力を処理する制御部とで構成され、太陽電池モジュールは、複数の太陽電池セルで構成されているものとする。また、本発明は、太陽電池モジュールを構成する太陽電池セルの配置に特徴を有するものであり、太陽電池モジュールから電力を出力する構造や太陽電池セル自体の構造などは特に限定されない。例えば、太陽電池セルとしては、透明なフィルムの間に有機色素を挟み、光に当たった色素が電子を放出して陽イオンとなり、別の電極から電子を受け取ることを繰り返すことで電流が発生する色素増感型太陽電池などがあるが、建材の形状に合わせて形成可能な任意の構造の太陽電池セルを利用することができる。   In addition, in this specification, a solar cell power generation device is comprised by the control part which processes the electric power output from a solar cell module and a solar cell module, and a solar cell module is comprised by the several photovoltaic cell. Shall. Moreover, this invention has the characteristics in the arrangement | positioning of the photovoltaic cell which comprises a photovoltaic module, The structure which outputs electric power from a photovoltaic module, the structure of photovoltaic cell itself, etc. are not specifically limited. For example, in a solar cell, an organic dye is sandwiched between transparent films, and the dye that hits the light emits electrons to become cations, and a current is generated by repeatedly receiving electrons from another electrode. Although there are dye-sensitized solar cells, solar cells having an arbitrary structure that can be formed in accordance with the shape of the building material can be used.

まず、町工場の屋根や軒、カーポートなどに使用されることが多い波板の屋根材について説明する。波板の屋根材(波形スレート)は、塩化ビニールやポリカーボネードなどの安価なプラスチック材料若しくは鉄などの金属材料で形成される。この波板の屋根材は、軽さと強度を両立させるために、図1に示すように、薄い部材を周期的に湾曲させ、一定の方向に延在する凸部11及び凹部12が繰り返して現れるように加工される。   First, the corrugated roof material often used for the roofs, eaves, and carports of town factories will be described. The corrugated roof material (corrugated slate) is made of an inexpensive plastic material such as vinyl chloride or polycarbonate, or a metal material such as iron. In order to achieve both lightness and strength, the corrugated sheet roof material is formed by periodically curving a thin member and repeatedly having convex portions 11 and concave portions 12 extending in a certain direction as shown in FIG. It is processed as follows.

このような構造の波板の屋根材10を屋外に設置する場合、凹部12は凸部11よりもごみやホコリなどが溜まりやすい。溜まったごみやホコリなどは、大量の雨が降ればその多くは下流に流されるが、ごみやホコリが溜まった状態で長期間放置された場合や少量の雨が降った場合には、ごみやホコリが建材の表面にこびりついて汚れとなってしまう。   When the corrugated roof material 10 having such a structure is installed outdoors, the concave portion 12 is more likely to collect dust or dust than the convex portion 11. If a large amount of rain falls, most of the collected garbage and dust will be washed away downstream. Dust sticks to the surface of building materials and becomes dirty.

また、太陽は一日の中で東から西へと移動するため、屋根材10を南向きに設置した場合、朝夕は波板の屋根材10に斜めから太陽光が注がれることになる。その際、波板の屋根材10の構造上、凸部11は、朝から夕まで太陽光が注がれるが、凹部12は、一部又は全部が影になってしまう。   In addition, since the sun moves from east to west during the day, when the roofing material 10 is installed facing south, sunlight is poured obliquely onto the corrugated roofing material 10 in the morning and evening. At that time, due to the structure of the corrugated roof material 10, sunlight is poured into the convex portion 11 from morning to evening, but the concave portion 12 is partially or entirely shaded.

図2は、このような特徴を持つ波板の屋根材10に平板状の太陽電池セル20を設置した状態を示している。波板の屋根材10の凸部と凹部の双方に太陽電池セル20を設置した場合、太陽電池モジュールとしての発電量を高めることができるが、太陽電池セル20は高価であるため、費用対効果(導入費用に対する発電量)の低下を招いてしまう。   FIG. 2 shows a state in which flat solar cells 20 are installed on the corrugated roof material 10 having such characteristics. When solar cells 20 are installed on both the convex portion and the concave portion of the corrugated roof material 10, the amount of power generation as a solar cell module can be increased. However, since the solar cells 20 are expensive, they are cost-effective. This will cause a decrease in (power generation relative to the introduction cost).

そのため、費用対効果を考慮して、波板の屋根材10に太陽電池セル20を設置する場合は、一般的に、図2(a)に示すように波板の凸部11に配置するか、図2(b)に示すように波板の凹部12に配置するかのいずれかの構成にすることになると考えられるが、波板の屋根材10の凹部12は、上述したように汚れやすく、影になりやすいため、太陽電池セル20で効率的に発電することができなくなる。   Therefore, in consideration of cost-effectiveness, when installing the solar cells 20 on the corrugated sheet roofing material 10, is it generally disposed on the corrugated sheet convex portion 11 as shown in FIG. As shown in FIG. 2 (b), it is considered that the structure is arranged in any one of the concave portions 12 of the corrugated sheet, but the concave portion 12 of the roof material 10 of the corrugated sheet is easily contaminated as described above. The solar battery cell 20 cannot efficiently generate power because it tends to become a shadow.

従って、波板の屋根材10に太陽電池セル20を設置する場合は、単に発電量のみを求めるのではなく、費用対効果の面から判断する必要があり、凸部11を中心に太陽電池セル20を設置することが得策と言える。このように、太陽電池セル20を発電に有利な凸部11を中心に配置することで、太陽電池の面積に対する発電量の比率を高めることができる。   Therefore, when installing the solar battery cell 20 on the corrugated roofing material 10, it is necessary to make a judgment from the viewpoint of cost-effectiveness instead of simply determining the amount of power generation. It can be said that installing 20 is a good idea. Thus, the ratio of the electric power generation amount with respect to the area of a solar cell can be raised by arrange | positioning the photovoltaic cell 20 centering on the convex part 11 advantageous to an electric power generation.

また、波板の屋根材10に太陽電池セル20を設置する場合、凹凸に合わせて太陽電池セル20を繰り返し設置してモジュール化することが効果的であり、この場合、太陽電池セル20同士は電線等で電気的に接続することになる。ここで、太陽電池セル20間の隙間や電気的な接続領域は太陽光発電に寄与しない領域であるため、太陽電池セル20同士の接続は発電に不利な凹部12で行うことが効果的と言える。   Moreover, when installing the photovoltaic cell 20 in the roofing material 10 of a corrugated sheet, it is effective to install and modularize the photovoltaic cell 20 repeatedly according to an unevenness | corrugation. It is electrically connected with an electric wire or the like. Here, since the space | interval between the photovoltaic cells 20 and an electrical connection area | region are areas which do not contribute to photovoltaic power generation, it can be said that it is effective to perform the connection between photovoltaic cells 20 in the recessed part 12 disadvantageous to power generation. .

図3は、太陽電池セル20の配置と費用対効果とを比較する図である。凹凸が繰り返して出現する波板の屋根材10に太陽電池セル20を設置する場合、図3(c)に示すように、凹部12を中心に太陽電池セル20を配置すると、上述した通り、汚れや影の点から費用対効果が最も低くなる。また、図3(b)に示すように、凹部12と凸部11の双方に太陽電池セル20を配置した場合、凸部11の太陽電池セル20によって発電量は増えるものの、コストが2倍に上昇し、また、太陽電池セル20同士の間隔が狭くなるため、太陽電池セル20同士の電気的接続が難しくなる。一方、図3(a)の左図に示すように、凸部11を中心に太陽電池セル20を配置した場合、発電量を維持しつつコストを抑えることができ、費用対効果を高くすることができる。また、太陽光発電に不利な凹部12で太陽電池セル20間の電気的接続を行うことができるため、発電量の低下を招くことなく、取り付け作業を容易にすることもできる。また、図3(a)の右図のような折板の屋根材に太陽電池セル20を配置する場合も、同様に費用対効果を高くし、取り付け作業を容易にすることができる。   FIG. 3 is a diagram comparing the arrangement of solar cells 20 and cost effectiveness. As shown in FIG. 3C, when the solar battery cell 20 is installed on the corrugated roofing material 10 in which irregularities appear repeatedly, as shown in FIG. Cost effectiveness is lowest in terms of shadows and shadows. Moreover, as shown in FIG.3 (b), when the photovoltaic cell 20 is arrange | positioned in both the recessed part 12 and the convex part 11, although the electric power generation amount increases with the photovoltaic cell 20 of the convex part 11, cost doubles. Moreover, since the space | interval of the photovoltaic cells 20 becomes narrow, the electrical connection of the photovoltaic cells 20 becomes difficult. On the other hand, as shown to the left figure of Fig.3 (a), when the photovoltaic cell 20 is arrange | positioned centering on the convex part 11, cost can be restrained, maintaining electric power generation amount, and cost effectiveness is made high. Can do. Moreover, since the electrical connection between the photovoltaic cells 20 can be performed by the recesses 12 that are disadvantageous for solar power generation, the attachment work can be facilitated without causing a decrease in the amount of power generation. Moreover, also when arrange | positioning the photovoltaic cell 20 to the roof material of a folded board like the right figure of Fig.3 (a), cost effectiveness can be heightened similarly and attachment work can be made easy.

そこで、本実施例では、図3(a)の構造を基本として太陽電池セル20を組み込んだ建材を提案する。なお、以下では、波板又は折板の屋根材に太陽電池セル20を組み込む場合について説明するが、波板又は折板の壁材に太陽電池セル20を組み込む場合も同様である。また、以下では、建材の形状として波板又は折板の形状を例にして説明するが、一定の方向に延在する凸部及び凹部が繰り返し出現する任意の形状に対して同様に適用することができる。   Therefore, in this embodiment, a building material incorporating the solar battery cell 20 based on the structure of FIG. In the following description, the case where the solar battery cell 20 is incorporated into the corrugated sheet or the folded sheet roof material will be described. However, the same applies to the case where the photovoltaic cell 20 is incorporated into the corrugated sheet or the folded sheet wall material. In the following, the shape of the corrugated sheet or the folded sheet will be described as an example of the shape of the building material, but the same applies to any shape in which convex portions and concave portions extending in a certain direction repeatedly appear. Can do.

図4は、波板(又は折板)の屋根材の凸部11に沿って太陽電池セル20を組み込んだ本実施例の太陽電池一体型建材1(屋根材)の一例を示す斜視図、断面図及び部分拡大図である。本実施例の太陽電池一体型建材1は、構造体となるベース屋根材10aと、そのベース屋根材10aに組み込まれた複数の太陽電池セル20と、で構成される。   FIG. 4 is a perspective view showing a solar cell integrated building material 1 (roof material) according to the present embodiment in which solar cells 20 are incorporated along a convex portion 11 of a corrugated plate (or folded plate) roof material, and a cross section. It is a figure and a partial enlarged view. The solar cell integrated building material 1 according to the present embodiment includes a base roof material 10a serving as a structure and a plurality of solar cells 20 incorporated in the base roof material 10a.

構造体となるベース屋根材10aは、塩化ビニールやポリカーボネード、鉄などの材料を用いて波板(又は折板)の形状に加工されている。なお、図では、凸部11と凹部12とを同じ幅としているが、凸部11の幅を凹部12よりも広く若しくは狭くしてもよい。また、図では、凸部11及び凹部12を同じ幅で繰り返す構造としているが、凸部11及び/又は凹部12の幅を徐々に若しくは段階的に変化させて、凸部11及び凹部12を繰り返す構造としてもよい。   The base roof material 10a which becomes a structure is processed into a corrugated plate (or folded plate) shape using a material such as vinyl chloride, polycarbonate or iron. In the figure, the convex portion 11 and the concave portion 12 have the same width, but the width of the convex portion 11 may be wider or narrower than the concave portion 12. In the figure, the convex portion 11 and the concave portion 12 are repeated with the same width, but the width of the convex portion 11 and / or the concave portion 12 is changed gradually or stepwise to repeat the convex portion 11 and the concave portion 12. It is good also as a structure.

そして、凸部11を中心とした各々の領域に、太陽電池セル20が接着剤31によって貼り付けられ、固定されている。上記凸部11を中心とした領域は、図の構成に限定されず、凸部11の頂部(波板の場合は最上部、折板の場合は上面の中央部)を含み、凸部11の両側の凹部12で分離された領域であればよい。また、固定方法も接着剤に限定されず、例えば、耐候性の高い両面テープなどを用いてもよい。   And the photovoltaic cell 20 is affixed on each area | region centering on the convex part 11 with the adhesive agent 31, and is being fixed. The region centering on the convex portion 11 is not limited to the configuration shown in the figure, and includes the top portion of the convex portion 11 (the uppermost portion in the case of a corrugated plate, the center portion of the upper surface in the case of a folded plate). What is necessary is just the area | region isolate | separated by the recessed part 12 of both sides. Further, the fixing method is not limited to the adhesive, and for example, a double-sided tape having high weather resistance may be used.

また、太陽電池セル20は、フレキシブルなフィルム状の薄膜太陽電池である。フィルム状の薄膜太陽電池は、CIGS(銅(Copper)、インジウム(Indium)、ガリウム(Galium)、セレン(Selenium)の4元素からなる化合物)やアモルファスシリコン系の太陽電池として商品化されている。なお、フィルムのようなフレキシブル性(可撓性)を有する構造の他、薄膜ガラスを封止材に用いた太陽電池セルであっても、製造時に予め波板(又は折板)の屋根材と同じ形状で作成すれば、ベース屋根材10aの凹凸に沿って密着させ、屋根材本来の波板(又は折板)形状の特徴を損なわない太陽電池一体型建材1を実現することができる。   The solar battery cell 20 is a flexible film-like thin film solar battery. The film-like thin film solar cell is commercialized as a CIGS (compound composed of four elements of copper, indium, gallium, and selenium) and an amorphous silicon solar cell. In addition to the structure having flexibility (flexibility) like a film, even a solar battery cell using thin-film glass as a sealing material, If the same shape is used, the solar cell-integrated building material 1 can be realized which is brought into close contact along the unevenness of the base roof material 10a and does not impair the original corrugated (or folded) shape of the roof material.

また、凸部11を中心とした各々の領域に組み込まれた太陽電池セル20は、凹部12側の端部において、隣り合う太陽電池セル20と接続するための電気配線30や、太陽電池モジュール外部へ出力するための電気配線が接続されている。   In addition, the solar cells 20 incorporated in the respective regions centered on the convex portion 11 are electrically connected to the adjacent solar cells 20 at the end portion on the concave portion 12 side or outside the solar cell module. Electrical wiring for output to is connected.

このように、波板又は折板の凹凸形状に沿って太陽電池セル20を組み込んだ本実施例の構造では、建材本来の特徴を損なわないため、従来の建材と同様の設置方法(重ね合わせ、サイズを調整して母屋に固定する方法)と、建材の形状による効果(凸部により雨水を所望の方向に導き、雨の落下時の衝撃を受け流して雨音を緩和するなどの効果)を維持することができる。従って、本実施例の構造は、波板又は折板の屋根材に太陽電池セルを平板状にして設置する構造よりも優れていると言える。   Thus, in the structure of the present embodiment in which the solar cells 20 are incorporated along the corrugated shape of the corrugated plate or the folded plate, the same installation method as the conventional building material (superposition, Maintaining the effect of adjusting the size and fixing to the main building) and the effect of the shape of the building material (such as guiding the rainwater in the desired direction by the projections and receiving the impact of falling rain to mitigate rain noise) can do. Therefore, it can be said that the structure of this example is superior to the structure in which solar cells are installed in a flat plate shape on a corrugated or folded roof material.

図4では、本実施例の太陽電池一体型建材1の一例として、凸部11の頂部を中心として対称な位置に太陽電池セル20を配置する場合について説明したが、太陽電池一体型建材1が設置される場所や設置方向は様々であることから、より効率的に太陽光発電ができるように、太陽電池セル20の配置を調整することも可能である。   In FIG. 4, as an example of the solar cell integrated building material 1 of the present embodiment, the case where the solar cells 20 are arranged at symmetrical positions around the top of the convex portion 11 has been described. Since the installation location and the installation direction are various, it is also possible to adjust the arrangement of the solar cells 20 so that solar power can be generated more efficiently.

例えば、太陽が南に登る地域において、図5(a)に示すように、建物の周囲(図では西側と南側と東側の3箇所)に屋根材が設けられる場合を想定する。この場合、屋根材の全面を太陽電池セルで覆うようにすれば、どの方向を向いた屋根材に設置された太陽電池セルでも、高い発電量を得ることができるが、上述したように、太陽電池セル20は屋根材のベースとなる材料に比べて高価であり、費用対効果が悪化する。そのため、凸部を中心とした領域のみに太陽電池セル20を配置することになるが、その際、太陽電池セル20の配置を屋根材の設置場所や方向に合わせて調整し、どの方向を向いた屋根材に設置された太陽電池セル20でも高い費用対効果が得られるようにする。   For example, in a region where the sun climbs south, as shown in FIG. 5A, a case is assumed where roofing materials are provided around a building (in the figure, three locations on the west side, the south side, and the east side). In this case, if the entire surface of the roofing material is covered with solar cells, a high power generation amount can be obtained even in solar cells installed on the roofing material facing in any direction. The battery cell 20 is more expensive than the material used as the base of the roofing material, and the cost effectiveness is deteriorated. For this reason, the solar cells 20 are arranged only in the region centered on the convex portion. At that time, the arrangement of the solar cells 20 is adjusted in accordance with the installation location and direction of the roofing material, and the direction is determined. Even in the solar cell 20 installed on the roof material, the high cost-effectiveness is obtained.

具体的には、西向きの屋根に設置される、波板又は折板形状の屋根材は、太陽が南にある時、向かって右斜め上から太陽光が照射される。そのため、同じ表面積の太陽電池セル20を搭載する場合は、図5(b)に示すように、凸部の頂部に対して南寄り(図の右側寄り)に搭載した方が、太陽光を真正面から受けやすくなり、発電量が多くなる。   Specifically, the corrugated or folded roof material installed on the west-facing roof is irradiated with sunlight from the upper right when the sun is in the south. Therefore, when solar cells 20 having the same surface area are mounted, as shown in FIG. 5 (b), it is more likely that the solar cells 20 are mounted on the south side (right side in the figure) with respect to the top of the convex portion. It becomes easy to receive from, and the amount of power generation increases.

また、南向きの屋根に設置される、波板又は折板形状の屋根材は、太陽が南にある時、ほぼ正面方向の斜め上から太陽光が照射される。そのため、同じ表面積の太陽電池セル20を搭載する場合は、図5(c)に示すように、凸部の頂部に対して左右均等に搭載した方が、太陽光を真正面から受けやすくなり、発電量が多くなる。   Further, the corrugated or folded plate-shaped roof material installed on the south-facing roof is irradiated with sunlight from obliquely above in the front direction when the sun is in the south. Therefore, when the solar cells 20 having the same surface area are mounted, as shown in FIG. 5 (c), it is easier to receive sunlight from the front when the solar cells 20 are mounted evenly with respect to the top of the convex portion. The amount increases.

また、東向きの屋根に設置される、波板又は折板形状の屋根材は、太陽が南にある時、向かって左斜め上から太陽光が照射される。そのため、同じ表面積の太陽電池セル20を搭載する場合は、図5(d)に示すように、凸部の頂部に対して南寄り(図の左側寄り)に搭載した方が、太陽光を真正面から受けやすくなり、発電量が多くなる。   Moreover, the corrugated or folded plate-shaped roof material installed on the east-facing roof is irradiated with sunlight from the upper left when facing the south. Therefore, when solar cells 20 having the same surface area are mounted, as shown in FIG. 5 (d), it is more likely that the solar cells 20 are mounted southward (leftward in the figure) with respect to the top of the convex portion. It becomes easy to receive from, and the amount of power generation increases.

従って、太陽電池セル20を波板又は折板形状の凸部の頂部に対して、左側にずらして配置したもの、右側にずらして配置したもの、左右均等に配置したものを用意することによって、3つの設置方向に対して、最適な発電量を得ることができる。更に、左右にずらす程度を細分化した、複数種類の太陽電池一体型建材1を用意することによって、南南東、東南東、西南西、南南西など、様々な設置方向に対して、最適な発電量を得ることができる。   Therefore, by preparing solar cells 20 with the corrugated plate or folded plate-shaped convex portion shifted to the left side, those shifted to the right side, those that are evenly arranged left and right, Optimal power generation can be obtained for the three installation directions. Furthermore, by preparing multiple types of solar cell-integrated building materials 1 that are subdivided to the left and right, an optimal amount of power generation is obtained for various installation directions such as south-southeast, east-southeast, west-southwest, and south-southwest. be able to.

このように、予め凸部の頂部を中心にして、太陽電池セル20の配置を左右対称にした太陽電池一体型建材1と左右非対称にした太陽電池一体型建材1とを用意し、施工の方角に対して最適な太陽電池一体型建材1を選択することによって、発電量を高めることができる。しかしながら、この方法では、製造メーカ側は複数種類の太陽電池一体型建材1を用意する必要があり、製品管理が煩雑になる。また。稀なケースではあるが、東向きで使用していた屋根を南向きの屋根に移設するなど、太陽電池一体型建材1の向きを変える場合には、最適な発電量を得ることができなくなる場合もある。更に、季節に応じて太陽の移動軌跡は変化するため、その時に最適な位置に太陽電池セル20を配置しないと、最適な発電量を得ることができない。   Thus, the solar cell-integrated building material 1 in which the arrangement of the solar cells 20 is symmetric with respect to the top of the convex portion in advance and the solar cell-integrated building material 1 in which the solar cell 20 is asymmetric are prepared in advance. By selecting the most suitable solar cell-integrated building material 1, the amount of power generation can be increased. However, in this method, the manufacturer needs to prepare a plurality of types of solar cell integrated building materials 1 and product management becomes complicated. Also. In rare cases, when the direction of the solar cell-integrated building material 1 is changed, such as when the roof used in the east direction is moved to the roof in the south direction, the optimum power generation amount cannot be obtained. There is also. Furthermore, since the movement trajectory of the sun changes according to the season, an optimal power generation amount cannot be obtained unless the solar cells 20 are arranged at the optimal position at that time.

この問題に対して、太陽電池一体型建材1に、太陽電池セル20の位置を、凸部の頂部を中心として左右に調整できるようにする機能を付加することもでき、このような位置調整機能を付加することによって、メーカの品揃えを減らして管理を簡略化することができ、また、施工者も設置向きに応じて発注すべき建材を選択する手間がなくなり、更に、季節が変化しても常に最適な発電量を得ることができる。   In order to solve this problem, the solar cell integrated building material 1 can be added with a function that allows the position of the solar battery cell 20 to be adjusted left and right around the top of the convex portion. This makes it possible to reduce the manufacturer's product lineup and simplify the management, and also eliminates the trouble for the installer to select the building materials to be ordered according to the installation orientation, and the season changes. You can always get the optimal amount of power.

例えば、太陽電池セル20を南向きの屋根材に組み込む場合は、図6(a)に示すように、朝昼夕と東から西に移動する太陽の光の総量が最大になるように、太陽電池セル20の位置を凸部の頂部に対して左右均等位置に調整する。また、太陽電池セル20を東南向きの屋根材に組み込む場合は、図6(b)に示すように、凸部の頂部に対して、太陽電池セル20が南寄り(図の左寄り)に配置されるように位置を調整する。また、太陽電池セル20を南西向きの屋根材に組み込む場合は、図6(c)に示すように、凸部の頂部に対して、太陽電池セル20が南寄り(図の右寄り)に配置されるように位置を調整する。   For example, when the solar battery cell 20 is incorporated in a roof material facing south, as shown in FIG. 6 (a), the solar light is maximized so that the total amount of sunlight moving from morning to afternoon and from east to west is maximized. The position of the battery cell 20 is adjusted to a left and right uniform position with respect to the top of the convex portion. In addition, when the solar battery cell 20 is incorporated in the southeast facing roof material, the solar battery cell 20 is arranged on the south side (left side in the figure) with respect to the top of the convex portion as shown in FIG. 6B. Adjust the position so that In addition, when the solar battery cell 20 is incorporated into the roof material facing southwest, the solar battery cell 20 is arranged on the south side (right side in the figure) with respect to the top of the convex portion as shown in FIG. Adjust the position so that

図7は、本実施例の太陽電池一体型建材1に、太陽電池セル20の位置を凸部の頂部に対して左右方向に移動できるようにする位置調節機能を設けた構造の一例を示している。太陽電池一体型建材1は、表シェルと裏シェルの2重構造をとり、2枚のシェルの間に太陽電池セル20を挟み込む構造になっている。また、隣り合う太陽電池セル20は、ワイヤなどのセル接続部32で接続されており、建材の少なくとも一方の端部に配置される太陽電池セル20に設けたワイヤなどの位置調整部33を引っ張ることによって、太陽電池セル20が順次、内部でスライドし、凸部に対する位置を調整することができる。また、太陽電池セル20にある程度の強度があれば、位置調整部33を押し込む動作でも太陽電池セル20の位置を調整することができる。   FIG. 7 shows an example of a structure in which the solar cell integrated building material 1 of this embodiment is provided with a position adjustment function that allows the position of the solar battery cell 20 to move in the left-right direction with respect to the top of the convex portion. Yes. The solar cell integrated building material 1 has a double structure of a front shell and a back shell, and has a structure in which a solar battery cell 20 is sandwiched between two shells. Moreover, the adjacent photovoltaic cell 20 is connected by the cell connection parts 32, such as a wire, and pulls position adjustment parts 33, such as a wire provided in the photovoltaic cell 20 arrange | positioned at the at least one edge part of building materials. By this, the photovoltaic cell 20 can slide inside sequentially and can adjust the position with respect to a convex part. Further, if the solar battery cell 20 has a certain level of strength, the position of the solar battery cell 20 can be adjusted even by the operation of pushing the position adjusting unit 33.

なお、セル接続部32は、太陽電池セル20同士を電気的に直列又は並列に接続できるように、銅線など通電可能な素材で形成することが好ましい。また、図7では、位置調整部33を引っ張る(若しくは押し込む)動作によって、太陽電池セル20の位置を調整する構造としたが、図示しない電動モータなどを利用してスイッチなどで太陽電池セル20を自動的にスライドさせることもできる。   In addition, it is preferable to form the cell connection part 32 with the material which can supply electricity, such as a copper wire, so that the photovoltaic cells 20 can be electrically connected in series or in parallel. In FIG. 7, the position of the solar battery cell 20 is adjusted by an operation of pulling (or pushing in) the position adjustment unit 33. However, the solar battery cell 20 is connected with a switch or the like using an electric motor (not shown). It can also be automatically slid.

また、太陽電池セル20の位置を調整する際、どの程度、太陽電池セル20をスライドさせればよいかが分かりにくい。そのような場合には、上述した位置調整機能に加え、最適な調整位置を簡単に識別できるようにするための目盛りを設けることもできる。例えば、屋根材の施工現場では、コンパス(方位磁石)や地図等を用いて屋根の方角を知ることができることから、屋根材の設置方角に最適な太陽電池セル20の位置を算出し、その位置が分かる目盛り等の基準を設ける。   Moreover, when adjusting the position of the photovoltaic cell 20, it is difficult to understand how much the photovoltaic cell 20 should be slid. In such a case, in addition to the position adjustment function described above, a scale for easily identifying the optimum adjustment position can be provided. For example, at the construction site of the roof material, since the direction of the roof can be known using a compass (direction magnet), a map, etc., the optimal position of the solar battery cell 20 is calculated for the installation direction of the roof material, and the position Establish a standard such as a scale to understand

図8は、その一例であり、固定の屋根材(シェル)側に、屋根材の設置方角に最適な調整位置を示す印(図では三角マーク)などの目盛りを設けている。この構成では、南向きに設置する場合は、中央の三角マークに太陽電池セル20の端部を合わせ、西向きに設置する場合は、右側の三角マークに太陽電池セル20の端部を合わせ、東向きに設置する場合は、左側の三角マークに太陽電池セル20の端部を合わせる。また、南南東や東南東などの方角の場合は、3つの三角マークの途中の位置に太陽電池セル20の端部を合わせたり、マークを細かく刻んで設けたりする。   FIG. 8 is an example of this, and a scale such as a mark (a triangular mark in the figure) indicating the optimum adjustment position for the installation direction of the roof material is provided on the fixed roof material (shell) side. In this configuration, when installing in the south direction, the end of the solar cell 20 is aligned with the center triangular mark, and when installing in the west direction, the end of the solar cell 20 is aligned with the right triangular mark, When installing in the direction, the edge part of the photovoltaic cell 20 is aligned with the left triangle mark. Further, in the case of directions such as south-southeast and east-southeast, the end of the solar battery cell 20 is aligned with a position in the middle of the three triangular marks, or the marks are finely cut.

このように、太陽電池セル20の位置調整機能と、屋根材の設置方角に最適な太陽電池セル20の位置を知らせる目盛りと、を設けることにより、施工現場で簡単に最適な発電ができるように太陽電池セル20の位置を調整することができる。   As described above, by providing the position adjustment function of the solar battery cell 20 and the scale for notifying the optimal position of the solar battery cell 20 in the installation direction of the roofing material, the optimum power generation can be easily performed at the construction site. The position of the solar battery cell 20 can be adjusted.

なお、上記説明では、手動で太陽電池セル20の位置を調整する場合を示したが、例えば、タイマや光センサなどを用いて太陽光の照射方向を判別し、その時々の太陽光の照射方向に適した太陽電池セル20の位置を演算し、演算したその位置に太陽電池セル20が配置されるように、図示しない電動モータなどを用いて太陽電池セル20を自動的にスライドさせることもできる。   In the above description, the case where the position of the solar battery cell 20 is manually adjusted has been described. For example, the irradiation direction of sunlight is determined using a timer, a light sensor, or the like, and the irradiation direction of sunlight at that time. The solar battery cell 20 can be automatically slid using an electric motor (not shown) so that the solar battery cell 20 is calculated at the calculated position and the solar battery cell 20 is arranged at the calculated position. .

以上、独立した太陽電池一体型建材1について説明したが、広い屋根や壁などに建材を設置する場合、複数の建材を組み合わせることになる。例えば、波板又は折板の屋根材の場合、図9(a)に示すように、屋根材同士を重ねあわせて施工するだけで、継ぎ目にパッキンなどの防水処理を施す必要がない。また、波板又は折板の屋根材の場合、一般に2凹凸半または3凹凸半重ねて施工すれば、吹きこむような雨の時でも継ぎ目から雨が漏れることが無い。この簡単につなぎあわせて施工できるという特徴は、太陽電池セル20を組み込んだ波板又は折板形状の屋根材にも求められる。しかしながら、重ね合わせたときの下側に太陽電池セル20があると、その太陽電池セル20では発電できなくなり、高価な太陽電池セル20が無駄になってしまう。   As described above, the independent solar cell integrated building material 1 has been described. However, when building materials are installed on a wide roof or wall, a plurality of building materials are combined. For example, in the case of a corrugated or folded roof material, as shown in FIG. 9 (a), it is not necessary to perform waterproofing treatment such as packing on the seam simply by overlapping the roof materials. In the case of corrugated sheet or folded sheet roofing material, generally, if it is constructed with two or half concavo-convex or three concavo-convex halves, rain will not leak from the seam even in rain that blows. The feature that it can be easily connected and constructed is also required for a corrugated or folded plate-like roof material incorporating the solar battery cell 20. However, if there is a solar battery cell 20 on the lower side when superimposed, the solar battery cell 20 cannot generate power, and the expensive solar battery cell 20 is wasted.

また、波板又は折板形状の屋根材が多用される別の理由として、施工時に母屋と接続するための固定金具の取り付け穴を、母屋の骨組みの位置などに合わせて、施工現場で自由に設けることができることにある。この母屋の骨組みに合わせて自由な位置に取り付け穴を施工できるという特徴も、太陽電池セル20を組み込んだ波板又は折板形状の屋根材にも求められる。通常、取付け金具の施工穴は波板又は折板形状の屋根材の雨が流れない凸部に設けられる。しかしながら、太陽電池セル20を発電に有利な凸部側に設けると施工穴をあけることができない。また、誤って太陽電池セル20に穴をあけてしまうと太陽電池セル20が損傷してしまい、高価な太陽電池セル20が無駄になってしまう。   Another reason why corrugated or folded plate-shaped roofing materials are often used is that the mounting holes for fixing brackets for connecting to the purlin during construction can be freely adjusted at the construction site according to the position of the framework of the main building. It can be provided. The feature that the mounting hole can be installed at a free position in accordance with the framework of the main building is also required for the corrugated or folded plate-shaped roof material in which the solar cells 20 are incorporated. Usually, the installation hole for the mounting bracket is provided on a convex portion of the corrugated plate or the folded plate-shaped roof material through which rain does not flow. However, if the solar battery cell 20 is provided on the convex side that is advantageous for power generation, it is not possible to make a construction hole. Moreover, if a hole is accidentally made in the solar battery cell 20, the solar battery cell 20 is damaged, and the expensive solar battery cell 20 is wasted.

そこで、本実施例の太陽電池一体型建材1では、建材同士を重ね合わせて施工する際、図9(b)に示すように、重ね代部分に太陽電池セル20を搭載しないようにする。これにより、簡単な施工で雨漏りを防止できる機能を有した、波板又は折板形状の太陽電池一体型建材1を提供することができる。   Therefore, in the solar cell-integrated building material 1 of the present embodiment, when the building materials are overlapped and constructed, the solar cells 20 are not mounted on the overlapping portion as shown in FIG. 9B. Thereby, the solar cell integrated building material 1 of the corrugated sheet or the folded-plate shape which has the function which can prevent a rain leak by simple construction can be provided.

以上説明したように、一定の方向に延在する凸部11及び凹部12が繰り返して形成された波板又は折板の屋根材や壁材などの建材に、複数の太陽電池セル20を組み込む場合に、凸部の頂部を含む凸領域に太陽電池セル20を配置し、隣り合う太陽電池セル20を凸領域の間の凹領域で接続することにより、汚れや影に起因する発電量の低下を防止することができる。また、建材の設置場所や方角に合わせて、凸部の頂部に対する太陽電池セル20の位置を調整するための位置調整機構や調整の基準となる目盛りなどを設けることにより、建材の設置場所や方角によらず、最適な発電量を得ることができる。また、複数の建材を組み合わせて使用する場合には、重なり部分に太陽電池セル20を配置しないことにより、波板又は折板の建材の特徴を損なうことなく、効率的に太陽光発電を実施することができる。   As described above, when a plurality of solar cells 20 are incorporated in a building material such as a corrugated sheet or folded sheet roof material or wall material in which convex portions 11 and concave portions 12 extending in a certain direction are repeatedly formed. In addition, by arranging the solar cells 20 in the convex region including the top of the convex portion and connecting the adjacent solar cells 20 in the concave region between the convex regions, the power generation amount caused by dirt and shadows can be reduced. Can be prevented. In addition, by installing a position adjustment mechanism for adjusting the position of the solar cell 20 with respect to the top of the convex portion or a scale serving as a reference for adjustment according to the installation location and direction of the building material, the installation location and direction of the building material Regardless of this, it is possible to obtain an optimal power generation amount. When a plurality of building materials are used in combination, solar power generation is efficiently performed without impairing the characteristics of the corrugated sheet or folded sheet building material by not arranging the solar cells 20 in the overlapping portion. be able to.

なお、上記実施例では、屋根材と壁材について説明したが、本発明は上記実施例に限定されるものではなく、凹凸が繰り返して出現する任意の建材に対して、同様に適用することができる。   In addition, although the said Example demonstrated the roof material and the wall material, this invention is not limited to the said Example, It can apply similarly with respect to the arbitrary building materials from which an unevenness | corrugation appears repeatedly. it can.

本発明は、凹凸が繰り返して出現する波板や折板などの建材、特に、屋根材や壁材に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for building materials such as corrugated plates and folded plates in which irregularities appear repeatedly, particularly roof materials and wall materials.

1 太陽電池一体型建材
10 波板の屋根材
10a ベース屋根材
11 凸部
12 凹部
20 太陽電池セル
30 電気配線
31 接着剤
32 セル接続部
33 位置調整部
DESCRIPTION OF SYMBOLS 1 Solar cell integrated building material 10 Roof material of corrugated sheet 10a Base roof material 11 Convex part 12 Concave part 20 Solar cell 30 Electric wiring 31 Adhesive 32 Cell connection part 33 Position adjustment part

Claims (6)

一定の方向に延在する凸部及び凹部が繰り返して形成されたベース材に、複数の太陽電池セルが組み込まれてなる太陽電池一体型建材であって、
前記凸部の頂部を含む凸領域に、前記太陽電池セルが配置され、隣り合う前記太陽電池セルが、前記凸領域の間の凹領域で電気的に接続され、
前記太陽電池セルは、前記凸部の頂部を中心にして非対称に配置されている、ことを特徴とする太陽電池一体型建材。
A solar cell integrated building material in which a plurality of solar cells are incorporated in a base material formed by repeatedly forming convex portions and concave portions extending in a certain direction,
In the convex region including the top of the convex portion, the solar cells are arranged, and the adjacent solar cells are electrically connected in a concave region between the convex regions,
The photovoltaic cell-integrated building material, wherein the photovoltaic cells are arranged asymmetrically around the top of the convex portion.
一定の方向に延在する凸部及び凹部が繰り返して形成されたベース材に、複数の太陽電池セルが組み込まれてなる太陽電池一体型建材であって、
前記凸部の頂部を含む凸領域に、前記太陽電池セルが配置され、隣り合う前記太陽電池セルが、前記凸領域の間の凹領域で電気的に接続され、
前記太陽電池セルは、表材と裏材とに挟まれており、前記表材と前記裏材との隙間を移動できるように構成され、
隣り合う前記太陽電池セルは、接続部によって共動可能に接続され、
端に配置された前記太陽電池セルは、位置調整部によって、前記太陽電池セルの配列方向に移動可能に構成される、ことを特徴とする太陽電池一体型建材。
A solar cell integrated building material in which a plurality of solar cells are incorporated in a base material formed by repeatedly forming convex portions and concave portions extending in a certain direction,
In the convex region including the top of the convex portion, the solar cells are arranged, and the adjacent solar cells are electrically connected in a concave region between the convex regions,
The solar battery cell is sandwiched between a front material and a back material, and is configured to be able to move through a gap between the front material and the back material,
Adjacent solar cells are connected to each other by a connecting portion,
The solar cell integrated building material , wherein the solar cell arranged at the end is configured to be movable in the arrangement direction of the solar cell by a position adjusting unit .
前記位置調整部は、一部が前記表材と前記裏材との隙間からはみ出している、ことを特徴とする請求項に記載の太陽電池一体型建材。 3. The solar cell integrated building material according to claim 2 , wherein a part of the position adjusting unit protrudes from a gap between the front material and the back material . 前記太陽電池セルは、前記ベース材の凹凸形状に沿って配置されている、ことを特徴とする請求項1乃至3のいずれか一に記載の太陽電池一体型建材。 The said photovoltaic cell is arrange | positioned along the uneven | corrugated shape of the said base material, The solar cell integrated building material as described in any one of Claim 1 thru | or 3 characterized by the above-mentioned. 複数の前記太陽電池一体型建材は、前記凹凸の一部を重ね合わせて使用され、
前記太陽電池一体型建材の重ね合わされる領域の前記凸領域には、前記太陽電池セルが配置されていない、ことを特徴とする請求項1乃至4のいずれか一に記載の太陽電池一体型建材。
The plurality of solar cell integrated building materials are used by overlapping a part of the unevenness,
The solar cell-integrated building material according to any one of claims 1 to 4 , wherein the solar cell is not disposed in the convex region of the region where the solar cell-integrated building material is overlaid. .
前記ベース材は、波板又は折板の、屋根材又は壁材である、ことを特徴とする請求項1乃至5のいずれか一に記載の太陽電池一体型建材。  The solar cell-integrated building material according to any one of claims 1 to 5, wherein the base material is a corrugated or folded plate roof material or wall material.
JP2012045029A 2012-03-01 2012-03-01 Solar cell integrated building materials Expired - Fee Related JP5948965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012045029A JP5948965B2 (en) 2012-03-01 2012-03-01 Solar cell integrated building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012045029A JP5948965B2 (en) 2012-03-01 2012-03-01 Solar cell integrated building materials

Publications (2)

Publication Number Publication Date
JP2013181305A JP2013181305A (en) 2013-09-12
JP5948965B2 true JP5948965B2 (en) 2016-07-06

Family

ID=49272171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012045029A Expired - Fee Related JP5948965B2 (en) 2012-03-01 2012-03-01 Solar cell integrated building materials

Country Status (1)

Country Link
JP (1) JP5948965B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014106964A1 (en) 2014-05-16 2015-11-19 Johannes Stöllinger Building component with photovoltaic functionality and method for producing a building component with photovoltaic functionality
CN106784077A (en) * 2017-02-18 2017-05-31 饶莉 The solar panels of waveform tiles
CN106911292B (en) * 2017-03-02 2019-11-19 江苏汉嘉薄膜太阳能科技有限公司 Curve flexibility base roof solar film power generation photovoltaic tile system and preparation method thereof
CN108599684A (en) * 2018-04-14 2018-09-28 广东汉能薄膜太阳能有限公司 A kind of photovoltaic generation watt and photovoltaic generating system
WO2023182435A1 (en) * 2022-03-24 2023-09-28 積水化学工業株式会社 Solar cell sheet installation structure, solar cell sheet construction method, and solar cell sheet for textured exterior material
JP7253160B1 (en) 2022-03-24 2023-04-06 積水化学工業株式会社 Mounting structure of photovoltaic sheet, construction method of photovoltaic sheet and photovoltaic sheet for uneven exterior material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141064A (en) * 1997-11-07 1999-05-25 Sekisui Chem Co Ltd Roof material and roof roofed with this roof material
JP2000252510A (en) * 1998-12-28 2000-09-14 Canon Inc Solar cell module, manufacture and installation method thereof, and photovoltaic power generation system

Also Published As

Publication number Publication date
JP2013181305A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP5948965B2 (en) Solar cell integrated building materials
US9786802B2 (en) Photovoltaic roofing panels, photovoltaic roofing assemblies, and roofs using them
US8943766B2 (en) Photovoltaic roofing elements, photovoltaic roofing systems, methods and kits
US8898970B2 (en) Photovoltaic roofing systems with inner corner flashings
US20120060902A1 (en) System and method for frameless laminated solar panels
KR20070114065A (en) Solar roof tile
US9771719B2 (en) Solar cell module-equipped panel and exterior building material using same
US20200263905A1 (en) Devices and systems for ventilation of solar roofs
JP2014531892A (en) Photovoltaic device with improved thermal management mechanism
KR20100020448A (en) Weatherproof building envelope
US20110174365A1 (en) System and method for forming roofing solar panels
JPH10308524A (en) Solar battery module
JP2023501864A (en) Rooftop Solar Cell Substrates, Rooftop Solar Cells, and Photovoltaic Roofs
JP3481032B2 (en) Double roof structure using solar cell module in flat roof building
JP7253160B1 (en) Mounting structure of photovoltaic sheet, construction method of photovoltaic sheet and photovoltaic sheet for uneven exterior material
JP4351567B2 (en) Solar power plant
JP5666096B2 (en) Solar cell module
JP2011196168A (en) Mounting structure of structure
JP2798762B2 (en) Roof-mounted solar cell device
CN202925775U (en) Chain plate type modified asphalt base power generation waterproof integrated plate system
JPH08222753A (en) Solar battery device
JP2010236270A (en) Drainage structure having external facing structure with integrated solar energy conversion module
WO2011114078A2 (en) A roofing system including photovoltaic modules
KR102715624B1 (en) Wall type bi-facial photovoltaic power generation apparatus
WO2012077703A1 (en) Solar power generation system and connection box used therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5948965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees