JP5943147B2 - Control device and control method for internal combustion engine - Google Patents

Control device and control method for internal combustion engine Download PDF

Info

Publication number
JP5943147B2
JP5943147B2 JP2015516963A JP2015516963A JP5943147B2 JP 5943147 B2 JP5943147 B2 JP 5943147B2 JP 2015516963 A JP2015516963 A JP 2015516963A JP 2015516963 A JP2015516963 A JP 2015516963A JP 5943147 B2 JP5943147 B2 JP 5943147B2
Authority
JP
Japan
Prior art keywords
compression ratio
internal combustion
fuel
combustion engine
fuel increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015516963A
Other languages
Japanese (ja)
Other versions
JPWO2014185124A1 (en
Inventor
高橋 英二
英二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Application granted granted Critical
Publication of JP5943147B2 publication Critical patent/JP5943147B2/en
Publication of JPWO2014185124A1 publication Critical patent/JPWO2014185124A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/048Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable crank stroke length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

この発明は、機械的圧縮比を変更する可変圧縮比機構を備えた内燃機関の制御装置および制御方法に関し、特に、排気系における保護対象部品の保護のために燃料増量を行う内燃機関における圧縮比制御に関する。   The present invention relates to a control device and control method for an internal combustion engine having a variable compression ratio mechanism that changes a mechanical compression ratio, and more particularly, to a compression ratio in an internal combustion engine that increases the amount of fuel for protecting a protection target component in an exhaust system. Regarding control.

内燃機関の機械的圧縮比を変更する可変圧縮比機構は、従来から種々の形式のものが知られている。例えば、複リンク式ピストンクランク機構のリンクジオメトリの変更によってピストン上死点位置を上下に変位させるようにした可変圧縮比機構が本出願人らによって多数提案されている。また、クランクシャフトの中心位置に対しシリンダの位置を上下に変位させることで同様に機械的圧縮比を変化させるようにした可変圧縮比機構も公知である。   Various types of variable compression ratio mechanisms for changing the mechanical compression ratio of an internal combustion engine have been known. For example, the applicants have proposed a number of variable compression ratio mechanisms in which the piston top dead center position is displaced up and down by changing the link geometry of a multi-link piston crank mechanism. A variable compression ratio mechanism is also known in which the mechanical compression ratio is similarly changed by displacing the cylinder position up and down with respect to the center position of the crankshaft.

このような可変圧縮比機構においては、基本的には、ノッキング等の異常燃焼を生じない範囲でできるだけ高い圧縮比とすることが望ましく、従って、目標圧縮比の一般的な傾向としては、低負荷域では高圧縮比であるが、負荷が高いほど低い圧縮比となる。例えば特許文献1には、内燃機関の負荷と回転速度(回転数)をパラメータとして予め最適な目標圧縮比を割り付けた圧縮比マップを参照して、可変圧縮比機構の目標圧縮比を設定することが開示されている。   In such a variable compression ratio mechanism, it is basically desirable that the compression ratio be as high as possible within a range that does not cause abnormal combustion such as knocking. Therefore, as a general trend of the target compression ratio, a low load In the region, the compression ratio is high, but the higher the load, the lower the compression ratio. For example, in Patent Document 1, a target compression ratio of a variable compression ratio mechanism is set with reference to a compression ratio map in which an optimal target compression ratio is assigned in advance using the load and rotation speed (rotation speed) of the internal combustion engine as parameters. Is disclosed.

一方、特許文献2には、排気管やその周囲の何らかの部品等の保護対象部品が過度に高温となることを回避するために、これら保護対象部品の排気温度による温度上昇を推定し、許容温度を超えるときに、排気温度を低下させるための燃料増量を行うことが開示されている。   On the other hand, in Patent Document 2, in order to avoid the excessively high temperature of the parts to be protected such as the exhaust pipe and any parts around it, the temperature rise due to the exhaust temperature of these parts to be protected is estimated, and the allowable temperature It is disclosed to increase the amount of fuel for lowering the exhaust temperature when exceeding the above.

さらに、特許文献3には、可変圧縮比機構を備えた内燃機関において、排気浄化触媒の保護のために、触媒温度が所定温度以上である場合には、機関負荷が高負荷から低負荷へ移行する過渡時に、圧縮比をある上限値以下に制限するようにした技術が開示されている。   Furthermore, in Patent Document 3, in an internal combustion engine having a variable compression ratio mechanism, when the catalyst temperature is equal to or higher than a predetermined temperature, the engine load is shifted from a high load to a low load in order to protect the exhaust purification catalyst. In such a transition, a technology is disclosed in which the compression ratio is limited to a certain upper limit value or less.

上述したように、可変圧縮比機構における目標圧縮比は、基本的にはノッキングによって制限を受けるのであるが、排気系における保護対象部品の保護のために特許文献2のように燃料増量を行うものにあっては、燃料増量によってノッキングが生じにくくなるため、さらに圧縮比を高めることが可能である。そして、圧縮比を高くすれば、排気温度が低下するため、排気系における保護対象部品の保護の上で有利である。   As described above, the target compression ratio in the variable compression ratio mechanism is basically limited by knocking. However, in order to protect the protection target parts in the exhaust system, the fuel increase is performed as in Patent Document 2. In this case, knocking is less likely to occur due to an increase in fuel, and the compression ratio can be further increased. If the compression ratio is increased, the exhaust temperature decreases, which is advantageous in protecting the parts to be protected in the exhaust system.

特許文献1,2においては、このような燃料増量と圧縮比との関係について何ら考慮されておらず、なお改善の余地がある。   In Patent Documents 1 and 2, no consideration is given to the relationship between the fuel increase and the compression ratio, and there is still room for improvement.

なお、特許文献3は、機械的圧縮比が高いほど排気浄化触媒に流入する未燃HCが増大するとの認識の下で、低負荷への移行時の圧縮比をある上限値以下に制限するものであり、燃料増量と圧縮比との関係を何ら開示していない。   In addition, Patent Document 3 restricts the compression ratio at the time of shifting to a low load to a certain upper limit value in recognition that unburned HC flowing into the exhaust purification catalyst increases as the mechanical compression ratio increases. No relationship between the fuel increase and the compression ratio is disclosed.

特開2004−92639号公報JP 2004-92639 A 特開2008−51092号公報JP 2008-51092 A 特開2012−31839号公報JP 2012-31839 A

この発明は、機械的圧縮比を変更する可変圧縮比機構を備えた内燃機関の制御装置であって、
内燃機関の負荷および回転速度に基づいて上記可変圧縮比機構の目標圧縮比を設定する手段と、
排気系における保護対象部品の保護のために燃料増量を行う燃料増量手段と、
この燃料増量手段により燃料増量が行われているときに上記目標圧縮比を高圧縮比側へ補正する補正手段と、
を備えている。
The present invention is a control device for an internal combustion engine including a variable compression ratio mechanism for changing a mechanical compression ratio,
Means for setting a target compression ratio of the variable compression ratio mechanism based on the load and rotation speed of the internal combustion engine;
Fuel increasing means for increasing the fuel to protect the parts to be protected in the exhaust system;
Correction means for correcting the target compression ratio to the high compression ratio side when fuel increase is performed by the fuel increase means;
It has.

すなわち、本発明では、排気系における保護対象部品(排気に直接接する部品のほか、間接的に排気熱を受ける周囲の部品を含む)が過度に高温となったときに、その保護のために、排気温度を低下すべく燃料増量が実行される。そして、このように燃料増量が実行されている間、同時に、可変圧縮比機構による圧縮比が高圧縮比側へ補正される。つまり、同一の負荷および回転速度の下で燃料増量を行っていないときに比較して、より高い圧縮比に制御される。   That is, in the present invention, when the parts to be protected in the exhaust system (including parts directly in contact with the exhaust and surrounding parts indirectly receiving the exhaust heat) become excessively high, Fuel increase is executed to lower the exhaust temperature. While the fuel increase is being executed in this way, at the same time, the compression ratio by the variable compression ratio mechanism is corrected to the high compression ratio side. In other words, the compression ratio is controlled to be higher than when the fuel increase is not performed under the same load and rotation speed.

内燃機関の機械的圧縮比は、熱効率の観点からできるだけ高い圧縮比とすることが望ましいが、ノッキングによって制限を受け、従って、目標圧縮比の一般的な傾向としては、負荷が高いほど低い圧縮比となる。しかしながら、燃料増量を行うと、燃料の気化潜熱による混合気冷却作用が増加するので、燃料増量を行っていない場合に比べてノッキングが生じにくくなり、より高い機械的圧縮比で運転することが可能である。そして、高圧縮比とすることにより、熱効率が高まり、排気温度が低下するので、単純に燃料増量を行うだけの場合に比べて保護対象部品の過熱を防ぐために必要な燃料増量の量が少なくなる。従って、結果として、燃料消費量を低減することが可能である。   The mechanical compression ratio of the internal combustion engine is preferably as high as possible from the viewpoint of thermal efficiency, but is limited by knocking. Therefore, a general tendency of the target compression ratio is that the higher the load, the lower the compression ratio. It becomes. However, when the fuel is increased, the mixture cooling action due to the latent heat of vaporization of the fuel increases, so that knocking is less likely to occur than when the fuel is not increased, and operation with a higher mechanical compression ratio is possible. It is. And, by setting the high compression ratio, the thermal efficiency is increased and the exhaust temperature is lowered, so that the amount of fuel increase necessary to prevent overheating of the protection target component is reduced as compared with the case where the fuel increase is simply performed. . Therefore, as a result, it is possible to reduce fuel consumption.

この発明によれば、排気系における部品保護のために燃料増量に併せて高圧縮比化を行うことで、熱効率の向上が図れ、部品を排気熱から確実に保護しつつ燃料消費量を低減することができる。   According to the present invention, by increasing the compression ratio in conjunction with the increase in fuel for protecting parts in the exhaust system, the thermal efficiency can be improved, and the fuel consumption can be reduced while reliably protecting the parts from the exhaust heat. be able to.

この発明の一実施例を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Structure explanatory drawing which shows one Example of this invention. この実施例の排気系保護制御についてのブロック図。The block diagram about the exhaust system protection control of this embodiment. この実施例の制御を示すフローチャート。The flowchart which shows the control of this Example. この実施例の作用を説明するためのタイミングチャートであり、排気マニホルド温度が閾値を超えた場合の例を示すタイミングチャート。It is a timing chart for demonstrating the effect | action of this Example, and is a timing chart which shows the example when an exhaust manifold temperature exceeds a threshold value. 排気マニホルド温度およびセンサ部温度の双方が各々の閾値を超えた場合の例を示すタイミングチャート。The timing chart which shows an example when both exhaust manifold temperature and sensor part temperature exceed each threshold value. 負荷に基づき圧縮比の補正が禁止された例を示すタイミングチャート。The timing chart which shows the example where correction | amendment of the compression ratio was prohibited based on load.

図1は、この発明に係る制御装置を備えた内燃機関1のシステム構成を示す構成説明図である。   FIG. 1 is an explanatory diagram showing a system configuration of an internal combustion engine 1 including a control device according to the present invention.

内燃機関1は、複リンク式ピストンクランク機構のリンクジオメトリの変更によってピストン上死点位置を上下に変位させるようにした公知の可変圧縮比機構2を備えており、リンクジオメトリの変更つまり機械的圧縮比の変更のために、例えば電動モータなどからなる可変圧縮比アクチュエータ3を備えている。なお、この可変圧縮比アクチュエータ3は、同時に、実際の機械的圧縮比(実圧縮比rCR)を検出するセンサとしても機能している。また、内燃機関1は、燃焼室の中央に点火プラグ4を有するとともに、吸気ポートへ向かって燃料を噴射する燃料噴射弁5を備えている。なお、図示例は、いわゆるポート噴射型の構成であるが、燃焼室内へ燃料を噴射する筒内直接噴射式内燃機関であっても本発明は適用可能である。   The internal combustion engine 1 includes a known variable compression ratio mechanism 2 in which the piston top dead center position is displaced up and down by changing the link geometry of the multi-link type piston crank mechanism, and changing the link geometry, that is, mechanical compression. In order to change the ratio, a variable compression ratio actuator 3 composed of, for example, an electric motor is provided. The variable compression ratio actuator 3 also functions as a sensor that detects an actual mechanical compression ratio (actual compression ratio rCR) at the same time. The internal combustion engine 1 has a spark plug 4 in the center of the combustion chamber and a fuel injection valve 5 that injects fuel toward the intake port. Although the illustrated example has a so-called port injection type configuration, the present invention can also be applied to a direct injection type internal combustion engine that injects fuel into the combustion chamber.

内燃機関1の排気マニホルド7には、排気温度を計測する排気温センサ8が取り付けられている。   An exhaust temperature sensor 8 for measuring the exhaust temperature is attached to the exhaust manifold 7 of the internal combustion engine 1.

また、内燃機関1の運転条件として、運転者によって操作されるアクセルペダルの開度(要求負荷tT)を検出するアクセルペダルセンサ9、および、内燃機関1の回転数(回転速度)Neを検出する回転数センサ10、を備えている。これらのセンサ類の検出信号は、エンジンコントロールユニット11に入力されており、これらの検出信号に基づいて、燃料噴射弁5の噴射量や噴射時期、点火プラグ4の点火時期等が制御されるとともに、可変圧縮比機構2の可変圧縮比アクチュエータ3が、目標とする圧縮比となるように駆動される。   Further, as operating conditions of the internal combustion engine 1, an accelerator pedal sensor 9 for detecting the opening degree of the accelerator pedal (required load tT) operated by the driver, and the rotational speed (rotational speed) Ne of the internal combustion engine 1 are detected. A rotation speed sensor 10 is provided. The detection signals of these sensors are input to the engine control unit 11, and the injection amount and injection timing of the fuel injection valve 5, the ignition timing of the spark plug 4 and the like are controlled based on these detection signals. The variable compression ratio actuator 3 of the variable compression ratio mechanism 2 is driven so as to achieve a target compression ratio.

図2は、上記エンジンコントロールユニット11によって実現される排気系保護制御の制御ブロック図を示している。基本目標圧縮比演算部21は、アクセルペダルセンサ9により検出される要求負荷tTと、回転数センサ6により検出される機関回転数Neと、に基づいて、機械的圧縮比の基本値つまり基本目標圧縮比btCRを算出する。また、基本目標空燃比演算部22は、同じく、要求負荷tTと機関回転数Neとに基づいて基本目標空燃比btAFを算出する。なお、この基本目標空燃比btAFは、高負荷域など一部の運転領域を除き、理論空燃比相当の値となる。   FIG. 2 shows a control block diagram of the exhaust system protection control realized by the engine control unit 11. The basic target compression ratio calculation unit 21 is based on the required load tT detected by the accelerator pedal sensor 9 and the engine speed Ne detected by the rotational speed sensor 6, that is, the basic value of the mechanical compression ratio, that is, the basic target. The compression ratio btCR is calculated. Similarly, the basic target air-fuel ratio calculation unit 22 calculates the basic target air-fuel ratio btAF based on the required load tT and the engine speed Ne. The basic target air-fuel ratio btAF is a value equivalent to the stoichiometric air-fuel ratio, except for some operating regions such as a high load region.

部品温度演算部23は、排気温センサ8が検出した排気温度Texhから、保護対象部品の温度として、排気マニホルド温度Temおよび排気温センサ部温度Tesを算出する。排気マニホルド7の温度を示す排気マニホルド温度Temは、特許文献2等でも説明されているように、排気マニホルド7の熱容量が排気温センサ8自体よりも大きいことから、排気温度Texhよりも遅れて上昇する。また、センサ部温度Tesは、排気温センサ8の中でもエンジンコントロールユニット11に結線されるハーネス部などの部位の温度に相当し、排気に直接晒されないために排気温度Texhの上昇に対する部品温度の上昇は排気マニホルド7よりも緩やかであるものの耐熱温度は低い保護対象部品の一例である。なお、保護対象部品として、他の排気系に近接するハーネスや車体部品等を対象とすることも勿論可能である。   The component temperature calculation unit 23 calculates the exhaust manifold temperature Tem and the exhaust temperature sensor unit temperature Tes as the temperatures of the components to be protected from the exhaust temperature Texh detected by the exhaust temperature sensor 8. The exhaust manifold temperature Tem indicating the temperature of the exhaust manifold 7 rises later than the exhaust temperature Texh because the heat capacity of the exhaust manifold 7 is larger than that of the exhaust temperature sensor 8 itself as described in Patent Document 2 and the like. To do. Further, the sensor portion temperature Tes corresponds to the temperature of a portion of the exhaust temperature sensor 8 such as a harness portion connected to the engine control unit 11 and is not directly exposed to the exhaust, so that the component temperature rises with respect to the rise of the exhaust temperature Texh. Is an example of a part to be protected that is milder than the exhaust manifold 7 but has a low heat-resistant temperature. Of course, harnesses, vehicle body parts, and the like that are close to other exhaust systems can be targeted as protection target parts.

目標空燃比補正部24は、排気マニホルド温度Temおよび排気温センサ部温度Tesが高温となったときに、基本目標空燃比演算部22が出力する基本目標空燃比btAFに対して補正(つまり燃料増量)を行うものであり、排気マニホルド温度Temおよびセンサ部温度Tesのほか、可変圧縮比アクチュエータ3から出力される実圧縮比rCRを入力として、目標空燃比tAFを算出する。この目標空燃比tAFに基づき、燃料噴射量演算部25において燃料噴射弁5の燃料噴射量Qfが算出される。   The target air-fuel ratio correction unit 24 corrects the basic target air-fuel ratio btAF output from the basic target air-fuel ratio calculation unit 22 when the exhaust manifold temperature Tem and the exhaust temperature sensor unit temperature Tes are high (that is, the fuel increase amount). The target air-fuel ratio tAF is calculated by using the actual compression ratio rCR output from the variable compression ratio actuator 3 in addition to the exhaust manifold temperature Tem and sensor unit temperature Tes. Based on the target air-fuel ratio tAF, the fuel injection amount calculation unit 25 calculates the fuel injection amount Qf of the fuel injection valve 5.

また、目標圧縮比補正部26は、燃料増量を行っているときに、基本目標圧縮比演算部21が出力する基本目標圧縮比btCRに対して、高圧縮比側への補正を行うものであり、目標空燃比tAFおよび実圧縮比rCRに基づき、補正後の目標圧縮比tCRを算出する。この補正後の目標圧縮比tCRに従って、可変圧縮比アクチュエータ3が駆動される。   Further, the target compression ratio correction unit 26 corrects the basic target compression ratio btCR output from the basic target compression ratio calculation unit 21 toward the high compression ratio side when performing fuel increase. Based on the target air-fuel ratio tAF and the actual compression ratio rCR, the corrected target compression ratio tCR is calculated. The variable compression ratio actuator 3 is driven according to the corrected target compression ratio tCR.

図3は、上記エンジンコントロールユニット11における上記制御の処理の流れを示すフローチャートである。ステップ1では、要求負荷tT、機関回転数Ne、排気温度Texh、実圧縮比rCR、をそれぞれ読み込む。   FIG. 3 is a flowchart showing a flow of the control process in the engine control unit 11. In step 1, the required load tT, the engine speed Ne, the exhaust temperature Texh, and the actual compression ratio rCR are read.

ステップ2では、所定の空燃比マップおよび所定の圧縮比マップを参照して、そのときの要求負荷tTと機関回転数Neとに対応する基本目標空燃比btAFおよび基本目標圧縮比btCRをそれぞれ求める。上記の空燃比マップおよび圧縮比マップは、いずれも要求負荷と機関回転数とをパラメータとして予め最適な空燃比および機械的圧縮比の値を割り付けたものである。なお、上述したように、基本目標空燃比btAFは、高負荷域など一部の運転領域を除き理論空燃比相当の値となる。また、基本目標圧縮比btCRは、低負荷域で最高圧縮比となり、ノッキング発生を考慮して負荷が高いほど低い圧縮比となる傾向を有している。   In step 2, the basic target air-fuel ratio btAF and the basic target compression ratio btCR corresponding to the required load tT and the engine speed Ne at that time are obtained by referring to the predetermined air-fuel ratio map and the predetermined compression ratio map. Each of the air-fuel ratio map and the compression ratio map is obtained by assigning optimal values of the air-fuel ratio and the mechanical compression ratio in advance using the required load and the engine speed as parameters. Note that, as described above, the basic target air-fuel ratio btAF is a value corresponding to the theoretical air-fuel ratio, except for some operating regions such as a high load region. In addition, the basic target compression ratio btCR has the highest compression ratio in the low load region, and tends to be lower as the load is higher in consideration of occurrence of knocking.

ステップ3では、排気温センサ8が検出した排気温度Texhに基づき、保護対象部品の温度である排気マニホルド温度Temおよびセンサ部温度Tesをそれぞれ算出する。これらの排気マニホルド温度Temおよびセンサ部温度Tesの算出は、例えば、予め実験的に排気温度Texhに対する各温度変化の時定数を求めておいて、この時定数を用いて算出する方法、あるいは、排気マニホルド7等の各部の熱容量および熱の移動量などから推定する方法、など公知の手法を用いることができる。   In step 3, based on the exhaust temperature Texh detected by the exhaust temperature sensor 8, the exhaust manifold temperature Tem and the sensor unit temperature Tes, which are the temperatures of the parts to be protected, are calculated. The calculation of the exhaust manifold temperature Tem and the sensor unit temperature Tes is, for example, a method in which a time constant of each temperature change with respect to the exhaust temperature Texh is experimentally obtained in advance and calculated using this time constant, or the exhaust Known methods such as a method of estimating from the heat capacity of each part such as the manifold 7 and the amount of heat transfer can be used.

ステップ4では、排気マニホルド温度Temが所定の閾値(Tem閾値)より高いか否かを判定する。なお、上記閾値は一般には固定値でよいが、なんらかの他の要素を考慮して可変的に設定される値であってもよい。排気マニホルド温度Temが閾値よりも高い場合はステップ5へ進み、排気マニホルド7を過熱から保護するために必要な空燃比補正値(排気マニホルド保護補正値)を算出する。空燃比補正値の算出には、例えば実験的に求めた空燃比と排気温度との関係が用いられる。一方、排気マニホルド温度Temが閾値以下であれば、ステップ6へ進み、空燃比補正値を0とする。   In step 4, it is determined whether or not the exhaust manifold temperature Tem is higher than a predetermined threshold (Tem threshold). In general, the threshold value may be a fixed value, but may be a value variably set in consideration of some other factor. If the exhaust manifold temperature Tem is higher than the threshold value, the process proceeds to step 5 to calculate an air-fuel ratio correction value (exhaust manifold protection correction value) necessary to protect the exhaust manifold 7 from overheating. For calculating the air-fuel ratio correction value, for example, the relationship between the air-fuel ratio and the exhaust gas temperature obtained experimentally is used. On the other hand, if the exhaust manifold temperature Tem is equal to or lower than the threshold value, the routine proceeds to step 6 where the air-fuel ratio correction value is set to zero.

次にステップ7では、排気マニホルド温度Temよりも遅れて上昇するセンサ部温度Tesが所定の閾値(Tes閾値)より高いか否かを判定する。このセンサ部温度Tesに対する閾値(Tes閾値)は、排気マニホルド温度Temに対する閾値(Tem閾値)よりも低い温度である。つまり、センサ部温度Tesが示す排気温センサ8のハーネス部等の部位は、その許容温度が排気マニホルド7よりも低い。なお、上記閾値は一般には固定値でよいが、なんらかの他の要素を考慮して可変的に設定される値であってもよい。センサ部温度Tesが閾値よりも高い場合はステップ8へ進み、排気温センサ8のハーネス部等を過熱から保護するために必要な空燃比補正値(排気温センサ保護補正値)を算出する。空燃比補正値の算出には、ステップ5と同様に、例えば実験的に求めた空燃比と排気温度との関係が用いられる。一方、センサ部温度Tesが閾値以下であれば、ステップ9へ進み、空燃比補正値を0とする。   Next, in step 7, it is determined whether or not the sensor temperature Tes that rises later than the exhaust manifold temperature Tem is higher than a predetermined threshold (Tes threshold). The threshold for the sensor unit temperature Tes (Tes threshold) is a temperature lower than the threshold for the exhaust manifold temperature Tem (Tem threshold). That is, the allowable temperature of the harness portion of the exhaust temperature sensor 8 indicated by the sensor temperature Tes is lower than that of the exhaust manifold 7. In general, the threshold value may be a fixed value, but may be a value variably set in consideration of some other factor. If the sensor temperature Tes is higher than the threshold value, the process proceeds to step 8 to calculate an air-fuel ratio correction value (exhaust temperature sensor protection correction value) necessary for protecting the harness portion of the exhaust temperature sensor 8 from overheating. For calculation of the air-fuel ratio correction value, as in step 5, for example, the relationship between the air-fuel ratio experimentally obtained and the exhaust temperature is used. On the other hand, if the sensor temperature Tes is equal to or lower than the threshold value, the process proceeds to step 9 where the air-fuel ratio correction value is set to zero.

上記のようにして2つの空燃比補正値を求めた後、ステップ10では、2つの空燃比補正値の中の値が大きな方(つまり燃料増量が大である方)を選択し、実圧縮比rCRを考慮しつつ基本目標空燃比btAFに補正を加えて、目標空燃比tAFを算出する。つまり、機械的圧縮比が高くなると熱効率が向上し、排気温度が低下するので、この圧縮比の影響を考慮した形で燃料増量後の目標空燃比tAFが設定される。ここでは、実圧縮比rCRおよび空燃比補正値に対する排気温度の変化代を予め実験的に求めておき、目標空燃比tAFの算出を行う。そして、前述したように、燃料増量が行われている条件下ではノッキングが生じにくく高圧縮比化が可能であるので、ステップ11では、ステップ10で決定した目標空燃比tAFと、そのときの目標空燃比tAFの算出の基礎となっている実圧縮比rCRと、要求負荷tTおよび機関回転数Neに対応した基本目標圧縮比btCRと、から最終的な目標圧縮比tCRを算出する。   After obtaining the two air-fuel ratio correction values as described above, in step 10, the larger one of the two air-fuel ratio correction values (that is, the one with the larger fuel increase) is selected, and the actual compression ratio is selected. The target air-fuel ratio tAF is calculated by correcting the basic target air-fuel ratio btAF while taking rCR into consideration. That is, when the mechanical compression ratio is increased, the thermal efficiency is improved and the exhaust temperature is lowered. Therefore, the target air-fuel ratio tAF after the fuel increase is set in consideration of the influence of the compression ratio. Here, the change amount of the exhaust temperature with respect to the actual compression ratio rCR and the air-fuel ratio correction value is experimentally obtained in advance, and the target air-fuel ratio tAF is calculated. As described above, knocking is unlikely to occur under the condition where fuel increase is being performed, and a high compression ratio can be achieved. In step 11, the target air-fuel ratio tAF determined in step 10 and the target at that time are set. The final target compression ratio tCR is calculated from the actual compression ratio rCR, which is the basis for calculating the air-fuel ratio tAF, and the basic target compression ratio btCR corresponding to the required load tT and the engine speed Ne.

つまり、本実施例では、機械的な機構を含む可変圧縮比機構2の不可避的な比較的大きな応答遅れを考慮して、先にステップ10において実圧縮比rCRに対応した目標空燃比tAFを算出した上で、次のステップ11において目標圧縮比tCRを算出することにより、必要な排気温度に対する機械的圧縮比と空燃比との整合を図っている。従って、燃料増量開始に伴い目標空燃比tAFがステップ的に変化しても、初期には目標圧縮比tCRから実圧縮比rCRが乖離し、実圧縮比rCRは直前の基本目標圧縮比btCRと大差がないので、目標空燃比tAFの算出の上で圧縮比の影響(熱効率向上による排気温度低下)は実質的に考慮されないこととなり、実圧縮比rCRが目標圧縮比tCRに収束するまで相対的に大きな燃料増量が行われる。そのため、燃料増量の過渡的な不足による排気温度の上昇を回避できる。   That is, in the present embodiment, the target air-fuel ratio tAF corresponding to the actual compression ratio rCR is calculated in step 10 in advance, taking into account the relatively large response delay that is unavoidable of the variable compression ratio mechanism 2 including the mechanical mechanism. After that, by calculating the target compression ratio tCR in the next step 11, the mechanical compression ratio and the air-fuel ratio with respect to the required exhaust temperature are matched. Therefore, even if the target air-fuel ratio tAF changes stepwise as the fuel increase starts, the actual compression ratio rCR deviates from the target compression ratio tCR in the initial stage, and the actual compression ratio rCR is greatly different from the immediately preceding basic target compression ratio btCR. Therefore, in calculating the target air-fuel ratio tAF, the influence of the compression ratio (exhaust temperature decrease due to improved thermal efficiency) is not substantially taken into account, and the relative compression ratio until the actual compression ratio rCR converges to the target compression ratio tCR. A large fuel increase is made. Therefore, it is possible to avoid an increase in exhaust temperature due to a transient shortage of fuel increase.

次に、上記実施例の作用を、図4〜図6のタイミングチャートを用いて説明する。   Next, the operation of the above embodiment will be described using the timing charts of FIGS.

図4は、排気温度Texhの上昇により排気マニホルド温度Temがその閾値(Tem閾値)を超えた場合のタイミングチャートを示している。時刻t1までは一定の負荷で内燃機関1が運転されており、時刻t1においてステップ的に負荷が上昇したため、排気温度Texhならびに排気マニホルド温度Temが上昇を始める。ただし、この例では負荷変化は限定的なものと仮定しており、基本目標圧縮比btCRは変化しない。時刻t2において排気マニホルド温度Temが閾値(Tem閾値)を超えたため、目標空燃比tAFがリッチ側へシフトし、かつ同時に、目標圧縮比tCRは高圧縮比側へ補正される。目標空燃比tAFのリッチ化に伴って排気温度Texhは低下するが、実圧縮比rCRは応答が遅いため、時刻t2時点では高圧縮比化による排気温度への影響はない。   FIG. 4 shows a timing chart when the exhaust manifold temperature Tem exceeds the threshold value (Tem threshold value) due to the increase of the exhaust gas temperature Texh. The internal combustion engine 1 is operated with a constant load until time t1, and the load increases stepwise at time t1, so that the exhaust temperature Texh and the exhaust manifold temperature Tem start to increase. However, in this example, it is assumed that the load change is limited, and the basic target compression ratio btCR does not change. Since the exhaust manifold temperature Tem exceeds the threshold value (Tem threshold value) at time t2, the target air-fuel ratio tAF is shifted to the rich side, and at the same time, the target compression ratio tCR is corrected to the high compression ratio side. As the target air-fuel ratio tAF becomes richer, the exhaust temperature Texh decreases. However, since the actual compression ratio rCR has a slow response, the increase in the compression ratio does not affect the exhaust temperature at the time t2.

時刻t2から時刻t3にかけて実圧縮比rCRが目標圧縮比tCRに向けて上昇し、これに伴って排気温度Texhがさらに低下する。時刻t3において実圧縮比rCRが目標圧縮比tCRに到達し、これに伴い、時刻t3以降の目標空燃比tAFは、時刻t2から時刻t3の間に比べてリーン側にシフト(理論空燃比に近付くが理論空燃比よりはリッチである)する。なお、実圧縮比rCRに基づいて目標空燃比tAFを逐次修正していく上述の実施例では、実際には、時刻t2からt3の間で目標空燃比tAFが徐々にリーン化していくことになるが、図の例では、目標空燃比tAFがステップ的に変化している。   From time t2 to time t3, the actual compression ratio rCR increases toward the target compression ratio tCR, and the exhaust temperature Texh further decreases accordingly. At time t3, the actual compression ratio rCR reaches the target compression ratio tCR, and accordingly, the target air-fuel ratio tAF after time t3 is shifted toward the lean side (approaching the theoretical air-fuel ratio) from time t2 to time t3. Is richer than the stoichiometric air-fuel ratio). In the above-described embodiment in which the target air-fuel ratio tAF is sequentially corrected based on the actual compression ratio rCR, actually, the target air-fuel ratio tAF gradually becomes lean between time t2 and t3. However, in the example of the figure, the target air-fuel ratio tAF changes stepwise.

時刻t3から時刻t4の間は、排気マニホルド温度Temが閾値付近に保持されている状態である。実際にはフィードバック制御等によって排気マニホルド温度Temが閾値付近にとどまるように目標空燃比tAFをさらに細かく制御することが望ましいが、ここでは説明を省略する。   From time t3 to time t4, the exhaust manifold temperature Tem is maintained near the threshold value. Actually, it is desirable to further finely control the target air-fuel ratio tAF so that the exhaust manifold temperature Tem stays in the vicinity of the threshold value by feedback control or the like, but the description is omitted here.

時刻t4において内燃機関1の負荷が低下し、排気温度Texhの低下が始まる。そのため、燃料増量が終了し、以降は、基本目標空燃比btAFおよび基本目標圧縮比btCRに沿った通常の目標空燃比tAFおよび目標圧縮比tCRで運転される。なお、図4の例では、遅れて上昇するセンサ部温度Tesは、その閾値(Tes閾値)を超えることがない。   At time t4, the load on the internal combustion engine 1 decreases, and the exhaust temperature Texh starts to decrease. Therefore, the fuel increase is completed, and thereafter, the engine is operated at the normal target air-fuel ratio tAF and the target compression ratio tCR along the basic target air-fuel ratio btAF and the basic target compression ratio btCR. In the example of FIG. 4, the sensor temperature Tes that rises with a delay does not exceed the threshold value (Tes threshold value).

次に、図5は、排気マニホルド温度Temとセンサ部温度Tesの双方が各々の閾値を超える場合のタイミングチャートを示している。時刻t3までは図4のタイミングチャートと同様である。   Next, FIG. 5 shows a timing chart when both the exhaust manifold temperature Tem and the sensor unit temperature Tes exceed the respective threshold values. Up to time t3 is the same as the timing chart of FIG.

時刻t3から時刻t4の間は負荷の変化がなく、センサ部温度Tesが上昇を続ける。そして、時刻t4において、センサ部温度Tesが閾値(Tes閾値)を超える。これに伴い、目標空燃比tAFは更にリッチ側へシフトし、同時に、目標圧縮比tCRは更に高圧縮比側へ補正される。目標空燃比tAFのリッチ化に伴い、排気温度Texhは低下する。但し、前述したように、目標圧縮比tCRがステップ的に変化しても実圧縮比rCRは比較的大きな応答遅れがあるので、過渡的に実圧縮比rCRが目標圧縮比tCRから乖離し、従って、時刻t4時点では目標圧縮比tCRのさらなる上昇に起因する排気温度Texhへの影響はない。   There is no load change from time t3 to time t4, and the sensor temperature Tes continues to rise. And at time t4, sensor part temperature Tes exceeds a threshold (Tes threshold). Accordingly, the target air-fuel ratio tAF is further shifted to the rich side, and at the same time, the target compression ratio tCR is further corrected to the high compression ratio side. As the target air-fuel ratio tAF becomes richer, the exhaust temperature Texh decreases. However, as described above, even if the target compression ratio tCR changes stepwise, the actual compression ratio rCR has a relatively large response delay. Therefore, the actual compression ratio rCR is transiently deviated from the target compression ratio tCR. At time t4, there is no influence on the exhaust temperature Texh due to a further increase in the target compression ratio tCR.

時刻t4から時刻t5の間は、実圧縮比rCRが目標圧縮比tCRに向けて上昇し、これに伴って排気温度Texhがさらに低下する。時刻t5において実圧縮比rCRが目標圧縮比tCRに到達し、これに伴い、目標空燃比tAFはリーン側へシフト(理論空燃比へ近付く)する。なお、実圧縮比rCRに基づいて目標空燃比tAFを逐次修正していく上述の実施例では、実際には、時刻t4からt5の間で目標空燃比tAFが徐々にリーン化していくことになるが、図の例では、目標空燃比tAFがステップ的に変化している。   Between time t4 and time t5, the actual compression ratio rCR increases toward the target compression ratio tCR, and the exhaust temperature Texh further decreases accordingly. At time t5, the actual compression ratio rCR reaches the target compression ratio tCR, and accordingly, the target air-fuel ratio tAF is shifted to the lean side (approaching the theoretical air-fuel ratio). In the above-described embodiment in which the target air-fuel ratio tAF is sequentially corrected based on the actual compression ratio rCR, actually, the target air-fuel ratio tAF gradually becomes lean between time t4 and t5. However, in the example of the figure, the target air-fuel ratio tAF changes stepwise.

このように、図5のタイミングチャートの例では、2つの保護対象部品に合わせて燃料増量が2段階に行われるが、そのトータルの燃料増量に対応した形で目標圧縮比tCRの補正が行われる。従って、熱効率の向上ひいては排気温度の低下による燃料増量時の燃料消費量の低減がより効果的に得られる。   As described above, in the example of the timing chart of FIG. 5, the fuel increase is performed in two stages in accordance with the two parts to be protected, but the target compression ratio tCR is corrected in a form corresponding to the total fuel increase. . Therefore, it is possible to more effectively obtain the improvement of the thermal efficiency and the reduction of the fuel consumption when the fuel is increased due to the decrease of the exhaust temperature.

次に図6は、燃料増量の際の高圧縮比化を高負荷域では禁止するようにした実施例のタイミングチャートである。図3のフローチャートには記載していないが、この実施例では、燃料増量の際の負荷が所定の閾値以上のときに、燃料増量に伴う目標圧縮比tCRの補正を禁止する。   Next, FIG. 6 is a timing chart of an embodiment in which a high compression ratio at the time of fuel increase is prohibited in a high load range. Although not described in the flowchart of FIG. 3, in this embodiment, when the load at the time of fuel increase is equal to or greater than a predetermined threshold, the correction of the target compression ratio tCR accompanying the fuel increase is prohibited.

図6の例では、やはり時刻t1において負荷が上昇しているが、図4および図5の例と比べると、負荷変化後の負荷が高く、従って、時刻t1において負荷の変更に応じた低圧縮比化(つまり基本目標圧縮比btCRの低圧縮比化)が行われる。その後、時刻t2において排気マニホルド温度Temが閾値を超え、燃料増量つまり目標空燃比tAFがリッチ側へシフトするが、この例では、このときに所定の閾値以上の高負荷条件であるため、目標圧縮比tCRの高圧縮比化は行われない。なお、この場合は、高圧縮比に伴う排気温度低下作用が得られないので、燃料増量はより大きなものとして与えられる。   In the example of FIG. 6, the load also increases at time t <b> 1. However, the load after the load change is higher than in the examples of FIGS. 4 and 5. The ratio is reduced (that is, the basic target compression ratio btCR is lowered). Thereafter, at time t2, the exhaust manifold temperature Tem exceeds the threshold value, and the fuel increase, that is, the target air-fuel ratio tAF shifts to the rich side. The ratio tCR is not increased in compression ratio. In this case, since the exhaust temperature lowering effect associated with the high compression ratio cannot be obtained, the fuel increase is given as a larger value.

以上、この発明の一実施例を説明したが、この発明は上記実施例に限定されるものではなく、種々の変更が可能である。例えば、上記実施例では、複リンク式ピストンクランク機構を利用した可変圧縮比機構を用いているが、本発明は、このような形式の可変圧縮比機構のみならず、種々の形式の可変圧縮比機構を具備した内燃機関に適用が可能である。また、上記実施例では、実圧縮比rCRが目標圧縮比tCRから乖離する過渡時に、実圧縮比rCRに基づいて目標空燃比tAFを求めることで、実質的に付加的な燃料増量を与えることを実現しているが、実圧縮比rCRが目標圧縮比tCRから遅れている過渡期間の間、別個に付加的な燃料増量を与えるようにしてもよい。   As mentioned above, although one Example of this invention was described, this invention is not limited to the said Example, A various change is possible. For example, in the above embodiment, a variable compression ratio mechanism using a multi-link type piston crank mechanism is used. However, the present invention is not limited to this type of variable compression ratio mechanism, but various types of variable compression ratio mechanisms. The present invention can be applied to an internal combustion engine having a mechanism. Further, in the above-described embodiment, when the actual compression ratio rCR deviates from the target compression ratio tCR, the target air-fuel ratio tAF is obtained based on the actual compression ratio rCR, thereby substantially adding an additional fuel amount. Although realized, an additional fuel increase may be separately provided during a transition period in which the actual compression ratio rCR is delayed from the target compression ratio tCR.

Claims (7)

機械的圧縮比を変更する可変圧縮比機構を備えた内燃機関の制御装置であって、
内燃機関の負荷および回転速度に基づいて上記可変圧縮比機構の目標圧縮比を設定する手段と、
排気系における保護対象部品の保護のために燃料増量を行う燃料増量手段と、
この燃料増量手段による燃料増量に基づいて上記目標圧縮比を高圧縮比側へ補正する補正手段と、
を備えてなる内燃機関の制御装置。
A control device for an internal combustion engine including a variable compression ratio mechanism for changing a mechanical compression ratio,
Means for setting a target compression ratio of the variable compression ratio mechanism based on the load and rotation speed of the internal combustion engine;
Fuel increasing means for increasing the fuel to protect the parts to be protected in the exhaust system;
Correction means for correcting the target compression ratio to the high compression ratio side based on the fuel increase by the fuel increase means;
A control device for an internal combustion engine comprising:
上記補正手段は、燃料増量の程度が大であるほど圧縮比補正量を大とする、請求項1に記載の内燃機関の制御装置。  The control device for an internal combustion engine according to claim 1, wherein the correction means increases the compression ratio correction amount as the degree of fuel increase increases. 上記燃料増量手段は、複数の保護対象部品が順次保護要求温度に達することに対応して多段の燃料増量を行う、請求項2に記載の内燃機関の制御装置。  3. The control device for an internal combustion engine according to claim 2, wherein the fuel increase means performs multi-stage fuel increase in response to a plurality of protection target parts sequentially reaching a protection required temperature. 上記燃料増量手段は、上記補正手段により高圧縮比側へ補正される圧縮比を考慮して、保護対象部品の保護に必要な燃料増量を設定する、請求項1〜3のいずれかに記載の内燃機関の制御装置。  4. The fuel increase means according to claim 1, wherein the fuel increase means sets a fuel increase necessary for protecting the protection target component in consideration of the compression ratio corrected to the high compression ratio side by the correction means. Control device for internal combustion engine. 上記燃料増量手段は、上記補正手段により高圧縮比側へ補正された目標圧縮比と実圧縮比とが乖離している過渡期間は、付加的な燃料増量を行う、請求項4に記載の内燃機関の制御装置。  5. The internal combustion engine according to claim 4, wherein the fuel increase means performs additional fuel increase during a transient period in which the target compression ratio corrected to the high compression ratio side by the correction means and the actual compression ratio deviate. Engine control device. 所定の負荷以上の高負荷域では、上記燃料増量に伴う圧縮比の補正を行わない、請求項1〜5のいずれかに記載の内燃機関の制御装置。  The control device for an internal combustion engine according to any one of claims 1 to 5, wherein correction of a compression ratio accompanying the fuel increase is not performed in a high load region that is equal to or higher than a predetermined load. 機械的圧縮比を変更する可変圧縮比機構を備えた内燃機関において、
内燃機関の負荷および回転速度に基づいて上記可変圧縮比機構の目標圧縮比を設定するとともに、
排気系における保護対象部品の保護のために燃料増量が行われている間、この燃料増量に基づいて上記目標圧縮比を高圧縮比側へ補正する、内燃機関の制御方法。
In an internal combustion engine having a variable compression ratio mechanism for changing a mechanical compression ratio,
While setting the target compression ratio of the variable compression ratio mechanism based on the load and rotation speed of the internal combustion engine,
A control method for an internal combustion engine, wherein the target compression ratio is corrected to the high compression ratio side based on the fuel increase while the fuel increase is being performed to protect the parts to be protected in the exhaust system.
JP2015516963A 2013-05-14 2014-03-06 Control device and control method for internal combustion engine Expired - Fee Related JP5943147B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013101784 2013-05-14
JP2013101784 2013-05-14
PCT/JP2014/055729 WO2014185124A1 (en) 2013-05-14 2014-03-06 Internal combustion engine control device and control method

Publications (2)

Publication Number Publication Date
JP5943147B2 true JP5943147B2 (en) 2016-06-29
JPWO2014185124A1 JPWO2014185124A1 (en) 2017-02-23

Family

ID=51898110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015516963A Expired - Fee Related JP5943147B2 (en) 2013-05-14 2014-03-06 Control device and control method for internal combustion engine

Country Status (2)

Country Link
JP (1) JP5943147B2 (en)
WO (1) WO2014185124A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6364746B2 (en) * 2013-11-13 2018-08-01 日産自動車株式会社 Fuel injection control device for internal combustion engine
CN106481468B (en) * 2015-08-27 2019-07-05 长城汽车股份有限公司 Control method, system and the vehicle of engine
CN113047965B (en) * 2021-04-02 2022-05-03 北京交通大学 Method for determining working compression ratio of reciprocating internal combustion engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060551A (en) * 2002-07-30 2004-02-26 Nissan Motor Co Ltd Control device of internal combustion engine
JP2005163741A (en) * 2003-12-05 2005-06-23 Nissan Motor Co Ltd Control device and control method for variable compression ratio internal combustion engine
JP2006046193A (en) * 2004-08-05 2006-02-16 Nissan Motor Co Ltd Controller for internal combustion engine
JP2009185669A (en) * 2008-02-05 2009-08-20 Toyota Motor Corp Fuel supply device for variable compression ratio internal combustion engine
JP2011236803A (en) * 2010-05-10 2011-11-24 Toyota Motor Corp Internal combustion engine control apparatus with variable compression ration mechanism
JP2012145045A (en) * 2011-01-12 2012-08-02 Toyota Motor Corp Spark ignition internal combustion engine
WO2013172108A1 (en) * 2012-05-17 2013-11-21 日産自動車株式会社 Control device for variable-compression-ratio internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060551A (en) * 2002-07-30 2004-02-26 Nissan Motor Co Ltd Control device of internal combustion engine
JP2005163741A (en) * 2003-12-05 2005-06-23 Nissan Motor Co Ltd Control device and control method for variable compression ratio internal combustion engine
JP2006046193A (en) * 2004-08-05 2006-02-16 Nissan Motor Co Ltd Controller for internal combustion engine
JP2009185669A (en) * 2008-02-05 2009-08-20 Toyota Motor Corp Fuel supply device for variable compression ratio internal combustion engine
JP2011236803A (en) * 2010-05-10 2011-11-24 Toyota Motor Corp Internal combustion engine control apparatus with variable compression ration mechanism
JP2012145045A (en) * 2011-01-12 2012-08-02 Toyota Motor Corp Spark ignition internal combustion engine
WO2013172108A1 (en) * 2012-05-17 2013-11-21 日産自動車株式会社 Control device for variable-compression-ratio internal combustion engine

Also Published As

Publication number Publication date
WO2014185124A1 (en) 2014-11-20
JPWO2014185124A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP7087609B2 (en) Engine control unit
EP2620626B1 (en) Control device for internal combustion engine
JP5765495B2 (en) Control device and control method for variable compression ratio internal combustion engine
JPWO2013118244A1 (en) Control device for internal combustion engine
JP6142468B2 (en) Catalyst protection device for internal combustion engine
JP6156485B2 (en) Control device for internal combustion engine
JP5943147B2 (en) Control device and control method for internal combustion engine
JP5464023B2 (en) Fuel injection control device
JP2014101863A (en) Abnormal combustion determination device for internal combustion engine
US8798893B2 (en) Fuel injection control apparatus for internal combustion engine and fuel injection control method for internal combustion engine
JP5594236B2 (en) Control device for internal combustion engine
JP6296430B2 (en) Engine control device
WO2014132443A1 (en) Exhaust purification device for spark-ignited internal combustion engine
JP6225969B2 (en) Control device and control method for internal combustion engine with supercharger
JP2008121518A (en) Exhaust emission control device of internal combustion engine
JP2015014202A (en) Control device of internal combustion engine
JP5849858B2 (en) Catalyst protection device for internal combustion engine
JP2010168931A (en) Ignition timing control device for spark ignition type internal combustion engine
JP2009228641A (en) Control system for internal combustion engine
JP4923803B2 (en) Fuel injection control system for internal combustion engine
JP6496613B2 (en) Spark plug insulator tip temperature estimation system
JP2010230044A (en) Controller of internal combustion engine with supercharger
JP2005016396A (en) Catalyst warming-up system of internal combustion engine
JP5610979B2 (en) Control device for internal combustion engine
JP2011144721A (en) Ignition timing control device of internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R151 Written notification of patent or utility model registration

Ref document number: 5943147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees