JP2011236803A - Internal combustion engine control apparatus with variable compression ration mechanism - Google Patents

Internal combustion engine control apparatus with variable compression ration mechanism Download PDF

Info

Publication number
JP2011236803A
JP2011236803A JP2010108503A JP2010108503A JP2011236803A JP 2011236803 A JP2011236803 A JP 2011236803A JP 2010108503 A JP2010108503 A JP 2010108503A JP 2010108503 A JP2010108503 A JP 2010108503A JP 2011236803 A JP2011236803 A JP 2011236803A
Authority
JP
Japan
Prior art keywords
compression ratio
ratio
injection amount
engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010108503A
Other languages
Japanese (ja)
Inventor
Takayuki Demura
隆行 出村
Yukihiro Nakasaka
幸博 中坂
Hiroyuki Tanaka
宏幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010108503A priority Critical patent/JP2011236803A/en
Publication of JP2011236803A publication Critical patent/JP2011236803A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease the possibility that a catalyst device of an engine exhaust system is melted during a transient state of a compression ratio where a mechanical compression ratio is gradually increased by the variable compression ratio mechanism due to changes of an operation state from a high engine load into at a low engine load in an internal combustion engine control apparatus with a variable compression mechanism for varying a mechanical compression ratio, including a first fuel injection valve where fuel is injected to an intake port by the internal combustion engine and a second fuel injection valve where the fuel is directly injected to a cylinder.SOLUTION: During the transient state of the compression state (t0-t1) where the mechanical compression ratio C is gradually increased, an injection amount ratio R between the first fuel injection valve and the second fuel injection valve is changed from the first injection amount ratio R1 suitable for an operation during the engine high load into the third injection amount ratio R3 that increases the fuel injection amount of the first fuel injection valve in comparison with the second injection ratio R2 suitable for an operation during the engine low load.

Description

本発明は、機械圧縮比を可変とする圧縮比可変機構を備える内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine including a variable compression ratio mechanism that makes a mechanical compression ratio variable.

シリンダブロックとクランクケースとを相対移動させてシリンダブロックとクランク軸との間の距離を変化させることにより機械圧縮比((上死点シリンダ容積+行程容積)/上死点シリンダ容積)を可変とする圧縮比可変機構を備える内燃機関が提案されている。   The mechanical compression ratio ((top dead center cylinder volume + stroke volume) / top dead center cylinder volume) is variable by changing the distance between the cylinder block and the crankshaft by relatively moving the cylinder block and the crankcase. An internal combustion engine having a variable compression ratio mechanism has been proposed.

機械圧縮比を高くして実膨張比((上死点シリンダ容積+排気弁開弁時までの行程容積)/上死点シリンダ容積)が高くされれば熱効率を高めることができる。それにより、一般的には、機関高負荷時に比較して熱効率が悪化する機関低負荷時には、機関高負荷時に比較して機械圧縮比が高められ、熱効率が改善される。   If the mechanical compression ratio is increased to increase the actual expansion ratio ((top dead center cylinder volume + stroke volume until exhaust valve opening) / top dead center cylinder volume), the thermal efficiency can be increased. As a result, in general, at a low engine load at which the thermal efficiency deteriorates as compared with a high engine load, the mechanical compression ratio is increased and the thermal efficiency is improved as compared to a high engine load.

ところで、吸気ポートへ燃料を噴射する第一燃料噴射弁と、気筒内へ直接的に燃料を噴射する第二燃料噴射弁とを具備する内燃機関においては、機関運転状態毎の最適な噴射量割合となるようにして第一燃料噴射弁及び第二燃料噴射弁から燃料が噴射される。   By the way, in an internal combustion engine having a first fuel injection valve for injecting fuel into the intake port and a second fuel injection valve for injecting fuel directly into the cylinder, an optimal injection amount ratio for each engine operating state Thus, fuel is injected from the first fuel injection valve and the second fuel injection valve.

このような気筒毎に第一及び第二燃料噴射弁を具備する内燃機関が圧縮比可変機構を備える場合において、機械圧縮比の変更時にトルク変動が発生しないように、第一燃料噴射弁と第二燃料噴射弁との噴射量割合を制御することが提案されている(特許文献1参照)。   In the case where the internal combustion engine having the first and second fuel injection valves for each cylinder includes a variable compression ratio mechanism, the first fuel injection valve and the first fuel injection valve are arranged so that torque fluctuation does not occur when the mechanical compression ratio is changed. It has been proposed to control the injection amount ratio with the two fuel injection valves (see Patent Document 1).

特開2007−211637JP2007-211637 特開2007−327399JP2007-327399A

特許文献1に記載された内燃機関は、機械圧縮比が瞬間的に変更されるために発生するトルクショックを抑制するものであり、機械圧縮比が徐々に変更される場合には、トルクショックは発生せず、噴射量割合の制御は必要とされない。   The internal combustion engine described in Patent Document 1 suppresses a torque shock that occurs because the mechanical compression ratio is instantaneously changed. When the mechanical compression ratio is gradually changed, the torque shock is It does not occur and control of the injection rate is not required.

しかしながら、こうして何もされないと、機関高負荷時から機関低負荷時へ運転状態が変化して機関圧縮比が徐々に高められる場合において、機関高負荷運転により比較的高温となっている機関排気系の触媒装置が、機械圧縮比が高められると増加する排気ガスの未燃燃料の流入によってさらに温度上昇して溶損することがある。   However, if nothing is done in this way, the engine exhaust system is relatively hot due to engine high load operation when the engine compression ratio is gradually increased when the operating state changes from engine high load to engine low load. However, the catalyst device may be melted due to a further increase in temperature due to an inflow of unburned fuel in the exhaust gas that increases when the mechanical compression ratio is increased.

従って、本発明の目的は、機械圧縮比を可変とする圧縮比可変機構を備える内燃機関の制御装置であって、内燃機関が吸気ポートへ燃料を噴射する第一燃料噴射弁と気筒内へ直接的に燃料を噴射する第二燃料噴射弁とを具備し、機関高負荷時から機関低負荷時への運転状態の変化に伴って圧縮比可変機構によって機械圧縮比が徐々に高められている圧縮比過渡状態の間において、機関排気系の触媒装置を溶損させ難くすることである。   Accordingly, an object of the present invention is a control device for an internal combustion engine that includes a variable compression ratio mechanism that makes a mechanical compression ratio variable, and the internal combustion engine directly injects fuel into the intake port and the first fuel injection valve. And a second fuel injection valve for injecting fuel, and the mechanical compression ratio is gradually increased by a variable compression ratio mechanism as the operating state changes from a high engine load to a low engine load It is to make it difficult for the catalyst device of the engine exhaust system to melt during a specific transient state.

本発明による請求項1に記載の圧縮比可変機構を備える内燃機関の制御装置は、機械圧縮比を可変とする圧縮比可変機構を備える内燃機関の制御装置であって、前記内燃機関は吸気ポートへ燃料を噴射する第一燃料噴射弁と気筒内へ直接的に燃料を噴射する第二燃料噴射弁とを具備し、機関高負荷時から機関低負荷時への運転状態の変化に伴って前記圧縮比可変機構によって機械圧縮比が前記機関高負荷時の運転に適した第一機械圧縮比から前記低負荷時の運転に適した第二機械圧縮比へ徐々に高められている圧縮比過渡状態の間は、前記機関高負荷時の運転に適する第一噴射量割合から前記機関低負荷時の運転に適する第二噴射量割合へ前記第一燃料噴射弁と前記第二燃料噴射弁との噴射量割合を徐々に変化させる内燃機関の制御装置において、前記圧縮比過渡状態の間は、前記噴射量割合を、前記第一噴射量割合から前記第二噴射量割合より前記第一燃料噴射弁の燃料噴射量を多くする第三噴射量割合へ徐々に変化させることを特徴とする。   The control apparatus for an internal combustion engine provided with the variable compression ratio mechanism according to claim 1 of the present invention is a control apparatus for an internal combustion engine provided with a variable compression ratio mechanism that makes the mechanical compression ratio variable, wherein the internal combustion engine is an intake port. A first fuel injection valve for injecting fuel into the cylinder and a second fuel injection valve for injecting fuel directly into the cylinder, and with the change in the operating state from the engine high load to the engine low load, A compression ratio transient state in which the mechanical compression ratio is gradually increased from the first mechanical compression ratio suitable for operation at high engine load to the second mechanical compression ratio suitable for operation at low load by a variable compression ratio mechanism. Between the first fuel injection valve and the second fuel injection valve from the first injection amount ratio suitable for operation at high engine load to the second injection amount ratio suitable for operation at low engine load. In internal combustion engine control devices that gradually change the volume ratio During the compression ratio transient state, the injection amount ratio is changed from the first injection amount ratio to the third injection amount ratio that increases the fuel injection amount of the first fuel injection valve from the second injection amount ratio. It is characterized by being gradually changed.

本発明による請求項2に記載の圧縮比可変機構を備える内燃機関の制御装置は、請求項1に記載の圧縮比可変機構を備える内燃機関の制御装置において、機械圧縮比が前記第二機械圧縮比とされた時に前記第三噴射量割合とされた噴射量割合を設定期間だけ維持することを特徴とする。   According to a second aspect of the present invention, there is provided a control apparatus for an internal combustion engine comprising the variable compression ratio mechanism according to the second aspect, wherein the mechanical compression ratio is the second mechanical compression. When the ratio is set, the third injection amount ratio is maintained for the set period.

本発明による請求項3に記載の圧縮比可変機構を備える内燃機関の制御装置は、請求項1又は2に記載の圧縮比可変機構を備える内燃機関の制御装置において、機関排気系の触媒装置の温度が高いほど、前記第三噴射量割合は、前記第一燃料噴射弁の燃料噴射量が多くなるように変更されることを特徴とする。   According to a third aspect of the present invention, there is provided a control device for an internal combustion engine having a variable compression ratio mechanism according to a third aspect of the present invention, wherein the control device for an internal combustion engine has a variable compression ratio mechanism according to the first or second aspect. The third injection amount ratio is changed so that the fuel injection amount of the first fuel injection valve increases as the temperature increases.

内燃機関が吸気ポートへ燃料を噴射する第一燃料噴射弁と気筒内へ直接的に燃料を噴射する第二燃料噴射弁とを具備する場合に、機関高負荷時から機関低負荷時への運転状態の変化に伴って圧縮比可変機構によって機械圧縮比が機関高負荷時の運転に適した第一機械圧縮比から低負荷時の運転に適した第二機械圧縮比へ徐々に高められている圧縮比過渡状態の間において、機関高負荷時の運転に適する第一噴射量割合から機関低負荷時の運転に適する第二噴射量割合へ第一燃料噴射弁と第二燃料噴射弁との噴射量割合を徐々に変化させると、運転状態変化前の機関高負荷の運転により機関排気系の触媒装置の温度が比較的高い時等には、機械圧縮比が高められるほど増大する排気ガス中の未燃燃料が触媒装置へ流入して燃焼するために、多量の燃焼熱が発生して触媒装置の温度をさらに高くして触媒装置を溶損させることがある。本発明による請求項1に記載の圧縮比可変機構を備える内燃機関の制御装置によれば、圧縮比過渡状態の間において、噴射量割合を、機関高負荷時の運転に適した第一噴射量割合から機関低負荷時の運転に適した第二噴射量割合より第一燃料噴射弁の燃料噴射量を多くする第三噴射量割合へ徐々に変化させるようにしているために、圧縮比過渡状態の間において、機械圧縮比が徐々に高められても、第一燃料噴射弁により噴射される燃料は第二燃料噴射弁により噴射される燃料より吸気と良好に混合して均質性が向上するために未燃燃料として排出され難く、排気ガス中の未燃燃料量をそれほど増大させないようにすることができ、触媒装置において多量の燃焼熱の発生を抑制し、触媒装置を溶損させ難くすることができる。   When the internal combustion engine has a first fuel injection valve that injects fuel into the intake port and a second fuel injection valve that injects fuel directly into the cylinder, operation from a high engine load to a low engine load As the state changes, the compression ratio variable mechanism gradually increases the mechanical compression ratio from the first mechanical compression ratio suitable for operation at high engine load to the second mechanical compression ratio suitable for operation at low load. During the compression ratio transient state, the injection of the first fuel injection valve and the second fuel injection valve from the first injection amount ratio suitable for operation at high engine load to the second injection amount ratio suitable for operation at low engine load When the amount ratio is gradually changed, when the engine exhaust system temperature is relatively high due to the high engine load operation before the operating state change, the exhaust gas in the exhaust gas increases as the mechanical compression ratio increases. A large amount of unburned fuel flows into the catalytic device and burns It is possible to melting the catalytic converter the combustion heat is further increased the temperature of the catalyst device occurred. According to the control apparatus for an internal combustion engine comprising the compression ratio variable mechanism according to the first aspect of the present invention, the first injection amount suitable for operation at a high engine load is set during the compression ratio transient state. Since the ratio is gradually changed from the second injection amount ratio suitable for operation at low engine load to the third injection amount ratio that increases the fuel injection amount of the first fuel injection valve, the compression ratio is transient. In the meantime, even if the mechanical compression ratio is gradually increased, the fuel injected by the first fuel injection valve mixes better with the intake air than the fuel injected by the second fuel injection valve, thereby improving the homogeneity. It is possible to prevent the amount of unburned fuel in the exhaust gas from increasing so much that it is difficult to be discharged as unburned fuel. Can do.

本発明による請求項2に記載の圧縮比可変機構を備える内燃機関の制御装置によれば、請求項1に記載の圧縮比可変機構を備える内燃機関の制御装置において、機械圧縮比が第二機械圧縮比とされた時に第三噴射量割合とされた噴射量割合を設定期間だけ維持するようになっており、機関低負荷時の設定期間の運転において排気ガス中の未燃燃料を燃焼させても触媒装置の温度を低下させることができ、設定期間後において機関低負荷時の第二機械圧縮比での第二噴射量割合の運転により排気ガス中の未燃燃料が比較的多くなって多量の燃焼熱が発生しても触媒装置が溶損するほど高温とはなり難く、さらに触媒装置を溶損させ難くすることができる。   According to the control apparatus for an internal combustion engine having the compression ratio variable mechanism according to claim 2 of the present invention, the mechanical compression ratio is the second machine in the control apparatus for the internal combustion engine having the compression ratio variable mechanism according to claim 1. The injection amount ratio, which is the third injection amount ratio when the compression ratio is set, is maintained for the set period, and the unburned fuel in the exhaust gas is burned in the operation of the set period at the time of low engine load. The temperature of the catalyst device can also be lowered, and after the set period, the unburned fuel in the exhaust gas becomes relatively large due to the operation of the second injection ratio at the second mechanical compression ratio at the time of low engine load. Even if the combustion heat is generated, the temperature of the catalyst device is less likely to become so high that the catalyst device is melted, and the catalyst device can be made difficult to melt.

本発明による請求項3に記載の圧縮比可変機構を備える内燃機関の制御装置によれば、請求項1又は2に記載の圧縮比可変機構を備える内燃機関の制御装置において、機関排気系の触媒装置の温度が高いほど、圧縮比過渡状態の間に機械圧縮比が高められて排気ガス中の未燃燃料が増大すると燃焼熱により触媒装置が溶損する可能性が高まるために、第三噴射量割合は、第一燃料噴射弁の燃料噴射量が多くなるように変更され、排気ガス中の未燃燃料の増大を抑制するようになっている。   According to the control apparatus for an internal combustion engine having the compression ratio variable mechanism according to claim 3 according to the present invention, in the control apparatus for the internal combustion engine having the compression ratio variable mechanism according to claim 1 or 2, the engine exhaust system catalyst The higher the temperature of the device, the higher the mechanical compression ratio during the compression ratio transient, and the greater the amount of unburned fuel in the exhaust gas, the more likely the catalyst device will melt due to combustion heat. The ratio is changed so that the fuel injection amount of the first fuel injection valve is increased, and an increase in unburned fuel in the exhaust gas is suppressed.

本発明の制御装置により制御される内燃機関を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the internal combustion engine controlled by the control apparatus of this invention. 本発明の制御装置により制御される内燃機関の圧縮比可変機構を説明するための図である。It is a figure for demonstrating the compression ratio variable mechanism of the internal combustion engine controlled by the control apparatus of this invention. 本発明の制御装置による内燃機関の制御を示すフローチャートである。It is a flowchart which shows control of the internal combustion engine by the control apparatus of this invention. 機関高負荷時から機関低負荷時へ運転状態が変化した時の機械圧縮比の変化、噴射量割合の変化、及び、触媒装置の温度の変化を示すタイムチャートである。It is a time chart which shows the change of the mechanical compression ratio when the driving | running state changes from the time of engine high load to the time of engine low load, the change of the injection quantity ratio, and the change of the temperature of a catalyst apparatus.

図1は、本発明の制御装置により制御される内燃機関を示す概略縦断面図である。同図において、1は吸気弁であり、2は吸気弁1を介して気筒内へ通じる吸気ポートである。3は排気弁であり、4は排気弁3を介して気筒内へ通じる排気ポートである。5は吸気ポート2内へ燃料を噴射する第一燃料噴射弁であり、6は気筒内へ直接的に燃料を噴射する第二燃料噴射弁である。第二燃料噴射弁6は例えば気筒上部周囲の吸気弁側に配置されている。7は気筒上部略中心に配置された点火プラグであり、8はピストンである。   FIG. 1 is a schematic longitudinal sectional view showing an internal combustion engine controlled by the control device of the present invention. In the figure, reference numeral 1 denotes an intake valve, and reference numeral 2 denotes an intake port communicating with the intake valve 1 into the cylinder. Reference numeral 3 denotes an exhaust valve, and reference numeral 4 denotes an exhaust port communicating with the inside of the cylinder via the exhaust valve 3. Reference numeral 5 denotes a first fuel injection valve that injects fuel into the intake port 2, and reference numeral 6 denotes a second fuel injection valve that injects fuel directly into the cylinder. The second fuel injection valve 6 is disposed, for example, on the intake valve side around the upper part of the cylinder. Reference numeral 7 denotes an ignition plug disposed substantially at the center of the cylinder upper portion, and 8 denotes a piston.

このように、第一燃料噴射弁5及び第二燃料噴射弁6を具備する内燃機関は、機関運転状態(機関負荷及び機関回転数)毎の最適な噴射量割合が定められている(マップ化)。噴射量割合Rは、例えば吸気ポート噴射量割合Q1/Qされ、ここで、Q1は第一燃料噴射弁5から吸気ポートに噴射されて間接的に気筒内へ供給される燃料量であり、Q2は第二燃料噴射弁6から気筒内へ直接的に供給される燃料量であり、Qは各機関運転状態の必要燃料量Q=Q1+Q2であり、例えば、所望空燃比を実現するように吸入空気量に基づき決定することができる。   As described above, the internal combustion engine having the first fuel injection valve 5 and the second fuel injection valve 6 has an optimum injection amount ratio for each engine operating state (engine load and engine speed) (mapped). ). The injection amount ratio R is, for example, an intake port injection amount ratio Q1 / Q, where Q1 is a fuel amount injected from the first fuel injection valve 5 into the intake port and indirectly supplied into the cylinder, Q2 Is the amount of fuel directly supplied from the second fuel injection valve 6 into the cylinder, and Q is the required amount of fuel Q = Q1 + Q2 in each engine operating state, for example, intake air so as to realize a desired air-fuel ratio Can be determined based on quantity.

吸気ポートから吸気と共に気筒内へ供給される燃料は、気筒内へ直接的に噴射される燃料より吸気と十分に混合して良好に燃焼するために未燃燃料として排出され難い。また、気筒内へ直接的に噴射される燃料は、吸気ポートから吸気と共に気筒内へ供給される燃料より気化潜熱が大きく筒内温度をより低下させるためにノッキングを発生し難くすることができる。また、第二燃料噴射弁6の噴孔近傍の温度が高いほど噴孔にデポジットが生成され易くなるために、第二燃料噴射弁6から燃料噴射を実施して噴孔へのデポジットの堆積を防止しなければならない。このような様々な理由を考慮して、運転状態毎に最適な噴射量割合Rが定められており、例えば、機関負荷が高いほど噴射量割合Rは小さくされ、第二燃料噴射弁6の噴射量が多くされる。   The fuel supplied from the intake port to the cylinder together with the intake air is more easily mixed with the intake air than the fuel directly injected into the cylinder and burns well, so that it is difficult to be discharged as unburned fuel. Further, the fuel directly injected into the cylinder has a larger latent heat of vaporization than the fuel supplied from the intake port to the cylinder together with the intake air, so that the in-cylinder temperature is further lowered, so that knocking is less likely to occur. Further, as the temperature in the vicinity of the injection hole of the second fuel injection valve 6 increases, deposits are more easily generated in the injection hole. Therefore, fuel is injected from the second fuel injection valve 6 to deposit deposits in the injection hole. Must be prevented. Considering these various reasons, an optimal injection amount ratio R is determined for each operating state. For example, the injection amount ratio R is reduced as the engine load increases, and the injection of the second fuel injection valve 6 is performed. The amount is increased.

図2は、内燃機関の圧縮比を可変とするためにシリンダブロックをクランクケースに対して相対移動させる圧縮比可変機構を説明するための図である。同図において、100はシリンダブロック、200はクランクケース、300は圧縮上死点位置のピストンである。本内燃機関は直列気筒配置型である。   FIG. 2 is a view for explaining a compression ratio variable mechanism for moving the cylinder block relative to the crankcase in order to make the compression ratio of the internal combustion engine variable. In the figure, 100 is a cylinder block, 200 is a crankcase, and 300 is a piston at a compression top dead center position. The internal combustion engine is an in-line cylinder arrangement type.

図2に示す正面視において、シリンダブロック100の下部の一方側には第一サポート11が設けられ、シリンダブロック100の下部の他方側には第二サポート12が設けられ、クランクケース200の上部の一方側には第三サポート21が設けられ、クランクケース200の上部の他方側には第四サポート22が設けられている。図2(A)で示すシリンダブロック100の最下位置において、第一サポート11及び第三サポート21には同心の第一穴及び第三穴が形成され、第二サポート12及び第四サポート22には、同心の第二穴及び第四穴が形成されている。第一穴、第二穴、第三穴、及び第四穴は同一径を有し、各気筒の中心を通る垂直平面に対して、第一穴と第二穴とは対称となり、第三穴と第四穴とは対称となっている。   In the front view shown in FIG. 2, the first support 11 is provided on one side of the lower part of the cylinder block 100, the second support 12 is provided on the other side of the lower part of the cylinder block 100, and the upper part of the crankcase 200 is A third support 21 is provided on one side, and a fourth support 22 is provided on the other side of the upper portion of the crankcase 200. In the lowest position of the cylinder block 100 shown in FIG. 2A, concentric first holes and third holes are formed in the first support 11 and the third support 21, and the second support 12 and the fourth support 22 are formed in the second support 12 and the fourth support 22. Are formed with concentric second and fourth holes. The first hole, the second hole, the third hole, and the fourth hole have the same diameter, and the first hole and the second hole are symmetrical with respect to a vertical plane passing through the center of each cylinder, and the third hole And the fourth hole is symmetrical.

第一穴、第二穴、第三穴、及び第四穴には、それぞれ回動可能に第一ボス13、第二ボス14、第三ボス、及び第四ボスが配置されている。第一ボス13、第二ボス14、第三ボス、及び第四ボスには同一位置に同一径の偏心穴が形成され、第一ボス13の偏心穴及び第三ボスの偏心穴には回動可能に第一軸15が挿入され、第二ボス14の偏心穴及び第四ボスの偏心穴には回転可能に第二軸16が挿入されている。   A first boss 13, a second boss 14, a third boss, and a fourth boss are disposed in the first hole, the second hole, the third hole, and the fourth hole, respectively, so as to be rotatable. The first boss 13, the second boss 14, the third boss, and the fourth boss are formed with eccentric holes having the same diameter at the same position, and the eccentric hole of the first boss 13 and the eccentric hole of the third boss are rotated. The first shaft 15 is inserted as possible, and the second shaft 16 is rotatably inserted into the eccentric hole of the second boss 14 and the eccentric hole of the fourth boss.

このように構成された圧縮比可変機構により、シリンダブロック10の最下位置(A)において、第一ボス13(反時計方向)及び第二ボス14(時計方向)を互いに反対方向に90度回動させると、シリンダブロック100はクランクケース200に対して中間位置(B)へ上昇する。その結果、上死点シリンダ容積が大きくなってシリンダブロック100の最下位置(A)に比較して機械圧縮比((上死点シリンダ容積+行程容積)/上死点シリンダ容積)を低くすることができる。   With the variable compression ratio mechanism configured as described above, at the lowest position (A) of the cylinder block 10, the first boss 13 (counterclockwise) and the second boss 14 (clockwise) are rotated 90 degrees in opposite directions. When moved, the cylinder block 100 moves up to the intermediate position (B) with respect to the crankcase 200. As a result, the top dead center cylinder volume is increased, and the mechanical compression ratio ((top dead center cylinder volume + stroke volume) / top dead center cylinder volume) is lowered as compared with the lowest position (A) of the cylinder block 100. be able to.

さらに、シリンダブロック10の中間位置(B)において、第一ボス13を図2において反時計方向に90度回動させると同時に第二ボス14を図2において時計方向に90度回動させると、シリンダブロック100はクランクケース200に対して最上位置(C)へ上昇する。その結果、上死点シリンダ容積がさらに大きくなってシリンダブロック100の中間位置(B)に比較して機械圧縮比((上死点シリンダ容積+行程容積)/上死点シリンダ容積)を低くすることができる。こうして、第一ボス13及び第二ボス14を互いに反対方向に任意の角度だけ回動させることにより所望機械圧縮比を実現することができる。   Further, when the first boss 13 is rotated 90 degrees counterclockwise in FIG. 2 at the intermediate position (B) of the cylinder block 10, the second boss 14 is rotated 90 degrees clockwise in FIG. The cylinder block 100 is raised to the uppermost position (C) with respect to the crankcase 200. As a result, the top dead center cylinder volume is further increased, and the mechanical compression ratio ((top dead center cylinder volume + stroke volume) / top dead center cylinder volume) is lowered as compared with the intermediate position (B) of the cylinder block 100. be able to. Thus, the desired mechanical compression ratio can be realized by rotating the first boss 13 and the second boss 14 by an arbitrary angle in opposite directions.

機械圧縮比を高くすると、実膨張比((上死点シリンダ容積+排気弁開弁時までの行程容積)/上死点シリンダ容積)を高くして熱効率を高めることができる。このような圧縮比可変機構に加えて、吸気弁の閉弁時期と排気弁の開弁時期とを可変とする可変バルブタイミング機構が設けられていれば、各機械圧縮比に対して、実膨張比を最適に制御することができ、また、実圧縮比((上死点シリンダ容積+吸気弁閉弁時からの行程容積)/上死点シリンダ容積)も最適に制御することができる。こうしてアトキンソンサイクル運転も可能となる。   If the mechanical compression ratio is increased, the actual expansion ratio ((top dead center cylinder volume + stroke volume until exhaust valve opening) / top dead center cylinder volume) can be increased to increase thermal efficiency. In addition to such a variable compression ratio mechanism, if a variable valve timing mechanism that can change the closing timing of the intake valve and the opening timing of the exhaust valve is provided, the actual expansion for each mechanical compression ratio is provided. The ratio can be optimally controlled, and the actual compression ratio ((top dead center cylinder volume + stroke volume since intake valve closing) / top dead center cylinder volume) can also be optimally controlled. In this way, Atkinson cycle operation is also possible.

機関運転状態毎に最適な機械圧縮比が定められており(マップ化されており)、例えば、機関負荷が高いほど機械圧縮比Cは低くされる。こうして、アクセルペダルの踏み込み量の変化により機関高負荷から機関低負荷へ機関運転状態が変化すると、圧縮比可変機構を作動させて機械圧縮比が高められることとなる。この時に、前述の圧縮比可変機構では機械圧縮比を瞬間的に変更することはできず、機械圧縮比Cは変化前の機関高負荷運転に適した第一機械圧縮比C1から変化後の機関低負荷運転に適した第二機械圧縮比C2へ気筒毎に徐々に高められる。   An optimum mechanical compression ratio is determined for each engine operating state (mapped), and for example, the mechanical compression ratio C is lowered as the engine load increases. Thus, when the engine operating state changes from a high engine load to a low engine load due to a change in the amount of depression of the accelerator pedal, the compression ratio variable mechanism is operated to increase the mechanical compression ratio. At this time, the mechanical compression ratio cannot be instantaneously changed by the above-described variable compression ratio mechanism, and the mechanical compression ratio C is changed from the first mechanical compression ratio C1 suitable for high engine load operation before the change. The second mechanical compression ratio C2 suitable for low load operation is gradually increased for each cylinder.

このように機械圧縮比Cが第一機械圧縮比C1から第二機械圧縮比C2へ徐々に変化している圧縮比過渡状態の間は、噴射量割合Rも通常は変化前の機関高負荷運転に適した第一噴射量割合R1から変化後の機関低負荷運転に適した第二噴射量割合R2へ徐々に高められることとなる。   During the compression ratio transient state in which the mechanical compression ratio C gradually changes from the first mechanical compression ratio C1 to the second mechanical compression ratio C2 in this way, the injection amount ratio R is also normally high engine operation before the change. Is gradually increased from the first injection amount ratio R1 suitable for the second injection amount ratio R2 suitable for the engine low load operation after the change.

しかしながら、変化前の機関高負荷運転において、排気ガス温度が高い場合には、機関排気系に配置された触媒装置(貴金属触媒等を担持して酸化機能を有する)が比較的高い温度となっていることがある。特に、機関始動時の排気ガスを浄化するために機関本体近傍に配置される小型の触媒装置は高温となり易い。こうして、触媒装置が比較的高い温度となっていると、機械圧縮比が徐々に高まるほど、燃焼室のクレビス容積の割合が増大して、各気筒の燃焼に際して未燃燃料の排出量が増大するために、比較的多量の未燃燃料が高温の触媒装置へ流入して燃焼し、比較的多量の燃焼熱が発生して触媒装置の温度をさらに高めることにより触媒装置を溶損させることがある。   However, when the exhaust gas temperature is high in the engine high load operation before the change, the catalyst device (supporting a noble metal catalyst or the like having an oxidation function) disposed in the engine exhaust system has a relatively high temperature. There may be. In particular, a small catalyst device disposed near the engine body to purify exhaust gas at the time of starting the engine tends to be hot. Thus, when the catalyst device is at a relatively high temperature, the ratio of the clevis volume in the combustion chamber increases as the mechanical compression ratio gradually increases, and the amount of unburned fuel discharged increases during combustion in each cylinder. Therefore, a relatively large amount of unburned fuel flows into the high temperature catalyst device and burns, and a relatively large amount of combustion heat is generated, which may cause the catalyst device to melt down by further increasing the temperature of the catalyst device. .

本発明による制御装置は、電子制御装置として図3に示すフローチャートに従って第一燃料噴射弁5と第二燃料噴射弁6との噴射量割合Rを制御し、触媒装置を溶損させ難くしている。先ず、ステップ101において、機関高負荷から機関低負荷への運転状態の変化に伴う機械圧縮比Cの目標変化量ΔCが設定量A以上であるか否かが判断される。目標変化量ΔCは、変化後の運転に適した第二機械圧縮比C2と変化前の運転に適した第一機械圧縮比C1との差であり、ステップ101の判断が否定される時には、機械圧縮比の変化が必要とされていないか、機械圧縮比が低くされることが要求されているか、機関圧縮比は僅かに高められることが要求されているかであり、いずれも、触媒装置を溶損させることはなく、一般的な噴射量割合の制御が実施されるために、そのまま終了する。   The control device according to the present invention controls the injection amount ratio R of the first fuel injection valve 5 and the second fuel injection valve 6 according to the flowchart shown in FIG. 3 as an electronic control device, and makes it difficult to melt the catalyst device. . First, in step 101, it is determined whether or not the target change amount ΔC of the mechanical compression ratio C accompanying the change in the operating state from the high engine load to the low engine load is equal to or greater than the set amount A. The target change amount ΔC is a difference between the second mechanical compression ratio C2 suitable for the operation after the change and the first mechanical compression ratio C1 suitable for the operation before the change, and when the determination in step 101 is negative, Either the change in compression ratio is not required, the mechanical compression ratio is required to be lowered, or the engine compression ratio is required to be slightly increased. Since the control of the general injection amount ratio is performed, the process is finished as it is.

一方、ステップ101の判断が肯定される時には、機械圧縮比を比較的大きく高めることが要求されており、この時には、ステップ102において、変化後の運転に適した噴射量割合R2が決定される。次いで、ステップ103において、触媒装置の温度T(測定温度又は推定温度)が設定温度T1以上であるか否かが判断される。この判断が否定される時には、一般的な噴射量割合の制御によっても触媒装置を溶損させることはなく、例えば一般的な噴射量割合の制御として、ステップ104において、変化前の機関高負荷運転に適した第一機械圧縮比C1から変化後の機関低負荷運転に適した第二機械圧縮比C2へ圧縮比可変機構によって機械圧縮比が徐々に変化させられる間において、噴射量割合Rも変化前の機関高負荷運転に適した第一噴射量割合R1から変化後の機関低負荷運転に適した第二噴射量割合R2へ徐々に変化させられるように、現在の機械圧縮比に対応する噴射量割合Rが決定されて、現在の機械圧縮比が実現される気筒の噴射量割合とされる。   On the other hand, when the determination in step 101 is affirmed, it is required to increase the mechanical compression ratio relatively large. At this time, in step 102, the injection amount ratio R2 suitable for the changed operation is determined. Next, in step 103, it is determined whether or not the temperature T (measured temperature or estimated temperature) of the catalyst device is equal to or higher than the set temperature T1. When this determination is denied, the catalyst device is not melted even by the control of the general injection amount ratio. For example, as a control of the general injection amount ratio, in step 104, the engine high load operation before the change is performed. The injection amount ratio R also changes while the mechanical compression ratio is gradually changed by the variable compression ratio mechanism from the first mechanical compression ratio C1 suitable for the engine to the second mechanical compression ratio C2 suitable for the engine low load operation after the change. Injection corresponding to the current mechanical compression ratio so as to be gradually changed from the first injection amount ratio R1 suitable for the previous engine high-load operation to the second injection amount ratio R2 suitable for the changed engine low-load operation. The amount ratio R is determined, and is set as the injection amount ratio of the cylinder that realizes the current mechanical compression ratio.

次いで、ステップ105において、噴射量割合Rが変化後の機関低負荷運転に適した噴射量割合R2となったか否かが判断され、この判断が否定される時には、ステップ104において噴射量割合Rが決定され、ステップ105の判断が肯定されれば、機械圧縮比は変化後の機関低負荷運転に適した第二機械圧縮比C2とされ、噴射量割合も変化後の機関低負荷運転に適した第二噴射量割合R2とされており、ステップ113において、噴射量割合を変化後の機関低負荷運転に適した第二噴射量割合R2に維持して制御を終了する。   Next, in step 105, it is determined whether or not the injection amount ratio R has become an injection amount ratio R2 suitable for engine low-load operation after the change. If this determination is negative, the injection amount ratio R is determined in step 104. If the determination is made and the determination in step 105 is affirmed, the mechanical compression ratio is set to the second mechanical compression ratio C2 suitable for the engine low load operation after the change, and the injection amount ratio is also suitable for the engine low load operation after the change. The second injection amount ratio R2 is set. In step 113, the injection amount ratio is maintained at the second injection amount ratio R2 suitable for the engine low load operation after the change, and the control is finished.

一方、ステップ103の判断が肯定される時には、ステップ106において、機械圧縮比が変化後の機関低負荷運転に適した第二機械圧縮比C2とされる時の噴射量割合R3(第三噴射量割合)は、変化後の機関低負荷運転に適した第二噴射量割合R2よりΔRだけ大きくされる。すなわち、第一燃料噴射弁5から吸気ポートに噴射されて間接的に気筒内へ供給される燃料量が多くされる。   On the other hand, when the determination in step 103 is affirmative, in step 106, the injection amount ratio R3 (third injection amount) at which the second mechanical compression ratio C2 suitable for engine low load operation after the mechanical compression ratio is changed is obtained. The ratio) is made larger by ΔR than the second injection amount ratio R2 suitable for engine low-load operation after the change. That is, the amount of fuel injected from the first fuel injection valve 5 into the intake port and indirectly supplied into the cylinder is increased.

次いで、ステップ107において、変化前の機関高負荷運転に適した第一機械圧縮比C1から変化後の機関低負荷運転に適した第二機械圧縮比C2へ圧縮比可変機構によって機械圧縮比が徐々に変化させられる間において、噴射量割合Rが変化前の機関高負荷運転に適した第一噴射量割合R1からステップ106において決定された第三噴射量割合R3へ徐々に変化させられるように、現在の機械圧縮比に対応する噴射量割合Rが決定されて、現在の機械圧縮比が実現される気筒の噴射量割合とされる。   Next, in step 107, the mechanical compression ratio is gradually increased by the variable compression ratio mechanism from the first mechanical compression ratio C1 suitable for engine high load operation before the change to the second mechanical compression ratio C2 suitable for engine low load operation after the change. So that the injection amount ratio R is gradually changed from the first injection amount ratio R1 suitable for the engine high load operation before the change to the third injection amount ratio R3 determined in step 106. The injection amount ratio R corresponding to the current mechanical compression ratio is determined, and is set as the injection amount ratio of the cylinder that realizes the current mechanical compression ratio.

こうして、触媒装置の温度Tが比較的高い時には、機関高負荷時から機関低負荷時への運転状態の変化に伴って圧縮比可変機構によって機械圧縮比が機関高負荷時の運転に適した第一機械圧縮比C1から低負荷時の運転に適した第二機械圧縮比C2へ徐々に高められている圧縮比過渡状態の間において、噴射量割合を、変化前の機関高負荷時の運転に適した第一噴射量割合R1から変化後の機関低負荷時の運転に適した第二噴射量割合R2より第一燃料噴射弁5の燃料噴射量を多くする第三噴射量割合R3へ徐々に変化させるようにしているために、圧縮比過渡状態の間において、機械圧縮比が徐々に高められても、第一燃料噴射弁5により噴射される燃料は第二燃料噴射弁6により噴射される燃料より吸気と良好に混合して均質性が向上するために未燃燃料として排出され難く、排気ガス中の未燃燃料量をそれほど増大させないようにすることができ、触媒装置において多量の燃焼熱の発生を抑制し、触媒装置を溶損させ難くすることができる。   Thus, when the temperature T of the catalyst device is relatively high, the mechanical compression ratio is suitable for operation at high engine load by the variable compression ratio mechanism as the operating state changes from high engine load to low engine load. During the compression ratio transient state that is gradually increased from the one mechanical compression ratio C1 to the second mechanical compression ratio C2 suitable for operation at low load, the injection amount ratio is changed to the operation at high engine load before the change. Gradually from the suitable first injection amount ratio R1 to the third injection amount ratio R3 that increases the fuel injection amount of the first fuel injection valve 5 from the second injection amount ratio R2 suitable for operation at a low engine load after the change. Therefore, even if the mechanical compression ratio is gradually increased during the compression ratio transient state, the fuel injected by the first fuel injection valve 5 is injected by the second fuel injection valve 6. Improves homogeneity by better mixing with intake air than fuel Therefore, it is difficult to discharge as unburned fuel, the amount of unburned fuel in the exhaust gas can be prevented from increasing so much, generation of a large amount of combustion heat is suppressed in the catalyst device, and the catalyst device is hardly melted down. be able to.

次いで、ステップ108において、噴射量割合Rが第三噴射量割合R3となったか否かが判断され、この判断が否定される時には、ステップ107において噴射量割合Rが決定され、ステップ108の判断が肯定されれば、機械圧縮比は変化後の機関低負荷運転に適した第二機械圧縮比C2とされ、噴射量割合は第三噴射量割合R3とされており、ステップ109において、噴射量割合を第三噴射量割合R3に維持する。   Next, in step 108, it is determined whether or not the injection amount ratio R has become the third injection amount ratio R3. When this determination is negative, the injection amount ratio R is determined in step 107, and the determination in step 108 is performed. If the determination is affirmative, the mechanical compression ratio is the second mechanical compression ratio C2 suitable for engine low load operation after the change, the injection amount ratio is the third injection amount ratio R3, and in step 109, the injection amount ratio Is maintained at the third injection amount ratio R3.

ステップ108の判断が肯定される時に、噴射量割合Rを変化後の機関低負荷運転に適した第二噴射量割合R2へ徐々に減少させるようにしても良いが、機関圧縮比Cが第二圧縮比C2とされて所望の低負荷運転が開始された時には、依然として触媒装置の温度Tが高いことがあり、噴射量割合を第二噴射量割合R2として多量の未燃燃料が排出されると、燃焼熱によって触媒装置が昇温すると溶損するかもしれない。それにより、ステップ110において、第二機械圧縮比C2が実現されてから設定期間(サイクル数でも時間でも良い)が経過したか否かが判断され、この判断が否定される時には、ステップ109において、噴射量割合は第三噴射量割合R3に維持される。   When the determination in step 108 is affirmative, the injection amount ratio R may be gradually decreased to the second injection amount ratio R2 suitable for engine low load operation after the change, but the engine compression ratio C is the second. When the desired low-load operation is started at the compression ratio C2, the temperature T of the catalyst device may still be high, and a large amount of unburned fuel is discharged with the injection ratio as the second injection ratio R2. If the temperature of the catalyst device rises due to combustion heat, it may melt. Thereby, in step 110, it is determined whether or not a set period (which may be the number of cycles or time) has elapsed since the second mechanical compression ratio C2 is realized. When this determination is negative, in step 109, The injection amount ratio is maintained at the third injection amount ratio R3.

ステップ110の判断が肯定されれば、設定期間の低負荷運転において未燃燃料を燃焼させても触媒装置の温度Tを低下させることができ、触媒装置が溶損することはないために、ステップ111において、噴射量割合Rを第三噴射量割合R3から徐々に減少させ、ステップ112において、噴射量割合Rが変化後の機関低負荷運転に適した第二噴射量割合R2となったか否かが判断される。この判断が否定される時には、ステップ111において、噴射量割合Rを徐々に減少させる。ステップ112の判断が肯定されれば、ステップ113において、噴射量割合を変化後の機関低負荷運転に適した第二噴射量割合R2に維持して制御を終了する。   If the determination in step 110 is affirmative, the temperature T of the catalyst device can be lowered even if unburned fuel is burned in the low load operation for the set period, and the catalyst device will not be melted. In step 112, the injection amount ratio R is gradually decreased from the third injection amount ratio R3. In step 112, it is determined whether or not the injection amount ratio R has reached the second injection amount ratio R2 suitable for engine low load operation after the change. To be judged. When this determination is negative, in step 111, the injection amount ratio R is gradually decreased. If the determination in step 112 is affirmed, in step 113, the injection amount ratio is maintained at the second injection amount ratio R2 suitable for the engine low load operation after the change, and the control is ended.

図4は、機関高負荷時から機関低負荷時へ運転状態が変化した時の機械圧縮比Cの変化、噴射量割合Rの変化、及び、触媒装置の温度Tの変化を示すタイムチャートである。時刻t0において、機関高負荷時の運転から機関低負荷時の運転への変更が要求されている。それにより、圧縮比可変機構により、機械圧縮比Cは、変化前の機関高負荷運転に適した第一機械圧縮比C1から変化後の機関低負荷運転に適した第二機械圧縮比C2へ徐々に変更され、時刻t1において第二機械圧縮比C2が実現される。   FIG. 4 is a time chart showing a change in the mechanical compression ratio C, a change in the injection amount ratio R, and a change in the temperature T of the catalyst device when the operating state changes from the high engine load to the low engine load. . At time t0, a change from operation at high engine load to operation at low engine load is required. Accordingly, the mechanical compression ratio C is gradually changed from the first mechanical compression ratio C1 suitable for engine high load operation before the change to the second mechanical compression ratio C2 suitable for engine low load operation after the change by the variable compression ratio mechanism. And the second mechanical compression ratio C2 is realized at time t1.

一般的な噴射量割合Rの制御では、噴射量割合Rは、点線で示すように、変化前の機関高負荷運転に適した第一噴射量割合R1から変化後の機関低負荷運転に適した第二噴射量割合R2へ徐々に変更され、時刻t1において第二機械圧縮比C2が実現されると同時に第二噴射量割合R2が実現される。このような制御では、触媒装置の温度Tが比較的高い時において、点線で示すように、機械圧縮比を高くするほど未燃燃料の排出量が増大するために、比較的多量の未燃燃料が触媒装置において燃焼して多量の燃焼熱を発生すると、触媒装置はかなり高温となって溶損する可能性がある。   In the general control of the injection amount ratio R, the injection amount ratio R is suitable for the engine low load operation after the change from the first injection amount ratio R1 suitable for the engine high load operation before the change, as indicated by a dotted line. The second injection amount ratio R2 is gradually changed, and at the time t1, the second mechanical compression ratio C2 is realized, and at the same time, the second injection amount ratio R2 is realized. In such control, when the temperature T of the catalyst device is relatively high, as shown by the dotted line, the discharge amount of unburned fuel increases as the mechanical compression ratio is increased. If the catalyst device burns in the catalyst device and generates a large amount of combustion heat, the catalyst device may become considerably hot and melt.

これに対して、図3に示すフローチャートでは、噴射量割合Rは、実線で示すように、変化前の機関高負荷運転に適した第一噴射量割合R1から変化後の機関低負荷運転に適した第二噴射量割合R2より大きな第三噴射量割合R3へ徐々に変更され、時刻t1において第二機械圧縮比C2が実現されると同時に第三噴射量割合R3が実現される。それにより、触媒装置の温度Tが比較的高い時においても、実線で示すように、噴射量割合が大きくされて第一燃料噴射弁5により噴射される燃料量が多くされると、第一燃料噴射弁5により噴射される燃料は第二燃料噴射弁6により噴射される燃料より吸気と良好に混合して均質性が向上するために未燃燃料として排出され難く、機械圧縮比を高くしてもそれほど未燃燃料の排出量が増大しないために、触媒装置の温度は溶損するほど高くはならない。   On the other hand, in the flowchart shown in FIG. 3, the injection amount ratio R is suitable for the engine low load operation after the change from the first injection amount ratio R1 suitable for the engine high load operation before the change, as indicated by the solid line. The second injection amount ratio R3 is gradually changed to a third injection amount ratio R3, and at the time t1, the second mechanical compression ratio C2 is realized, and at the same time, the third injection amount ratio R3 is realized. Thereby, even when the temperature T of the catalyst device is relatively high, as shown by the solid line, if the injection amount ratio is increased and the amount of fuel injected by the first fuel injection valve 5 is increased, the first fuel The fuel injected by the injection valve 5 mixes better with the intake air than the fuel injected by the second fuel injection valve 6 and improves the homogeneity, so that it is difficult to be discharged as unburned fuel, and the mechanical compression ratio is increased. However, since the discharge amount of unburned fuel does not increase so much, the temperature of the catalytic device does not become so high as to melt.

さらに、実線で示すように、時刻t2まで第三噴射量割合R3を維持して未燃燃料の排出量が抑制されれば、時刻t1からt2までの間の機関低負荷運転において排出される未燃燃料を燃焼させても触媒装置の温度Tは徐々に低下するために、時刻t2から噴射量割合を変化後の機関低負荷運転に適した第二噴射量割合R2へ徐々に近づけて、未燃燃料の排出量が増大しても、それほど触媒装置の温度が高まることはない。   Furthermore, as shown by the solid line, if the third injection amount ratio R3 is maintained until time t2 and the discharge amount of unburned fuel is suppressed, it is not discharged in the engine low load operation from time t1 to t2. Since the temperature T of the catalyst device gradually decreases even when the fuel is burned, the injection amount ratio is gradually approached to the second injection amount ratio R2 suitable for engine low-load operation after the change from time t2, Even if the amount of discharged fuel increases, the temperature of the catalytic device does not increase so much.

図3のフローチャートのステップ106において、第三噴射量割合R3を決定するために第二噴射量割合R2に加算されるΔRは、一定値としても良いが、触媒装置の温度Tが高いほど、大きくして圧縮比過渡状態の間の未燃燃料の排出量を減少させるようにすれば、さらに確実に触媒装置を溶損させ難くすることができる。   In step 106 of the flowchart of FIG. 3, ΔR added to the second injection amount ratio R2 to determine the third injection amount ratio R3 may be a constant value, but increases as the temperature T of the catalyst device increases. If the discharge amount of unburned fuel during the compression ratio transient state is reduced, the catalyst device can be more reliably prevented from melting.

2 吸気ポート
5 第一燃料噴射弁
6 第二燃料噴射弁
100 シリンダブロック
200 クランクケース
300 ピストン
2 Intake port 5 First fuel injection valve 6 Second fuel injection valve 100 Cylinder block 200 Crankcase 300 Piston

Claims (3)

機械圧縮比を可変とする圧縮比可変機構を備える内燃機関の制御装置であって、前記内燃機関は吸気ポートへ燃料を噴射する第一燃料噴射弁と気筒内へ直接的に燃料を噴射する第二燃料噴射弁とを具備し、機関高負荷時から機関低負荷時への運転状態の変化に伴って前記圧縮比可変機構によって機械圧縮比が前記機関高負荷時の運転に適した第一機械圧縮比から前記低負荷時の運転に適した第二機械圧縮比へ徐々に高められている圧縮比過渡状態の間は、前記機関高負荷時の運転に適する第一噴射量割合から前記機関低負荷時の運転に適する第二噴射量割合へ前記第一燃料噴射弁と前記第二燃料噴射弁との噴射量割合を徐々に変化させる内燃機関の制御装置において、前記圧縮比過渡状態の間は、前記噴射量割合を、前記第一噴射量割合から前記第二噴射量割合より前記第一燃料噴射弁の燃料噴射量を多くする第三噴射量割合へ徐々に変化させることを特徴とする圧縮比可変機構を備える内燃機関の制御装置。   A control device for an internal combustion engine comprising a compression ratio variable mechanism that makes a mechanical compression ratio variable, wherein the internal combustion engine includes a first fuel injection valve that injects fuel into an intake port and a fuel that directly injects fuel into a cylinder. A first machine having two fuel injection valves and having a mechanical compression ratio suitable for operation at a high engine load by the variable compression ratio mechanism in accordance with a change in operation state from a high engine load to a low engine load During the compression ratio transient state, which is gradually increased from the compression ratio to the second mechanical compression ratio suitable for operation at the low load, the engine low ratio is determined from the first injection amount ratio suitable for the operation at the high engine load. In the control apparatus for an internal combustion engine that gradually changes the injection amount ratio of the first fuel injection valve and the second fuel injection valve to the second injection amount ratio suitable for operation at the time of load, during the compression ratio transient state, The injection amount ratio from the first injection amount ratio Control system for an internal combustion engine having a variable compression ratio mechanism, wherein the gradually changing into a third injection amount ratio to increase the serial fuel injection amount of the first fuel injection valve than the second injection amount ratio. 機械圧縮比が前記第二機械圧縮比とされた時に前記第三噴射量割合とされた噴射量割合を設定期間だけ維持することを特徴とする請求項1に記載の圧縮比可変機構を備える内燃機関の制御装置。   2. The internal combustion engine having a variable compression ratio mechanism according to claim 1, wherein when the mechanical compression ratio is the second mechanical compression ratio, the injection amount ratio that is the third injection amount ratio is maintained for a set period. Engine control device. 機関排気系の触媒装置の温度が高いほど、前記第三噴射量割合は、前記第一燃料噴射弁の燃料噴射量が多くなるように変更されることを特徴とする請求項1又は2に記載の圧縮比可変機構を備える内燃機関の制御装置。   The third injection amount ratio is changed so that the fuel injection amount of the first fuel injection valve is increased as the temperature of the catalyst device of the engine exhaust system is higher. A control device for an internal combustion engine comprising a variable compression ratio mechanism.
JP2010108503A 2010-05-10 2010-05-10 Internal combustion engine control apparatus with variable compression ration mechanism Withdrawn JP2011236803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010108503A JP2011236803A (en) 2010-05-10 2010-05-10 Internal combustion engine control apparatus with variable compression ration mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010108503A JP2011236803A (en) 2010-05-10 2010-05-10 Internal combustion engine control apparatus with variable compression ration mechanism

Publications (1)

Publication Number Publication Date
JP2011236803A true JP2011236803A (en) 2011-11-24

Family

ID=45325057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010108503A Withdrawn JP2011236803A (en) 2010-05-10 2010-05-10 Internal combustion engine control apparatus with variable compression ration mechanism

Country Status (1)

Country Link
JP (1) JP2011236803A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185124A1 (en) * 2013-05-14 2014-11-20 日産自動車株式会社 Internal combustion engine control device and control method
JP2014224461A (en) * 2013-05-15 2014-12-04 日産自動車株式会社 Control device and control method for internal combustion engine
JP2014224462A (en) * 2013-05-15 2014-12-04 日産自動車株式会社 Control device and control method for internal combustion engine
JPWO2016038715A1 (en) * 2014-09-11 2017-04-27 日産自動車株式会社 Vehicle control device
JP2018021502A (en) * 2016-08-03 2018-02-08 トヨタ自動車株式会社 Control system of internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185124A1 (en) * 2013-05-14 2014-11-20 日産自動車株式会社 Internal combustion engine control device and control method
JP5943147B2 (en) * 2013-05-14 2016-06-29 日産自動車株式会社 Control device and control method for internal combustion engine
JP2014224461A (en) * 2013-05-15 2014-12-04 日産自動車株式会社 Control device and control method for internal combustion engine
JP2014224462A (en) * 2013-05-15 2014-12-04 日産自動車株式会社 Control device and control method for internal combustion engine
JPWO2016038715A1 (en) * 2014-09-11 2017-04-27 日産自動車株式会社 Vehicle control device
US10138998B2 (en) 2014-09-11 2018-11-27 Nissan Motor Co., Ltd. Vehicle control device
JP2018021502A (en) * 2016-08-03 2018-02-08 トヨタ自動車株式会社 Control system of internal combustion engine

Similar Documents

Publication Publication Date Title
JP6458814B2 (en) Internal combustion engine
JP5310747B2 (en) Spark ignition internal combustion engine
JP5136692B2 (en) Spark ignition internal combustion engine
JP2011106444A (en) Compression ignition gasoline engine
JP6015047B2 (en) Engine control device
JP6056989B2 (en) Control unit for direct injection gasoline engine
US9816445B2 (en) Device for controlling direct-injection gasoline engine
JP2010281235A (en) Engine control method and control device
JP2011236803A (en) Internal combustion engine control apparatus with variable compression ration mechanism
JP2009532624A (en) Driving method for internal combustion engine
JP5050897B2 (en) Control device for internal combustion engine
JP2008019873A (en) Control of internal combustion engine during compression ratio changing period
JPWO2018066328A1 (en) Internal combustion engine control system
JP2006316777A (en) Internal combustion engine
JP2009257100A (en) Injection control device of internal combustion engine
JP4400421B2 (en) Control method for dual injection internal combustion engine
JP2010229961A (en) Internal combustion engine
JP2008223615A (en) Internal combustion engine
JP2004232580A (en) Control for internal combustion engine in period of changing compression ratio
JP2009167868A (en) Premixed compressed self-ignition internal combustion engine
JP2006052653A (en) Egr control device for internal combustion engine
JP2013087675A (en) Control device of internal combustion engine
JP2013224599A (en) Fuel injection control device for internal combustion engine
JP2012102671A (en) Internal combustion engine with variable compression ratio mechanism
JP2012117474A (en) Spark-ignition internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130806