JP2014224462A - Control device and control method for internal combustion engine - Google Patents

Control device and control method for internal combustion engine Download PDF

Info

Publication number
JP2014224462A
JP2014224462A JP2013102803A JP2013102803A JP2014224462A JP 2014224462 A JP2014224462 A JP 2014224462A JP 2013102803 A JP2013102803 A JP 2013102803A JP 2013102803 A JP2013102803 A JP 2013102803A JP 2014224462 A JP2014224462 A JP 2014224462A
Authority
JP
Japan
Prior art keywords
cylinder
compression ratio
ignitability
homogeneity
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013102803A
Other languages
Japanese (ja)
Inventor
忠樹 間野
Tadaki Mano
忠樹 間野
小野田 尚徳
Hisanori Onoda
尚徳 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013102803A priority Critical patent/JP2014224462A/en
Publication of JP2014224462A publication Critical patent/JP2014224462A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke

Abstract

PROBLEM TO BE SOLVED: To compatibly attain the homogenization and ignitability of air-fuel mixture.SOLUTION: A control device for an internal combustion engine includes a port-injection fuel injection valve (41) for injecting fuel into an intake port, a cylinder-injection fuel injection valve (8) for injecting fuel into a combustion chamber, a variable compression ratio mechanism (2) for changing a relative position relationship between a piston and a cylinder to vary a mechanical compression ratio, and a flow control valve (50) for varying an in-cylinder flow. Under predetermined operating conditions, the control device performs cooperative control of the sharing rate of cylinder injection to port injection, the compression ratio and the in-cylinder flow to produce the homogenization and ignitability of air-fuel mixture at a predetermined level.

Description

この発明は、吸気ポートに燃料を噴射するポート噴射用燃料噴射弁と、燃焼室に燃料を噴射する筒内噴射用燃料噴射弁と、を併用する内燃機関の制御装置および制御方法に関する。   The present invention relates to a control device and a control method for an internal combustion engine that use both a port injection fuel injection valve that injects fuel into an intake port and an in-cylinder injection fuel injection valve that injects fuel into a combustion chamber.

吸気ポートに燃料を噴射するポート噴射用燃料噴射弁と、燃焼室内に直接に燃料を噴射する筒内噴射用燃料噴射弁と、を併用し、機関運転条件に応じて両者を適宜に切り換えて使用する燃料噴射装置を備えた内燃機関が、特許文献1に記載されている。この特許文献1では、内燃機関の始動後の機関温度の上昇に伴ってポート噴射と筒内噴射の分担率の変化を制御している。   A port injection fuel injection valve that injects fuel into the intake port and an in-cylinder injection fuel injection valve that directly injects fuel into the combustion chamber are used in combination, and the two are switched appropriately according to engine operating conditions. An internal combustion engine provided with a fuel injection device is described in Patent Document 1. In Patent Document 1, a change in the share ratio between port injection and in-cylinder injection is controlled as the engine temperature rises after the internal combustion engine is started.

特開2008−25502号公報JP 2008-25502 A

燃焼性を向上して未燃燃料の排出を抑制するためには、ポート噴射の分担率を増加して、混合気の均質度を向上することが有効であるが、ポート噴射の分担率を増加すると、着火性(点火容易性)が低下する、というデメリットがある。このため、単にポート噴射と筒内噴射の分担率を調整するだけでは、均質度と着火性を両立させることが難しい。   In order to improve combustibility and suppress the discharge of unburned fuel, it is effective to increase the port injection share ratio and improve the homogeneity of the mixture, but the port injection share ratio is increased. Then, there exists a demerit that ignitability (ignition ease) falls. For this reason, it is difficult to achieve both the homogeneity and the ignitability simply by adjusting the share ratio between the port injection and the in-cylinder injection.

本発明は、このような事情に鑑みてなされたものである。すなわち本発明は、吸気ポートに燃料を噴射するポート噴射用燃料噴射弁と、燃焼室に燃料を噴射する筒内噴射用燃料噴射弁と、ピストンとシリンダとの相対位置関係を変化させることにより機械的な圧縮比を可変とする可変圧縮比機構と、筒内流動を可変とする流動デバイスと、を備える内燃機関の制御装置において、所定の運転条件のとき、所定レベルの混合気の均質度と着火性とが得られるように、筒内噴射とポート噴射との分担率と、圧縮比と、筒内流動と、を協調制御することを特徴としている。   The present invention has been made in view of such circumstances. That is, the present invention relates to a machine by changing the relative positional relationship between a port injection fuel injection valve that injects fuel into an intake port, a cylinder injection fuel injection valve that injects fuel into a combustion chamber, and a piston and a cylinder. In a control device for an internal combustion engine comprising a variable compression ratio mechanism that varies a typical compression ratio and a flow device that varies in-cylinder flow, a predetermined level of air-fuel mixture homogeneity under predetermined operating conditions In order to obtain ignitability, the sharing ratio between the in-cylinder injection and the port injection, the compression ratio, and the in-cylinder flow are controlled in a coordinated manner.

例えば、均質度を向上させる場合には、圧縮比の低下,ポート噴射の分担率増加,筒内流動の強化の少なくとも一つが行われる。また、着火性を向上させる場合、圧縮比の低下,筒内噴射の分担率増加,筒内流動の低減の少なくとも一つが行われる。   For example, in order to improve the homogeneity, at least one of the reduction of the compression ratio, the increase of the share ratio of the port injection, and the enhancement of the in-cylinder flow are performed. Further, when improving the ignitability, at least one of a reduction in the compression ratio, an increase in the ratio of in-cylinder injection, and a reduction in in-cylinder flow are performed.

本発明によれば、例えば冷機始動後に暖機運転を行うファーストアイドル時のような所定の運転条件のとき、分担率と圧縮比と筒内流動とを協調制御することによって、所定レベルの混合気の均質度と着火性とを両立することが可能となる。   According to the present invention, a predetermined level of air-fuel mixture is obtained by cooperatively controlling the sharing ratio, the compression ratio, and the in-cylinder flow, for example, under predetermined operating conditions such as during fast idling where warm-up operation is performed after cold start. It is possible to achieve both the homogeneity and the ignitability.

この発明の一実施例に係る制御装置のシステム構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Structure explanatory drawing which shows the system structure of the control apparatus which concerns on one Example of this invention. 圧縮比及び分担率に対する点火容易性(A)及び均質度(B)の関係を示す説明図。Explanatory drawing which shows the relationship of ignition ease (A) and homogeneity (B) with respect to a compression ratio and a share. 流動強度及び分担率に対する点火容易性(A)及び均質度(B)の関係を示す説明図。Explanatory drawing which shows the relationship of ignition ease (A) and homogeneity (B) with respect to flow strength and a share rate. 均質度が低い場合の本実施例の協調制御の一例を示す説明図。Explanatory drawing which shows an example of the cooperative control of a present Example when a homogeneity is low. 点火容易性が低い場合の本実施例の協調制御の一例を示す説明図。Explanatory drawing which shows an example of the cooperative control of a present Example when ignition ease is low.

以下、この発明の一実施例を図面に基づいて詳細に説明する。図1は、この発明の一実施例が適用された自動車用内燃機関1のシステム構成を示している。この内燃機関1は、例えば複リンク式ピストンクランク機構を利用した可変圧縮比機構2を備えた4ストロークサイクルのターボ過給器付き火花点火内燃機関であって、燃焼室3の天井壁面に、一対の吸気弁4および一対の排気弁5が配置されているとともに、これらの吸気弁4および排気弁5に囲まれた中央部に点火プラグ6が配置されている。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a system configuration of an automotive internal combustion engine 1 to which an embodiment of the present invention is applied. This internal combustion engine 1 is a spark ignition internal combustion engine with a turbocharger of a 4-stroke cycle equipped with a variable compression ratio mechanism 2 using, for example, a multi-link type piston crank mechanism. The intake valve 4 and a pair of exhaust valves 5 are disposed, and a spark plug 6 is disposed in a central portion surrounded by the intake valves 4 and the exhaust valves 5.

上記吸気弁4によって開閉される吸気ポート7の下方には、燃焼室3内に燃料を直接に噴射する筒内噴射用燃料噴射弁8が配置されている。また吸気ポート7には、該吸気ポート7内へ向けて燃料を噴射するポート噴射用燃料噴射弁41が配置されている。これらの筒内噴射用燃料噴射弁8およびポート噴射用燃料噴射弁41は、いずれも駆動パルス信号が印加されることによって開弁する電磁式ないし圧電式の噴射弁であって、駆動パルス信号のパルス幅に実質的に比例した量の燃料を噴射する。   A cylinder injection fuel injection valve 8 that directly injects fuel into the combustion chamber 3 is disposed below the intake port 7 that is opened and closed by the intake valve 4. The intake port 7 is provided with a port injection fuel injection valve 41 that injects fuel into the intake port 7. These in-cylinder injection fuel injection valve 8 and port injection fuel injection valve 41 are both electromagnetic or piezoelectric injection valves that are opened when a drive pulse signal is applied. An amount of fuel that is substantially proportional to the pulse width is injected.

上記吸気ポート7に接続された吸気通路18のコレクタ部18aの上流側には、エンジンコントローラ9からの制御信号によって開度が制御される電子制御型のスロットルバルブ19が介装されており、さらにその上流側に、ターボ過給器のコンプレッサ20が配設されている。このコンプレッサ20の上流側に、吸入空気量を検出するエアフロメータ10が配設されている。   An electronically controlled throttle valve 19 whose opening is controlled by a control signal from the engine controller 9 is interposed upstream of the collector portion 18a of the intake passage 18 connected to the intake port 7. A turbocharger compressor 20 is disposed on the upstream side. An air flow meter 10 that detects the intake air amount is disposed upstream of the compressor 20.

また、排気ポート11に接続された排気通路12には、三元触媒からなる触媒装置13が介装されており、その上流側に、空燃比を検出する空燃比センサ14が配置されている。   In addition, a catalyst device 13 made of a three-way catalyst is interposed in the exhaust passage 12 connected to the exhaust port 11, and an air-fuel ratio sensor 14 for detecting the air-fuel ratio is disposed upstream thereof.

上記エンジンコントローラ9には、上記のエアフロメータ10、空燃比センサ14のほか、機関回転速度を検出するためのクランク角センサ15、冷却水温を検出する水温センサ16、運転者により操作されるアクセルペダルの踏込量を検出するアクセル開度センサ17、等のセンサ類の検出信号が入力されている。エンジンコントローラ9は、これらの検出信号に基づき、燃料噴射弁8,41による燃料噴射量および噴射時期、点火プラグ6による点火時期、スロットルバルブ19の開度、等を最適に制御している。   In addition to the air flow meter 10 and the air-fuel ratio sensor 14, the engine controller 9 includes a crank angle sensor 15 for detecting the engine speed, a water temperature sensor 16 for detecting the coolant temperature, and an accelerator pedal operated by the driver. Detection signals of sensors such as an accelerator opening sensor 17 that detects the amount of depression of the vehicle are input. Based on these detection signals, the engine controller 9 optimally controls the fuel injection amount and injection timing by the fuel injection valves 8 and 41, the ignition timing by the spark plug 6, the opening of the throttle valve 19, and the like.

一方、可変圧縮比機構2は、公知の複リンク式ピストンクランク機構を利用したものであって、クランクシャフト21のクランクピン21aに回転自在に支持されたロアリンク22と、このロアリンク22の一端部のアッパピン23とピストン24のピストンピン24aとを互いに連結するアッパリンク25と、ロアリンク22の他端部のコントロールピン26に一端が連結されたコントロールリンク27と、このコントロールリンク27の他端を揺動可能に支持するコントロールシャフト28と、を主体として構成されている。上記クランクシャフト21および上記コントロールシャフト28は、シリンダブロック29下部のクランクケース内で図示せぬ軸受構造を介して回転自在に支持されている。上記コントロールシャフト28は、該コントロールシャフト28の回動に伴って位置が変化する偏心軸部28aを有し、上記コントロールリンク27の端部は、詳しくは、この偏心軸部28aに回転可能に嵌合している。上記の可変圧縮比機構2においては、コントロールシャフト28の回動に伴ってピストン24の上死点位置が上下に変位し、従って、機械的な圧縮比が変化する。   On the other hand, the variable compression ratio mechanism 2 uses a known multi-link type piston crank mechanism, and includes a lower link 22 rotatably supported by a crank pin 21 a of the crankshaft 21 and one end of the lower link 22. An upper link 25 for connecting the upper pin 23 of the part and the piston pin 24a of the piston 24, a control link 27 having one end connected to the control pin 26 at the other end of the lower link 22, and the other end of the control link 27 And a control shaft 28 that supports the shaft in a swingable manner. The crankshaft 21 and the control shaft 28 are rotatably supported in a crankcase below the cylinder block 29 via a bearing structure (not shown). The control shaft 28 has an eccentric shaft portion 28a whose position changes with the rotation of the control shaft 28. Specifically, the end portion of the control link 27 is rotatably fitted to the eccentric shaft portion 28a. Match. In the variable compression ratio mechanism 2 described above, the top dead center position of the piston 24 is displaced up and down with the rotation of the control shaft 28, so that the mechanical compression ratio changes.

また、上記可変圧縮比機構2の圧縮比を可変制御する駆動機構として、クランクシャフト21と平行な回転中心軸を有する電動モータ31がシリンダブロック29下部に配置されており、この電動モータ31と軸方向に直列に並ぶように減速機32が接続されている。この減速機32としては、減速比の大きな例えば波動歯車機構が用いられており、その減速機出力軸32aは、電動モータ31の出力軸(図示せず)と同軸上に位置している。従って、減速機出力軸32aとコントロールシャフト28とは互いに平行に位置しており、両者が連動して回動するように、減速機出力軸32aに固定された第1アーム33とコントロールシャフト28に固定された第2アーム34とが中間リンク35によって互いに連結されている。   As a drive mechanism for variably controlling the compression ratio of the variable compression ratio mechanism 2, an electric motor 31 having a rotation center axis parallel to the crankshaft 21 is disposed below the cylinder block 29. A reduction gear 32 is connected so as to be arranged in series in the direction. As the speed reducer 32, for example, a wave gear mechanism having a large speed reduction ratio is used, and the speed reducer output shaft 32 a is positioned coaxially with the output shaft (not shown) of the electric motor 31. Accordingly, the speed reducer output shaft 32a and the control shaft 28 are positioned in parallel with each other, and the first arm 33 and the control shaft 28 fixed to the speed reducer output shaft 32a are connected to each other so that both of them rotate in conjunction with each other. The fixed second arm 34 is connected to each other by an intermediate link 35.

すなわち、電動モータ31が回転すると、減速機32により大きく減速された形で減速機出力軸32aの角度が変化する。この減速機出力軸32aの回動は第1アーム33から中間リンク35を介して第2アーム34へ伝達され、コントロールシャフト28が回動する。これにより、上述したように、内燃機関1の機械的な圧縮比が変化する。なお図示例では、第1アーム33および第2アーム34が互いに同方向に延びており、従って、例えば減速機出力軸32aが時計回り方向に回動するとコントロールシャフト28も時計回り方向に回動する関係となっているが、逆方向に回動するようにリンク機構を構成することも可能である。   That is, when the electric motor 31 rotates, the angle of the speed reducer output shaft 32a changes in a form greatly decelerated by the speed reducer 32. The rotation of the speed reducer output shaft 32a is transmitted from the first arm 33 to the second arm 34 via the intermediate link 35, and the control shaft 28 rotates. Thereby, as mentioned above, the mechanical compression ratio of the internal combustion engine 1 changes. In the illustrated example, the first arm 33 and the second arm 34 extend in the same direction. Therefore, for example, when the speed reducer output shaft 32a rotates in the clockwise direction, the control shaft 28 also rotates in the clockwise direction. Although it is related, the link mechanism can also be configured to rotate in the opposite direction.

上記可変圧縮比機構2の目標圧縮比は、エンジンコントローラ9において、機関運転条件(例えば要求負荷と機関回転速度)に基づいて設定され、この目標圧縮比を実現するように上記電動モータ31が駆動制御される。   The target compression ratio of the variable compression ratio mechanism 2 is set in the engine controller 9 based on engine operating conditions (for example, required load and engine speed), and the electric motor 31 is driven so as to realize this target compression ratio. Be controlled.

更に、筒内流動を制御する流動デバイスとして、吸気通路の一部を開閉することによりタンブル流動成分もしくはスワール流動成分を付与する流動制御弁50が設けられている。この流動制御弁50の動作も上記のエンジンコントローラ9により機関運転条件に基づいて制御される。   Furthermore, a flow control valve 50 that provides a tumble flow component or a swirl flow component by opening and closing a part of the intake passage is provided as a flow device that controls in-cylinder flow. The operation of the flow control valve 50 is also controlled by the engine controller 9 based on engine operating conditions.

図2及び図3は、冷機始動直後のファーストアイドル運転時のように、燃焼安定性を確保するために均質度が要求される運転条件における、ポート噴射と筒内噴射の分担率,圧縮比(ε),及び筒内流動の強度と、点火容易性(着火性)及び均質度と、の相関関係を示している。なお、以下の説明では、筒内噴射用燃料噴射弁8による筒内噴射を「DGI」とも呼び、ポート噴射用燃料噴射弁41によるポート噴射を「MPI」とも呼ぶ。   2 and 3 show the ratio of port injection to in-cylinder injection and the compression ratio (compression ratio) under operating conditions where homogeneity is required to ensure combustion stability, as in fast idle operation immediately after cold start. ε) and the strength of the in-cylinder flow, the ease of ignition (ignitability), and the homogeneity are shown. In the following description, the in-cylinder injection by the in-cylinder injection fuel injection valve 8 is also referred to as “DGI”, and the port injection by the port injection fuel injection valve 41 is also referred to as “MPI”.

図2(A)に示すように、基本的に、筒内噴射(GDI)ではポート噴射(MPI)に比して点火容易性は高い。また、筒内噴射(GDI)とポート噴射(MPI)のいずれの場合においても、圧縮比が所定の閾値εs以上の場合、圧縮比が高くなるほど二次電圧が増大すること等から、点火容易性は低下する。更に、筒内噴射(GDI)とポート噴射(MPI)のいずれの場合においても、閾値εs以下の低圧縮比領域では、圧縮比が低くなるほど、筒内の流動成分が潰れずに残り、横飛火や吹き消えのおそれが増大するために、点火容易性が低下する。   As shown in FIG. 2A, basically, in-cylinder injection (GDI) is easier to ignite than port injection (MPI). In both cases of in-cylinder injection (GDI) and port injection (MPI), if the compression ratio is equal to or greater than a predetermined threshold value εs, the secondary voltage increases as the compression ratio increases. Will decline. Furthermore, in both the in-cylinder injection (GDI) and the port injection (MPI), in the low compression ratio region below the threshold εs, the lower the compression ratio, the more the flow component in the cylinder remains without being crushed, and Since the risk of blowout increases, the ease of ignition decreases.

図2(B)に示すように、基本的に、ポート噴射(MPI)では、筒内噴射(GDI)に比して、均質度は高い。また、筒内噴射(GDI)とポート噴射(MPI)のいずれの場合においても、圧縮比が低くなるほど、筒内流動がつぶれずに残るために、均質度は高くなる。   As shown in FIG. 2B, basically, port injection (MPI) has a higher degree of homogeneity than in-cylinder injection (GDI). Further, in any of the in-cylinder injection (GDI) and the port injection (MPI), the lower the compression ratio, the more in-cylinder flow remains without being crushed, and the homogeneity increases.

図3(A)を参照して、上述したように筒内噴射(GDI)はポート噴射(MPI)よりも点火容易性は高い。また、筒内の流動強度が高くなるほど、横飛火や吹き消えを生じるおそれが増大するために、点火容易性は低下する。   With reference to FIG. 3A, as described above, in-cylinder injection (GDI) is easier to ignite than port injection (MPI). In addition, the higher the flow strength in the cylinder, the greater the risk of side fire and blowout, and the ease of ignition decreases.

図3(B)を参照して、ポート噴射(MPI)は吸気ポート内で予め燃料と空気とが混合された混合気が燃焼室内へ導入されることから、燃焼室内に直接燃料を噴射する筒内噴射(GDI)よりも均質度は高い。また、筒内流動の強度が高くなるほど、均質度は高くなる。   Referring to FIG. 3 (B), the port injection (MPI) is a cylinder that directly injects fuel into the combustion chamber because an air-fuel mixture in which fuel and air are mixed beforehand in the intake port is introduced into the combustion chamber. The degree of homogeneity is higher than that of internal injection (GDI). Further, the higher the strength of the in-cylinder flow, the higher the homogeneity.

そして本実施例では、混合気の均質度が要求される所定の運転条件のとき、均質度と着火性(点火容易性)の各々が所定レベルTGを満たすように、分担率,圧縮比及び筒内流動を協調制御するものである。例えば、図4(A)に示すように、点火容易性と均質度のうち、均質度が所定レベルTGよりも低く、この均質度が大半の圧縮比で所定レベルTGを満たしていない場合には、図4(B)に示すように、均質度を向上するために、ポート噴射(MPI)の分担率を増加させる。これによって、点火容易性は低下するものの、均質度が向上し、点火容易性と均質度の双方が所定レベルTGを超える領域R1が拡大する。従って、この領域R1内で可能な限り高い圧縮比に設定することで、所定レベルTGの点火容易性と均質度を確保しつつ、圧縮比を高めて燃焼効率を向上することができる。   In the present embodiment, under predetermined operating conditions where the homogeneity of the air-fuel mixture is required, the share ratio, compression ratio, and cylinder are set so that each of the homogeneity and ignitability (ease of ignition) satisfies a predetermined level TG. This is a coordinated control of internal flow. For example, as shown in FIG. 4 (A), when the homogeneity is lower than a predetermined level TG among the ease of ignition and the homogeneity, and this homogeneity does not satisfy the predetermined level TG at most compression ratios. As shown in FIG. 4B, in order to improve the homogeneity, the share of port injection (MPI) is increased. Thereby, although the ease of ignition is reduced, the homogeneity is improved, and the region R1 where both the ease of ignition and the homogeneity exceed the predetermined level TG is expanded. Therefore, by setting the compression ratio as high as possible in the region R1, it is possible to increase the compression ratio and improve the combustion efficiency while ensuring the ignition ease and homogeneity of the predetermined level TG.

一方、図5(A)に示すように、点火容易性と均質度のうち、点火容易性が所定レベルTGよりも低い場合には、図5(B)に示すように、点火容易性を向上するために、筒内噴射(GDI)の分担率を増加させる。これによって、均質度は低下するものの、均質度が向上し、点火容易性と均質度の双方が所定レベルTGを超える領域R2を確保することができる。従って、この領域R2内で可能な限り高い圧縮比に設定することで、所定レベルTGの点火容易性と均質度を確保しつつ、圧縮比を高めることが可能となる。   On the other hand, as shown in FIG. 5A, when the ease of ignition is lower than the predetermined level TG among the ease of ignition and the homogeneity, the ease of ignition is improved as shown in FIG. 5B. In order to achieve this, the share ratio of in-cylinder injection (GDI) is increased. Thereby, although the homogeneity is lowered, the homogeneity is improved, and it is possible to secure a region R2 in which both the ease of ignition and the homogeneity exceed a predetermined level TG. Therefore, by setting the compression ratio as high as possible in the region R2, it is possible to increase the compression ratio while ensuring the ignition ease and homogeneity of the predetermined level TG.

このような本実施例の特徴的な構成及び作用効果について、以下に列記する。   Such characteristic configurations and operational effects of this embodiment are listed below.

[1]本実施例では、冷機始動時に代表される所定の運転条件のとき、筒内噴射とポート噴射との分担率と、圧縮比と、筒内流動と、を協調制御することによって、所定レベルTGの混合気の均質度と着火性(点火容易性)を確保した上で、例えば圧縮比を可能な限り高く設定して燃焼効率の向上を図ることができる。   [1] In the present embodiment, under predetermined operating conditions typified at the time of cold start, predetermined control is performed by cooperatively controlling the ratio of in-cylinder injection and port injection, the compression ratio, and in-cylinder flow. After ensuring the homogeneity and ignitability (easiness of ignition) of the air-fuel mixture at level TG, for example, the compression ratio can be set as high as possible to improve the combustion efficiency.

[2]均質度を向上させる場合、図4(B)に示す例ではポート噴射の分担率を増加させているが、これに限らず、圧縮比の低下や筒内流動の強化を単独又は組み合わせて行うようにしても良い。   [2] When improving the homogeneity, the ratio of port injection is increased in the example shown in FIG. 4 (B), but not limited to this, the reduction of the compression ratio and the enhancement of the in-cylinder flow are singly or combined. May be performed.

[3]着火性を向上させる場合、図5(B)に示す例では筒内噴射の分担率を増加させれいるが、これに限らず、圧縮比の低下や筒内流動の低減を単独もしくは組み合わせて行うようにしても良い。   [3] In the case of improving the ignitability, in the example shown in FIG. 5 (B), the share ratio of the in-cylinder injection is increased. However, the present invention is not limited to this. You may make it carry out in combination.

[4]但し、可能な限り圧縮比を高めて燃焼効率を向上させるために、図4及び図5の例のように、圧縮比を優先的に増加させることが望ましい。   [4] However, in order to increase the compression ratio as much as possible and improve the combustion efficiency, it is desirable to preferentially increase the compression ratio as in the examples of FIGS.

[5]実際の制御では、一例として、所定レベルの混合気の均質度と着火性とが得られるように、上記分担率,圧縮比及び筒内流動の各々の目標値が、機関負荷や水温等をパラメータ等とするマップとして設定され、このマップを参照してフィードフォワード的に目標値が設定される。   [5] In actual control, as an example, the target values of the above-mentioned share ratio, compression ratio, and in-cylinder flow are set to the engine load and water temperature so that a predetermined level of homogeneity and ignitability of the air-fuel mixture can be obtained. Is set as a map having parameters as parameters, and the target value is set in a feed-forward manner with reference to this map.

[6]あるいは、混合気の均質度と着火性とをセンサ等を用いて検知もしくは推定し、これら検知もしくは推定された均質度と着火性とに基づいて、上記分担率,圧縮比及び筒内流動の少なくとも一つをフィードバック制御するようにしても良い。   [6] Alternatively, the homogeneity and ignitability of the air-fuel mixture are detected or estimated using a sensor or the like, and based on the detected or estimated homogeneity and ignitability, the above-described share ratio, compression ratio, and in-cylinder At least one of the flows may be feedback controlled.

[7]更には、上記のフィードフォワード的な制御とフィードバック的な制御とを組み合わせても良い。つまり、所定レベルの混合気の均質度と着火性とが得られるように予め適合されたマップ等を用いて上記分担率,圧縮比及び筒内流動の各々の目標値を設定するとともに、混合気の均質度と着火性を検知もしくは推定し、これら検知もしくは推定された均質度と着火性とに基づいて、上記分担率,圧縮比及び筒内流動の少なくとも一つを目標値へ向けてフィードバック制御するようにしても良い。   [7] Furthermore, the above feedforward control and feedback control may be combined. That is, the target values of the above-mentioned share ratio, compression ratio, and in-cylinder flow are set using a map or the like previously adapted to obtain a predetermined level of homogeneity and ignitability of the mixture, and the mixture Detects or estimates the homogeneity and ignitability of the engine, and based on these detected or estimated homogeneity and ignitability, feedback control to at least one of the above-mentioned share ratio, compression ratio, and in-cylinder flow toward the target value You may make it do.

[8]なお、均質度と着火性のうちで所定レベルの着火性のみが得られないような場合には、点火時期の進角もしくはEGR率の低減の少なくとも一方を実施するようにしても良い。   [8] When only a predetermined level of ignitability is not obtained among homogeneity and ignitability, at least one of the advance of the ignition timing or the reduction of the EGR rate may be performed. .

1…内燃機関
2…可変圧縮比機構
6…点火プラグ
8…筒内噴射用燃料噴射弁
9…エンジンコントローラ
14…空燃比センサ
20…コンプレッサ
41…ポート噴射用燃料噴射弁
50…流動制御弁(流動デバイス)
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Variable compression ratio mechanism 6 ... Spark plug 8 ... Fuel injection valve for cylinder injection 9 ... Engine controller 14 ... Air-fuel ratio sensor 20 ... Compressor 41 ... Fuel injection valve for port injection 50 ... Flow control valve (flow) device)

Claims (9)

吸気ポートに燃料を噴射するポート噴射用燃料噴射弁と、燃焼室に燃料を噴射する筒内噴射用燃料噴射弁と、ピストンとシリンダとの相対位置関係を変化させることにより機械的な圧縮比を可変とする可変圧縮比機構と、筒内流動を可変とする流動デバイスと、を備える内燃機関の制御装置において、
所定の運転条件のとき、所定レベルの混合気の均質度と着火性とが得られるように、筒内噴射とポート噴射との分担率と、圧縮比と、筒内流動と、を協調制御することを特徴とする内燃機関の制御装置。
The mechanical compression ratio is increased by changing the relative positional relationship between the port injection fuel injection valve that injects fuel into the intake port, the in-cylinder injection fuel injection valve that injects fuel into the combustion chamber, and the piston and cylinder. In a control device for an internal combustion engine, comprising: a variable compression ratio mechanism that is variable; and a fluid device that varies the in-cylinder flow.
Coordinated control of the ratio of in-cylinder injection and port injection, compression ratio, and in-cylinder flow so that a predetermined level of air-fuel mixture homogeneity and ignitability can be obtained under predetermined operating conditions A control device for an internal combustion engine.
均質度を向上させる場合、圧縮比の低下,ポート噴射の分担率増加,筒内流動の強化の少なくとも一つを行うことを特徴とする請求項1に記載の内燃機関の制御装置。   2. The control device for an internal combustion engine according to claim 1, wherein when the homogeneity is improved, at least one of reduction of a compression ratio, increase of a share ratio of port injection, and enhancement of in-cylinder flow is performed. 着火性を向上させる場合、圧縮比の低下,筒内噴射の分担率増加,筒内流動の低減の少なくとも一つを行うことを特徴とする請求項1又は2に記載の内燃機関の制御装置。   3. The control device for an internal combustion engine according to claim 1, wherein when ignitability is improved, at least one of a reduction in the compression ratio, an increase in the share ratio of in-cylinder injection, and a reduction in in-cylinder flow are performed. 所定レベルの混合気の均質度と着火性とが得られる範囲で、圧縮比を優先的に増加させることを特徴とする請求項1〜3のいずれかに記載の内燃機関の制御装置。   The control device for an internal combustion engine according to any one of claims 1 to 3, wherein the compression ratio is preferentially increased within a range in which the homogeneity and ignitability of the air-fuel mixture at a predetermined level are obtained. 所定レベルの混合気の均質度と着火性とが得られるように、上記分担率,圧縮比及び筒内流動の各々の目標値が機関運転状態に応じて設定されることを特徴とする請求項1〜4のいずれかに記載の内燃機関の制御装置。   The target values of the share ratio, compression ratio, and in-cylinder flow are set according to engine operating conditions so that a predetermined level of homogeneity and ignitability of the air-fuel mixture can be obtained. The control apparatus of the internal combustion engine in any one of 1-4. 混合気の均質度と着火性を検知もしくは推定し、これら検知もしくは推定された均質度と着火性とに基づいて、上記分担率,圧縮比及び筒内流動の少なくとも一つをフィードバック制御することを特徴とする請求項1〜4のいずれかに記載の内燃機関の制御装置。   Detecting or estimating the homogeneity and ignitability of the air-fuel mixture, and feedback-controlling at least one of the above-mentioned share ratio, compression ratio and in-cylinder flow based on the detected or estimated homogeneity and ignitability. The control device for an internal combustion engine according to claim 1, wherein the control device is an internal combustion engine. 所定レベルの混合気の均質度と着火性とが得られるように、上記分担率,圧縮比及び筒内流動の各々の目標値が機関運転状態に応じて設定されるとともに、
混合気の均質度と着火性を検知もしくは推定し、これら検知もしくは推定された均質度と着火性とに基づいて、上記分担率,圧縮比及び筒内流動の少なくとも一つを目標値へ向けてフィードバック制御することを特徴とする請求項1〜4のいずれかに記載の内燃機関の制御装置。
In order to obtain a predetermined level of air-fuel mixture homogeneity and ignitability, the target values of the above-mentioned share ratio, compression ratio, and in-cylinder flow are set according to the engine operating state,
Detect or estimate the homogeneity and ignitability of the air-fuel mixture, and based on the detected or estimated homogeneity and ignitability, aim at least one of the above-mentioned share ratio, compression ratio and in-cylinder flow toward the target value. 5. The control apparatus for an internal combustion engine according to claim 1, wherein feedback control is performed.
均質度と着火性のうちで所定レベルの着火性のみが得られない場合、点火時期の進角もしくはEGR率の低減の少なくとも一方を実施することを特徴とする請求項1〜7のいずれかに記載の内燃機関の制御装置。   When only a predetermined level of ignitability is not obtained among homogeneity and ignitability, at least one of advance of the ignition timing or reduction of the EGR rate is performed. The internal combustion engine control device described. 吸気ポートに燃料を噴射するポート噴射用燃料噴射弁と、燃焼室に燃料を噴射する筒内噴射用燃料噴射弁と、ピストンとシリンダとの相対位置関係を変化させることにより機械的な圧縮比を可変とする可変圧縮比機構と、筒内流動を可変とする筒内流動デバイスと、を備える内燃機関の制御方法において、
所定の運転条件のとき、所定レベルの混合気の均質度と着火性とが得られるように、筒内噴射とポート噴射との分担率と、圧縮比と、筒内流動と、を協調制御することを特徴とする内燃機関の制御方法。
The mechanical compression ratio is increased by changing the relative positional relationship between the port injection fuel injection valve that injects fuel into the intake port, the in-cylinder injection fuel injection valve that injects fuel into the combustion chamber, and the piston and cylinder. In a control method for an internal combustion engine, comprising: a variable compression ratio mechanism that is variable; and a cylinder flow device that varies cylinder flow.
Coordinated control of the ratio of in-cylinder injection and port injection, compression ratio, and in-cylinder flow so that a predetermined level of air-fuel mixture homogeneity and ignitability can be obtained under predetermined operating conditions A control method of an internal combustion engine characterized by the above.
JP2013102803A 2013-05-15 2013-05-15 Control device and control method for internal combustion engine Pending JP2014224462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013102803A JP2014224462A (en) 2013-05-15 2013-05-15 Control device and control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013102803A JP2014224462A (en) 2013-05-15 2013-05-15 Control device and control method for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2014224462A true JP2014224462A (en) 2014-12-04

Family

ID=52123312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013102803A Pending JP2014224462A (en) 2013-05-15 2013-05-15 Control device and control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2014224462A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11280504A (en) * 1998-03-31 1999-10-12 Nissan Motor Co Ltd Spark ignition internal combustion engine
JP2005330943A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Control device of internal combustion engine
JP2006132398A (en) * 2004-11-04 2006-05-25 Toyota Motor Corp Control method for dual injection type internal combustion engine
JP2006161783A (en) * 2004-12-10 2006-06-22 Toyota Motor Corp Internal combustion engine
JP2009019577A (en) * 2007-07-12 2009-01-29 Toyota Motor Corp Control device of internal combustion engine
JP2011236803A (en) * 2010-05-10 2011-11-24 Toyota Motor Corp Internal combustion engine control apparatus with variable compression ration mechanism
JP2011252393A (en) * 2010-05-31 2011-12-15 Mazda Motor Corp Combustion control device of diesel engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11280504A (en) * 1998-03-31 1999-10-12 Nissan Motor Co Ltd Spark ignition internal combustion engine
JP2005330943A (en) * 2004-05-21 2005-12-02 Toyota Motor Corp Control device of internal combustion engine
JP2006132398A (en) * 2004-11-04 2006-05-25 Toyota Motor Corp Control method for dual injection type internal combustion engine
JP2006161783A (en) * 2004-12-10 2006-06-22 Toyota Motor Corp Internal combustion engine
JP2009019577A (en) * 2007-07-12 2009-01-29 Toyota Motor Corp Control device of internal combustion engine
JP2011236803A (en) * 2010-05-10 2011-11-24 Toyota Motor Corp Internal combustion engine control apparatus with variable compression ration mechanism
JP2011252393A (en) * 2010-05-31 2011-12-15 Mazda Motor Corp Combustion control device of diesel engine

Similar Documents

Publication Publication Date Title
US9970403B2 (en) Control apparatus for internal combustion engine
JP6011714B2 (en) Control device and control method for internal combustion engine
JP5971396B2 (en) Control device and control method for internal combustion engine
JP6326728B2 (en) Control device and control method for internal combustion engine
US7204215B2 (en) Valve characteristic controller and control method for internal combustion engine
US10113490B2 (en) Control apparatus for internal combustion engine
JP5273310B2 (en) Control device for internal combustion engine
JP5900701B2 (en) Control device and control method for internal combustion engine
JP5851463B2 (en) Valve timing control device for internal combustion engine
JP4419800B2 (en) Engine starter
JP6264746B2 (en) Control device and control method for internal combustion engine
WO2019043808A1 (en) Control method for internal combustion device, and control device for internal combustion engine
WO2012086398A1 (en) Control device for internal combustion engine
JP2012219741A (en) Control device of internal combustion engine
JP2013241917A (en) Combustion control device of engine
JP2014224462A (en) Control device and control method for internal combustion engine
JP3873809B2 (en) Variable valve timing control device for internal combustion engine
JP6371040B2 (en) Control device and control method for internal combustion engine
JP2014224494A (en) Control device and control method for internal combustion engine
WO2014188755A1 (en) Internal combustion engine control device and control method
JP6232756B2 (en) Control device and control method for internal combustion engine
JP3772949B2 (en) Internal combustion engine with cam phase variable mechanism
JP6232758B2 (en) Control device and control method for internal combustion engine
JP5413232B2 (en) Control device for internal combustion engine
JP2005226492A (en) Internal combustion engine equipped with turbocharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170829