JP5942190B2 - Oblique-incidence X-ray imaging optical device using double reflection type X-ray mirror - Google Patents

Oblique-incidence X-ray imaging optical device using double reflection type X-ray mirror Download PDF

Info

Publication number
JP5942190B2
JP5942190B2 JP2012143620A JP2012143620A JP5942190B2 JP 5942190 B2 JP5942190 B2 JP 5942190B2 JP 2012143620 A JP2012143620 A JP 2012143620A JP 2012143620 A JP2012143620 A JP 2012143620A JP 5942190 B2 JP5942190 B2 JP 5942190B2
Authority
JP
Japan
Prior art keywords
mirror
ray
reflected
hyperbola
hyperbolic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012143620A
Other languages
Japanese (ja)
Other versions
JP2014006457A (en
Inventor
智至 松山
智至 松山
和人 山内
和人 山内
浩巳 岡田
浩巳 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
JTEC Corp
Original Assignee
Osaka University NUC
JTEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, JTEC Corp filed Critical Osaka University NUC
Priority to JP2012143620A priority Critical patent/JP5942190B2/en
Publication of JP2014006457A publication Critical patent/JP2014006457A/en
Application granted granted Critical
Publication of JP5942190B2 publication Critical patent/JP5942190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、色収差やコマ収差なしで200nm以下の分解能を有する斜入射X線結像光学系に用いる二重反射型X線ミラーを用いた斜入射X線結像光学装置に関するものである。 The present invention relates to an oblique incidence X-ray imaging optical apparatus using a double reflection X-ray mirror used in an oblique incidence X-ray imaging optical system having a resolution of 200 nm or less without chromatic aberration and coma.

結像型X線顕微鏡などX線を利用する高度なX線光学装置を構築するためには、高性能なX線結像光学素子が必要となる。その光イメージングデバイスの有望な候補としては、フレネルゾーンプレート、X線屈折レンズ、Kirkpatrick−Baez(KB)ミラー、Wolterミラーがある。フレネルゾーンプレートとX線屈折レンズは、サブ50nmの分解能を実現するために十分に正確に製造することができる。しかし、X線屈折レンズやフレネルゾーンプレートは、屈折と回折によって生じる色収差のため多色のイメージングには適してない。KBミラーは、全反射を採用しているので色収差はないが、斜入射光学系における単枚の反射ではアッベの正弦条件を満たすことができないため、コマ収差が生じて分解能と視野(FOV)を減少させる。   In order to construct an advanced X-ray optical apparatus using X-rays such as an imaging X-ray microscope, a high-performance X-ray imaging optical element is required. Promising candidates for the optical imaging device include a Fresnel zone plate, an X-ray refractive lens, a Kirkpatrick-Baez (KB) mirror, and a Wolter mirror. The Fresnel zone plate and the X-ray refractive lens can be manufactured sufficiently accurately to achieve sub-50 nm resolution. However, X-ray refractive lenses and Fresnel zone plates are not suitable for multicolor imaging due to chromatic aberration caused by refraction and diffraction. The KB mirror has no chromatic aberration because it employs total reflection, but a single reflection in an oblique incidence optical system cannot satisfy the Abbe's sine condition, resulting in coma and reducing resolution and field of view (FOV). Decrease.

それに対して、Wolterミラーは、円筒状の内面での2回の全反射を利用したX線ミラーであり、色収差はなく、しかも光軸から離れた物点の像の歪み(コマ収差)も少ないという特徴を備えている(特許文献1)。Wolter光学系は、回転楕円面と回転双曲面(若しくは回転放物面と回転双曲面)を組み合わせた斜入射光学系である。楕円と双曲の焦点を一致させることで、光路長一定と反射光がすべて同一焦点に集まるという性質を併せ持っている。重要な点はそれぞれの反射面が高い精度で配置される必要があるという点である。しかし、Wolterミラーは、円筒状内面の精密加工を必要とするため、エネルギーがkeV級のX線に対して回折限界を実現できる精度でミラーを作製したという報告例はないほど作製の難易度は高い。例えば、100nm以下の分解能を達成するためには、ミラーを形状誤差数nmの精度で作製する必要があるが、これを実現したという報告はない。   The Wolter mirror, on the other hand, is an X-ray mirror that uses two total reflections on the cylindrical inner surface, has no chromatic aberration, and has little distortion (coma aberration) of an image of an object point away from the optical axis. (Patent document 1). The Wolter optical system is an oblique incidence optical system that combines a spheroid and a rotating hyperboloid (or a rotating paraboloid and a rotating hyperboloid). By matching the focal points of the ellipse and the hyperbola, the optical path length is constant and the reflected light is all collected at the same focal point. The important point is that each reflecting surface needs to be arranged with high accuracy. However, since the Wolter mirror requires precision machining of the cylindrical inner surface, the degree of difficulty in fabrication is so high that there is no report of producing a mirror with an accuracy that can achieve the diffraction limit for X-rays whose energy is keV class. high. For example, in order to achieve a resolution of 100 nm or less, it is necessary to manufacture a mirror with an accuracy of a shape error of several nm, but there is no report that this has been realized.

特許文献2には、X線の反射に供しうる程度の平滑度を有するシリコンウェハを、塑性変形することによって、回転法物面の一部と回転双曲面の一部とを含む所定の曲面形状の反射面を形成し、これを光軸となる直線の周囲に平行に複数配置して宇宙空間で使用する軽量なWolterミラーを構成する点が開示されている。ここで、シリコンウェハの表面を所定の曲面形状とするには、シリコンウェハの表面に所定の曲面形状を有する母型により圧力及び熱を加えて塑性変形させるのである。しかし、このように製作したWolterミラーは、剛性に乏しく、重力、温度ドリフト、振動等がある地上で反射面形状を高精度に保つことは困難である。   Patent Document 2 discloses a predetermined curved surface shape including a part of a rotation method surface and a part of a rotation hyperboloid by plastically deforming a silicon wafer having a degree of smoothness that can be used for X-ray reflection. A light-weight Wolter mirror that is used in outer space is configured by forming a plurality of reflecting surfaces in parallel around a straight line serving as an optical axis. Here, in order to make the surface of the silicon wafer have a predetermined curved surface shape, the surface of the silicon wafer is plastically deformed by applying pressure and heat to a matrix having a predetermined curved surface shape. However, the Wolter mirror manufactured in this way has poor rigidity, and it is difficult to maintain the shape of the reflecting surface with high precision on the ground where gravity, temperature drift, vibration, etc. exist.

一方では、非特許文献1では、色収差、コマ収差、波面収差の問題を克服するため、2枚の楕円ミラーと2枚の双曲ミラーを、KBミラーのように互いに垂直に配向させて構成されるAdvanced Kirkpatrick-Baez(AKB)ミラーが提案されている。AKBミラーは、4枚の全反射非球面ミラーで構成された光学系であり、アッベの正弦条件を満たし、前述の収差の問題は解消される。最近の高精度な加工技術を用いれば、各々のX線ミラーを形状誤差が5nm以下で作製することは比較的容易であるが、4枚のミラーを高精度にアライメントすることは難しい。非特許文献1では、μmオーダの分解能を達成することを目的としているが、100nm以下の分解能を達成するためには、4枚のミラーを高精度(位置精度がμmオーダ、角度精度がμradオーダ)に配置する必要があるため、取り扱いの煩雑さ並びに安定性(温度ドリフト、振動)に問題がある。尚、KBミラーでは、2枚の水平楕円ミラーと垂直楕円ミラーを正確に直交するように調節でき、X線光学系のアライメント作業を簡単にできるX線集光装置が提案されている(特許文献3)。   On the other hand, in Non-Patent Document 1, in order to overcome the problems of chromatic aberration, coma aberration, and wavefront aberration, two elliptical mirrors and two hyperbolic mirrors are oriented perpendicular to each other like a KB mirror. Advanced Kirkpatrick-Baez (AKB) mirrors have been proposed. The AKB mirror is an optical system composed of four total reflection aspherical mirrors, satisfies Abbe's sine condition, and eliminates the aforementioned aberration problem. If a recent high-precision processing technique is used, it is relatively easy to manufacture each X-ray mirror with a shape error of 5 nm or less, but it is difficult to align the four mirrors with high accuracy. Non-Patent Document 1 aims to achieve a resolution of the order of μm, but in order to achieve a resolution of 100 nm or less, four mirrors are highly accurate (position accuracy is on the order of μm, angle accuracy is on the order of μrad). ), There is a problem in handling complexity and stability (temperature drift, vibration). As the KB mirror, an X-ray condensing device has been proposed in which two horizontal ellipsoidal mirrors and vertical ellipsoidal mirrors can be adjusted so as to be accurately orthogonal to each other, and the alignment work of the X-ray optical system can be simplified (Patent Document). 3).

特公平6−31887号公報Japanese Patent Publication No. 6-31887 特開2010−025723号公報JP 2010-025723 A 特許第4682082号公報Japanese Patent No. 4668282

R.Kodama et al.,Optics Letters Vol.21,1321(1996).R. Kodama et al., Optics Letters Vol. 21,1321 (1996).

そこで、本発明が前述の状況に鑑み、解決しようとするところは、エネルギーがkeV級のX線に対して回折限界を実現できる精度で作製できるAKBミラーの特性を生かしつつ、色収差やコマ収差がないWolterミラーの特徴を兼ね備え、しかも取り扱いが容易で、高精度にアライメントすることが比較的容易な二重反射型X線ミラーを用いた斜入射X線結像光学装置を提供する点にある。 Therefore, in view of the above-mentioned situation, the present invention intends to solve the problem that chromatic aberration and coma aberration are obtained while taking advantage of the characteristics of an AKB mirror that can be manufactured with an accuracy capable of realizing a diffraction limit for X-rays with energy of keV. The present invention provides a grazing incidence X-ray imaging optical apparatus using a double reflection X-ray mirror that has the characteristics of a Wolter mirror that is not easy to handle, and that is easy to handle and relatively easy to align with high accuracy.

本発明は、前述の課題解決のために、斜入射X線結像光学系に用いる一次元一体型のX線ミラーであって、同一基板上にX線反射面となる楕円形状ミラー又は放物線形状ミラーの何れか一方からなる第1ミラー部と双曲線形状ミラーからなる第2ミラー部が、幾何学的な焦点が一致するように光軸方向に沿って直列に配置されるとともに、反射面の形状精度が5nm以下且つ表面粗さが0.5nmRMS以下の精度で作製され、X線が第1ミラー部と第2ミラー部とで連続的に二重反射する二重反射型X線ミラーを2枚用い、1枚は水平方向と平行な反射面を有し、垂直面内で集光するための水平X線ミラーであり、もう1枚は垂直方向と平行な反射面を有し、水平面内で集光するための垂直X線ミラーであり、前記水平X線ミラーと垂直X線ミラーは同一の焦点を持ち、互いに直交するように光軸方向に直列に配置し、色収差やコマ収差なしで200nm以下の分解能を有することを特徴とする二重反射型X線ミラーを用いた斜入射X線結像光学装置を構成した(請求項1)。 In order to solve the above-mentioned problems, the present invention is a one-dimensional integrated X-ray mirror used in an oblique incidence X-ray imaging optical system, and an elliptical mirror or a parabolic shape serving as an X-ray reflecting surface on the same substrate. The first mirror part made of either one of the mirrors and the second mirror part made of a hyperbolic mirror are arranged in series along the optical axis direction so that the geometric focal points coincide with each other, and the shape of the reflection surface Two double-reflective X-ray mirrors with an accuracy of 5 nm or less and a surface roughness of 0.5 nm RMS or less, and X-rays are continuously double-reflected by the first mirror part and the second mirror part One is a horizontal X-ray mirror that has a reflective surface parallel to the horizontal direction and collects light in the vertical plane, and the other has a reflective surface parallel to the vertical direction, and is in a horizontal plane. A vertical X-ray mirror for condensing the horizontal X-ray mirror and the vertical X-ray mirror; Mirrors have the same focus with double reflection type X-ray mirror, characterized in that arranged in series, having the following resolution without chromatic aberration and coma aberration 200nm in the optical axis direction so as to be perpendicular to each other obliquely An incident X-ray imaging optical device was constructed (claim 1).

ここで、点光源又は実質的に点光源と見なせるスリットを第1焦点とした楕円と、該楕円のもう一方の第2焦点と双曲線の第2焦点を一致させ、前記楕円と双曲線が交差する部分を含む該楕円と双曲線の曲線形状を持つ二つのX線反射面を同一基板上に作り込み、前記楕円の第1焦点から出射されたX線が楕円部分に対応する第1ミラー部に反射した後、双曲線部分に対応する第2ミラー部で反射し、該双曲線の第1焦点に集光されるように設定した(請求項2)。   Here, an ellipse whose first focus is a point light source or a slit that can be regarded as a point light source substantially coincides with the other second focus of the ellipse and the second focus of the hyperbola, and the ellipse and the hyperbola intersect. Two X-ray reflecting surfaces having the elliptical shape and the hyperbolic curved shape are formed on the same substrate, and the X-ray emitted from the first focal point of the ellipse is reflected to the first mirror portion corresponding to the elliptical portion. Thereafter, the light is reflected by the second mirror portion corresponding to the hyperbola portion and focused on the first focal point of the hyperbola (claim 2).

あるいは、放物線の焦点と双曲線の第2焦点を一致させ、前記放物線と双曲線が交差する部分を含む該放物線と双曲線の曲線形状を持つ二つのX線反射面を同一基板上に作り込み、無限遠から出射されたX線あるいは平行なX線が放物線部分に対応する第1ミラー部に反射した後、双曲線部分に対応する第2ミラー部で反射し、該双曲線の第1焦点に集光されるように設定した(請求項3)。   Alternatively, two X-ray reflecting surfaces having a parabolic and hyperbolic curve shape including a portion where the parabola and the hyperbola intersect with each other are made on the same substrate by matching the focal point of the parabola with the second focal point of the hyperbola. The emitted X-rays or parallel X-rays are reflected by the first mirror part corresponding to the parabola part, then reflected by the second mirror part corresponding to the hyperbola part, and condensed on the first focal point of the hyperbola. (Claim 3).

そして、前記第1ミラー部と第2ミラー部の境界に、両面に連続する緩衝部を設け、該緩衝部で反射されるX線が迷光とならないようにしてなることがより好ましい(請求項4)。   It is more preferable that a buffer part continuous on both surfaces is provided at the boundary between the first mirror part and the second mirror part so that X-rays reflected by the buffer part do not become stray light. ).

また、前記基板が、ガラス基板又はシリコン単結晶基板である(請求項5)。   The substrate is a glass substrate or a silicon single crystal substrate.

以上にしてなる本発明に用いる二重反射型X線ミラーは、色収差やコマ収差なしで200nm以下の分解能を有する斜入射X線結像光学系に用いる一次元一体型のX線ミラーであって、同一基板上にX線反射面となる楕円形状ミラー又は放物線形状ミラーの何れか一方からなる第1ミラー部と双曲線形状ミラーからなる第2ミラー部が、幾何学的な焦点が一致するように光軸方向に沿って直列に配置されるとともに、反射面の形状精度が5nm以下且つ表面粗さが0.5nmRMS以下の精度で作製され、X線が第1ミラー部と第2ミラー部とで連続的に二重反射するので、エネルギーがkeV級のX線に対して回折限界を実現できる精度で作製できるAKBミラーの特性を生かしつつ、色収差やコマ収差がないWolterミラーの特徴を兼ね備え、しかも取り扱いが容易で、高精度にアライメントすることが比較的容易であるという優れた効果を有する。 The double reflection type X-ray mirror used in the present invention as described above is a one-dimensional integrated X-ray mirror used in an oblique incidence X-ray imaging optical system having a resolution of 200 nm or less without chromatic aberration and coma aberration. The geometrical focal point of the first mirror part composed of either an elliptical mirror or a parabolic mirror serving as an X-ray reflecting surface on the same substrate and the second mirror part composed of a hyperbolic mirror are aligned. In addition to being arranged in series along the optical axis direction, the reflective surface has a shape accuracy of 5 nm or less and a surface roughness of 0.5 nm RMS or less, and X-rays are produced by the first mirror unit and the second mirror unit. Since it continuously reflects twice, it has the characteristics of a Wolter mirror that has no chromatic aberration and coma while taking advantage of the characteristics of an AKB mirror that can be manufactured with an accuracy that can achieve the diffraction limit for X-rays with keV energy. Is easy to handle, it has an excellent effect that it is relatively easy to align with high accuracy.

つまり、本発明に用いる二重反射型X線ミラーは、同一基板上に作製された第1ミラー部と第2ミラー部とで連続的に二重反射するので、アッベの正弦条件を満たようにすることが可能で、結像性能はWolterミラーと同等であり、また第1ミラー部を構成する楕円形状ミラー又は放物線形状ミラーと、第2ミラー部を構成する双曲線形状ミラーは一次元形状ミラーであるので、Wolterミラーとは異なり、ほとんど平坦な形状を持つミラーであるため、EEM(Elastic Emission Machining)等の従来技術によって超高精度(形状誤差約2nm)に作製することが比較的容易である。加工条件が良ければ、反射面の形状精度を1nm以下且つ表面粗さを0.1nmRMS以下の精度で作製することも可能であるので、サブ50nmの分解能を有する斜入射X線結像光学系を構築できるのである。 That is, the double reflection type X-ray mirror used in the present invention continuously double reflects between the first mirror portion and the second mirror portion manufactured on the same substrate, so that the Abbe sine condition is satisfied. The imaging performance is equivalent to the Wolter mirror, and the elliptical mirror or parabolic mirror constituting the first mirror part and the hyperbola shaped mirror constituting the second mirror part are one-dimensional shape mirrors. Therefore, unlike the Wolter mirror, it is a mirror with an almost flat shape, so it is relatively easy to fabricate with ultra-high accuracy (shape error about 2 nm) by conventional techniques such as EEM (Elastic Emission Machining). . If the processing conditions are good, it is possible to manufacture the reflecting surface with a shape accuracy of 1 nm or less and a surface roughness of 0.1 nm RMS or less. Therefore, an oblique incident X-ray imaging optical system having a sub-50 nm resolution is provided. It can be built.

本発明に用いる二重反射型X線ミラーは、ガラス基板やシリコン単結晶基板等の同一の基板上に第1ミラー部と第2ミラー部の2つの曲面を作製したため、取り扱いが容易であるとともに安定性の向上を可能にする。これを用いたX線顕微鏡は、取り扱い・安定性が向上するため、アライメント時間の短縮と長時間撮像が可能となる。 The double reflection type X-ray mirror used in the present invention is easy to handle because the two curved surfaces of the first mirror portion and the second mirror portion are formed on the same substrate such as a glass substrate or a silicon single crystal substrate. Enables improved stability. Since the X-ray microscope using this improves handling and stability, the alignment time can be shortened and imaging can be performed for a long time.

そして、本発明の二重反射型X線ミラーを用いた斜入射X線結像光学装置は、二重反射型X線ミラーを2枚用い、1枚は水平方向と平行な反射面を有し、垂直面内で集光するための水平X線ミラーであり、もう1枚は垂直方向と平行な反射面を有し、水平面内で集光するための垂直X線ミラーであり、前記水平X線ミラーと垂直X線ミラーは同一の焦点を持ち、互いに直交するように光軸方向に直列に配置したので、エネルギーがkeV級のX線に対して回折限界を実現できる精度で作製できるAKBミラーの特性を生かしつつ、色収差やコマ収差がないWolterミラーの結像性能を備えたものとなる。4枚の非球面X線ミラーで構成するAKBミラー光学系とは異なり、一次元Wolterミラーが同一の基板上に作製されているため、同一基板上の2つの曲面を高精度にアライメントする必要はなく、この結果、高い安定性(温度ドリフト、振動)が期待でき、X線顕微鏡で長時間撮像することを可能にする。 The oblique incidence X-ray imaging optical device using the double reflection type X-ray mirror of the present invention uses two double reflection type X-ray mirrors, one of which has a reflection surface parallel to the horizontal direction. , A horizontal X-ray mirror for condensing in a vertical plane, and another one having a reflecting surface parallel to the vertical direction and a vertical X-ray mirror for condensing in a horizontal plane, The X-ray mirror and the vertical X-ray mirror have the same focal point and are arranged in series in the optical axis direction so as to be orthogonal to each other. This makes it possible to have the imaging performance of a Wolter mirror without chromatic aberration and coma while taking advantage of the above characteristics. Unlike the AKB mirror optical system consisting of four aspherical X-ray mirrors, the one-dimensional Wolter mirror is fabricated on the same substrate, so it is necessary to align two curved surfaces on the same substrate with high accuracy. As a result, high stability (temperature drift, vibration) can be expected, and imaging with an X-ray microscope can be performed for a long time.

本発明の光学系を集光光学系として使用した場合、コマ収差がないためアライメント時に入射角誤差が生じたとしても、集光サイズに大きな影響を与えない。コマ収差が存在する単純な楕円形状ミラーの場合、入射角は1μradレベルでアライメントすることが必要であり、ミスアライメントは集光サイズに甚大な影響を与える。また、温度変化に起因するミラーマニピュレータのドリフトにおいても、入射角のアライメントが最も大きく影響する傾向がある。つまり、提案する二重反射型X線ミラーを集光素子として使用した場合は、入射角のアライメント誤差に対してロバストにすることが可能となり、簡単にアライメントすることができるだけでなく、長時間ビームサイズを安定して使用することが可能となる。   When the optical system of the present invention is used as a condensing optical system, there is no coma aberration, so even if an incident angle error occurs during alignment, the condensing size is not greatly affected. In the case of a simple elliptical mirror in which coma aberration exists, it is necessary to align the incident angle at the 1 μrad level, and misalignment greatly affects the light collection size. In addition, the alignment of the incident angle tends to have the largest influence on the drift of the mirror manipulator caused by the temperature change. In other words, when the proposed double reflection type X-ray mirror is used as a condensing element, it is possible to make robust against the alignment error of the incident angle, and not only can be easily aligned but also the long-time beam. It becomes possible to use the size stably.

本発明に係る二重反射型X線ミラーを用いた斜入射X線結像光学装置におけるミラー配置を示した斜視図である。It is the perspective view which showed the mirror arrangement | positioning in the oblique incidence X-ray imaging optical apparatus using the double reflection type X-ray mirror which concerns on this invention. 本発明の二重反射型X線ミラーを示す説明用斜視図である。It is an explanatory perspective view showing a double reflection type X-ray mirror of the present invention. 本発明の二重反射型X線ミラーにおける反射面形状を幾何学的に決定するための説明図である。It is explanatory drawing for determining the reflective surface shape in the double reflection type X-ray mirror of this invention geometrically. 本発明の二重反射型X線ミラーの設計形状を示すグラフである。It is a graph which shows the design shape of the double reflection type X-ray mirror of this invention. 第1ミラー部を構成する楕円形状ミラーの形状を示すグラフである。It is a graph which shows the shape of the elliptical mirror which comprises a 1st mirror part. 第2ミラー部を構成する双曲線形状ミラーの形状を示すグラフである。It is a graph which shows the shape of the hyperbolic mirror which comprises a 2nd mirror part. ガラス基板に作り込んだ楕円形状ミラーの形状誤差を示すグラフである。It is a graph which shows the shape error of the elliptical mirror built in the glass substrate. ガラス基板に作り込んだ双曲線形状ミラーの形状誤差を示すグラフである。It is a graph which shows the shape error of the hyperbolic shape mirror built in the glass substrate. 作製した二重反射型X線ミラーの全体形状と形状誤差を三次元形状計測機で測定した結果を示すグラフである。It is a graph which shows the result of having measured the whole shape and shape error of the produced double reflection type X-ray mirror with a three-dimensional shape measuring instrument. 図7及び図8の形状精度を有する二重反射型X線ミラーの結像特性を示すグラフである。It is a graph which shows the image formation characteristic of the double reflection type X-ray mirror which has the shape accuracy of FIG.7 and FIG.8.

次に、添付図面に示した実施形態に基づき、本発明を更に詳細に説明する。本発明は、色収差やコマ収差なしで200nm以下の分解能を有する斜入射X線結像光学系に用いる一次元一体型のX線ミラー(Wolterミラー)である。図1は本発明に係る二重反射型X線ミラーを用いた斜入射X線結像光学装置におけるミラー配置を示している。この斜入射X線結像光学装置は、X線の入射方向によって縮小光学系となったり、拡大光学系となり、主にX線を照射した試料からの透過X線や蛍光X線や散乱X線を色収差なく拡大結像させて分析する用途に用いる。   Next, the present invention will be described in more detail based on the embodiments shown in the accompanying drawings. The present invention is a one-dimensional integrated X-ray mirror (Wolter mirror) used in an oblique incidence X-ray imaging optical system having a resolution of 200 nm or less without chromatic aberration and coma. FIG. 1 shows a mirror arrangement in an oblique incidence X-ray imaging optical apparatus using a double reflection type X-ray mirror according to the present invention. This oblique incidence X-ray imaging optical device becomes a reduction optical system or an enlargement optical system depending on the X-ray incident direction, and mainly transmits X-rays, fluorescent X-rays, and scattered X-rays from a sample irradiated with X-rays. Is used for the purpose of analyzing the enlarged image without chromatic aberration.

本発明の斜入射X線結像光学装置は、二重反射型X線ミラー1,2を2枚用い、1枚は水平方向と平行な反射面を有し、垂直面内で集光するための水平X線ミラー1であり、もう1枚は垂直方向と平行な反射面を有し、水平面内で集光するための垂直X線ミラー2であり、前記水平X線ミラー1と垂直X線ミラー2は同一の焦点を持ち、互いに直交するように光軸方向に直列に配置している。即ち、本発明はKBミラーの配置と同じであり、KBミラー用に開発されたミラーマニピュレータをそのまま使用して2枚の二重反射型X線ミラー1,2を高精度にアライメントすることができる。   The oblique incidence X-ray imaging optical apparatus of the present invention uses two double reflection type X-ray mirrors 1 and 2, and one has a reflecting surface parallel to the horizontal direction and is focused in a vertical plane. The other horizontal X-ray mirror 1 is a vertical X-ray mirror 2 having a reflecting surface parallel to the vertical direction and condensing in a horizontal plane. The mirrors 2 have the same focal point and are arranged in series in the optical axis direction so as to be orthogonal to each other. That is, the present invention is the same as the arrangement of the KB mirror, and the mirror manipulator developed for the KB mirror can be used as it is to align the two double reflection type X-ray mirrors 1 and 2 with high accuracy. .

一般的に、X線は、エネルギーによって、軟X線(約0.1〜2keV)、X線(約2〜20keV)、硬X線(約20〜100keV)と分類されるが、利用分野によってその分類はまちまちであり、X線の一部を軟X線に入れたり硬X線に入れる場合もある。本発明では、軟X線から硬X線を対象とし、特に区別せず単にX線と表している。   In general, X-rays are classified into soft X-rays (about 0.1 to 2 keV), X-rays (about 2 to 20 keV), and hard X-rays (about 20 to 100 keV) depending on energy. The classification varies, and some X-rays may be put into soft X-rays or hard X-rays. In the present invention, soft X-rays to hard X-rays are targeted, and are simply expressed as X-rays without distinction.

本発明の二重反射型X線ミラーWMは、図2に示すように、同一基板上にX線反射面となる楕円形状ミラー又は放物線形状ミラーの何れか一方からなる第1ミラー部5と双曲線形状ミラーからなる第2ミラー部6が、幾何学的な焦点が一致するように光軸方向に沿って直列に配置されるとともに、反射面の形状精度が5nm以下且つ表面粗さが0.5nmRMS以下の精度で作製され、X線が第1ミラー部5と第2ミラー部6とで連続的に二重反射するように構成している。   As shown in FIG. 2, the double reflection type X-ray mirror WM of the present invention includes a first mirror unit 5 formed of either an elliptical mirror or a parabolic mirror serving as an X-ray reflection surface on the same substrate, and a hyperbola. The second mirror section 6 made of a shape mirror is arranged in series along the optical axis direction so that the geometrical focal points coincide with each other, the shape accuracy of the reflecting surface is 5 nm or less, and the surface roughness is 0.5 nm RMS The X-ray is produced with the following accuracy, and is configured such that X-rays are continuously double-reflected by the first mirror unit 5 and the second mirror unit 6.

ここで、前記二重反射型X線ミラーWMとして、第1ミラー部5と第2ミラー部6を作り込む基板には、ガラス基板又はシリコン単結晶基板を用いる。実際には、前記第1ミラー部5と第2ミラー部6の境界に、両面に連続する緩衝部7を設け、該緩衝部7で反射されるX線が迷光とならないようにしている。   Here, as the double reflection X-ray mirror WM, a glass substrate or a silicon single crystal substrate is used as a substrate on which the first mirror unit 5 and the second mirror unit 6 are formed. Actually, a buffer part 7 continuous on both surfaces is provided at the boundary between the first mirror part 5 and the second mirror part 6 so that X-rays reflected by the buffer part 7 do not become stray light.

前記二重反射型X線ミラーWMは、一次元一体型のWolterミラーと見ることができる。ここで、一次元とは、反射面の形状が1変数多項式の関数で表現できることを意味し、一体型とは、同一基板上に第1ミラー部5と第2ミラー部6を作り込んだことを意味する。図1は、2組の一次元Wolterミラーが縦横の結像を担うように配置されていることを表している。これによって従来は作製の難しかったWolterミラーや、アライメントが煩雑であったAKBミラー光学系の代替光学系として、色収差なく高分解能(分解能200nm以下)な結像が可能となる。   The double reflection type X-ray mirror WM can be regarded as a one-dimensional integrated Wolter mirror. Here, one-dimensional means that the shape of the reflecting surface can be expressed by a function of a one-variable polynomial, and the integrated type means that the first mirror part 5 and the second mirror part 6 are formed on the same substrate. Means. FIG. 1 shows that two sets of one-dimensional Wolter mirrors are arranged so as to carry out vertical and horizontal imaging. As a result, high resolution (resolution of 200 nm or less) without chromatic aberration can be realized as an alternative optical system to the Wolter mirror, which has been difficult to manufacture in the past, and the AKB mirror optical system, which has been complicated to align.

本発明の二重反射型X線ミラーWMは、斜入射光学系であり、それぞれ反射面が平面に近い全反射X線ミラーである。図3に示すように、点光源又は実質的に点光源と見なせるスリットを第1焦点E1とした楕円と、該楕円のもう一方の第2焦点E2と双曲線の第2焦点H2を一致させ、前記楕円と双曲線が交差する部分を含む該楕円と双曲線の曲線形状を持つ二つのX線反射面を同一基板上に作り込み、前記楕円の第1焦点E1から出射されたX線が楕円部分に対応する第1ミラー部5に反射した後、双曲線部分に対応する第2ミラー部6で反射し、該双曲線の第1焦点H1に集光されるように設定した。   The double reflection type X-ray mirror WM according to the present invention is a grazing incidence optical system, and is a total reflection X-ray mirror in which each reflecting surface is close to a plane. As shown in FIG. 3, an ellipse having a first light source E1 as a point light source or a slit that can be regarded as a point light source substantially coincides with the other second focal point E2 of the ellipse and a second focal point H2 of a hyperbola, Two X-ray reflecting surfaces having a curved shape of the ellipse and the hyperbola including a portion where the ellipse and the hyperbola intersect are formed on the same substrate, and the X-ray emitted from the first focal point E1 of the ellipse corresponds to the ellipse portion. After being reflected by the first mirror unit 5, the second mirror unit 6 corresponding to the hyperbola portion is reflected and condensed to the first focal point H1 of the hyperbola.

このように、楕円3と双曲線4の焦点を一致させることで、光路長一定と反射光がすべて同一焦点に集まるという性質を併せ持っている。図3において、ここで、楕円3の第1焦点E1と第2焦点E2及び双曲線4の第2焦点H1と第2焦点H2を同一直線上に設定するとともに、楕円3の第2焦点E2と双曲線4の第2焦点H2を一致させる。そして、楕円3と双曲線4の交点を挟んで接近した位置の曲線を用いて一次元の楕円形状ミラー(第1ミラー部5)と双曲線形状ミラー(第2ミラー部6)の反射面を決定する。   In this way, by matching the focal points of the ellipse 3 and the hyperbola 4, the optical path length is constant and the reflected light is all collected at the same focal point. In FIG. 3, the first focal point E1 and the second focal point E2 of the ellipse 3 and the second focal point H1 and the second focal point H2 of the hyperbola 4 are set on the same straight line, and the second focal point E2 and the hyperbola of the ellipse 3 are set. Four second focal points H2 are made to coincide. Then, the reflection surfaces of the one-dimensional elliptical mirror (first mirror unit 5) and the hyperbolic mirror (second mirror unit 6) are determined using a curve at a position close to the intersection of the ellipse 3 and the hyperbola 4. .

例えば、縮小光学系で説明すれば、楕円3の一方の第1焦点E1から放射されたX線は、楕円3と双曲線4の前記交点の手前に形成した前記楕円形状ミラー(第1ミラー部5)で反射させれば、他方の第2焦点E2の方向へ反射する。楕円形状ミラーの中心部で反射されたX線と前記双曲線4の交点を中心として前記双曲線形状ミラー(第2ミラー部6)を形成すれば、この面で反射されたX線は第1焦点H1に到達する。つまり、楕円3の第1焦点E1を物点すれば、双曲線4の第1焦点H1は結像点となる。逆に、拡大光学系であれば、双曲線4の第1焦点H1を物点とし、焦楕円3の第1点E1を結像点とする。   For example, in the case of a reduction optical system, X-rays radiated from one first focal point E1 of the ellipse 3 are the elliptical mirror (first mirror unit 5) formed before the intersection of the ellipse 3 and the hyperbola 4. ), The light is reflected in the direction of the other second focal point E2. If the hyperbolic mirror (second mirror section 6) is formed around the intersection of the X-ray reflected at the center of the elliptical mirror and the hyperbola 4, the X-ray reflected at this surface is the first focal point H1. To reach. That is, if the first focal point E1 of the ellipse 3 is pointed, the first focal point H1 of the hyperbola 4 becomes the image point. On the other hand, in the case of the magnifying optical system, the first focal point H1 of the hyperbola 4 is an object point, and the first point E1 of the focal ellipse 3 is an imaging point.

そして、図3において、E1から楕円形状ミラー5の中心までの距離をa、E2から楕円形状ミラー5の中心までの距離をa’とし、H1から双曲線形状ミラー6の中心までの距離をb、H2から双曲線形状ミラー6の中心までの距離をb’とすれば、楕円3と双曲線4の定義(a+a’=一定、b−b’=一定)を用いれば、
光路長=a+(a’−b’)+b=(a+a’)+(b−b’)=一定
となる。つまり、光源E1から放出されたX線が楕円形状ミラー5と双曲線形状ミラー6で反射されて焦点H1に至る光路長は全て同じになり、アッベの正弦条件も満たしているという特長を備えている。
In FIG. 3, the distance from E1 to the center of the elliptical mirror 5 is a, the distance from E2 to the center of the elliptical mirror 5 is a ', and the distance from H1 to the center of the hyperbolic mirror 6 is b, If the distance from H2 to the center of the hyperbolic mirror 6 is b ′, the definition of the ellipse 3 and the hyperbola 4 (a + a ′ = constant, b−b ′ = constant) is used.
Optical path length = a + (a′−b ′) + b = (a + a ′) + (b−b ′) = constant. In other words, the X-rays emitted from the light source E1 are reflected by the elliptical mirror 5 and the hyperbolic mirror 6 and all the optical path lengths to the focal point H1 are the same, and the Abbe sine condition is also satisfied. .

ここで、前記楕円3の代わりに放物線を用いることも可能である。図示しないが、他の実施形態の二重反射型X線ミラーWMは、放物線の焦点と双曲線の第2焦点を一致させ、前記放物線と双曲線が交差する部分を含む該放物線と双曲線の曲線形状を持つ二つのX線反射面を同一基板上に作り込み、無限遠から出射されたX線あるいは平行なX線が放物線部分に対応する第1ミラー部5に反射した後、双曲線部分に対応する第2ミラー部6で反射し、該双曲線の第1焦点に集光されるように設定する。この場合、放物線は楕円3の第1焦点E1が無限遠にあるのと同じと見なされ、例えば宇宙のX線発生源を観測するために用いるX線光学系となる。   Here, it is also possible to use a parabola instead of the ellipse 3. Although not shown, the double-reflection X-ray mirror WM according to another embodiment has a parabolic and hyperbolic curved shape including a portion where the parabola and the hyperbola intersect with each other so that the focal point of the parabola coincides with the second focal point of the hyperbola. Two X-ray reflecting surfaces are formed on the same substrate, and X-rays emitted from infinity or parallel X-rays are reflected by the first mirror portion 5 corresponding to the parabolic portion, and then the second corresponding to the hyperbolic portion. It is set so as to be reflected by the mirror unit 6 and condensed at the first focal point of the hyperbola. In this case, the parabola is considered to be the same as the first focal point E1 of the ellipse 3 at infinity, and becomes an X-ray optical system used for observing the cosmic X-ray generation source, for example.

縦80mm、横50mm、厚さ×30mmのガラス基板の表面を通常の精密加工した後、EEMにて仕上げ加工を行った。図4に、本発明の二重反射型X線ミラーの設計形状を示している。作製したX線ミラーは、有効ミラー長は79mm、有効楕円形状ミラー長は39mm、有効双曲線形状ミラー長は30mm、ミラー間の間隔10mmである。図4中に楕円形状ミラー(第1ミラー部5)と双曲線形状ミラー(第2ミラー部6)、及び緩衝部7を表示している。本実施形態のX線ミラーは、最も深いところで約200μmである。   The surface of a glass substrate having a length of 80 mm, a width of 50 mm, and a thickness of 30 mm was subjected to normal precision processing, and then finished with EEM. FIG. 4 shows a design shape of the double reflection type X-ray mirror of the present invention. The produced X-ray mirror has an effective mirror length of 79 mm, an effective elliptical mirror length of 39 mm, an effective hyperbolic mirror length of 30 mm, and an interval between the mirrors of 10 mm. In FIG. 4, an elliptical mirror (first mirror unit 5), a hyperbolic mirror (second mirror unit 6), and a buffer unit 7 are displayed. The X-ray mirror of this embodiment is about 200 μm at the deepest position.

図5に楕円形状ミラー(第1ミラー部5)の設計形状を示し、図6に双曲線形状ミラー(第2ミラー部6)の設計形状を示している。楕円形状ミラーは両端部に対して中央部が約4μmだけ凹んだ形状であり(図5参照)、双曲線形状ミラーは両端部に対して中央部が約2.5μmだけ凹んだ形状であるので、殆ど平面に近い形状である。図4でも分かるように、楕円形状ミラー5及び双曲線形状ミラー6は殆ど直線であり、所定角度に設定された二つの基準直線からの変位として図5及び図6が表されている。   FIG. 5 shows the design shape of the elliptical mirror (first mirror portion 5), and FIG. 6 shows the design shape of the hyperbolic mirror (second mirror portion 6). The elliptical mirror has a shape in which the central part is recessed by about 4 μm with respect to both ends (see FIG. 5), and the hyperbolic mirror has a shape in which the central part is recessed by about 2.5 μm with respect to both ends. The shape is almost flat. As can be seen from FIG. 4, the elliptical mirror 5 and the hyperbolic mirror 6 are almost straight lines, and FIGS. 5 and 6 are shown as displacements from two reference straight lines set at a predetermined angle.

EEMは、シリカ微粒子を超純水に分散させた加工液を、液中で被加工物の表面に所定ギャップを設けたノズルから噴射し、被加工物の表面に沿った高せん断流を生じさせて、シリカ微粒子と被加工物表面原子との一種の化学結合を利用して表面原子を除去する加工方法であり、現在最も高精度に仕上げ加工できる加工技術である。   EEM sprays a processing liquid in which silica fine particles are dispersed in ultrapure water from a nozzle having a predetermined gap on the surface of the work piece in the liquid, thereby generating a high shear flow along the surface of the work piece. This is a processing method for removing surface atoms using a kind of chemical bond between silica fine particles and workpiece surface atoms, and is currently a processing technique that can be finished with the highest precision.

ガラス基板をEEMにより超精密に加工して楕円形状ミラー5と双曲線形状ミラー6を作り込んだX線ミラーを作製し、その形状を大阪大学で開発されたMSI(microstitching interferometer)とRADSI(relative angle determinable stitching interferometer)を用いて測定した結果を図7及び図8に示す。図7は楕円形状ミラー5の設計形状からの誤差(形状誤差)を示し、図8は双曲線形状ミラー6の設計形状からの誤差(形状誤差)を示している。何れもX線反射面の全領域にわたってP−V値が2nm以内の精度で加工されていることが分かる。特に、双曲線形状ミラー6はP−V値が約1nmの形状精度になっている。   An X-ray mirror with an elliptical mirror 5 and a hyperbolic mirror 6 is fabricated by ultra-precision processing of a glass substrate by EEM. The results of measurement using a determinable stitching interferometer are shown in FIGS. FIG. 7 shows an error (shape error) from the design shape of the elliptical mirror 5, and FIG. 8 shows an error (shape error) from the design shape of the hyperbolic mirror 6. In any case, it is understood that the PV value is processed with an accuracy within 2 nm over the entire region of the X-ray reflection surface. In particular, the hyperbolic mirror 6 has a shape accuracy with a PV value of about 1 nm.

また、作製した前記X線ミラーの全体の形状について、非接触三次元形状計測機(三鷹光器株式会社のNH−5N、Z方向分解能10nm)によって計測した結果を図9に示す。設計形状に対して楕円形状ミラー5と双曲線形状ミラー6の並進のアライメント誤差は20nm以下であり、相対角のアライメント精度は0.5μrad以下であり、それぞれは測定精度と一致した。これらの結果は,シミュレーションによって予想された許容アライメント誤差・許容形状誤差を上回るものであり、結像性能に影響しないことが確認された。ここで、並進アライメント誤差は、楕円形状ミラー5と双曲線形状ミラー6の図4のグラフにおける上下方向のアライメント、相対角アライメント誤差は、楕円形状ミラー5と双曲線形状ミラー6の図4のグラフの紙面に垂直軸周りの回転のアライメントに係わる。   Moreover, the result of having measured the whole shape of the produced said X-ray mirror with the non-contact three-dimensional shape measuring device (NH-5N of Mitaka Kogyo Co., Ltd., Z direction resolution 10nm) is shown in FIG. The translational alignment error between the elliptical mirror 5 and the hyperbolic mirror 6 with respect to the design shape is 20 nm or less, and the alignment accuracy of the relative angle is 0.5 μrad or less, and each coincides with the measurement accuracy. These results exceeded the allowable alignment error and allowable shape error predicted by the simulation, and it was confirmed that the imaging performance was not affected. Here, the translational alignment error is the vertical alignment of the elliptical mirror 5 and the hyperbolic mirror 6 in the graph of FIG. 4, and the relative angle alignment error is the paper surface of the elliptical mirror 5 and the hyperbolic mirror 6 of the graph of FIG. It relates to the alignment of rotation around the vertical axis.

このように作製した二重反射型X線ミラーを、SPring-8のビームライン(BL29XUL 第二ハッチ)に縮小光学系配置で設置し、エネルギーが11.5keVのX線を集光する実験を行った。図10に、本発明の二重反射型X線ミラーの視野中心での結像特性をワイヤースキャン法で測定した結果を示している。1枚のX線ミラーを用いた一次元の縮小結像であるが、回折限界に近い半値全幅(FWHM)が33nmの鋭いピークを持ち、サテライトピークが小さい良質な結像特性となっている。   The double-reflective X-ray mirror produced in this way is installed on the SPring-8 beamline (BL29XUL second hatch) with a reduction optical system, and an experiment is conducted to collect X-rays with an energy of 11.5 keV. It was. FIG. 10 shows the result of measuring the imaging characteristics at the center of the field of view of the double reflection type X-ray mirror of the present invention by the wire scan method. Although it is one-dimensional reduction imaging using one X-ray mirror, the full width at half maximum (FWHM) close to the diffraction limit has a sharp peak of 33 nm and has good imaging characteristics with a small satellite peak.

WM 二重反射型X線ミラー、
XR X線に軌跡
1 水平X線ミラー、
2 垂直X線ミラー、
3 楕円
4 双曲線
5 第1ミラー部(楕円形状ミラー)
6 第2ミラー部(双曲線形状ミラー)
7 緩衝部
E1 楕円の第1焦点
E2 楕円の第2焦点
H1 双曲線の第1焦点
H2 双曲線の第2焦点
WM double-reflection X-ray mirror,
XR X-ray trace 1 horizontal X-ray mirror,
2 Vertical X-ray mirror,
3 Ellipse 4 Hyperbola 5 First mirror part (elliptical mirror)
6 Second mirror (hyperbolic mirror)
7 Buffer E1 Ellipse first focus E2 Ellipse second focus H1 Hyperbola first focus H2 Hyperbola second focus

Claims (5)

斜入射X線結像光学系に用いる一次元一体型のX線ミラーであって、同一基板上にX線反射面となる楕円形状ミラー又は放物線形状ミラーの何れか一方からなる第1ミラー部と双曲線形状ミラーからなる第2ミラー部が、幾何学的な焦点が一致するように光軸方向に沿って直列に配置されるとともに、反射面の形状精度が5nm以下且つ表面粗さが0.5nmRMS以下の精度で作製され、X線が第1ミラー部と第2ミラー部とで連続的に二重反射する二重反射型X線ミラーを2枚用い、1枚は水平方向と平行な反射面を有し、垂直面内で集光するための水平X線ミラーであり、もう1枚は垂直方向と平行な反射面を有し、水平面内で集光するための垂直X線ミラーであり、前記水平X線ミラーと垂直X線ミラーは同一の焦点を持ち、互いに直交するように光軸方向に直列に配置し、色収差やコマ収差なしで200nm以下の分解能を有することを特徴とする二重反射型X線ミラーを用いた斜入射X線結像光学装置A one-dimensional integrated X-ray mirror for use in an oblique incidence X-ray imaging optical system, the first mirror unit comprising either an elliptical mirror or a parabolic mirror serving as an X-ray reflecting surface on the same substrate; The second mirror part composed of a hyperbolic mirror is arranged in series along the optical axis direction so that the geometrical focal points coincide with each other, the shape accuracy of the reflecting surface is 5 nm or less, and the surface roughness is 0.5 nm RMS Using two double-reflective X-ray mirrors, which are produced with the following accuracy, and the X-rays are continuously double-reflected by the first mirror part and the second mirror part , one is a reflective surface parallel to the horizontal direction. A horizontal X-ray mirror for condensing in a vertical plane, the other having a reflecting surface parallel to the vertical direction, and a vertical X-ray mirror for condensing in a horizontal plane, The horizontal X-ray mirror and the vertical X-ray mirror have the same focal point, and Intersect each grazing incidence X-ray imaging optical system arranged in series, with use of double reflection type X-ray mirror and having a resolution of, without chromatic aberration and coma aberration 200nm in the optical axis direction. 点光源又は実質的に点光源と見なせるスリットを第1焦点とした楕円と、該楕円のもう一方の第2焦点と双曲線の第2焦点を一致させ、前記楕円と双曲線が交差する部分を含む該楕円と双曲線の曲線形状を持つ二つのX線反射面を同一基板上に作り込み、前記楕円の第1焦点から出射されたX線が楕円部分に対応する第1ミラー部に反射した後、双曲線部分に対応する第2ミラー部で反射し、該双曲線の第1焦点に集光される請求項1記載の二重反射型X線ミラーを用いた斜入射X線結像光学装置An ellipse having a first light source that is a point light source or a slit that can be regarded as a point light source, and a second focal point of the hyperbola that coincides with the other second focal point of the ellipse, and includes a portion where the ellipse and the hyperbola intersect Two X-ray reflecting surfaces having an elliptical shape and a hyperbolic curved shape are formed on the same substrate, and after the X-ray emitted from the first focal point of the ellipse is reflected by the first mirror portion corresponding to the elliptical portion, the hyperbolic shape is obtained. 2. An oblique incidence X-ray imaging optical apparatus using a double reflection type X-ray mirror according to claim 1, wherein the oblique reflection X-ray mirror is reflected by a second mirror portion corresponding to the portion and collected at the first focal point of the hyperbola . 放物線の焦点と双曲線の第2焦点を一致させ、前記放物線と双曲線が交差する部分を含む該放物線と双曲線の曲線形状を持つ二つのX線反射面を同一基板上に作り込み、無限遠から出射されたX線あるいは平行なX線が放物線部分に対応する第1ミラー部に反射した後、双曲線部分に対応する第2ミラー部で反射し、該双曲線の第1焦点に集光される請求項1記載の二重反射型X線ミラーを用いた斜入射X線結像光学装置The parabolic and hyperbolic second focal points coincide with each other, and two parabolic and hyperbolic curved surfaces including the intersection of the parabolic and hyperbolic are formed on the same substrate and emitted from infinity. The reflected X-rays or parallel X-rays are reflected by the first mirror part corresponding to the parabola part, then reflected by the second mirror part corresponding to the hyperbola part, and condensed at the first focal point of the hyperbola. An oblique incidence X-ray imaging optical apparatus using the double reflection X-ray mirror described above. 前記第1ミラー部と第2ミラー部の境界に、両面に連続する緩衝部を設け、該緩衝部で反射されるX線が迷光とならないようにしてなる請求項2又は3記載の二重反射型X線ミラーを用いた斜入射X線結像光学装置4. The double reflection according to claim 2, wherein a buffer portion continuous on both surfaces is provided at a boundary between the first mirror portion and the second mirror portion so that X-rays reflected by the buffer portion do not become stray light. Oblique incidence X-ray imaging optical device using an X-ray mirror. 前記基板が、ガラス基板又はシリコン単結晶基板である請求項1〜4何れか1項に記載の二重反射型X線ミラーを用いた斜入射X線結像光学装置The oblique incidence X-ray imaging optical apparatus using a double reflection type X-ray mirror according to claim 1, wherein the substrate is a glass substrate or a silicon single crystal substrate.
JP2012143620A 2012-06-27 2012-06-27 Oblique-incidence X-ray imaging optical device using double reflection type X-ray mirror Active JP5942190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012143620A JP5942190B2 (en) 2012-06-27 2012-06-27 Oblique-incidence X-ray imaging optical device using double reflection type X-ray mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012143620A JP5942190B2 (en) 2012-06-27 2012-06-27 Oblique-incidence X-ray imaging optical device using double reflection type X-ray mirror

Publications (2)

Publication Number Publication Date
JP2014006457A JP2014006457A (en) 2014-01-16
JP5942190B2 true JP5942190B2 (en) 2016-06-29

Family

ID=50104207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143620A Active JP5942190B2 (en) 2012-06-27 2012-06-27 Oblique-incidence X-ray imaging optical device using double reflection type X-ray mirror

Country Status (1)

Country Link
JP (1) JP5942190B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706157B (en) * 2017-01-11 2023-06-13 中国工程物理研究院激光聚变研究中心 ICF hot spot electronic temperature detection equipment based on quasi-synoptic axis
CN107561609B (en) * 2017-08-22 2019-10-01 哈尔滨工业大学 A kind of technique of duplication manufacture Wolter-I type reflecting mirror
EP3627226A1 (en) * 2018-09-20 2020-03-25 ASML Netherlands B.V. Optical system, metrology apparatus and associated method
JP2022108209A (en) * 2021-01-12 2022-07-25 国立大学法人 東京大学 Mirror design method and astigmatism control mirror including reflection surface in which design formula in the design method is established
JP2022108210A (en) * 2021-01-12 2022-07-25 国立大学法人 東京大学 Mirror design method and astigmatism control mirror including reflection surface in which design formula in the design method is established

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102600A (en) * 1984-10-25 1986-05-21 日本電子株式会社 X-ray lens system
JPH07164309A (en) * 1993-12-09 1995-06-27 Nikon Corp P0lishing method and manufacture of walter type optical element using the polishing method
JPH08271697A (en) * 1995-03-28 1996-10-18 Canon Inc Optical device for x-ray microscope
EP1920883B1 (en) * 2005-08-05 2013-05-22 Yuzo Mori Electron beam assisted eem method
JP4682082B2 (en) * 2006-03-31 2011-05-11 株式会社ジェイテック X-ray concentrator
JP4814782B2 (en) * 2006-12-28 2011-11-16 株式会社ジェイテック X-ray focusing method and apparatus using phase recovery method
JP5344123B2 (en) * 2008-07-18 2013-11-20 独立行政法人 宇宙航空研究開発機構 X-ray reflector, X-ray reflector, and method for producing X-ray reflector

Also Published As

Publication number Publication date
JP2014006457A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP6478433B2 (en) X-ray microscope
JP5942190B2 (en) Oblique-incidence X-ray imaging optical device using double reflection type X-ray mirror
TWI714524B (en) Illumination optical unit for projection lithography, pupil facet mirror, optical system, illumination system, projection exposure apparatus, method for producing a microstructured component, and microstructured component
TWI724275B (en) Off-axial three-mirror imaging system with freeform surfaces
KR20180014740A (en) An imaging optical unit for imaging the object field into the image field, and a projection exposure apparatus including such an imaging optical unit
US8035898B2 (en) Imaging optics designed by the simultaneous multiple surface method
JP6048867B2 (en) X-ray optical system
JPWO2009060549A1 (en) Imaging optical system and distance measuring device
JP7071327B2 (en) Projection optics unit for EUV projection lithography
JP2005134681A (en) Tilt error-reducing aspherical homogenizer
TWI413852B (en) Reflection-type projection-optical systems, and exposure apparatus comprising same
US6863409B2 (en) Apparatus for generating parallel beam with high flux
JP2002139696A (en) Illuminator having beam intensity distribution changing optical system
TWI744905B (en) Polarization aberration detection device, objective lens test bench and lithography equipment
RU2634332C2 (en) X-ray lens based on reflection effect
Zhimuleva et al. Development of telecentric objectives for dimensional inspection systems
Peverini et al. Reflective optics for EUV/x-ray sources at Thales SESO: possibilities and perspectives
Yumoto et al. Ultra-high-precision surface processing techniques for nanofocusing ellipsoidal mirrors in hard X-ray region
JP7343111B2 (en) Opposing X-ray composite mirror
JP2017037002A (en) Outlet wavefront measurement method and outlet wavefront measurement system of high-na condensing element
US9874728B1 (en) Long working distance lens system, assembly, and method
JP7417027B2 (en) Reflective X-ray optical element, X-ray focusing system using the reflective X-ray optical element, and method for manufacturing the reflective X-ray optical element
JPH04328500A (en) Condenser
WO2022092060A1 (en) X-ray optical device
WO2023112363A1 (en) Optical system, multi-beam projection optical system, multi-beam projection device, image projection device, and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160426

R150 Certificate of patent or registration of utility model

Ref document number: 5942190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250