JP2017037002A - Outlet wavefront measurement method and outlet wavefront measurement system of high-na condensing element - Google Patents

Outlet wavefront measurement method and outlet wavefront measurement system of high-na condensing element Download PDF

Info

Publication number
JP2017037002A
JP2017037002A JP2015158575A JP2015158575A JP2017037002A JP 2017037002 A JP2017037002 A JP 2017037002A JP 2015158575 A JP2015158575 A JP 2015158575A JP 2015158575 A JP2015158575 A JP 2015158575A JP 2017037002 A JP2017037002 A JP 2017037002A
Authority
JP
Japan
Prior art keywords
light
focal plane
condensing element
pinhole
wave field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015158575A
Other languages
Japanese (ja)
Other versions
JP6823334B2 (en
Inventor
陽子 竹尾
Yoko Takeo
陽子 竹尾
秀和 三村
Hidekazu Mimura
秀和 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2015158575A priority Critical patent/JP6823334B2/en
Publication of JP2017037002A publication Critical patent/JP2017037002A/en
Application granted granted Critical
Publication of JP6823334B2 publication Critical patent/JP6823334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-accuracy wavefront measurement method capable of allowing high-accuracy and efficient alignment and shape evaluation of a soft X-ray condensing optical system.SOLUTION: An outlet wavefront measurement method of a high-NA condensing element includes: scanning a pinhole on a focal plane of a high-NA condensing element; measuring an intensity distribution of diffraction light changed by scanning the pinhole by imaging means arranged on the downstream side, i.e., a side of the pinhole opposite a light source; repeating, between a focal plane of the high-NA condensing element and an observation surface of the imaging means, propagation and inverse-propagation calculations of light by a ptychographic phase retrieval method to acquire a wave field distribution of the light based on the measured intensity distribution of the diffraction light and each scanning position information; and acquiring an outlet wavefront of the high-NA condensing element by inverse calculation of diffraction integral, based on the wave field on the focal plane.SELECTED DRAWING: Figure 6

Description

本発明は、軟X線集光素子のアライメントや形状誤差測定に好適に用いることのできる高NA集光素子の出口波面計測方法、及び出口波面計測システムに関する。   The present invention relates to an exit wavefront measuring method and an exit wavefront measuring system for a high NA condensing element that can be suitably used for alignment and shape error measurement of a soft X-ray condensing element.

従来、X線を用いて物質や現象を分析するにあたっては、その強度密度ならびに集光サイズが非常に重要であり、集光光学系の高性能化が常に必要とされている。   Conventionally, when analyzing substances and phenomena using X-rays, their intensity density and condensing size are very important, and it is always necessary to improve the performance of condensing optical systems.

例えば楕円関数を回転した形状の回転楕円ミラーは、NAが大きく軟X線を高効率かつシングルナノメートルに集光することができる優れたX線集光素子である(非特許文献1)。しかしながら、いまだ理想的な性能を持つ回転楕円ミラーは実用化されていない。理想的な回転楕円ミラーの実現には、反射面である内面の3次元非球面形状を高精度に計測する手法の確立が求められている。   For example, a spheroid mirror having a shape obtained by rotating an elliptic function is an excellent X-ray condensing element having a large NA and capable of condensing soft X-rays to a single nanometer with high efficiency (Non-Patent Document 1). However, a spheroidal mirror having ideal performance has not been put into practical use. In order to realize an ideal spheroid mirror, establishment of a method for measuring the three-dimensional aspherical shape of the inner surface, which is a reflecting surface, with high accuracy is required.

また、回転楕円ミラーの発展形として、上流のミラーにより軟X線ビームをリング状に拡大し、拡大した軟X線を下流の回転体ミラーにより集光する2段集光システムが提案されている(特許文献1参照)。このシステムによれば、理想的な回折限界性能10nmでロスのない高効率な集光ビームの形成が可能となる。しかし、多数のミラーを反射させるこのシステムは、光学設計の自由度が高い反面、アライメントが複雑で且つ時間がかかる。アライメントの為のX線の利用には時間的に限界があり、可視光レーザを用いたオフ2ライン時での高精度のアライメント及び光学系評価が求められている。   Further, as a developed form of the spheroid mirror, a two-stage condensing system is proposed in which a soft X-ray beam is expanded in a ring shape by an upstream mirror and the expanded soft X-ray is condensed by a downstream rotator mirror (patent). Reference 1). According to this system, it is possible to form a highly efficient focused beam without loss with an ideal diffraction limit performance of 10 nm. However, this system that reflects a large number of mirrors has a high degree of freedom in optical design, but is complicated and time consuming to align. The use of X-rays for alignment is limited in time, and high-precision alignment and optical system evaluation at off-line using a visible light laser is required.

特開2015−17957号公報JP 2015-17957 A

Takahiro Saito, Yoshinori Takei, Hidekazu Mimura, Development of Surface Profile Measurement Method for Ellisoidal X-ray Mirror using Phase retrieval, Proc. SPIE, 8501, 850103, 2012Takahiro Saito, Yoshinori Takei, Hidekazu Mimura, Development of Surface Profile Measurement Method for Ellisoidal X-ray Mirror using Phase retrieval, Proc.SPIE, 8501, 850103, 2012

そこで、本発明が前述の状況に鑑み、解決しようとするところは、軟X線集光光学系の高精度で効率的なアライメント及び形状評価が可能な高精度波面計測手法を提供する点にある。   Therefore, in view of the above-described situation, the present invention intends to solve the problem by providing a high-accuracy wavefront measurement method capable of highly accurate and efficient alignment and shape evaluation of a soft X-ray focusing optical system. .

本発明者は、従来顕微鏡の手法として知られているタイコグラフィ(Ptychography)による位相回復法(H. M. L. Faulkner and J. M. Rodenburg, Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm, Phys. Rev. Lett. 93, 023903, 2004.)に着目し、集光素子の焦点面上にピンホールを走査させることを着想した。そして、このようにタイコグラフィ法を用いることにより,強度が直接測定できない波動場上(ここではA(x,y))もしくは近傍において,光の強度もしくは位相を変調させる透過関数(O(x,y))をもつ強度遮蔽物体や位相物体を走査し、走査毎に変化するもう片方の波動場の(ここではU(u,v))の強度分布を撮像手段で測定することで,情報量を増やし,波動場A(x,y)と走査させた物体の透過関数を求め、さらに回折積分の逆計算をすることで集光素子の出口波面を求めることができることを見出し、本発明を完成するに至った。   The present inventor has developed a phase recovery method using typography (HML Faulkner and JM Rodenburg, Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm, Phys. Rev. Lett. 93, 023903, 2004.), the idea was to scan a pinhole on the focal plane of the light condensing element. By using the typography method in this way, a transmission function (O (x, y,) that modulates the intensity or phase of light in or near a wave field (here, A (x, y)) where the intensity cannot be directly measured. y)) is scanned with an intensity shielding object or phase object, and the intensity distribution of the other wave field (here U (u, v)) that changes with each scanning is measured by the imaging means, thereby obtaining an information amount And finding the wave field A (x, y) and the transmission function of the scanned object, and further finding the exit wavefront of the condensing element by performing the inverse calculation of the diffraction integral, completing the present invention. It came to do.

すなわち本発明は、高NA集光素子の出口波面計測方法であって、高NA集光素子の焦点面上においてピンホールを走査し、ピンホールの光源と反対側である下流側に設置された撮像手段により、前記ピンホールの走査で変化する回析光の強度分布を計測し、前記計測される回析光の強度分布および各走査位置の情報に基づき、前記高NA集光素子の焦点面と前記撮像手段の観察面との間で、タイコグラフィ位相回復法による光の伝播・逆伝播計算の繰り返しにより焦点面上の光の波動場分布を求め、該焦点面上の光の波動場に基づき、回析積分の逆計算で前記高NA集光素子の出口波面を求めることを特徴とする高NA集光素子の出口波面計測方法を提供する。   That is, the present invention is an exit wavefront measuring method of a high NA condensing element, which scans a pinhole on the focal plane of the high NA condensing element and is installed on the downstream side opposite to the light source of the pinhole. The imaging means measures the intensity distribution of the diffracted light that changes in the scanning of the pinhole, and based on the measured intensity distribution of the diffracted light and information on each scanning position, the focal plane of the high NA condensing element The wave field distribution of the light on the focal plane is obtained by repeating the light propagation / back propagation calculation by the typographic phase recovery method between the image plane and the observation surface of the imaging means, and the light wave field on the focal plane is calculated. An exit wavefront measuring method for a high NA condensing element is provided, wherein the exit wavefront of the high NA condensing element is obtained by inverse calculation of diffraction integration.

ここに、焦点面とは集光点又はその近傍で光軸に対して垂直な面をいい、撮像手段が計測する光の強度分布は、前記ピンホールから広がる回析光を撮像した回析像の強度プロファイルをいう。本明細書では、光源側を上流、撮像手段側を下流とする。また、計算される焦点面上の「波動場分布」とは、回復される光の複素波動場であり、光波動場の回析積分の逆計算は、具体的には、Reighley-Sommerfeld第I種回析公式に波数k=−2π/λを代入することで求められる。出口波面は光波動場(強度分布及び波面)として求められる。   Here, the focal plane is a plane perpendicular to the optical axis at or near the focal point, and the intensity distribution of the light measured by the imaging means is a diffraction image obtained by imaging the diffraction light spreading from the pinhole. The intensity profile. In this specification, the light source side is the upstream and the imaging means side is the downstream. In addition, the “wave field distribution” on the calculated focal plane is a complex wave field of the light to be recovered, and the inverse calculation of the diffraction integral of the light wave field is specifically Reighley-Sommerfeld I It is obtained by substituting wave number k = -2π / λ into the seed diffraction formula. The exit wavefront is determined as a light wave field (intensity distribution and wavefront).

本発明におけるタイコグラフィ位相回復法による光の伝播・逆伝播計算の概要について説明する。前記焦点面上のピンホールを通過する光の透過関数は、一般的に複素数であらわされ,通過した時の光の強度の減衰、位相変化量を与える。透過関数は、次の式(18)、式(19)のように強度変調項と位相変調項に分離される。   An outline of light propagation / back propagation calculation by the typographic phase recovery method in the present invention will be described. The transmission function of the light passing through the pinhole on the focal plane is generally expressed as a complex number, and gives the attenuation of the intensity of light and the amount of phase change when passing through. The transmission function is separated into an intensity modulation term and a phase modulation term as in the following equations (18) and (19).

ピンホールの中心位置を(t,s)とすると、位置(t,s)での透過関数はO(x−t,y−s)で表現される。波動場分布A(x,y)のもつビームが透過関数O(x−t,y−s)を通過した時のビームの波動場B(x,y,t,s)は式(20)と表現される。   When the center position of the pinhole is (t, s), the transmission function at the position (t, s) is expressed as O (x−t, y−s). The wave field B (x, y, t, s) of the beam when the beam of the wave field distribution A (x, y) passes through the transmission function O (x-t, ys) is expressed by the following equation (20). Expressed.

透過関数O(x−t,y−s)が既知であると、ピンホール位置(t,s)の時に繰り返し計算で用いるU面(観察面)の波動場、強度、位相をそれぞれU(x,y,t,s)、I(x,y,t,s)、φ(x,y,t,s)とおき、測定される強度をIexp(x,y,t,s)とおく。このときタイコグラフィの繰り返し計算方法を図1に示す。図ではピンホール中心場所をp(t,s)とp(t,s)としている。測定されるIexp(x,y,t,s)の強度データを用いて、ピンホールの各場所において二つの波動場B(x,y,t,s)とU(x,y,t,s)の間で繰り返し計算を行う。 If the transmission function O (xt, ys) is known, the wave field, intensity, and phase of the U plane (observation plane) used in the repetitive calculation at the pinhole position (t, s) are respectively represented by U (x , Y, t, s), I (x, y, t, s), φ (x, y, t, s), and the measured intensity is Iexp (x, y, t, s). FIG. 1 shows a method for repeatedly calculating typography at this time. In the figure, the pinhole center locations are p 1 (t 1 , s 1 ) and p 2 (t 2 , s 2 ). Using the measured intensity data of Iexp (x, y, t, s), two wave fields B (x, y, t, s) and U (x, y, t, s) at each location of the pinhole. ) Repeatedly.

すなわち、まず走査物体の場所がpのとき、図のようにIexp(x,y,t,s)のデータを用いてB(x,y,t,s)とU(x,y,t,s)の間で繰り返し計算を行う。算出される強度分布を既知強度データに置き換える拘束をかけ、繰り返し計算を実施する。B面は強度データが未知でありU面の強度データのみの拘束であるが、ある一定値に収束する。そして、収束したB(x,y)の値を用いて式(20)からO(x−t,y−s)を利用してA(x,y)を求める。A(x,y)が求まると既知であるO(x−t,y−s)を用いて、走査物体の場所がpのときのB(x,y,t,s)の初期値を仮に設定する。 That is, first, when the location of the scanning object is p 1 , B (x, y, t 1 , s 1 ) and U (x) using the data of Iexp (x, y, t 1 , s 1 ) as shown in the figure. , Y, t 1 , s 1 ). A constraint is applied to replace the calculated intensity distribution with known intensity data, and the calculation is repeated. In the B surface, the intensity data is unknown and only the intensity data of the U surface is constrained, but converges to a certain value. Then, using the converged value of B (x, y), A (x, y) is obtained from the equation (20) using O (x−t, y−s). Using O (x−t 2 , y−s 2 ), which is known when A (x, y) is obtained, B (x, y, t 2 , s 2 ) when the location of the scanning object is p 2 The initial value of is temporarily set.

次に、Iexp(x,y,t,s)を用いてB(x,y,t,s)とU(x,y,t,s)の間で繰り返し計算して収束させる。この結果、再び求めたA(x,y)から走査物体の場所がp1の時のB(x,y,t,s)を求め、繰り返し計算の初期値と利用し,B(x,y,t,s)とU(x,y,t,s)の間で繰り返し計算を行う。このサイクルを全体が収束するまで実施すると最終的に求まった波動場分布A(x、y)は測定された二つの強度データIexp(x,y,t,s)とIexp(x,y,t,s)を満たす波動場分布となる。 Next, Iexp (x, y, t 2 , s 2 ) is used to repeatedly calculate between B (x, y, t 2 , s 2 ) and U (x, y, t 2 , s 2 ). Converge. As a result, B (x, y, t 1 , s 1 ) when the location of the scanning object is p 1 is obtained from A (x, y) obtained again, and used as the initial value of the iterative calculation, and B (x, y y, t 1 , s 1 ) and U (x, y, t 1 , s 1 ) are repeatedly calculated. When this cycle is carried out until the whole is converged, the finally obtained wave field distribution A (x, y) is obtained by measuring two intensity data Iexp (x, y, t 1 , s 1 ) and Iexp (x, y). , T 2 , s 2 ).

A(x,y)を既知とし,透過関数であるO(x,y)を未知にしたときも同じ考え方でO(x,y)を収束させることができる。このように本発明では、タイゴグラフィー位相回復法により走査物体の各場所で繰り返し計算を実施し,その収束した値を別の場所における繰り返し計算の初期値に利用することで測定されたすべての強度情報を満たすように収束させることができる。ピンホールは2次元的に走査し、走査回数を多くすることで大量の強度データから波動場分布を求めることができる。図2に走査回数M回の時のタイコグラフィ位相回復アルゴリズムを示す。データが多くなると、はじめにA(x,y)を既知、O(x,y)を未知として収束計算を実施し、O(x,y)を求め、求めたO(x,y)を固定してA(x,y)を求めることができ、これを繰り返すことでA(x,y),O(x,y)の両方を求めることができる。   Even when A (x, y) is known and O (x, y), which is a transmission function, is unknown, O (x, y) can be converged in the same way. As described above, in the present invention, iterative calculation is performed at each location of the scanning object by the typographic phase recovery method, and the converged value is used as the initial value of the iterative calculation at another location. It can be converged to satisfy the intensity information. The pinhole is scanned two-dimensionally, and the wave field distribution can be obtained from a large amount of intensity data by increasing the number of scans. FIG. 2 shows a typographic phase recovery algorithm when the number of scans is M. When the amount of data increases, convergence calculation is performed with A (x, y) as known and O (x, y) as unknown, O (x, y) is obtained, and the obtained O (x, y) is fixed. Thus, A (x, y) can be obtained, and by repeating this, both A (x, y) and O (x, y) can be obtained.

焦点面上で計算される波動場の分解能は、撮像手段の観察面上での領域の広さに相当する。焦点面上での分解能を向上するためには、フーリエ変換の性質を考えると観察面を大きくする必要があるが、撮像手段の限界がある。そこで本発明者は、図3に示すように、観察面上の設定している測定強度固定の領域の外側に、位相とともに強度も変更可能な領域を設定するとともに、集光光学素子の周りの強度がゼロであることを利用し、模式図4に示すように、タイコグラフィ位相回復法の反復計算中において、前記集光素子の出口形状寸法の波動場を計算し、出口周りを強度ゼロに置き換えて焦点面に戻すループを導入した。   The resolution of the wave field calculated on the focal plane corresponds to the size of the area on the observation plane of the imaging means. In order to improve the resolution on the focal plane, it is necessary to enlarge the observation plane in view of the nature of the Fourier transform, but there are limitations on the imaging means. Therefore, as shown in FIG. 3, the inventor sets a region where the intensity can be changed together with the phase outside the fixed region of the measurement intensity set on the observation surface, and around the condensing optical element. Using the fact that the intensity is zero, as shown in the schematic diagram 4, during the iterative calculation of the typographic phase recovery method, the wave field of the exit shape dimension of the light collecting element is calculated, and the intensity around the exit is made zero. A loop was introduced to return to the focal plane.

集光素子の出口周りの強度がゼロである設定は、焦点面上において外側の強度を低減させるように作用する。その結果、撮像手段の観察面上において測定強度固定外の領域の強度が大きくなることを防ぐことができる。これにより、図5に示すように測定強度よりも外側の領域を含めた波動場が回復し、焦点面上での回復される波動場の空間分解能を向上させることができた。同時に、ピンホールを表す透過関数の分解能も向上した。   A setting where the intensity around the exit of the light collecting element is zero serves to reduce the intensity outside on the focal plane. As a result, it is possible to prevent the intensity of the region outside the fixed measurement intensity from increasing on the observation surface of the imaging means. As a result, as shown in FIG. 5, the wave field including the region outside the measured intensity was recovered, and the spatial resolution of the recovered wave field on the focal plane could be improved. At the same time, the resolution of the transmission function representing pinholes has also improved.

また、前記タイコグラフィ位相回復法による光の伝播・逆伝播計算において、前記計測される回折光の強度分布を、下記[1]〜[7]に示す高NA近似計算法の(ξ、η)座標系に補間した形で出力し、該出力結果を用いて、下記式(8)の(ξ、η)座標系でタイコグラフィ位相回復法による光の伝播・逆伝播計算を繰り返し行うことが好ましい。これによりタイコグラフィ位相回復法の計算を汎用の高速フーリエ変換ソフトで効率よく行うことが可能であり、且つ強度の回復精度を向上させることができる。   In the light propagation / reverse propagation calculation by the typographic phase recovery method, the measured intensity distribution of the diffracted light is expressed by (ξ, η) of the high NA approximation calculation method shown in the following [1] to [7]. It is preferable to output in the form interpolated in the coordinate system, and repeatedly perform light propagation / back propagation calculation by the typographic phase recovery method in the (ξ, η) coordinate system of the following equation (8) using the output result. . As a result, it is possible to efficiently calculate the typographic phase recovery method using general-purpose fast Fourier transform software, and to improve the strength recovery accuracy.

[1] 観察面D上の点(u,v,z)における複素波動場を、Reighley-Sommerfeld第I種回折公式の式(1)のU(u,v,z)と定義する。U(x,y,0)は焦点面S上の波動場とする。 [1] The complex wave field at the point (u, v, z) on the observation surface D is defined as U (u, v, z) in the equation (1) of the Reighley-Sommerfeld type I diffraction formula. U (x, y, 0) is a wave field on the focal plane S.


焦点面に(x,y)座標系を設定
観察面に(u,v)座標系を設定
各座標系の原点を貫いて光が伝播する方向をZ軸の正
λは光の波長

(X, y) coordinate system is set on the focal plane. (U, v) coordinate system is set on the observation plane. The direction in which the light propagates through the origin of each coordinate system is positive on the Z axis.

[2] (x,y,0)から点(u,v,z)までの距離は式(2)で表される。 [2] The distance from (x, y, 0) to the point (u, v, z) is expressed by equation (2).

[3] 新たに焦点面のピンホール中心(0,0,0)から観察面(u,v,z)までの距離rを式(3)で定義する。 [3] A distance r 2 from the pinhole center (0, 0, 0) of the focal plane to the observation plane (u, v, z) is newly defined by Expression (3).

[4] 振幅係数について, [4] About the amplitude coefficient,

を用いて Using

と近似する。 And approximate.

[5] 位相係数について、式(4)及びr>zから求まる近似式(5)を設定するとともに焦点面上の2次項を無視し、これを近似条件とする。 [5] For the phase coefficient, an approximate expression (5) obtained from Expression (4) and r 2 > z is set, and a quadratic term on the focal plane is ignored, and this is set as an approximate condition.

[6] 以上から式(6)が得られる。ここで式(7)とおいて、式(8)のフーリエ変換の形の式が得られる。 [6] From the above, Expression (6) is obtained. Here, in the equation (7), an equation in the form of Fourier transform of the equation (8) is obtained.

[7] (u、v)座標系と(ξ、η)座標系の補間の式は、下記式(9)、式(10)となる。 [7] The interpolation equations for the (u, v) coordinate system and the (ξ, η) coordinate system are the following equations (9) and (10).

また本発明は、高NA集光素子の出口波面計測システムであって、ピンホールを有する走査物体と、前記走査物体を、前記高NA集光素子の焦点面上において走査する走査駆動装置と、前記走査物体の光源と反対側である下流側に設置され、前記ピンホールの走査で変化する回析光の強度分布を計測する撮像装置と、前記撮像手段で計測される回析光の強度分布および各走査位置の情報に基づき、前記高NA集光素子の焦点面と前記撮像手段の観察面との間で、タイコグラフィ位相回復法による光の伝播・逆伝播計算の繰り返しにより焦点面上の光の波動場分布を求め、該焦点面上の光の波動場に基づき、回析積分の逆計算で前記高NA集光素子の出口波面を求める演算装置とを備えてなることを特徴とする高NA集光素子の出口波面計測システムをも提供する。   Further, the present invention is an exit wavefront measuring system for a high NA condensing element, a scanning object having a pinhole, and a scanning drive device that scans the scanning object on a focal plane of the high NA condensing element, An imaging device that is installed on the downstream side opposite to the light source of the scanning object and measures the intensity distribution of the diffracted light that changes by scanning the pinhole, and the intensity distribution of the diffracted light measured by the imaging means And on the focal plane by repeating light propagation / back propagation calculation by the typographic phase recovery method between the focal plane of the high NA condensing element and the observation plane of the imaging means based on the information of each scanning position. And an arithmetic unit for obtaining a wave field distribution of light and obtaining an exit wave front of the high NA condensing element by inverse calculation of diffraction integration based on the wave field of light on the focal plane. High NA condensing element exit wavefront measurement system Also provides Temu.

以上にしてなる本願発明に係る高NA集光素子の出口波面計測方法は、軟X線集光光学系の高精度で効率的なアライメント及び形状評価を可能とする。すなわち、可視光レーザで効率のよい高精度なアライメントを行ったうえで、波面誤差をもとに複雑な非球面3次元形状を持つ回転楕円ミラーの内面全面の形状誤差を計測・評価することが可能である。この形状計測結果はマンドレル作成や電鋳法といったミラー作成プロセスの改良に利用できるだけでなく、回転楕円ミラーの形状修正加工にも活用できる。また、軟X線集光素子のアライメント、形状評価手法としてだけでなく,その計測結果を活用することによって従来にない理想的な軟X線集光光学系を提供することにつながり、X線光学分野に大きく貢献するものである。   The exit wavefront measuring method of the high NA condensing element according to the present invention as described above enables highly accurate and efficient alignment and shape evaluation of the soft X-ray condensing optical system. In other words, it is possible to measure and evaluate the shape error of the entire inner surface of a spheroid mirror having a complex aspherical three-dimensional shape based on the wavefront error after performing efficient and accurate alignment with a visible light laser. Is possible. This shape measurement result can be used not only for improving the mirror creation process such as mandrel creation and electroforming, but also for shape correction processing of the spheroid mirror. Moreover, not only as an alignment and shape evaluation method for soft X-ray condensing elements, but also by utilizing the measurement results, it has led to providing an unprecedented ideal soft X-ray condensing optical system. It greatly contributes to the field.

走査物体の位置が2か所のときのタイコグラフィ計算の概要を示す説明図。Explanatory drawing which shows the outline | summary of the typography calculation when the position of a scanning object is two places. 走査物体が位置がMか所のときのタイコグラフィ位相回復法のアルゴリズムを示す説明図。Explanatory drawing which shows the algorithm of the typography phase recovery method when the position of the scanning object is M. 位相回復計算における焦点面での分解能の向上を示す図。The figure which shows the improvement of the resolution in the focal plane in a phase recovery calculation. 位相回復計算における拘束条件の追加を示す説明図。Explanatory drawing which shows addition of the constraint condition in phase recovery calculation. CCD面上における振幅分布の回復を示す図(領域サイズ:36.864×36.864mm)。The figure which shows recovery | restoration of amplitude distribution on a CCD surface (area | region size: 36.864 * 36.864mm). 本発明の代表的実施形態に係るタイコグラフィ位相回復による波面計測システムの概略構成を示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows schematic structure of the wavefront measuring system by the typography phase recovery based on typical embodiment of this invention. タイコグラフィ位相回復計算における座標系を示す模式図。The schematic diagram which shows the coordinate system in typography phase recovery calculation. 焦点面上の波動場からの逆伝播計算により求めた出口波面分布を示す図。The figure which shows the exit wavefront distribution calculated | required by the back propagation calculation from the wave field on a focal plane. タイコグラフィ位相回復計算における強度情報更新順序の改善を示す説明図。Explanatory drawing which shows the improvement of the intensity | strength information update order in typography phase recovery calculation. 想定する回転楕円ミラー下流開口での振幅位相分布を示す図(外径:5.229mm,内径:2.859mm)The figure which shows the amplitude phase distribution in the assumed rotation ellipse mirror downstream opening (outer diameter: 5.229 mm, inner diameter: 2.859 mm) 計算により求めたCCD面上の仮想強度(一部を抜粋)を示す図(領域サイズ:18.432×18.432mm)。The figure which shows the virtual intensity | strength (a part is extracted) on the CCD surface calculated | required by calculation (area | region size: 18.432 * 18.432 mm). ループ回数と入力強度データと回復強度の差の2乗和の関係を示すグラフ。The graph which shows the relationship of the square sum of the difference of loop frequency, input intensity data, and recovery intensity. 回復された焦点面上での強度と位相(CCD面のデータはピンホール中心が焦点位置にあるとき)を示す図。The figure which shows the intensity | strength and phase on the recovered focal plane (when the data of a CCD plane has a pinhole center in a focus position). 使用した回転楕円ミラーの写真。Photo of the spheroid mirror used. アライメント調整による回転楕円ミラーの集光波面誤差の改善を示す図。The figure which shows the improvement of the condensing wavefront error of a rotation ellipsoidal mirror by alignment adjustment. アライメント回数と波面誤差のコマ収差成分のRMS値の関係を示すグラフ。The graph which shows the relationship between the frequency | count of alignment, and the RMS value of the coma aberration component of a wavefront error. 同一条件で測定された回転楕円ミラーの波面誤差プロファイルを示す図。The figure which shows the wavefront error profile of the rotation ellipse mirror measured on the same conditions. 回転楕円ミラーを回転させる前後の波面計測結果を示す図(外径4.6mm,内径2.9mm)。The figure which shows the wavefront measurement result before and behind rotating a rotation ellipsoidal mirror (outer diameter 4.6mm, inner diameter 2.9mm). 波面誤差プロファイルのゼルニケ解析結果を示すグラフ。The graph which shows the Zernike analysis result of a wavefront error profile. 下流開口波面と回転楕円ミラーの対応を示す図。The figure which shows a response | compatibility with a downstream aperture wave front and a rotation ellipse mirror. 波面誤差から決定した回転楕円ミラーの形状誤差を示す図であり、(a)はミラー内面全面の形状誤差を示す図、(b)はミラー上流端から4mm断面における真円度を示す図、(c)は長手方向の形状誤差プロファイルを示すグラフをそれぞれ示している。It is a figure which shows the shape error of the rotation ellipse mirror determined from the wavefront error, (a) is a figure which shows the shape error of the mirror inner surface, (b) is a figure which shows the roundness in a 4 mm cross section from a mirror upstream end, c) shows graphs showing the shape error profile in the longitudinal direction. 真円度測定装置により計測された回転楕円ミラーの真円度を示す図。The figure which shows the roundness of the spheroid mirror measured by the roundness measuring device.

次に、本発明の実施形態を添付図面に基づき詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明に係るタイコグラフィ位相回復法を用いた集光素子の波面計測法は、集光素子に対して理想的なコヒーレント球面波を入射させ、その集光点のさらに後方に撮像手段(例えばCCDカメラ)を設置し、集光点付近で光軸に対して垂直な面(焦点面)内でピンホールを走査し、投影される回折像の強度プロファイル変化を観察し、タイコグラフィ位相回復計算によって、焦点面上の光の複素波動場を回復させ、さらに光波動場の回折積分を逆計算することで、集光素子の下流開口における光波動場(強度分布及び波面)を求めるものである。   The wavefront measuring method of the condensing element using the typographic phase recovery method according to the present invention makes an ideal coherent spherical wave incident on the condensing element, and an imaging means (for example, a CCD) further behind the condensing point. Camera), scan the pinhole in the plane (focal plane) perpendicular to the optical axis near the focal point, observe the intensity profile change of the projected diffraction image, The light wave field (intensity distribution and wave front) in the downstream aperture of the light converging element is obtained by restoring the complex wave field of light on the focal plane and by inversely calculating the diffraction integral of the light wave field.

図6に本発明に係る高NA集光素子の出口波面計測システムの一例を示す。本例は、回転楕円ミラーに対してタイコグラフィ位相回復を行うために構築された光学系であり、全体は暗室内部の防振台の上に固定されている。光は図中左上のレーザから出射され、最終的に図中右下の撮像手段であるCCDカメラに入射する。光源として使用したのは直線偏光を持つ波長632.8nmのHe−Neレーザである。   FIG. 6 shows an example of an exit wavefront measuring system for a high NA condensing element according to the present invention. This example is an optical system constructed to perform typographic phase recovery on a spheroid mirror, and the whole is fixed on a vibration isolator in a dark room. The light is emitted from the laser at the upper left in the figure, and finally enters a CCD camera which is an imaging means at the lower right in the figure. The light source used was a He-Ne laser with linear polarization and a wavelength of 632.8 nm.

レーザから発せられるガウシアンビームは、まずN/Dフィルタによって出力を調整され、その後、直径50μmのピンホールに入射される。集光素子の出口波面誤差と形状誤差を対応付けるためには、入射するコヒーレント光が点光源から発せられた理想的な球面波であることが好ましく、ピンホールは光が球面波に近づく位置に設けられる。集光素子に入射した光は、その下流に存在する焦点に集光される。   The output of the Gaussian beam emitted from the laser is first adjusted by an N / D filter, and then incident on a pin hole having a diameter of 50 μm. In order to correlate the exit wavefront error and the shape error of the condensing element, it is preferable that the incident coherent light is an ideal spherical wave emitted from a point light source, and the pinhole is provided at a position where the light approaches the spherical wave. It is done. The light incident on the condensing element is collected at a focal point existing downstream thereof.

タイコグラフィ位相回復計算では、上記した高NA近似計算法の(ξ、η)座標系で光の伝播・逆伝播計算を繰り返し行うことが好ましく、このために焦点近傍に挿入し走査される走査物体は透過面積が小さいことが好ましく、そのピンホールは直径20μmに設定されている。走査物体は、走査駆動装置である並進3軸の駆動ステージに固定され、焦点面上において走査される。   In the typographic phase recovery calculation, it is preferable to repeat the light propagation / back propagation calculation in the (ξ, η) coordinate system of the above-mentioned high NA approximation calculation method. Preferably has a small transmission area, and its pinhole is set to 20 μm in diameter. The scanning object is fixed to a translational triaxial drive stage which is a scanning drive device, and is scanned on the focal plane.

集光素子によって焦点付近に集められた光は、走査物体のピンホール内側のみを通過し,その回折パターンが下流側のCCDカメラによって観察される。CCDカメラは、線形性が保証される冷却CCDカメラが好適であり、本例ではBitran社(http://www.bitran.co.jp/)製のBU−53LNが使用されている。BU−53LNの仕様を表1に示す。   The light collected near the focal point by the condensing element passes only inside the pinhole of the scanning object, and its diffraction pattern is observed by the downstream CCD camera. The CCD camera is preferably a cooled CCD camera that guarantees linearity. In this example, BU-53LN manufactured by Bitran (http://www.bitran.co.jp/) is used. Table 1 shows the specifications of BU-53LN.

駆動ステージに固定した走査物体(ピンホール)を焦点面上で走査しながら、順次CCDカメラによって強度プロファイルを取得する。光は焦点面上全体に広がっているが,その強度は強度中心に著しく集中している。したがって、ピンホールの内側に強度中心を含まない場合はCCDカメラに入射する光の強度が非常に弱くなる。したがって、走査位置に応じて露光時間を100msから30000msまで計測可能な最大強度に対して飽和しない範囲で変化させている。CCDカメラの計測値は露光時間に対して線形性を持つため、位相回復計算において取得強度を露光時間によって割ることで、同一条件で撮像を続けた場合と同様の結果として用いることができる。   While scanning a scanning object (pinhole) fixed to the drive stage on the focal plane, an intensity profile is sequentially acquired by a CCD camera. The light spreads over the entire focal plane, but its intensity is remarkably concentrated at the intensity center. Therefore, when the intensity center is not included inside the pinhole, the intensity of light incident on the CCD camera becomes very weak. Therefore, the exposure time is changed in a range not saturated with respect to the maximum intensity that can be measured from 100 ms to 30000 ms according to the scanning position. Since the measurement value of the CCD camera has linearity with respect to the exposure time, by dividing the acquired intensity by the exposure time in the phase recovery calculation, it can be used as the same result as when imaging is continued under the same conditions.

演算装置によるタイコグラフィ位相回復法を用いた光の伝播・逆伝播計算は、本例では、次のように行われる。図7に示すように、焦点面上に原点0の直交座標系(x,y)、CCDカメラのピクセルアレイ上に原点0の直交座標系(u,v)をとり、両座標系の原点はz軸(光軸)が垂直に貫き、その距離をfとする。焦点面上にピンホールを中心が0(x=X、y=Y)に位置するよう設け、その上で焦点面上にx直交座標系(x=x−X、y=y−Y)、CCD面上にu直交座標系(u=u−U,v=v−V)を原点がピンホールの中心を通るようにそれぞれ再設定する。 In this example, the light propagation / back propagation calculation using the typographic phase recovery method by the arithmetic unit is performed as follows. As shown in FIG. 7, an orthogonal coordinate system of the origin 0 f on the focal plane (x, y), orthogonal coordinate system of the origin 0 c on the pixel array of the CCD camera (u, v) take, the two coordinate systems origin z-axis (optical axis) is pierced vertically and the distance f 2. A pinhole is provided on the focal plane so that the center is located at 0 p (x = X, y = Y), and then an x 2 y 2 orthogonal coordinate system (x 2 = x−X, y 2 ) is formed on the focal plane. = Y-Y), u 2 v 2 orthogonal coordinate system (u 2 = u−U, v 2 = v−V) is reset on the CCD surface so that the origin passes through the center of the pinhole.

xy平面の波動場をA(x,y)、uv平面の波動場をU(x,y)とし、焦点面に挿入した走査物体が波動場に与える影響を複素関数O(x,y)とする。ピンホールの場合、この関数はピンホールの内側においては「1」、外側においては「0」の値をとる実数関数となる。焦点面においてピンホール内部を透過した光の波動場は,B(x,y)を用いて式(11)で表わされる。これが出口波動場となる。 The wave field in the xy plane is A (x 2 , y 2 ), the wave field in the uv plane is U (x 2 , y 2 ), and the influence of the scanning object inserted in the focal plane on the wave field is a complex function O (x 2 , y 2 ). In the case of a pinhole, this function is a real function having a value of “1” inside the pinhole and “0” outside. A wave field of light transmitted through the pinhole in the focal plane is expressed by Equation (11) using B (x 2 , y 2 ). This is the exit wave field.

U(u,v)の波動場はB(x,y)からのみ影響を受け、B(x,y)のうち光が実際に存在する領域はピンホールの内側のみであるから、高NA近似回折計算を適用し、CCD面上の波動場は以下の式(12)ように表される。 Wavefield U (u 2, v 2) is B (x 2, y 2) only affected by, B (x 2, y 2 ) area light actually exists out of the pinhole inside only Therefore, the high NA approximate diffraction calculation is applied, and the wave field on the CCD surface is expressed by the following equation (12).

平面の逆空間であるξη平面を以下の式(13)に設定することで、式(12)は出口波動場B(x,y)のフーリエ変換F[B(x,y)](ξ,η)を用いて簡略化される。 By setting the ξη plane, which is the inverse space of the x 2 y 2 plane, to the following formula (13), the formula (12) is the Fourier transform F [B (x 2 of the exit wave field B (x 2 , y 2 ). , Y 2 )] (ξ, η).

式(13)において両辺の強度のみに注目すると、式(14)、式(15)となる。   If attention is paid only to the strengths of both sides in the equation (13), the equations (14) and (15) are obtained.

式(15)からわかるように、ピンホールの中心を原点とする焦点面上波動場A(x,y)にピンホールの透過関数O(x,y)を掛け合わせた出口波動場B(x,y)のフーリエ変換の強度はCCDカメラによる撮像結果によって再生される。できることがわかる。このCCD撮像結果を元にはじめに式(16)を計算し,これを拘束条件として反復計算を行う。 As can be seen from Equation (15), the exit wave obtained by multiplying the wave field A (x 2 , y 2 ) on the focal plane with the center of the pinhole as the origin by the transmission function O (x 2 , y 2 ) of the pinhole. The intensity of the Fourier transform of the field B (x 2 , y 2 ) is reproduced by the imaging result by the CCD camera. I understand that I can do it. Based on the CCD imaging result, equation (16) is calculated first, and iterative calculation is performed using this as a constraint.

この際、CCD面上の撮像範囲の2倍のサイズを現す行列を用意し、撮像範囲内のピクセルにのみ拘束条件をかけて計算を行う。焦点面におけるピクセルサイズはCCD面での行列の大きさに反比例するため、このことは焦点面上の分解能を1/2にする効果がある。これにより,より緻密な焦点面上の波動場が得られる。一方で,撮像範囲外のピクセルは拘束条件が存在しないため、実験上発生し得ない強度が回復されるが、それを防ぐために本手法では,集光素子の下流開口直径を拘束条件として加えている。   At this time, a matrix representing a size twice as large as the imaging range on the CCD surface is prepared, and calculation is performed by applying a constraint condition only to pixels within the imaging range. Since the pixel size at the focal plane is inversely proportional to the size of the matrix at the CCD plane, this has the effect of halving the resolution on the focal plane. As a result, a more precise wave field on the focal plane can be obtained. On the other hand, since there is no constraint condition for pixels outside the imaging range, the intensity that could not occur in the experiment is restored. To prevent this, the downstream aperture diameter of the condensing element is added as a constraint condition in this method. Yes.

このようにして求められた焦点面上の光の波動場から、さらに集光素子の下流開口における波動場を取得するために、焦点面上の波動場に対して回折積分の逆計算を行う。具体的には、式(1)、式(2)のReighley-Sommerfeld第I種回折公式を用いて波数k=−2π/λを代入することによって得られる。回復される波動場はミラーに反射した光のみであり、回転楕円ミラーは筒状の形状をしており,下流開口における波面は図8のような輪帯状となる。   In order to obtain a wave field in the downstream aperture of the condensing element from the wave field of light on the focal plane thus obtained, inverse calculation of diffraction integration is performed on the wave field on the focal plane. Specifically, it is obtained by substituting the wave number k = −2π / λ using the Reighley-Sommerfeld type I diffraction formula of the equations (1) and (2). The wave field to be recovered is only the light reflected by the mirror, the spheroid mirror has a cylindrical shape, and the wavefront at the downstream opening has an annular shape as shown in FIG.

焦点面に挿入される走査物体がピンホールという非常に透過面積が小さい物体であるため、ミラーに反射せず内部を通過した球面波の一部はほとんどが遮られ、CCDカメラに届かない。したがって、回復した波面は反射光のみの情報を持っていることになる。図8の輪帯状の下流開口波動場は、外周側が回転楕円ミラーのうち下流側で反射した光を表わし,内周側がミラーの上流側で反射した光を表している。   Since the scanning object inserted into the focal plane is an object having a very small transmission area called a pinhole, most of the spherical wave that has passed through the interior without being reflected by the mirror is blocked and does not reach the CCD camera. Therefore, the recovered wavefront has information on only the reflected light. In the ring-shaped downstream opening wave field of FIG. 8, the outer peripheral side represents light reflected on the downstream side of the spheroid mirror, and the inner peripheral side represents light reflected on the upstream side of the mirror.

走査物体の走査手順は、特に限定されないが、ピンホールの位置が焦点面上を渦巻き方式で中心部から外周部に向かって走査し、この順で得られるCCD強度情報を元に反復計算を行うことが好ましい。例えばピンホールを図9(a)に示すようにxy方向にラスタースキャンしながら測定し、その順序でCCD強度情報の更新を行った場合、ある確率で図9(b)のように焦点面上波動場に位相飛び(光渦)が発生する。これはピンホール位置を強度の低い外周部から集光点に向けて移動しながら計算して行くことで前列までの位相回復結果と矛盾が蓄積することが原因と考えられる。位相回復過程を見ると光渦の場所は外側に移動していき最終的に消滅するが、計算の収束に時間を要することとなる。また光渦の領域は強度がゼロになるためにCCD面上においても局所的に正確に位相が回復されない問題がある。   The scanning procedure of the scanning object is not particularly limited, but the position of the pinhole scans on the focal plane in a spiral manner from the central part to the outer peripheral part, and iterative calculation is performed based on the CCD intensity information obtained in this order. It is preferable. For example, when pinholes are measured while being raster scanned in the xy directions as shown in FIG. 9A, and the CCD intensity information is updated in that order, the probability is as shown in FIG. 9B on the focal plane. A phase jump (optical vortex) occurs in the wave field. This is considered to be caused by the accumulation of inconsistencies with the phase recovery results up to the previous row by calculating while moving the pinhole position from the outer peripheral portion having low intensity toward the condensing point. Looking at the phase recovery process, the location of the optical vortex moves outward and eventually disappears, but it takes time to converge the calculation. Further, since the intensity of the optical vortex region becomes zero, there is a problem that the phase is not accurately recovered locally even on the CCD surface.

これに対し、図9(c)に示すように渦巻き方式で強度情報の更新を行うと、タイコグラフィ計算では焦点面で強度が高い中心付近にピンホールがあるときほどCCD強度情報の信頼性が高いことから、信頼性が高い情報をもとに先に収束させながら信頼性が低い情報を採用して行くことになり,回復波動場に矛盾が生じにくく、前述のように矛盾が一点に収束してしまった場合でも,光渦領域を外側に向けて迅速に押し出して行くことができ、光渦発生による位相回復の停滞を防止し、効率よく演算を行うことができる。   On the other hand, when the intensity information is updated by the spiral method as shown in FIG. 9C, the reliability of the CCD intensity information is more as the pinhole is near the center where the intensity is high in the focal plane in the typography calculation. Because it is high, it is decided to adopt information with low reliability while converging first based on information with high reliability, and it is difficult for contradiction to occur in the recovery wave field, and as described above, the contradiction converges to one point. Even in such a case, the optical vortex region can be pushed out rapidly toward the outside, the stagnation of phase recovery due to the generation of the optical vortex can be prevented, and calculation can be performed efficiently.

次に、本例の高NA集光素子の出口波面計測システムを用いてタイコグラフィ位相回復シミュレーションを行った結果について説明する。   Next, a description will be given of the result of performing a typographic phase recovery simulation using the exit wavefront measurement system of the high NA condensing element of this example.

本シミュレーションは、回転楕円ミラーの出口波面を仮想的に与えてCCDカメラで測定される強度データを理論的に求めたうえ、CCD面と焦点面の間の反復計算により位相回復を行い、焦点面波動場から出口波面を求める。そして、仮想的に与えた上記出口波面と位相回復法により求められた出口波面とを比較する。想定した回転楕円ミラーの出口波面を図10に示す。また、表2にシミュレーションにおいて想定した実験条件を示す。ピンホールの各位置において、波動場を順方向の回折積分によってCCD面まで伝播させ、図11に示す仮想のCCDカメラでの測定データを作成する。この仮想測定データはピンホールのスキャン回数の数だけ強度データが存在する。これら仮想測定データを用いて、上記した式(11)〜のタイコグラフィ位相回復を行い、焦点面の波動場、出口波面を求める。   In this simulation, the exit wavefront of the spheroid mirror is virtually given and the intensity data measured by the CCD camera is obtained theoretically, and then phase recovery is performed by iterative calculation between the CCD plane and the focal plane. Find the exit wavefront from the wave field. Then, the exit wavefront virtually given is compared with the exit wavefront obtained by the phase recovery method. The assumed exit wavefront of the spheroid mirror is shown in FIG. Table 2 shows experimental conditions assumed in the simulation. At each position of the pinhole, the wave field is propagated to the CCD surface by forward diffraction integration, and measurement data with a virtual CCD camera shown in FIG. 11 is created. The virtual measurement data includes intensity data as many times as the number of pinhole scans. Using these virtual measurement data, the typographic phase recovery of Equations (11) to (11) is performed, and the wave field of the focal plane and the exit wave front are obtained.

図12に全体のループ回数と,式(17)で計算される入力強度データと反復計算の中での回復強度プロファイルの一致度を示す。このように約20回のループ回数を行うことで計算がほぼ収束していることがわかる。   FIG. 12 shows the total number of loops and the degree of coincidence between the input intensity data calculated by equation (17) and the recovery intensity profile in the iterative calculation. Thus, it can be seen that the calculation is almost converged by performing about 20 loops.

また、図13に位相回復計算において出力された焦点面の位相と振幅、CCD観察面での振幅プロファイルを示す。図8に位相回復計算の最終結果を示す。入力した波面誤差と比較した結果、差異はRMSで0.0021λであり、高精度に波面決定できることがわかる。   FIG. 13 shows the phase and amplitude of the focal plane output in the phase recovery calculation, and the amplitude profile on the CCD observation plane. FIG. 8 shows the final result of the phase recovery calculation. As a result of comparison with the input wavefront error, the difference is 0.0021λ in RMS, and it can be seen that the wavefront can be determined with high accuracy.

次に、本例の高NA集光素子の出口波面計測システムを用いて軟X線集光用回転楕円ミラーの形状・アライメント誤差の計測実験を行った結果について説明する。   Next, the results of measurement experiments on the shape / alignment error of the soft X-ray focusing spheroid mirror using the exit wavefront measuring system of the high NA focusing element of this example will be described.

表3および図14に使用した軟X線集光用回転楕円ミラーの仕様と写真を示す。本ミラーは,形状誤差約50nm(P−V)の精度で作製されたマンドレルを,久米らが開発した常温の電析出条件を用いた高精度電鋳法により形状転写を行ったものであり、内面の真円度としてミラー中央部で約100nm(P−V)である。   Table 3 and FIG. 14 show specifications and photographs of the spheroid mirror for soft X-ray focusing. This mirror was obtained by transferring the shape of a mandrel manufactured with an accuracy of a shape error of about 50 nm (P-V) by a high-precision electroforming method using room temperature electrodeposition conditions developed by Kume et al. The roundness of the inner surface is about 100 nm (P-V) at the center of the mirror.

ミラーの設置は、シャックハルトマンセンサーを用いた波面計測により、入射ビームの曲率半径を見ながら回転楕円ミラーの設計値であるR=6440mmの位置にミラー上流端を設置する。CCDカメラに映る回転楕円ミラーの反射光とミラー中心を通る球面波の中心を一致させ、ミラーの姿勢をおおよそビームに対して平行にする。また、CCDカメラに映る反射光が対称性の良いリング状となるように姿勢を調整する。そして、演算装置による波面回復結果から、ゼルニケ解析によりコマ収差成分を算出し、入射角度誤差を予測してコマ収差成分が低減するようにミラーの姿勢をアライメント調整する。この演算、アライメントを数回繰り返す。   The mirror is installed by setting the upstream end of the mirror at a position of R = 6440 mm, which is the design value of the spheroid mirror, while observing the curvature radius of the incident beam by wavefront measurement using a Shack-Hartmann sensor. The reflected light of the spheroid mirror reflected on the CCD camera and the center of the spherical wave passing through the center of the mirror are made to coincide so that the attitude of the mirror is approximately parallel to the beam. Also, the posture is adjusted so that the reflected light reflected on the CCD camera has a ring shape with good symmetry. Then, the coma aberration component is calculated by Zernike analysis from the wavefront recovery result by the arithmetic device, and the attitude of the mirror is aligned so that the incident angle error is predicted and the coma aberration component is reduced. This calculation and alignment are repeated several times.

表4にその他の実験条件を示す。回転楕円ミラーの形状計測の長手方向の分解能5mmを達成するためには出口波面において分解能0.148mmを実現する必要がある。これは焦点面上において直径73μmの範囲でスキャンを行う必要があることを示している。そこで本実験ではピンホールのスキャン範囲を93μmとしている。   Table 4 shows other experimental conditions. In order to achieve a resolution of 5 mm in the longitudinal direction of shape measurement of the spheroid mirror, it is necessary to realize a resolution of 0.148 mm at the exit wavefront. This indicates that it is necessary to scan in the range of 73 μm in diameter on the focal plane. Therefore, in this experiment, the pinhole scan range is set to 93 μm.

(アライメント調整結果)
図15にアライメントを行った結果を示す。このように各アライメントを実施することにより、傾きに起因するコマ収差成分が低減していることがわかる。アライメント回数と波面誤差のコマ収差成分の関係を図16に示す。アライメント調整4回でコマ収差成分がRMSで0.0020λ(1.28nm)に低減している。このことはミスアライメントに起因する波面誤差を想定する軟X線の波長4.2nm以下に抑えられたことを示している。アライメント精度としてミラーの傾きに換算すると1.39μradに相当し、可視光とピンホールのみで構成される簡便な光学系によってこの精度が得られたことは非常に有用である。アライメントが終了した段階で得られた波面誤差はRMSで0.0297λ(λ=632.8nm),P−Vで0.273λであった。
(Alignment adjustment result)
FIG. 15 shows the result of alignment. It can be seen that the coma aberration component due to the inclination is reduced by performing each alignment in this way. FIG. 16 shows the relationship between the number of alignments and the coma aberration component of the wavefront error. The coma component is reduced to 0.0020λ (1.28 nm) by RMS after four alignment adjustments. This indicates that the wavelength of soft X-rays that is assumed to be a wavefront error due to misalignment is suppressed to 4.2 nm or less. When converted to the mirror tilt as the alignment accuracy, it corresponds to 1.39 μrad, and it is very useful that this accuracy is obtained by a simple optical system composed of only visible light and a pinhole. The wavefront error obtained when the alignment was completed was 0.0297λ (λ = 632.8 nm) in RMS and 0.273λ in P-V.

(波面誤差プロファイルの再現性、確からしさの評価)
最終的に得られた波面誤差プロファイルの再現性を評価するために、連続2回測定を行った。図17に同一条件において行った2回の波面誤差プロファイルを示す。2回連続測定における波面誤差プロファイルの差の2乗平均平方根は0.00821λ(λ=632.8nm)であった。また、評価対象とするゼルニケ解析における81次項以下の成分でみると0.00491λであり、高い再現性を示している。
(Evaluation of reproducibility and accuracy of wavefront error profile)
In order to evaluate the reproducibility of the finally obtained wavefront error profile, two continuous measurements were performed. FIG. 17 shows two wavefront error profiles performed under the same conditions. The root mean square of the difference in the wavefront error profile in the two consecutive measurements was 0.00821λ (λ = 632.8 nm). Further, in terms of the component of the 81st order or less in the Zernike analysis to be evaluated, it is 0.00491λ, indicating high reproducibility.

図18に回転楕円ミラーを光軸周りに90度回転させた時に得られた波面誤差プロファイルを示す。この計測では,回転楕円ミラーの焦点位置、ピッチング、ヨーイングの角度調整を再度行っており,完全に独立した計測となっている。回転角度の決定は波面誤差プロファイルと同時に回復される下流開口上の強度プロファイルの形状をもとに行う。輪帯状の強度プロファイルの外周円は回転楕円ミラーの下流開口のエッジ形状を反映しているため、凹凸形状のフィッティングを行うことにより1°レベルでの回転角度決定が可能である。   FIG. 18 shows a wavefront error profile obtained when the spheroid mirror is rotated 90 degrees around the optical axis. In this measurement, the focus position of the spheroid mirror, pitching, and yawing angle are adjusted again, and the measurement is completely independent. The rotation angle is determined based on the shape of the intensity profile on the downstream opening that is recovered simultaneously with the wavefront error profile. Since the outer peripheral circle of the ring-shaped intensity profile reflects the edge shape of the downstream opening of the spheroid mirror, the rotation angle can be determined at a 1 ° level by fitting the concave and convex shapes.

図18に示すように、ミラーの光軸中心の回転に対して連動して回転する波面誤差成分と回転しない成分が存在する。回転する成分は、ミラーの形状誤差に起因する成分である。回転しない成分は、ミラーに入射する前の波面における波面誤差を含むシステムエラー成分であり、非点収差成分がシステムエラーとして多く含まれていると考えられる。図18(c),(d)はミラー回転前後の非点収差を表しており,これらはほぼ変化していない。非点収差は90度の回転によって反転するという特徴があるため、この成分は明らかにミラーに起因するものでないことがわかる。   As shown in FIG. 18, there are a wavefront error component that rotates in conjunction with rotation of the center of the optical axis of the mirror and a component that does not rotate. The rotating component is a component resulting from a mirror shape error. The component that does not rotate is a system error component including a wavefront error in the wavefront before entering the mirror, and it is considered that many astigmatism components are included as system errors. FIGS. 18C and 18D show astigmatism before and after mirror rotation, and these are almost unchanged. Since astigmatism is characterized by being inverted by a 90-degree rotation, it can be seen that this component is clearly not attributable to the mirror.

非点収差を含んだままの波面誤差同士の一方を回転させ、ミラーの向きを揃えたうえで比較すると、RMSで0.0420λ(λ=632.8nm)もの差異があった。他方、双方の非点収差の平均分布をシステムエラーとして同定し、回転前後の波面誤差分布から除去した結果を図18(e),(f)に示す。システムエラーを除けば互いの波面誤差プロファイルは似通っていることがわかる。   When one of the wavefront errors containing astigmatism was rotated and the mirror directions were aligned, the RMS was 0.0420λ (λ = 632.8 nm). On the other hand, the average distribution of both astigmatisms is identified as a system error, and the result of removing it from the wavefront error distribution before and after rotation is shown in FIGS. 18 (e) and 18 (f). It can be seen that the wavefront error profiles of each other are similar except for system errors.

非点収差成分を除去した回転前後それぞれの波面誤差プロファイルのゼルニケ解析結果を図19に示す。球面収差を示すz9が良く一致している。光軸周りに90°回転した前後の波面誤差プロファイルの差分の2乗平均平方根は0.0128λ(λ=632.8nm)であった。また、評価対象とするゼルニケ解析における81次項以下の成分でみると0.00784λ(λ=632.8nm)であった。   FIG. 19 shows the Zernike analysis results of the wavefront error profiles before and after the rotation with the astigmatism component removed. Z9 indicating spherical aberration is in good agreement. The root mean square of the difference between the wavefront error profiles before and after being rotated 90 ° around the optical axis was 0.0128λ (λ = 632.8 nm). Further, in terms of the component of the 81st order or less in the Zernike analysis to be evaluated, it was 0.00784λ (λ = 632.8 nm).

表5に,再現性/確からしさ評価をまとめた結果を示す。ミラーを入射波面に対して回転させてシステムエラーを分離することにより、ミラーの形状に起因する波面誤差を計測できた。以上の結果から、回転楕円ミラーによる波面計測における確からしさはλ/100レベルであるといえる。   Table 5 shows the results of reproducibility / probability evaluation. By separating the system error by rotating the mirror with respect to the incident wavefront, the wavefront error due to the shape of the mirror could be measured. From the above results, it can be said that the certainty in the wavefront measurement by the spheroid mirror is λ / 100 level.

(回転楕円ミラーの3次元形状誤差プロファイルの算出)
計測された波面誤差プロファイルから回転楕円ミラーの3次元形状誤差プロファイルを算出する。光源からミラー反射面,下流開口断面へと進む光線は、回転楕円ミラーの形状誤差が小さい場合、重なることはない。そのためミラー反射面と出口波面は1対1で対応すると近似することができる。図20に示すように,下流開口における波面誤差の半径方向成分と周方向成分は、それぞれ回転楕円ミラーの長手方向形状誤差と周方向形状誤差に相当する。図21(a)にミラー内面全面の形状誤差をプロットした。この図よりミラー上流端10mm及び下流端5mmの領域にそれぞれ形状誤差が集中していることがわかる。
(Calculation of 3D shape error profile of spheroid mirror)
A three-dimensional shape error profile of the spheroid mirror is calculated from the measured wavefront error profile. Light rays traveling from the light source to the mirror reflection surface and the downstream aperture cross section do not overlap when the shape error of the spheroid mirror is small. Therefore, it can be approximated that the mirror reflection surface and the exit wavefront have a one-to-one correspondence. As shown in FIG. 20, the radial component and the circumferential component of the wavefront error at the downstream opening correspond to the longitudinal shape error and the circumferential shape error of the spheroid mirror, respectively. FIG. 21A plots the shape error of the entire inner surface of the mirror. From this figure, it can be seen that shape errors are concentrated in the regions of the mirror upstream end 10 mm and the downstream end 5 mm.

また、図21(b)に回転楕円ミラー周方向のプロファイルを示す。これは、上流端から4mmの距離の断面における形状プロファイルの真円からの差を表示している。この図より、上流端付近で真円度は1μmを超えており、楕円状の形状を持つことがわかる。他方、中央部における断面をとると100nm以下の真円度が得られる。また、図21(c)に回転楕円ミラー長手方向のプロファイル断面を示す。ミラー中央部30mmに限定すれば、長手方向においてもP−V100nm前後の形状誤差プロファイルが得られる。   FIG. 21B shows a profile in the circumferential direction of the spheroid mirror. This indicates the difference from the perfect circle of the shape profile in the cross section at a distance of 4 mm from the upstream end. From this figure, it can be seen that the roundness exceeds 1 μm near the upstream end and has an elliptical shape. On the other hand, a roundness of 100 nm or less can be obtained by taking a cross section at the center. FIG. 21C shows a profile cross section in the longitudinal direction of the spheroid mirror. If it is limited to the central part of the mirror 30 mm, a shape error profile around P-V 100 nm can be obtained in the longitudinal direction.

この形状誤差プロファイルの妥当性を評価するために、真円度測定器(小坂研究所製:EC1550H)によりミラー内面の真円度を計測した。結果を図22に示す。プロファイルを比較すると、扁平方向及びくびれ位置においてよく似た傾向がみられ、真円度の値もオーダーが一致していることがわかる。また、ミラー中央部における真円度測定器による計測結果も100nm以下であり、波面計測法に基づく値とオーダーが一致した。これらより本波面計測法がミラー形状誤差に基づく情報を回復できたと確認できた。   In order to evaluate the validity of this shape error profile, the roundness of the inner surface of the mirror was measured by a roundness measuring device (manufactured by Kosaka Laboratory: EC1550H). The results are shown in FIG. When the profiles are compared, it can be seen that similar tendencies are observed in the flat direction and the constricted position, and the roundness values are in the same order. Moreover, the measurement result by the roundness measuring device in the center part of the mirror was also 100 nm or less, and the value based on the wavefront measurement method and the order coincided. From these, it was confirmed that the wavefront measurement method was able to recover information based on the mirror shape error.

以上、本発明の実施形態について説明したが、本発明はこうした実施例に何ら限定されるものではなく、軟X線集光光学系以外の高NA集光素子の出口波面計測、アライメント調整、形状誤差測定にも広く適用でき、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。   As described above, the embodiments of the present invention have been described. However, the present invention is not limited to these examples, and the exit wavefront measurement, alignment adjustment, and shape of high NA condensing elements other than the soft X-ray condensing optical system are described. Of course, the present invention can be widely applied to error measurement and can be implemented in various forms without departing from the gist of the present invention.

Claims (4)

高NA集光素子の出口波面計測方法であって、
高NA集光素子の焦点面上においてピンホールを走査し、
ピンホールの光源と反対側である下流側に設置された撮像手段により,前記ピンホールの走査で変化する回析光の強度分布を計測し、
前記計測される回析光の強度分布および各走査位置の情報に基づき、前記高NA集光素子の焦点面と前記撮像手段の観察面との間で、タイコグラフィ位相回復法による光の伝播・逆伝播計算の繰り返しにより焦点面上の光の波動場分布を求め、
該焦点面上の光の波動場に基づき、回析積分の逆計算で前記高NA集光素子の出口波面を求めることを特徴とする高NA集光素子の出口波面計測方法。
An exit wavefront measuring method for a high NA condensing element,
Scan the pinhole on the focal plane of the high NA condensing element,
Measure the intensity distribution of the diffracted light that changes with the scanning of the pinhole by the imaging means installed on the downstream side opposite to the light source of the pinhole,
Based on the measured intensity distribution of the diffracted light and information on each scanning position, light propagation by the typographic phase recovery method is performed between the focal plane of the high NA condensing element and the observation plane of the imaging means. Obtain the wave field distribution of light on the focal plane by repeating back propagation calculations.
An exit wavefront measuring method for a high NA condensing element, wherein an exit wavefront of the high NA condensing element is obtained by inverse calculation of diffraction integration based on a wave field of light on the focal plane.
前記タイコグラフィ位相回復法による光の伝播・逆伝播計算において、観察面上の設定している測定強度固定の領域の外側に位相とともに強度も変更可能な領域を設定するとともに、前記集光素子の出口形状寸法を拘束条件として加える請求項1記載の高NA集光素子の出口波面計測方法。   In the light propagation / reverse propagation calculation by the typographic phase recovery method, a region where the intensity can be changed together with the phase is set outside the region where the measurement intensity is fixed on the observation surface. The method for measuring an exit wavefront of a high NA condensing element according to claim 1, wherein the exit shape dimension is added as a constraint condition. 前記タイコグラフィ位相回復法による光の伝播・逆伝播計算において、
前記計測される回折光の強度分布を、下記[1]〜[7]に示す高NA近似計算法の(ξ、η)座標系に補間した形で出力し、
該出力結果を用いて、下記式(8)の(ξ、η)座標系でタイコグラフィ位相回復法による光の伝播・逆伝播計算を繰り返し行う請求項1又は2記載の高NA集光素子の出口波面計測方法。
[1] 観察面D上の点(u,v,z)における複素波動場を、Reighley-Sommerfeld第I種回折公式の式(1)のU(u,v,z)と定義する。U(x,y,0)は焦点面S上の波動場とする。

焦点面に(x,y)座標系を設定
観察面に(u,v)座標系を設定
各座標系の原点を貫いて光が伝播する方向をZ軸の正
λは光の波長
[2] (x,y,0)から点(u,v,z)までの距離は式(2)で表わされる。

[3] 新たに焦点面のピンホール中心(0,0,0)から観察面(u,v,z)までの距離rを式(3)で定義する。

[4] 振幅係数について、

を用いて

と近似する。
[5] 位相係数について、式(4)及びr>zから求まる近似式(5)を設定するとともに焦点面上の2次項を無視し、これを近似条件とする。
[6] 以上から式(6)が得られる。ここで式(7)とおいて、式(8)のフーリエ変換の形の式が得られる。
[7] (u、v)座標系と(ξ、η)座標系の補間の式は、下記式(9)、式(10)となる。
In the light propagation / back propagation calculation by the typographic phase recovery method,
The intensity distribution of the measured diffracted light is output in the form interpolated in the (ξ, η) coordinate system of the high NA approximate calculation method shown in the following [1] to [7],
3. The high NA condensing element according to claim 1, wherein the output result is used to repeatedly perform light propagation / back propagation calculation by a typographic phase recovery method in the (ξ, η) coordinate system of the following equation (8): Exit wavefront measurement method.
[1] The complex wave field at the point (u, v, z) on the observation surface D is defined as U (u, v, z) in the equation (1) of the Reighley-Sommerfeld type I diffraction formula. U (x, y, 0) is a wave field on the focal plane S.

(X, y) coordinate system is set on the focal plane. (U, v) coordinate system is set on the observation plane. The direction in which light propagates through the origin of each coordinate system is the positive Z axis. Λ is the wavelength of light [2] The distance from (x, y, 0) to point (u, v, z) is expressed by equation (2).

[3] A distance r 2 from the pinhole center (0, 0, 0) of the focal plane to the observation plane (u, v, z) is newly defined by Expression (3).

[4] About amplitude coefficient

Using

And approximate.
[5] For the phase coefficient, an approximate expression (5) obtained from Expression (4) and r 2 > z is set, and a quadratic term on the focal plane is ignored, and this is set as an approximate condition.
[6] From the above, Expression (6) is obtained. Here, in the equation (7), an equation in the form of Fourier transform of the equation (8) is obtained.
[7] The interpolation equations for the (u, v) coordinate system and the (ξ, η) coordinate system are the following equations (9) and (10).
高NA集光素子の出口波面計測システムであって、
ピンホールを有する走査物体と、
前記走査物体を、前記高NA集光素子の焦点面上において走査する走査駆動装置と、
前記走査物体の光源と反対側である下流側に設置され、前記ピンホールの走査で変化する回析光の強度分布を計測する撮像装置と、
前記撮像手段で計測される回析光の強度分布および各走査位置の情報に基づき、前記高NA集光素子の焦点面と前記撮像手段の観察面との間で、タイコグラフィ位相回復法による光の伝播・逆伝播計算の繰り返しにより焦点面上の光の波動場分布を求め、該焦点面上の光の波動場に基づき、回析積分の逆計算で前記高NA集光素子の出口波面を求める演算装置と、
を備えてなることを特徴とする高NA集光素子の出口波面計測システム。
An exit wavefront measurement system for a high NA condensing element,
A scanning object having a pinhole;
A scanning drive device that scans the scanning object on a focal plane of the high NA condensing element;
An imaging device that is installed on the downstream side opposite to the light source of the scanning object and measures the intensity distribution of the diffracted light that changes by scanning the pinhole,
Based on the intensity distribution of the diffracted light measured by the imaging means and the information on each scanning position, light by a typographic phase recovery method is used between the focal plane of the high NA condensing element and the observation plane of the imaging means. The wave field distribution of the light on the focal plane is obtained by repeating the propagation and back propagation calculations of the above, and based on the wave field of the light on the focal plane, the exit wavefront of the high NA condensing element is calculated by inverse calculation of the diffraction integral. A computing device to be obtained;
An exit wavefront measuring system for a high NA condensing element, comprising:
JP2015158575A 2015-08-10 2015-08-10 Outlet wave surface measurement method and outlet wave surface measurement system for high NA condensing elements Active JP6823334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015158575A JP6823334B2 (en) 2015-08-10 2015-08-10 Outlet wave surface measurement method and outlet wave surface measurement system for high NA condensing elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015158575A JP6823334B2 (en) 2015-08-10 2015-08-10 Outlet wave surface measurement method and outlet wave surface measurement system for high NA condensing elements

Publications (2)

Publication Number Publication Date
JP2017037002A true JP2017037002A (en) 2017-02-16
JP6823334B2 JP6823334B2 (en) 2021-02-03

Family

ID=58048425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015158575A Active JP6823334B2 (en) 2015-08-10 2015-08-10 Outlet wave surface measurement method and outlet wave surface measurement system for high NA condensing elements

Country Status (1)

Country Link
JP (1) JP6823334B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050937A (en) * 2018-01-08 2018-05-18 浙江大学 The detection method and device of optical elements of large caliber intermediate frequency error
JP2021527218A (en) * 2018-06-15 2021-10-11 エーエスエムエル ネザーランズ ビー.ブイ. Reflector and manufacturing method of reflector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050937A (en) * 2018-01-08 2018-05-18 浙江大学 The detection method and device of optical elements of large caliber intermediate frequency error
CN108050937B (en) * 2018-01-08 2019-07-16 浙江大学 The detection method and device of optical elements of large caliber intermediate frequency error
JP2021527218A (en) * 2018-06-15 2021-10-11 エーエスエムエル ネザーランズ ビー.ブイ. Reflector and manufacturing method of reflector
JP7286683B2 (en) 2018-06-15 2023-06-05 エーエスエムエル ネザーランズ ビー.ブイ. Reflector and reflector manufacturing method
US11694821B2 (en) 2018-06-15 2023-07-04 Asml Netherlands B.V. Reflector and method of manufacturing a reflector

Also Published As

Publication number Publication date
JP6823334B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
CN110160751B (en) Wide-band wavefront error detection device and detection method based on phase recovery
WO2018090951A1 (en) Wave-front sensor and wave-front detection method and system based on microholographic array
KR101546972B1 (en) Method for determining intensity distribution in the image plane of a projection exposure arrangement
CN106646867B (en) A kind of confocal alignment device of deep ultraviolet optical system and method
JP5616983B2 (en) Illumination system and projection objective of mask inspection system
US9823119B2 (en) System and method for analyzing a light beam guided by a beam guiding optical unit
US20220262087A1 (en) Method and apparatus for super-resolution optical imaging
CN106644105A (en) Wavefront sensor based on double helix point spread function, detection method, and system
Morgan et al. Ptychographic X-ray speckle tracking
JP6823334B2 (en) Outlet wave surface measurement method and outlet wave surface measurement system for high NA condensing elements
TWI764536B (en) Design method of imaging optical system
WO2021068594A1 (en) Wavefront reconstruction device and method based on extended rotationally symmetric structured light illumination
Cornejo-Rodriguez et al. Wavefront slope measurements in optical testing
Spiga et al. Profile reconstruction of grazing-incidence X-ray mirrors from intra-focal X-ray full imaging
KR102465766B1 (en) Measurement system for form error of optical surface using dove prism and beam expander
CN109458944A (en) The absolute verifying attachment of plane and its detection method based on synchronous conjugation differential interferometry
TWI766555B (en) Imaging optical system
US11269260B2 (en) Method and assembly for characterizing a mask or a wafer for microlithography
JP2011242544A (en) Reflection deflector, relative tilt measuring device, and aspherical surface lens measuring device
Legrand et al. Three-dimensional imaging of single atoms in an optical lattice via helical point-spread-function engineering
KR101722495B1 (en) Confocal surface profiler and measuring method using the same
CN111982014B (en) Micro-interference-based microsphere surface morphology large-field-of-view measurement method
Sohn et al. Köhler illumination for high-resolution optical metrology
Takeo et al. Evaluation of surface figure error profile of ellipsoidal mirror for soft x-ray focusing
Spiga et al. Modelling diffractive effects in silicon pore optics for the ATHENA X-ray Telescope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R150 Certificate of patent or registration of utility model

Ref document number: 6823334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250