JP5942010B2 - Superconducting coil manufacturing method and manufacturing apparatus - Google Patents

Superconducting coil manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP5942010B2
JP5942010B2 JP2015080814A JP2015080814A JP5942010B2 JP 5942010 B2 JP5942010 B2 JP 5942010B2 JP 2015080814 A JP2015080814 A JP 2015080814A JP 2015080814 A JP2015080814 A JP 2015080814A JP 5942010 B2 JP5942010 B2 JP 5942010B2
Authority
JP
Japan
Prior art keywords
superconducting
thickness
coil
superconducting wire
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015080814A
Other languages
Japanese (ja)
Other versions
JP2015165581A (en
Inventor
正志 原口
正志 原口
雅載 大保
雅載 大保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2015080814A priority Critical patent/JP5942010B2/en
Publication of JP2015165581A publication Critical patent/JP2015165581A/en
Application granted granted Critical
Publication of JP5942010B2 publication Critical patent/JP5942010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、超電導線材を用いた超電導コイルの製造方法および製造装置に関する。   The present invention relates to a method and an apparatus for manufacturing a superconducting coil using a superconducting wire.

従来、超電導コイルは、磁気共鳴画像診断装置(MRI)、核磁気共鳴分光装置(NMR)、超電導磁気エネルギー貯蔵装置(SMES)といった様々な用途に使用されている。これまで、これらの用途には、超電導線材としてNbTi等の金属系超電導体が広く用いられてきたが、近年、Bi2212(BiSrCaCu8+δ)、Bi2223(BiSrCaCu10+δ)等のビスマス系超電導線材や、RE123(REBaCu7−δ、RE:希土類元素、例えばイットリウム)等のイットリウム系超電導線材といった、酸化物高温超電導線材の開発が進められている。 Conventionally, superconducting coils have been used in various applications such as magnetic resonance imaging diagnostic equipment (MRI), nuclear magnetic resonance spectroscopy equipment (NMR), and superconducting magnetic energy storage equipment (SMES). Until now, metallic superconductors such as NbTi have been widely used as superconducting wires for these applications, but in recent years Bi2212 (Bi 2 Sr 2 CaCu 2 O 8 + δ ), Bi2223 (Bi 2 Sr 2 Ca 2 Cu). Development of oxide high-temperature superconducting wires such as bismuth-based superconducting wires such as 3 O 10 + δ ) and yttrium-based superconducting wires such as RE123 (REBa 2 Cu 3 O 7-δ , RE: rare earth elements such as yttrium) has been promoted. Yes.

酸化物高温超電導線材は、金属系超電導線材に比べ高温でも使用できることから、超電導コイル等への応用開発も進められている。現状で提供されているほとんどの酸化物超電導線材はテープ状である。このようなテープ状の酸化物超電導線材を用いた超電導コイルとして、パンケーキコイル、ダブルパンケーキコイル、あるいはこれらのコイルを複数積層して構成された酸化物超電導コイルが知られている(例えば特許文献1参照)。   Since oxide high-temperature superconducting wires can be used at higher temperatures than metal superconducting wires, application development to superconducting coils and the like is also underway. Most oxide superconducting wires currently provided are in the form of tapes. As a superconducting coil using such a tape-shaped oxide superconducting wire, a pancake coil, a double pancake coil, or an oxide superconducting coil configured by stacking a plurality of these coils is known (for example, a patent) Reference 1).

酸化物高温超電導線材は、金属基板上に薄層を多層に積層する構造であり、超電導層の上には銀などの保護層や、銅(めっきやテープ)などの安定化層を有する多層複合構造となっている。従来の金属系超電導線材を用いた超電導コイルは、超電導転移温度が低いため、高価な液体ヘリウム等で冷却されることが多いのに対して、酸化物超電導線材は超電導転移温度が比較的高いため、安価な液体窒素で冷却し、運転することが可能である。   Oxide high-temperature superconducting wire has a structure in which thin layers are laminated in multiple layers on a metal substrate. A multilayer composite with a protective layer such as silver and a stabilizing layer such as copper (plating or tape) on the superconducting layer. It has a structure. Conventional superconducting coils using metallic superconducting wires have a low superconducting transition temperature, so they are often cooled with expensive liquid helium, etc., whereas oxide superconducting wires have a relatively high superconducting transition temperature. It can be cooled and operated with inexpensive liquid nitrogen.

特開2013−55311号公報JP2013-55311A

MRIやNMR等の用途では、より均一で、より高い磁場を有するマグネットを得るため、ボビン上に超電導線材が多重に巻かれた超電導コイルにおいて、線材の超電導層の間隔が均一になり、コイルとして電流密度を均一にすることが求められている。NbTi等の金属系超電導線材は、丸線や平角線など形状に自由度があり、かつ、伸線工程を経て製造することにより、線材の厚さの公差が数十μm程度のレベルで製造することが可能である。これに対し、イットリウム(Y)系の酸化物高温超電導線材は、金属基板上に薄層を多層に積層する構造であり、ビスマス(Bi)系の酸化物高温超電導線材は、安定化材にフィラメント上の超電導体が多数埋め込まれた多芯構造であり、線材の厚さの公差が100μmを大きく上回る。このように、線材寸法を精度良く製作することが困難な高温超電導線材を用いて均一で高磁場を有するマグネットを製作する際には、巻線精度を管理することが課題である。   In a superconducting coil in which superconducting wires are wound in multiple layers on a bobbin, the spacing between the superconducting layers of the wire becomes uniform in order to obtain a magnet that is more uniform and has a higher magnetic field in applications such as MRI and NMR. There is a demand for uniform current density. Metal-based superconducting wires such as NbTi have a degree of freedom in shapes such as round wires and flat wires, and are manufactured through a wire drawing process, so that the tolerance of the thickness of the wires is about a few tens of μm. It is possible. In contrast, yttrium (Y) -based oxide high-temperature superconducting wires have a structure in which thin layers are stacked in layers on a metal substrate, and bismuth (Bi) -based oxide high-temperature superconducting wires are filaments as stabilizing materials. It has a multi-core structure in which a large number of the superconductors are embedded, and the tolerance of the wire thickness greatly exceeds 100 μm. Thus, when manufacturing a magnet having a uniform and high magnetic field using a high-temperature superconducting wire that is difficult to manufacture with accurate wire dimensions, it is a problem to manage the winding accuracy.

本発明は、上記事情に鑑みてなされたものであり、超電導線材の厚さの公差が大きくても、超電導線材が均一に巻かれた超電導コイルを容易に製造することが可能な超電導コイルの製造方法および製造装置を提供することを課題とする。   The present invention has been made in view of the above circumstances, and manufacture of a superconducting coil capable of easily manufacturing a superconducting coil in which the superconducting wire is uniformly wound even if the thickness tolerance of the superconducting wire is large. It is an object to provide a method and a manufacturing apparatus.

前記課題を解決するため、本発明は、テープ形状の超電導線材を巻いた超電導コイルの製造方法であって、前記超電導線材を巻き取る前に前記超電導線材の厚さを調整する工程と、前記超電導線材を巻き取りながら巻線時の超電導コイルの外周寸法を光学透過式センサにより測定する工程と、を有し、あらかじめ超電導線材の長手方向にわたって厚さを測定しておき、この厚さ情報に基づいて、前記超電導線材の厚さを調整することを特徴とする超電導コイルの製造方法を提供する。
前記超電導コイルの外周寸法は、前記超電導コイルの外径であることが好ましい。
前記超電導線材が、イットリウム系の酸化物超電導体からなる酸化物超電導層を有することも可能である。
In order to solve the above-mentioned problems, the present invention provides a method of manufacturing a superconducting coil wound with a tape-shaped superconducting wire, the step of adjusting the thickness of the superconducting wire before winding the superconducting wire, and the superconducting Measuring the outer circumference of the superconducting coil during winding with an optical transmission sensor while winding the wire, and measuring the thickness in the longitudinal direction of the superconducting wire in advance, based on this thickness information And providing a method of manufacturing a superconducting coil, wherein the thickness of the superconducting wire is adjusted.
The outer peripheral dimension of the superconducting coil is preferably the outer diameter of the superconducting coil.
The superconducting wire may have an oxide superconducting layer made of an yttrium-based oxide superconductor.

また、前記課題を解決するため、本発明は、テープ形状の超電導線材を巻いた超電導コイルの製造装置であって、前記超電導線材を巻き取る巻取部と、前記超電導線材を前記巻取部で巻き取る前に前記超電導線材の厚さを調整する厚さ調整部と、前記超電導線材を前記巻取部で巻き取りながら巻線時の超電導コイルの外周寸法を測定する光学透過式センサと、あらかじめ超電導線材の長手方向にわたって厚さを測定しておいた厚さ情報が記録され、前記厚さ情報に基づく信号を前記厚さ調整部に送信して前記超電導線材の厚さを調整する制御部と、を有することを特徴とする超電導コイルの製造装置を提供する。
前記超電導コイルの外周寸法は、前記超電導コイルの外径であることが好ましい。
前記超電導線材が、イットリウム系の酸化物超電導体からなる酸化物超電導層を有することも可能である。
In order to solve the above-mentioned problem, the present invention provides a superconducting coil manufacturing apparatus in which a tape-shaped superconducting wire is wound, and a winding unit for winding the superconducting wire, and the superconducting wire in the winding unit. A thickness adjusting unit that adjusts the thickness of the superconducting wire before winding, an optical transmission sensor that measures the outer circumference of the superconducting coil during winding while winding the superconducting wire with the winding unit, and A control unit that records the thickness information obtained by measuring the thickness over the longitudinal direction of the superconducting wire, transmits a signal based on the thickness information to the thickness adjusting unit, and adjusts the thickness of the superconducting wire; A superconducting coil manufacturing apparatus is provided.
The outer peripheral dimension of the superconducting coil is preferably the outer diameter of the superconducting coil.
The superconducting wire may have an oxide superconducting layer made of an yttrium-based oxide superconductor.

本発明によれば、光学透過式センサを用いて巻線時の超電導コイルの外周寸法を測定することにより、非接触で高精度に超電導コイルの外周寸法に基づき超電導線材の厚さの変動を求めることができる。また、超電導線材の厚さを調整することにより、超電導線材の厚さの変動を低減して、超電導線材が均一に巻かれた超電導コイルを製造することができる。   According to the present invention, by measuring the outer peripheral dimension of the superconducting coil at the time of winding using an optical transmission sensor, the variation in the thickness of the superconducting wire is obtained based on the outer peripheral dimension of the superconducting coil with high accuracy without contact. be able to. Further, by adjusting the thickness of the superconducting wire, it is possible to reduce the variation in the thickness of the superconducting wire and to manufacture a superconducting coil in which the superconducting wire is uniformly wound.

光学透過式センサを用いた製造装置の実施例を示す概略構成図である。It is a schematic block diagram which shows the Example of the manufacturing apparatus using an optical transmissive sensor. コイル周方向の位置情報の一例を示す説明図である。It is explanatory drawing which shows an example of the positional information on a coil circumferential direction. 光学反射式センサを用いた製造装置の対比例を示す概略構成図である。It is a schematic block diagram which shows the contrast of the manufacturing apparatus using an optical reflection type sensor.

以下、好適な実施形態に基づき、図面を参照して本発明を説明する。
図1に、光学透過式センサを用いた製造装置の実施例を示す。この製造装置10は、超電導線材12を送り出す送出部11、超電導線材12を巻き取る巻取部15、超電導線材12の厚さを調整する厚さ調整部19、巻線時の超電導コイル13の外周寸法を測定する光学透過式センサ20等を備える。
Hereinafter, based on a preferred embodiment, the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of a manufacturing apparatus using an optical transmission sensor. The manufacturing apparatus 10 includes a sending unit 11 that sends out the superconducting wire 12, a winding unit 15 that winds up the superconducting wire 12, a thickness adjusting unit 19 that adjusts the thickness of the superconducting wire 12, and the outer periphery of the superconducting coil 13 during winding. The optical transmission type sensor 20 etc. which measure a dimension are provided.

超電導線材12は、金属基板、超電導層、保護層、安定化層等を有する多層複合構造となっている。一例として、金属基板の上に下地層、配向性中間層、キャップ層、酸化物超電導層、保護層、安定化層が順に積層された構造が挙げられる。金属基板は、例えばニッケル合金等の金属からなるテープ状の基材である。下地層は例えばYからなり、耐熱性が高く、界面反応性を低減するため設けられる。 The superconducting wire 12 has a multilayer composite structure having a metal substrate, a superconducting layer, a protective layer, a stabilizing layer, and the like. As an example, a structure in which an underlayer, an orientation intermediate layer, a cap layer, an oxide superconducting layer, a protective layer, and a stabilization layer are sequentially stacked on a metal substrate can be given. The metal substrate is a tape-shaped substrate made of a metal such as a nickel alloy. The underlayer is made of, for example, Y 2 O 3 and has high heat resistance and is provided to reduce interface reactivity.

金属基板と下地層との間には、Al等の拡散防止層を介在させてもよい。配向性中間層はGdZr、MgO、ZrO−Y(YSZ)、SrTiO等の金属酸化物からなり、2軸配向する物質から選択される。キャップ層は、CeO、Y、Al、Gd、Zr、Ho、Nd等、結晶粒が面内方向に選択成長するものが好ましい。 A diffusion prevention layer such as Al 2 O 3 may be interposed between the metal substrate and the base layer. The orientation intermediate layer is made of a metal oxide such as Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), or SrTiO 3 and is selected from materials that are biaxially oriented. The cap layer, CeO 2, Y 2 O 3 , Al 2 O 3, Gd 2 O 3, Zr 2 O 3, Ho 2 O 3, Nd 2 O 3 , etc., those crystal grains are selectively grown in the in-plane direction preferable.

超電導層は、RE123(REBaCu7−δ)等の酸化物超電導体からなる。RE123のREは、Y、La、Nd、Sm、Er、Gd等の希土類元素を表す。RE123として、Y123(YBaCu7−δ)又はGd123(GdBaCu7−δ)などが挙げられる。保護層はAgや貴金属等からなる。安定化層は銅、黄銅(Cu−Zn合金)のような銅合金等、良導電性の金属材料からなることが好ましい。 The superconducting layer is made of an oxide superconductor such as RE123 (REBa 2 Cu 3 O 7-δ ). RE in RE123 represents a rare earth element such as Y, La, Nd, Sm, Er, or Gd. Examples of RE123 include Y123 (YBa 2 Cu 3 O 7-δ ) or Gd123 (GdBa 2 Cu 3 O 7-δ ). The protective layer is made of Ag, a noble metal, or the like. The stabilization layer is preferably made of a highly conductive metal material such as copper or a copper alloy such as brass (Cu—Zn alloy).

超電導線材12の別の例として、Bi2212(BiSrCaCu8+δ)、Bi2223(BiSrCaCu10+δ)等のビスマス系超電導体を用いたビスマス系超電導線材が挙げられる。ビスマス系超電導線材は、Agなどのテープ状の安定化材からなるシースの内部に酸化物超電導層を内包した構造が主体である。 As another example of the superconducting wire 12, and a Bi2212 (Bi 2 Sr 2 CaCu 2 O 8 + δ), Bi2223 (Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ) bismuth using bismuth-based superconductors such as superconducting wires . The bismuth-based superconducting wire mainly has a structure in which an oxide superconducting layer is included in a sheath made of a tape-like stabilizing material such as Ag.

テープ形状の超電導線材12は、送出部11から巻取部15に向けて、巻きをほどいた状態で送出される。厚さ調整部19では、超電導線材12の厚さを増大させるか又は減少させることにより、超電導線材12の厚さを調整する。超電導線材12の厚さを増大させる場合、超電導コイル13において超電導線材の間に介在させる絶縁部材の供給による手法が挙げられる。絶縁部材を供給する手法としては、ポリイミドテープやFRP(繊維強化プラスチック)テープ等のテープ状の絶縁材を重ねたり、エポキシ等の液状樹脂を塗布したりすることが挙げられる。超電導線材12の厚さを減少させる場合、厚さ調整部19の前で超電導線材12上に樹脂等を積層した後、厚さ調整部19において樹脂の一部を除去する手法が挙げられる。   The tape-shaped superconducting wire 12 is sent out from the sending unit 11 toward the winding unit 15 in the unwound state. The thickness adjusting unit 19 adjusts the thickness of the superconducting wire 12 by increasing or decreasing the thickness of the superconducting wire 12. When the thickness of the superconducting wire 12 is increased, a method of supplying an insulating member interposed between the superconducting wires in the superconducting coil 13 can be mentioned. As a method for supplying the insulating member, there is a method of stacking a tape-like insulating material such as polyimide tape or FRP (fiber reinforced plastic) tape, or applying a liquid resin such as epoxy. When reducing the thickness of the superconducting wire 12, a method of removing a part of the resin in the thickness adjusting unit 19 after laminating a resin or the like on the superconducting wire 12 in front of the thickness adjusting unit 19 can be mentioned.

厚さ調整部19を経た超電導線材12は、巻取部15において、ボビン、リール等の巻枠14に巻き取られ、超電導コイル13となる。巻枠14の構造は、特に限定されないが、例えば円筒状の胴部の両側に、胴部より径の大きい鍔部を有する構造でもよい、巻枠14の材料は、特に限定されないが、例えばGFRP(ガラス繊維強化プラスチック)等が好ましい。巻取部15は、巻枠14を回転駆動するため、モーター(図示せず)等を備えてもよい。   The superconducting wire 12 that has passed through the thickness adjusting unit 19 is wound around a winding frame 14 such as a bobbin or a reel at a winding unit 15 to form a superconducting coil 13. The structure of the reel 14 is not particularly limited. For example, the material of the reel 14 may be a structure having a flange having a diameter larger than that of the barrel on both sides of the cylindrical barrel. (Glass fiber reinforced plastic) is preferable. The winding unit 15 may include a motor (not shown) or the like in order to rotationally drive the winding frame 14.

本発明においては、超電導線材の厚さ調整の精度を管理するため、巻線時の超電導コイルの外周寸法を光学透過式センサにより測定する。光学透過式センサ20としては、図1に示すように、測定光23を発信する発信部21と、測定光23を受信する受信部22を備える。測定光として、レーザーが用いられる。巻取部15の巻枠14は、発信部21と受信部22との間に配置される。巻取部15では、超電導線材12を巻枠14に巻きつけることにより超電導コイル13が形成される。発信部21は、巻線中の超電導コイル13に向けて測定光23を発信する。受信部22は、測定光23が超電導コイル13の周囲を透過した範囲と、測定光23が超電導コイル13に当たって遮断された範囲を認識し、透過した範囲と遮断された範囲との境界の位置から超電導コイル13の外周寸法を検出する。ここで、コイルの外周寸法とは、寸法の少なくとも一端が超電導コイルの外周上にある区間の長さであって、コイルの外周寸法の変動情報を用いて超電導線材の厚さの変動を得ることができるのであれば、特に限定されない。超電導線材の厚さの変動を得る演算は、コイルの外周寸法の変動のみに基づく必要はなく、巻枠の寸法や位置など、他の情報を併せて用いることができる。前記外周寸法は、超電導コイル13の外径(直径)であってもよく、巻枠14の外周面から超電導コイル13の外周までの厚さであってもよく、巻枠14の中心から超電導コイル13の外周までの距離(すなわちコイル半径)であってもよく、その他の寸法であってもよい。光学透過式センサ20で認識可能な境界の位置としては、超電導コイル13の外周と外部雰囲気(空気)の境界や、超電導コイル13の内周と巻枠14の外周との境界等が挙げられる。また、巻枠14の特定の位置(例えば巻枠14の中心軸)に、光学透過式センサ20で認識可能な目印などの構造物を設けることも可能である。光学透過式センサを用いることにより、超電導コイル13の外径が80mmを超える大型の超電導コイルであっても、±8μm以下の高精度で外周寸法の管理が可能になる。巻枠14の外周面から超電導コイル13の外周までの厚さを測定する場合、コイルの片側のみを光学透過式センサ20の測定エリアに入れればよいので、より外径が大きいコイルへの適用が容易である。超電導コイル13の外径(直径)を測定する場合、寸法の両端が超電導コイルの外周上にあるので、超電導コイルの外周と外部雰囲気(空気)の境界の認識のみで測定することも可能である。   In the present invention, in order to manage the accuracy of adjusting the thickness of the superconducting wire, the outer peripheral dimension of the superconducting coil during winding is measured by an optical transmission sensor. As shown in FIG. 1, the optical transmission sensor 20 includes a transmitter 21 that transmits the measurement light 23 and a receiver 22 that receives the measurement light 23. A laser is used as measurement light. The winding frame 14 of the winding unit 15 is disposed between the transmission unit 21 and the reception unit 22. In the winding unit 15, the superconducting coil 13 is formed by winding the superconducting wire 12 around the winding frame 14. The transmitter 21 transmits the measurement light 23 toward the superconducting coil 13 in the winding. The receiving unit 22 recognizes the range in which the measurement light 23 is transmitted around the superconducting coil 13 and the range in which the measurement light 23 is blocked by hitting the superconducting coil 13, and determines the boundary position between the transmitted range and the blocked range. The outer circumference of the superconducting coil 13 is detected. Here, the outer peripheral dimension of the coil is the length of a section in which at least one end of the dimension is on the outer periphery of the superconducting coil, and the fluctuation of the thickness of the superconducting wire is obtained using the fluctuation information of the outer peripheral dimension of the coil. If it is possible, there is no particular limitation. The calculation for obtaining the variation in the thickness of the superconducting wire need not be based only on the variation in the outer peripheral dimension of the coil, and other information such as the dimension and position of the winding frame can be used together. The outer peripheral dimension may be the outer diameter (diameter) of the superconducting coil 13, may be the thickness from the outer peripheral surface of the winding frame 14 to the outer periphery of the superconducting coil 13, or from the center of the winding frame 14 to the superconducting coil. The distance to the outer periphery of 13 (namely, coil radius) may be sufficient, and other dimensions may be sufficient. Examples of the boundary position that can be recognized by the optical transmission sensor 20 include the boundary between the outer periphery of the superconducting coil 13 and the external atmosphere (air), and the boundary between the inner periphery of the superconducting coil 13 and the outer periphery of the winding frame 14. It is also possible to provide a structure such as a mark that can be recognized by the optical transmission sensor 20 at a specific position of the reel 14 (for example, the central axis of the reel 14). By using the optical transmission type sensor, even if the superconducting coil 13 is a large superconducting coil having an outer diameter of more than 80 mm, the outer peripheral dimensions can be managed with high accuracy of ± 8 μm or less. When measuring the thickness from the outer peripheral surface of the winding frame 14 to the outer periphery of the superconducting coil 13, only one side of the coil has to be placed in the measurement area of the optical transmission sensor 20, so that it can be applied to a coil having a larger outer diameter. Easy. When measuring the outer diameter (diameter) of the superconducting coil 13, since both ends of the dimension are on the outer periphery of the superconducting coil, it is possible to measure only by recognizing the boundary between the outer periphery of the superconducting coil and the external atmosphere (air). .

対比例として、光学反射式センサを用いた製造装置の一例を図3に示す。この製造装置30も、実施例の製造装置10と同様に、超電導線材32の送出部31と巻取部35を有する。対比例の製造装置30では、巻線時に巻枠34上の超電導コイル33の外周寸法を光学反射式センサ37により測定する。光学反射式センサ37は、測定光36が反射して戻ってくるまでの時間により対象物の位置や寸法を測定することが可能である。しかし、反射位置を調整するためにレーザー入射位置の調整作業が必要であり、コイル外径が80μm以下での測定精度は±20μm程度である。また、同じ製造装置で外径が大きいコイルと小さいコイルを製造する際に、光学反射式センサ37から巻枠34までの距離をコイル外径に応じて変える必要があることから、複数のセンサを途中で切り替える等の措置が必要になる。   As a comparative example, an example of a manufacturing apparatus using an optical reflection sensor is shown in FIG. Similar to the manufacturing apparatus 10 of the embodiment, the manufacturing apparatus 30 also includes a delivery unit 31 and a winding unit 35 for the superconducting wire 32. In the comparative manufacturing apparatus 30, the outer peripheral dimension of the superconducting coil 33 on the winding frame 34 is measured by the optical reflection sensor 37 during winding. The optical reflection type sensor 37 can measure the position and size of the object according to the time until the measurement light 36 is reflected and returned. However, adjustment of the laser incident position is necessary to adjust the reflection position, and the measurement accuracy is about ± 20 μm when the coil outer diameter is 80 μm or less. In addition, when manufacturing a coil with a large outer diameter and a coil with a small outer diameter using the same manufacturing apparatus, it is necessary to change the distance from the optical reflection sensor 37 to the winding frame 34 according to the coil outer diameter. Measures such as switching on the way are necessary.

しかし、実施例の製造装置の場合、光学透過式センサを用いることで、外径が80mmを超えるコイルの外周寸法の測定が可能であり、一つのセンサで種々のコイル外径に適用できる。また、測定値の精度も±8μm以下が可能になる。   However, in the case of the manufacturing apparatus of the embodiment, by using an optical transmission sensor, it is possible to measure the outer peripheral dimension of the coil having an outer diameter of more than 80 mm, and one sensor can be applied to various coil outer diameters. Further, the accuracy of the measured value can be ± 8 μm or less.

コイルの外周寸法の変化を超電導線材の厚さに換算するには、外周寸法の変化を巻枠の回転数と連動させ、巻枠上の同じ位置での厚さの変化を1ターンごと、又は半ターンごとに演算する。このため、図1の製造装置10では、情報を演算して厚さ調整部19を制御する制御部16と、制御部16から必要に応じて情報を表示させる表示部17と、巻枠14の周方向の位置を測定する位置センサ部18を有する。制御部16として、例えばPLC(プログラマブルロジックコントローラ)やコンピューター等の制御装置が使用可能である。   In order to convert the change in the outer peripheral dimension of the coil into the thickness of the superconducting wire, the change in the outer peripheral dimension is interlocked with the rotation speed of the reel, and the change in thickness at the same position on the reel is changed every turn, or Calculate every half turn. For this reason, in the manufacturing apparatus 10 of FIG. 1, the control part 16 which calculates information and controls the thickness adjustment part 19, the display part 17 which displays information from the control part 16 as needed, and the reel 14 A position sensor unit 18 for measuring a circumferential position is provided. As the control unit 16, for example, a control device such as a PLC (programmable logic controller) or a computer can be used.

位置センサ部18は、コイルの周方向の位置情報を計測する。位置情報として、例えば巻取部15における巻枠14の周方向に、位置センサ部18により位置を測定するポイントを設定する。図2では、0°、45°、90°、135°、180°、225°、270°、315°と、45°おきに8点設定した例を示したが、これに限定されるものではない。位置情報を制御部で演算することにより、巻枠の回転の振れや巻枠の形状のばらつきをキャンセルする役割や、巻き取った超電導線材の条長を測定するカウンタとしての役割を果たすことができる。   The position sensor unit 18 measures position information in the circumferential direction of the coil. As position information, for example, a point for measuring the position by the position sensor unit 18 is set in the circumferential direction of the winding frame 14 in the winding unit 15. FIG. 2 shows an example in which 8 points are set every 45 °, such as 0 °, 45 °, 90 °, 135 °, 180 °, 225 °, 270 °, and 315 °. However, the present invention is not limited to this. Absent. By calculating the position information in the control unit, it can serve as a counter for measuring the runout of the reel and variations in the shape of the reel, and as a counter for measuring the length of the wound superconducting wire. .

(1)巻線前、巻取部15に空の巻枠14をつけた状態で巻枠14を回転させ、各ポイントにおける外周寸法Ax=0(w°)を測定し、制御部16に記録させる。xは超電導線材のターン数を示し、x=0は超電導線材を巻いていないことを表す。例えば、外周寸法がコイルの外径(直径)を表す場合、Ax=0(w°)は巻枠の胴部の外径(直径)を意味する。 (1) Before winding, with the empty winding frame 14 attached to the winding unit 15, the winding frame 14 is rotated, and the outer peripheral dimension A x = 0 (w °) at each point is measured. Let me record. x represents the number of turns of the superconducting wire, and x = 0 represents that the superconducting wire is not wound. For example, when the outer peripheral dimension represents the outer diameter (diameter) of the coil, A x = 0 (w °) means the outer diameter (diameter) of the body portion of the winding frame.

(2)巻線中、各ポイントにおける超電導コイル13の外周寸法Ax(w°)を測定する。制御部16で、Ax(w°)−Ax=0(w°)の演算を行うことにより、コイルに巻き取られた超電導線材の厚さの合計Bx(w°)を計算する。また、コイル外周寸法とターン数から、巻き取られた線材の条長を計算する。 (2) During winding, the outer peripheral dimension Ax (w °) of the superconducting coil 13 at each point is measured. The controller 16 calculates the total thickness Bx (w °) of the superconducting wire wound around the coil by calculating Ax (w °) −A x = 0 (w °). Further, the length of the wound wire is calculated from the coil outer dimension and the number of turns.

(3)ターン数×設計値(1ターン当たりの厚さ)=Bxdesignに対して、上記Bx(w°)の過不足分を制御部16で演算処理し、厚さ調整部19に情報を送る。制御部16から表示部17に情報を送って作業者向けに表示部17で情報を表示させることもできる。 (3) For the number of turns × design value (thickness per turn) = Bx design , the controller 16 calculates the excess / deficiency of Bx (w °) and sends information to the thickness adjuster 19. send. Information can also be sent from the control unit 16 to the display unit 17 and displayed on the display unit 17 for the operator.

(4)厚さ調整部19によりBxdesignに合わせるように厚さの調整を行う。巻取部15において厚さの増加が不足している場合は、厚さ調整部19において超電導線材12の厚さがより大きくなるように調整する。巻取部15において厚さの増加が過剰している場合は、厚さ調整部19において超電導線材12の厚さの増加を抑制するように、あるいは厚さが減少するように、調整する。 (4) The thickness is adjusted by the thickness adjusting unit 19 so as to match Bx design . When the increase in thickness is insufficient in the winding unit 15, the thickness adjustment unit 19 performs adjustment so that the thickness of the superconducting wire 12 becomes larger. When the increase in the thickness is excessive in the winding unit 15, the thickness adjustment unit 19 is adjusted so as to suppress the increase in the thickness of the superconducting wire 12 or to decrease the thickness.

厚さ調整部19による超電導線材12の厚さ調整は、光学透過式センサ20によりコイル外周寸法を測定する位置とは異なる位置で行うことから、これらの位置関係に応じて厚さ調整の時間差を設定することが好ましい。超電導線材12の長手方向に沿った厚さの変動が比較的緩やかである場合には、厚さ調整部19から光学透過式センサ20までの長手方向の距離をなるべく小さくすることが好ましい。   The thickness adjustment of the superconducting wire 12 by the thickness adjusting unit 19 is performed at a position different from the position at which the outer circumference dimension of the coil is measured by the optical transmission sensor 20, so that the time difference of the thickness adjustment is determined according to these positional relationships It is preferable to set. When the variation of the thickness along the longitudinal direction of the superconducting wire 12 is relatively gradual, it is preferable to make the distance in the longitudinal direction from the thickness adjusting unit 19 to the optical transmission sensor 20 as small as possible.

超電導線材12の長手方向に沿った厚さの変動(増減)が比較的激しい場合、コイルの外周上で、厚さの薄い線材の上には厚さの厚い線材を、厚さの厚い線材の上には厚さの薄い線材を重ねるため、例えばコイル1周分の時間差が生じるように制御することが好ましい。   When the variation (increase / decrease) in thickness along the longitudinal direction of the superconducting wire 12 is relatively severe, a thick wire is placed on the thin wire on the outer periphery of the coil, and a thick wire In order to superimpose thin wire rods on top, it is preferable to control so that, for example, a time difference of one round of the coil occurs.

厚さ調整部19において超電導線材12の線材に付着させる絶縁物の厚さを加減する場合、絶縁物の付着部は、線材の表側(コイルの径方向外側)または裏側(コイルの径方向内側)の片面でもよく、線材の両面でもよい。   When adjusting the thickness of the insulator attached to the wire of the superconducting wire 12 in the thickness adjusting unit 19, the insulator attached portion is on the front side (outside in the radial direction of the coil) or back side (inside in the radial direction of the coil) of the wire. Or one side of the wire.

以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。   As mentioned above, although this invention has been demonstrated based on suitable embodiment, this invention is not limited to the above-mentioned embodiment, A various change is possible in the range which does not deviate from the summary of this invention.

図1では、巻取後のコイル外周寸法に基づき、超電導線材の厚さの変動を計算して超電導線材の厚さ調整にフィードバックする構成としたが、本発明はこの構成に限定されるものではない。あらかじめ超電導線材の長手方向にわたって厚さを測定しておき、この厚さ情報を制御部に記録させ、巻線中、厚さ情報に基づく信号を厚さ調整部に送信して超電導線材の厚さを調整することも可能である。この場合、光学透過式センサによるコイル外周寸法の測定は、コイル外周寸法の確認と巻き取った超電導線材の条長の計測をする役目を果たす。   In FIG. 1, based on the coil outer circumference dimension after winding, the variation of the thickness of the superconducting wire is calculated and fed back to the adjustment of the thickness of the superconducting wire. However, the present invention is not limited to this configuration. Absent. The thickness of the superconducting wire is measured in advance along the longitudinal direction of the superconducting wire, the thickness information is recorded in the control unit, and a signal based on the thickness information is transmitted to the thickness adjusting unit during winding. It is also possible to adjust. In this case, the measurement of the outer periphery dimension of the coil by the optical transmission sensor serves to confirm the outer periphery dimension of the coil and to measure the length of the wound superconducting wire.

光学透過式センサが測定する外周寸法Ax(w)がシングルパンケーキコイルの外径(直径)である場合、コイル外径がコイル最外周における超電導線材の直径に相当することから、1ターンごとに超電導線材の厚さが2本分増加する。そこで、あるポイントw(°)における最近巻かれた超電導線材1本分の厚さを求めるには、そのポイントでのコイル外径から半周前のコイル外径を差し引けばよい。0°≦w<180°の場合はAx(w)−Ax−1(w+180°)の値から、また、180°≦w<360°の場合はAx(w)−Ax(w−180°)の値から、超電導線材1本分の厚さを求めることができる。この場合、ポイント数は1周に対して等間隔に偶数個を設定することが好ましい。 When the outer peripheral dimension Ax (w) measured by the optical transmission sensor is the outer diameter (diameter) of the single pancake coil, the outer diameter of the coil corresponds to the diameter of the superconducting wire at the outermost periphery of the coil. The thickness of the superconducting wire increases by two. Therefore, in order to obtain the thickness of one recently wound superconducting wire at a certain point w (°), the outer diameter of the coil before the half circumference may be subtracted from the outer diameter of the coil at that point. When 0 ° ≦ w <180 °, the value is Ax (w) −A x−1 (w + 180 °), and when 180 ° ≦ w <360 °, Ax (w) −Ax (w−180 ° ), The thickness of one superconducting wire can be obtained. In this case, it is preferable to set an even number of points at equal intervals with respect to one round.

本発明は、ダブルパンケーキコイルやソレノイドコイルにも適用可能である。ダブルパンケーキコイルに適用する場合、上下2段のコイルに対してそれぞれ光学透過式センサによるコイル外周寸法の測定を実施することも可能である。   The present invention is also applicable to double pancake coils and solenoid coils. When applied to a double pancake coil, it is also possible to measure the outer circumference of the coil with an optical transmission sensor for the upper and lower two-stage coils.

巻き取ったコイルの後処理として、周囲を樹脂等の絶縁物で覆ったり、樹脂を含浸させたりしてもよい。また、複数のコイルを接続して軸方向に積層することも可能である。   As a post-treatment of the wound coil, the periphery may be covered with an insulating material such as resin or impregnated with resin. It is also possible to connect a plurality of coils and stack them in the axial direction.

10,30…製造装置、11,31…送出部、12,32…超電導線材、13,33…超電導コイル、14,34…巻枠、15,35…巻取部、16…制御部、17…表示部、18…位置センサ部、19…厚さ調整部、20…光学透過式センサ、21…発信部、22…受信部、23,36…測定光、37…光学反射式センサ。 DESCRIPTION OF SYMBOLS 10,30 ... Manufacturing apparatus, 11, 31 ... Sending part, 12, 32 ... Superconducting wire, 13, 33 ... Superconducting coil, 14, 34 ... Winding frame, 15, 35 ... Winding part, 16 ... Control part, 17 ... Display part 18 ... Position sensor part 19 ... Thickness adjustment part 20 ... Optical transmission type sensor 21 ... Transmission part 22 ... Reception part 23, 36 ... Measuring light 37 ... Optical reflection type sensor

Claims (6)

テープ形状の超電導線材を巻いた超電導コイルの製造方法であって、
前記超電導線材を巻き取る前に前記超電導線材の厚さを調整する工程と、
前記超電導線材を巻き取りながら巻線時の超電導コイルの外周寸法を光学透過式センサにより測定する工程と、
を有し、あらかじめ超電導線材の長手方向にわたって厚さを測定しておき、この厚さ情報に基づいて、前記超電導線材の厚さを調整することを特徴とする超電導コイルの製造方法。
A method of manufacturing a superconducting coil wound with a tape-shaped superconducting wire,
Adjusting the thickness of the superconducting wire before winding the superconducting wire;
Measuring the outer peripheral dimension of the superconducting coil during winding while winding the superconducting wire with an optical transmission sensor;
A method of manufacturing a superconducting coil, comprising: measuring a thickness of the superconducting wire in a longitudinal direction in advance, and adjusting the thickness of the superconducting wire based on the thickness information.
前記超電導コイルの外周寸法は、前記超電導コイルの外径であることを特徴とする請求項1に記載の超電導コイルの製造方法。   The method for manufacturing a superconducting coil according to claim 1, wherein an outer peripheral dimension of the superconducting coil is an outer diameter of the superconducting coil. 前記超電導線材が、イットリウム系の酸化物超電導体からなる酸化物超電導層を有することを特徴とする請求項1または2に記載の超電導コイルの製造方法。   The method for manufacturing a superconducting coil according to claim 1 or 2, wherein the superconducting wire has an oxide superconducting layer made of an yttrium-based oxide superconductor. テープ形状の超電導線材を巻いた超電導コイルの製造装置であって、
前記超電導線材を巻き取る巻取部と、
前記超電導線材を前記巻取部で巻き取る前に前記超電導線材の厚さを調整する厚さ調整部と、
前記超電導線材を前記巻取部で巻き取りながら巻線時の超電導コイルの外周寸法を測定する光学透過式センサと、
あらかじめ超電導線材の長手方向にわたって厚さを測定しておいた厚さ情報が記録され、前記厚さ情報に基づく信号を前記厚さ調整部に送信して前記超電導線材の厚さを調整する制御部と、
を有することを特徴とする超電導コイルの製造装置。
A superconducting coil manufacturing apparatus in which a tape-shaped superconducting wire is wound,
A winding unit for winding the superconducting wire;
A thickness adjusting unit for adjusting the thickness of the superconducting wire before winding the superconducting wire with the winding unit;
An optical transmission sensor that measures the outer peripheral dimensions of the superconducting coil during winding while winding the superconducting wire at the winding unit;
A control unit that records thickness information measured in advance in the longitudinal direction of the superconducting wire, and transmits a signal based on the thickness information to the thickness adjusting unit to adjust the thickness of the superconducting wire. When,
A superconducting coil manufacturing apparatus characterized by comprising:
前記超電導コイルの外周寸法は、前記超電導コイルの外径であることを特徴とする請求項4に記載の超電導コイルの製造装置。   The apparatus for manufacturing a superconducting coil according to claim 4, wherein the outer peripheral dimension of the superconducting coil is an outer diameter of the superconducting coil. 前記超電導線材が、イットリウム系の酸化物超電導体からなる酸化物超電導層を有することを特徴とする請求項4または5に記載の超電導コイルの製造装置。   6. The superconducting coil manufacturing apparatus according to claim 4, wherein the superconducting wire has an oxide superconducting layer made of an yttrium-based oxide superconductor.
JP2015080814A 2015-04-10 2015-04-10 Superconducting coil manufacturing method and manufacturing apparatus Active JP5942010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015080814A JP5942010B2 (en) 2015-04-10 2015-04-10 Superconducting coil manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015080814A JP5942010B2 (en) 2015-04-10 2015-04-10 Superconducting coil manufacturing method and manufacturing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014025668A Division JP5732556B1 (en) 2014-02-13 2014-02-13 Superconducting coil manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2015165581A JP2015165581A (en) 2015-09-17
JP5942010B2 true JP5942010B2 (en) 2016-06-29

Family

ID=54187934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015080814A Active JP5942010B2 (en) 2015-04-10 2015-04-10 Superconducting coil manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5942010B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411228A (en) * 2018-11-22 2019-03-01 深圳供电局有限公司 A kind of unwrapping wire directive wheel for superconducting tape coil winding machine
JP7314654B2 (en) * 2019-06-28 2023-07-26 住友電気工業株式会社 Superconducting coil manufacturing method and superconducting coil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02166705A (en) * 1988-12-21 1990-06-27 Fuji Electric Co Ltd Manufacture of superconducting coil
JP2943345B2 (en) * 1991-01-18 1999-08-30 ソニー株式会社 Winding machine
JPH04370906A (en) * 1991-06-19 1992-12-24 Mitsubishi Electric Corp Method and apparatus for winding of drawn wire
JPH11126523A (en) * 1997-10-23 1999-05-11 Sumitomo Electric Ind Ltd Tape-like high temperature oxide superconductive wire material, manufacture and apparatus for manufacturing thereof
JP3756742B2 (en) * 2000-08-22 2006-03-15 富士重工業株式会社 Flat wire winding machine

Also Published As

Publication number Publication date
JP2015165581A (en) 2015-09-17

Similar Documents

Publication Publication Date Title
US9418776B2 (en) Oxide superconductor wire and superconducting coil
EP1421592B1 (en) Superconducting coil fabrication
JP5841862B2 (en) High temperature superconducting wire and high temperature superconducting coil
KR100409057B1 (en) Oxide superconducting wire, solenoid coil, magnetic field generator, and method of producing oxide superconducting wire
US10008314B2 (en) Electric coil, apparatus having at least two subcoils and manufacturing method therefor
JP5942010B2 (en) Superconducting coil manufacturing method and manufacturing apparatus
JP5732556B1 (en) Superconducting coil manufacturing method and manufacturing apparatus
KR101597685B1 (en) Co-Winding Machine for Pancake Coils and Co-Winding Method
US10049800B2 (en) High-temperature superconducting coil and superconducting device
EP2645382B1 (en) Oxide superconductive solenoid wound coil and production method therefor
JP2007305386A (en) Superconducting wire rod, superconductor, superconducting apparatus, manufacturing method of the superconducting wire rod, and manufacturing method of the superconductor
JP5728365B2 (en) Oxide superconducting coil, superconducting equipment, and oxide superconducting coil manufacturing method
JP2013030661A (en) Superconducting coil
US9828206B2 (en) Method of winding a conductor in double pancake
JP2015045617A (en) Critical current evaluation device and evaluation method of superconductive wire rod for long size
JP2021528630A (en) Quality control device for superconducting tape
KR20170029818A (en) Pancake coil of a superconducting wire has been winding and method of manufacturing the same
JP5604213B2 (en) Superconducting equipment
JP5526629B2 (en) Superconducting coil body manufacturing method and superconducting coil body
JP2017143173A (en) Manufacturing apparatus for superconducting coil, manufacturing method for the same, and superconducting coil
JP2013041871A (en) Superconducting coil and method of manufacturing the same
JP2016134418A (en) Superconducting coil and superconducting wire rod
JP6214196B2 (en) Oxide superconducting coil and superconducting equipment provided with the same
US11798721B2 (en) High-Tc superconducting electromagnet for persistent current operation
JPH10135061A (en) Manufacture of superconducting coil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R151 Written notification of patent or utility model registration

Ref document number: 5942010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250