JPH02166705A - Manufacture of superconducting coil - Google Patents

Manufacture of superconducting coil

Info

Publication number
JPH02166705A
JPH02166705A JP32314988A JP32314988A JPH02166705A JP H02166705 A JPH02166705 A JP H02166705A JP 32314988 A JP32314988 A JP 32314988A JP 32314988 A JP32314988 A JP 32314988A JP H02166705 A JPH02166705 A JP H02166705A
Authority
JP
Japan
Prior art keywords
mixed resin
resin liquid
coil
winding
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32314988A
Other languages
Japanese (ja)
Inventor
Taku Umegaki
梅垣 卓
Tsutomu Kato
勉 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP32314988A priority Critical patent/JPH02166705A/en
Publication of JPH02166705A publication Critical patent/JPH02166705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve voltage resistance capacity, cooling capacity, and mechanical stability by passing a line material through a mixed resin bath of light and heat setting combination type which contains inorganic power as a filler, in the process to wind a superconducting coil, and whittling away resin which adhered excessively for adjustment of thickness, and then passing it through an ultraviolet ray irradiation bath so as to apply half setting treatment to the adhering mixed resin. CONSTITUTION:A superconductive line material 11A is soaked in a mixed resin bath 4, wherein quartz powder as an inorganic filler is mixed to light and heat-setting combination resin, through a guide roller 3. Since the mixed resin liquid 4A increases the viscosity by being mixed with quartz powder, a large amount of mixed resin liquid 4A adheres to the surface of the stabilizing material 10B of a superconductive line material 11B, though ununiform thickness, without unevenness. A thickness adjusting part 5 squeezes the mixed resin liquid 4A which adheres excessively by the surface pressure that is applied to the line material through a wiping-off pad, and continuously sends out a superconductive line material 11c which has a mixed resin liquid film 4B of uniform thickness and without unevenness. The mixed resin liquid layer 4B is gelatinized to the degree that the stickiness at the surface is lost by the ultraviolet irradiation of an ultraviolet irradiation device 5, and superconductive line material 11D, whereon a half set film 14 is formed, is wound round a coil winding drum 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超電導マグネット、超電導電機等に用いら
れる化合物系超電導線材を用いた超電導コイルの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a superconducting coil using a compound-based superconducting wire used in superconducting magnets, superconducting machines, etc.

〔従来の技術〕[Conventional technology]

ニオブ3すず(Nb38n)、バナジウム3ガリウム(
V’3 Ga )等の細線を銅あるいはアルミニウム等
の安定化材で覆ってなる化合物系超電導線材は、未反応
の超電導線材を500ないし1000℃の高部、で熱処
理することKより細線部分に超電導化合物が生成し、超
電導線としての機能が生ずるものであるが、このようK
して生成した超電導化合物は機械的にもろく、巻線加工
等において線材に曲げ応力が加わることに、より細線が
破断したり、あるいは導電率が低下するなどの不都合を
生ずるために、未反応の超電導線材を用いてコイルを形
成し、しかる後熱処理を行なって超電導性を賦与する方
法が一般に知られている。
Niobium tritin (Nb38n), vanadium trigallium (
For compound superconducting wires made by covering thin wires such as V'3 Ga) with a stabilizing material such as copper or aluminum, the unreacted superconducting wires must be heat-treated at a high temperature of 500 to 1000°C. A superconducting compound is generated and functions as a superconducting wire, but in this way, K
The superconducting compound produced by this process is mechanically brittle, and when bending stress is applied to the wire during winding, it can cause problems such as breakage of thinner wires or a decrease in conductivity. A generally known method is to form a coil using a superconducting wire and then heat-treat it to impart superconductivity.

一方、近年電線ドラムに最小直径dで巻かれた状態で熱
処理された反応済み化合物系超電導線材を、その巻きぐ
せの方向に最小直径dより大きい径りなるコイル巻枠に
巻き取って筒状または環状の超電導コイルを形成する場
合には超電導化合物に損傷を与えることなく超電導コイ
ルを製作できることが知られるようになり、その実用化
が検討されている。
On the other hand, in recent years, a reacted compound-based superconducting wire that has been heat-treated while being wound around a wire drum with a minimum diameter d is wound in the direction of the winding pattern onto a coil frame with a diameter larger than the minimum diameter d to form a cylindrical or It has become known that an annular superconducting coil can be manufactured without damaging the superconducting compound, and its practical application is being considered.

ところで、化合物系超電導線材は500℃を超える熱処
理に耐える無機質繊維1例えば石英ガラス繊維、セラミ
ックス繊維等の高価な耐熱繊維からなるテープを横巻き
するかあるいは編組した基材層を備え、これに樹脂含浸
を行い、加熱硬化することによシ所要の耐電圧性能およ
び伝熱性能が得られるものであるが、前記熱処理に耐え
る含浸樹脂が現状では得られないので、基材層を有する
熱処理済み超電導線材を巻線してコイルに形成した後、
基材層への樹脂含浸および含浸樹脂の加熱硬化処理が行
われる。
By the way, a compound-based superconducting wire has a base material layer made by horizontally wrapping or braiding a tape made of an inorganic fiber 1 made of an expensive heat-resistant fiber such as quartz glass fiber or ceramic fiber, which can withstand heat treatment exceeding 500°C. The required voltage resistance and heat transfer performance can be obtained by impregnating and curing with heat, but since it is currently not possible to obtain an impregnated resin that can withstand the heat treatment, heat-treated superconducting resin with a base layer is used. After winding the wire and forming it into a coil,
Impregnation of the base material layer with resin and heat curing treatment of the impregnated resin are performed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

熱処理済み超電導線材を巻線加工後樹脂含浸する従来方
法においては、熱処理に耐える基材層を必要とするとと
もに、巻枠に整列巻きされた超電導線相互の隙間を介し
ての無機質繊維間に含浸樹脂をくまなく含浸することは
極めて困難であシ、含浸かつ加熱硬化された絶縁被覆層
中に未含浸部分やボイドが残シ、この部分での熱伝導性
が阻害されることによって液体ヘリウムによる冷却性能
が低下し、局部的に超電導が破れるクエンチ発生の危険
性が高まるとともに、クエンチ発生にともなって生ずる
異常電圧にボイド等の欠陥を含む絶縁被覆層が耐えきれ
ず、コイルの短絡事故にまで進展することがあり、さら
に絶縁被覆の機械強度も低いために、その改善が求めら
れている。
The conventional method of impregnating heat-treated superconducting wire with resin after winding requires a base material layer that can withstand heat treatment, and impregnation between the inorganic fibers through the gaps between the superconducting wires wound in alignment on the winding frame. It is extremely difficult to completely impregnate the resin, and unimpregnated areas and voids remain in the impregnated and heat-cured insulation coating layer, and thermal conductivity in these areas is inhibited, causing liquid helium to impregnate the resin. Cooling performance deteriorates, increasing the risk of quenching occurring where the superconductor is locally broken, and the insulation coating layer containing defects such as voids being unable to withstand the abnormal voltage that occurs due to quenching, leading to coil short-circuit accidents. Furthermore, since the mechanical strength of the insulation coating is low, improvements are required.

この発明方法の目的は、高価な耐熱繊維からなる基材層
を用いずに導体表面に直接樹脂絶縁層を形成することに
よシ、ボイド等の欠陥を含まず耐電圧性能、冷却性能、
および機械的安定性のよいコイル絶縁を得ることにある
The purpose of this invention method is to form a resin insulating layer directly on the conductor surface without using a base material layer made of expensive heat-resistant fibers, thereby improving voltage resistance and cooling performance without defects such as voids.
and to obtain coil insulation with good mechanical stability.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明方法によれば、電
線ドラムに巻装された未反応の化合物系超1!導線材を
500℃以上の温度で反応させた後、その巻きぐせと同
方向にコイル巻枠に巻き取って前記電線ドラムへの巻き
径より大きい径の筒状あるいは環状の超電導コイルを製
造する方法において、反応ずみの化合物系超電導線材を
コイル巻枠に巻き取る過程で無機質充填材粉末を含む光
・加熱硬化併用形の混合樹脂液に浸漬して導体表面に混
合樹脂液を付層させ、余剰に付着した混合樹脂液を除去
して厚み調整を行った後、紫外線を照射して混合樹脂液
を半硬化処理する工程を径で前記コイル巻枠への巻き取
りを行い、しかる後半硬化樹脂膜を加熱硬化処理するこ
ととする。
In order to solve the above problems, according to the method of the present invention, an unreacted compound-based super 1! A method of producing a cylindrical or annular superconducting coil having a diameter larger than the winding diameter on the wire drum by reacting a conductive wire material at a temperature of 500° C. or higher and then winding it around a coil winding frame in the same direction as the winding pattern. In the process of winding the reacted compound-based superconducting wire into a coil winding frame, it is immersed in a mixed resin liquid that is both light and heat-curable and contains inorganic filler powder, and the mixed resin liquid is layered on the conductor surface to remove any excess. After adjusting the thickness by removing the mixed resin liquid adhering to the coil, the mixed resin liquid is semi-cured by irradiating ultraviolet rays and wound onto the coil winding frame, and the semi-cured resin film is then heated. will be subjected to heat curing treatment.

〔作用〕[Effect]

上記手段において、電線ドラムに巻かれた基材I傍を持
たない反応ずみ超電導線材をその巻きぐせ方向にコイル
巻枠に巻き取って超電導コイルを巻線する過程で、充填
材としての無機質粉末を含む元・加熱硬化併用形の混合
樹脂浴を通過させ、余剰に付着した樹脂をそぎ落して厚
み調整した後、紫外線照射槽を通して付着した混合樹脂
を半硬化処理するようにしたので、充填材の配合によっ
て粘度を増した混合樹脂は付着量調整後垂れ落ちること
なく薄く均一な厚みの半硬化膜を導体表面に直接形成す
るので、コイル巻枠に巻き取られる過程で半硬化膜によ
り絶縁間隔が均一に保持きれた超電導コイルを形成でき
る。
In the above means, inorganic powder as a filler is added in the process of winding a superconducting coil by winding a reacted superconducting wire without a base material I wound around a wire drum onto a coil winding frame in the winding direction. After passing through a mixed resin bath containing original and heat-curing types, scraping off excess resin and adjusting the thickness, the mixed resin was semi-cured through an ultraviolet irradiation tank, so that the filler The mixed resin, whose viscosity has been increased by blending, forms a thin, uniformly thick semi-cured film directly on the conductor surface without dripping after adjusting the adhesion amount, so that the semi-cured film maintains the insulation gap during the process of being wound onto the coil frame. A uniformly maintained superconducting coil can be formed.

また、巻線されたコイルを加熱硬化する時点では半硬化
膜が相互に圧縮されて超電導線材の隙間を埋めるととも
に、無機質充填材粉末が間隔材として機能して導体相互
の間隔を保持するので、硬化時点では均一な組成の薄い
樹脂層によって一体化された超電導コイルが得られる。
In addition, when the wound coil is heated and hardened, the semi-cured films are compressed together to fill the gaps between the superconducting wires, and the inorganic filler powder functions as a spacing material to maintain the spacing between the conductors. Upon curing, a superconducting coil is obtained which is integrated with a thin resin layer of uniform composition.

また、得られた超電導コイルは無機質充填材の配合によ
って絶縁層の熱伝導率が向上して良好な冷却性能が得ら
れ、逆に熱膨張係数が小さくなって温度変化によって絶
縁層に生ずる熱応力が減るので、機械的。
In addition, the thermal conductivity of the insulating layer in the obtained superconducting coil is improved by adding an inorganic filler, resulting in good cooling performance.On the other hand, the coefficient of thermal expansion is reduced, which reduces the thermal stress generated in the insulating layer due to temperature changes. is reduced, so it is mechanical.

熱的特性の安定性に優れ、したがってクエンチを生じ難
い超電導コイルを得ることができる。
It is possible to obtain a superconducting coil that has excellent stability in thermal characteristics and is therefore less likely to be quenched.

〔実施fシリ〕[Implementation f series]

以下この発明を実施例方法に基づいて説明する。 The present invention will be explained below based on an example method.

第1図はこの発明の実施例方法を示す原理的な説明図、
第2図、第3図、および第4図は実施例製造方法の各製
造ステップにお′ける超電導線材の状態を示す断面図で
ある。第1図において、1は巻き芯径dなる金に4製の
電線ドラムであシ、未反応の化合物系超電導線材が整列
巻きされた状態で500℃を超える熱処理が行われ、第
2図にその断面図を示すよりに、安定化材10BK埋設
された細線部分10Aに超電導化合物が生成した裸の超
電導m材11Aがあらかじめ形成される。2は巻線機に
よシ図中矢印方向に回転駆動される超電導コイルの巻枠
であシ、その径はi線ドラム1の巻芯の径dよシ大きい
径りに形成されるとともに、超電導線材11Aをその巻
ぐせ方向に巻き取るよう電線ドラム1に対する回転方向
が決められる。
FIG. 1 is a principle explanatory diagram showing an embodiment method of this invention.
FIGS. 2, 3, and 4 are cross-sectional views showing the state of the superconducting wire at each manufacturing step of the manufacturing method of the embodiment. In Fig. 1, 1 is a wire drum made of 4 made of gold with a winding core diameter d, and the unreacted compound superconducting wire is wound in an aligned manner and heat-treated at over 500°C, as shown in Fig. 2. Rather than showing the cross-sectional view, a bare superconducting m material 11A in which a superconducting compound is generated is formed in advance in the thin wire portion 10A in which the stabilizing material 10BK is embedded. Reference numeral 2 denotes a winding frame of a superconducting coil which is rotated by a winding machine in the direction of the arrow in the figure, and its diameter is formed to be larger than the diameter d of the winding core of the i-line drum 1. The direction of rotation with respect to the wire drum 1 is determined so that the superconducting wire 11A is wound in the winding direction.

3は超電導線材11Aを混合樹脂浴4中に浸漬するため
のガイドローラであシ、混合樹脂液4Aとしては、ベー
ス樹脂としての光・加熱硬化併用樹脂100重量部に無
機充填材としての平均粒径30μmの石英粉末′f:例
えば100重量部配合したものが用いられ、ベース樹脂
としては旭電化社裂タイグES870(エポキシ系)、
東洋紡社製タイプES520(アクリル、エポキシ混合
系)などが用いられる。混合樹脂液4Aは石英粉末が配
合されることによって・粘度が増すので、混合樹脂液4
t−通過した超電導線材11Bの安定化材10Bの表面
には第6図に示すように混合樹脂液4Aが不均等な厚み
ながらむらなく多量に付着する。
3 is a guide roller for immersing the superconducting wire 11A in the mixed resin bath 4, and the mixed resin liquid 4A consists of 100 parts by weight of a light and heat curing resin as a base resin and average particles as an inorganic filler. For example, 100 parts by weight of quartz powder 'f with a diameter of 30 μm is used, and the base resin is Asahi Denka's Riva Taigu ES870 (epoxy type),
Type ES520 (acrylic and epoxy mixed system) manufactured by Toyobo Co., Ltd. is used. Mixed resin liquid 4A increases in viscosity by blending quartz powder, so mixed resin liquid 4
As shown in FIG. 6, a large amount of the mixed resin liquid 4A evenly adheres to the surface of the stabilizing material 10B of the superconducting wire 11B that has passed through the superconducting wire 11B with an uneven thickness.

厚み調整部5は例えばフェルト製の拭き取りバットから
なり、バットを介して線材に加える面圧により余剰に付
着した混合樹脂液4Aを絞り取り、例えば付着厚みが5
0μm程度の均一な厚みのむらのない混合樹脂液膜4B
を有する超電導線材11Cを紫外線照射装置5に向けて
連続して送り出し、混合樹脂液層4Bが常流における紫
外線照射によって表面の粘着性が失われる程度にゲル化
され、半硬化膜14が形成された超電導線材11Dがコ
イル巻枠2に巻き取られる。
The thickness adjustment section 5 is made of, for example, a felt wiping bat, and squeezes out the excess mixed resin liquid 4A by applying surface pressure to the wire rod through the bat, so that the adhesion thickness is, for example, 5.
Mixed resin liquid film 4B with uniform thickness of about 0 μm
The superconducting wire 11C having a superconducting wire 11C is continuously sent toward the ultraviolet irradiation device 5, and the mixed resin liquid layer 4B is gelled by the ultraviolet irradiation in a normal flow to such an extent that the surface adhesiveness is lost, and a semi-cured film 14 is formed. The superconducting wire 11D is wound around the coil frame 2.

このようにしてコイル巻枠2に巻き取られる超電導線材
11Dの半硬化膜14はゲル状であるために整列巻きに
よって加わる緊縛力によって相互に密着し、ざらにコイ
ル全体を例えば15f:l’c程度に加熱して半硬化膜
を加熱硬化する際相互に融着し、2時間程度の加熱処理
忙よって混合樹脂が硬化した時点ではターン間が混合樹
脂の硬化物で一体化された超電導コイルが得られる。な
お、加熱硬化する過程でターン間に加わる緊縛力等によ
って半硬化膜14はその厚みを減じ、その分ターン間の
隙間を埋めることになるが、厚み50μm程4度の混合
樹脂膜中に配合された平均粒径304℃程度の石英粉末
が間隔材として機能してターン間の絶縁距離を所定の寸
法に保つよう作用する。したがって、得られた超電導コ
イルは耐熱繊維からなる基材層を含まないものの、耐電
圧性能を得るための絶縁厚みを保持して隣接したターン
間が薄く均一な混合樹脂の硬化層により強固に固着して
一体化するとともに、熱伝導率が樹脂のそれよシ大きい
充填材の配合によってターン間の伝熱特性が向上して優
れた冷却性能を示すとともに、無機質充填材の配合によ
って混合樹脂硬化物の熱膨張係数が小さくなるので、コ
イルの温度変化によって生ずる熱応力も小さくなり、熱
的2機械的安定性に優れた超電導コイルを得ることがで
きる。
Since the semi-cured film 14 of the superconducting wire 11D wound around the coil winding frame 2 in this manner is gel-like, the binding force applied by the aligned winding brings them into close contact with each other, and the entire coil is roughly coated, for example 15f:l'c. When the semi-cured film is heated to a certain degree and cured, it fuses with each other, and by the time the mixed resin has hardened after about 2 hours of heat treatment, a superconducting coil with the turns intertwined with the cured material of the mixed resin is formed. can get. The thickness of the semi-cured film 14 is reduced by the binding force applied between the turns during the heating and curing process, and the gap between the turns is filled accordingly. The quartz powder having an average particle diameter of about 304° C. acts as a spacing material to maintain the insulation distance between the turns at a predetermined dimension. Therefore, although the obtained superconducting coil does not include a base material layer made of heat-resistant fibers, it maintains the insulation thickness necessary to withstand voltage performance, and the adjacent turns are firmly fixed by a thin and uniform hardened layer of mixed resin. In addition, by incorporating a filler whose thermal conductivity is higher than that of resin, the heat transfer characteristics between turns are improved and excellent cooling performance is achieved. Since the thermal expansion coefficient of the superconducting coil becomes small, the thermal stress caused by temperature changes in the coil becomes small, and a superconducting coil with excellent thermal and mechanical stability can be obtained.

〔発明の効果〕〔Effect of the invention〕

この発明方法は前述のように、充填材粉末を含む尤・加
熱硬化併用樹脂(混合樹脂液)を熱処理ずみの化合物超
電導線材の導体表面に直接被着し、厚み調整された半硬
化膜を形成、コイル巻枠に巻取った後加熱硬化するよう
構成した。その結果、充填材粉末の配合によって混合樹
脂液の粘度が上がシ、導体表面にむらなく多量の樹脂液
が付着し、これを厚み調整して半硬化処理することによ
り、コイル巻枠に巻装されたコイルのターン間には相互
に密着したゲル状の薄い樹脂層が形成され、加熱硬化処
理時には充填材粉末が間隔材として機能して所定の厚み
の混合樹脂硬化物で一体化σれた超電導コイルが形成さ
れるので、500℃を越える高温の熱処理に耐える高価
な耐熱繊維からなる基材層を必要とせずに所望の耐電圧
性能を有する超電導コイルを経済的に有利に提供するこ
とができる。また、基材層を用いないので従来方法にお
ける含浸性の問題点が排除され、ボイド等の欠陥の少い
絶縁層を形成できるとともに、充填材粉末の熱伝導率が
樹脂のそれよシ大きく逆に熱膨張係数が小さいという特
性を有するので、得られた超電導コイルは冷却性能およ
び極低温に冷却する際の機械的安定性に優れ、したがっ
てクエンチの発生確率の低い超電導コイルを提供するこ
とができる。
As described above, the method of this invention involves directly applying a thermosetting resin (mixed resin liquid) containing filler powder to the conductor surface of a heat-treated compound superconducting wire to form a semi-cured film with an adjusted thickness. The structure was such that it was heated and hardened after being wound onto a coil frame. As a result, the viscosity of the mixed resin liquid increases due to the addition of filler powder, and a large amount of resin liquid adheres evenly to the conductor surface. By adjusting the thickness and semi-curing the resin liquid, it is wound around the coil frame. A thin gel-like resin layer that adheres to each other is formed between the turns of the installed coil, and during the heat curing process, the filler powder acts as a spacing material and is integrated with the cured mixed resin of a predetermined thickness. To economically advantageously provide a superconducting coil having a desired withstand voltage performance without requiring a base material layer made of expensive heat-resistant fibers that can withstand high-temperature heat treatment exceeding 500°C. Can be done. In addition, since no base material layer is used, problems with impregnation in conventional methods are eliminated, and an insulating layer with fewer defects such as voids can be formed, and the thermal conductivity of the filler powder is significantly opposite to that of the resin. Since the obtained superconducting coil has a characteristic of having a small coefficient of thermal expansion, the obtained superconducting coil has excellent cooling performance and mechanical stability when cooling to an extremely low temperature, and therefore a superconducting coil with a low probability of quenching can be provided. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例方法を示す原理的説明図、第
2図、第3図、および第4図は実施例方法における超電
導層材への混合樹脂液の付着状況を示す断面図である。 1・・・電線ドラム、2・・・コイル巻枠、3・・・ガ
イドローラ、4・・・混合樹脂浴、4A、4B・・・混
合樹脂液、5・・・厚み調整部、6・・・紫外線照射装
置、11A・・・NAt導線材(熱処理ずみ)、11B
・・・樹脂液が付着した超電導線材、11C・・・厚み
の薄い樹脂液膜を有する超電導線材、11D・・・半硬
化膜を有第1目 糟2図 ′83目 竿4目
Fig. 1 is a principle explanatory diagram showing an embodiment method of the present invention, and Figs. 2, 3, and 4 are cross-sectional views showing the state of adhesion of the mixed resin liquid to the superconducting layer material in the embodiment method. be. DESCRIPTION OF SYMBOLS 1... Electric wire drum, 2... Coil winding frame, 3... Guide roller, 4... Mixed resin bath, 4A, 4B... Mixed resin liquid, 5... Thickness adjustment section, 6... ...Ultraviolet irradiation device, 11A...NAt conductive wire (heat treated), 11B
...Superconducting wire with resin liquid attached, 11C...Superconducting wire with thin resin liquid film, 11D...Has semi-cured film No. 1, No. 2, No. 83, No. 4

Claims (1)

【特許請求の範囲】[Claims] 1)電線ドラムに巻装された未反応の化合物系超電導線
材を500℃以上の温度で反応させた後、その巻きぐせ
と同方向にコイル巻枠に巻き取って前記電線ドラムへの
巻き径より大きい径の筒状あるいは環状の超電導コイル
を製造する方法において、反応ずみの化合物系超電導線
材をコイル巻枠に巻き取る過程で無機質充填材粉末を含
む光・加熱硬化併用形の混合樹脂液に浸漬して導体表面
に混合樹脂液を付着させ、余剰に付着した混合樹脂液を
除去して厚み調整を行った後、紫外線を照射して混合樹
脂液を半硬化処理する工程を径て前記コイル巻枠への巻
き取りを行い、しかる後半硬化樹脂膜を加熱硬化処理す
ることを特徴とする超電導コイルの製造方法。
1) After reacting the unreacted compound-based superconducting wire wound around an electric wire drum at a temperature of 500°C or higher, it is wound onto a coil winding frame in the same direction as the winding pattern, and the winding diameter on the electric wire drum is In a method for manufacturing large-diameter cylindrical or annular superconducting coils, the reacted compound-based superconducting wire is immersed in a photo-curable and heat-curable mixed resin liquid containing inorganic filler powder during the process of winding the reacted compound-based superconducting wire into a coil winding frame. The mixed resin liquid is applied to the conductor surface, the thickness is adjusted by removing the excess mixed resin liquid, and then the coil winding is completed through a process of semi-curing the mixed resin liquid by irradiating ultraviolet rays. A method for manufacturing a superconducting coil, which comprises winding it into a frame and subjecting the latter half-cured resin film to heat curing treatment.
JP32314988A 1988-12-21 1988-12-21 Manufacture of superconducting coil Pending JPH02166705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32314988A JPH02166705A (en) 1988-12-21 1988-12-21 Manufacture of superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32314988A JPH02166705A (en) 1988-12-21 1988-12-21 Manufacture of superconducting coil

Publications (1)

Publication Number Publication Date
JPH02166705A true JPH02166705A (en) 1990-06-27

Family

ID=18151631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32314988A Pending JPH02166705A (en) 1988-12-21 1988-12-21 Manufacture of superconducting coil

Country Status (1)

Country Link
JP (1) JPH02166705A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2436730A (en) * 2006-03-31 2007-10-03 Siemens Ag Superconducting magnet coil set in an ultraviolet settable epoxy resin
CN102364628A (en) * 2011-07-19 2012-02-29 南通迪皮茜电子有限公司 Coil for transformer and manufacturing method for coil
JP2015165581A (en) * 2015-04-10 2015-09-17 株式会社フジクラ Manufacturing method and manufacturing apparatus of superconducting coil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2436730A (en) * 2006-03-31 2007-10-03 Siemens Ag Superconducting magnet coil set in an ultraviolet settable epoxy resin
US7543370B2 (en) 2006-03-31 2009-06-09 Siemens Aktiengesellschaft Method for production of a superconducting magnetic coil
GB2436730B (en) * 2006-03-31 2009-08-19 Siemens Ag A method for producing a superconducting magnet coil and a magnetic resonance apparatus
CN102364628A (en) * 2011-07-19 2012-02-29 南通迪皮茜电子有限公司 Coil for transformer and manufacturing method for coil
JP2015165581A (en) * 2015-04-10 2015-09-17 株式会社フジクラ Manufacturing method and manufacturing apparatus of superconducting coil

Similar Documents

Publication Publication Date Title
JPH02166705A (en) Manufacture of superconducting coil
JPS61214750A (en) Manufacture of high pressure coil
JPH0281406A (en) Manufacture of superconducting coil
JPH02214104A (en) Manufacture of superconducting coil
JP3060547B2 (en) Superconducting coil manufacturing method
JPH0491407A (en) Manufacture of superconducting coil
JPS6182412A (en) Manufacture of wound core
JPS6262042B2 (en)
JPS5815444A (en) Insulating coil for high-voltage
JP2597724B2 (en) Superconductive magnet
JPS5849072A (en) Manufacture of insulated coil for rotary electric machine
JPS60200510A (en) Insulating coil for electric equipment
JPH08163839A (en) Manufacture of insulated coil for high voltage electric rotating machine
JPS6313207A (en) Superconductive strand
JPH0442510A (en) Manufacture of superconductive magnet
JPH0819201A (en) Insulated coil for rotating electric machine
JPH0361288B2 (en)
JPS6318936A (en) Field device for electric rotary machine
RU2037897C1 (en) Process of manufacture of coils with butt cooling for electrophysical plants
JPH0650696B2 (en) Method for manufacturing resin mold coil
JPS55111647A (en) Manufacture of insulated coil
JPH0551162B2 (en)
JPS59162744A (en) Insulation of coil
JPS61288753A (en) Method of manufacturing insulating coil for electrical equipment
JPS59141206A (en) Manufacture of magnet