JP5940863B2 - LED lighting heat sink - Google Patents

LED lighting heat sink Download PDF

Info

Publication number
JP5940863B2
JP5940863B2 JP2012081542A JP2012081542A JP5940863B2 JP 5940863 B2 JP5940863 B2 JP 5940863B2 JP 2012081542 A JP2012081542 A JP 2012081542A JP 2012081542 A JP2012081542 A JP 2012081542A JP 5940863 B2 JP5940863 B2 JP 5940863B2
Authority
JP
Japan
Prior art keywords
heat
plate
substrate
heat radiation
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012081542A
Other languages
Japanese (ja)
Other versions
JP2013211195A (en
Inventor
小西 晴之
晴之 小西
治幸 松田
治幸 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012081542A priority Critical patent/JP5940863B2/en
Publication of JP2013211195A publication Critical patent/JP2013211195A/en
Application granted granted Critical
Publication of JP5940863B2 publication Critical patent/JP5940863B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は、発光ダイオード(LED)素子を発光源とするLEDランプが発光時に発生する熱を、閉空間からなる周囲の空間に放射により放熱するための、LED照明用ヒートシンクに関するものである。   The present invention relates to a heat sink for LED lighting for radiating heat generated by an LED lamp having a light emitting diode (LED) element as a light emission source during emission to a surrounding space including a closed space by radiation.

発光ダイオード(LED)素子を発光源とする照明は、低消費電力であり且つ長寿命であることから徐々に市場に浸透し始めている。その中でも、近年特に注目を集めているのが、自動車のヘッドライトなどの車載LEDランプ(車両用灯具、車両用前照灯)であり、LED素子への置き換えが始まっている。また、この車載LEDランプ(LED照明)を応用して、建物等その他の分野の埋め込み照明でも、LEDランプへの置き換えが始まっている。   Lighting that uses a light emitting diode (LED) element as a light source is gradually penetrating the market due to its low power consumption and long life. Among these, in-vehicle LED lamps (vehicle lamps, vehicle headlamps) such as automobile headlights have attracted particular attention in recent years, and replacement with LED elements has begun. In addition, by applying this in-vehicle LED lamp (LED lighting), replacement with LED lamps has begun in embedded lighting in other fields such as buildings.

しかしながら、このLEDランプの発光源であるLED素子は熱に非常に弱く、例えば100℃などの許容温度を超えると発光効率が低下し、更には、その寿命にも影響を及ぼしてしまうという問題がある。この問題を解決するためには、LED素子の発光時の熱を周囲の空間に放熱する必要があるため、LEDランプには大型のヒートシンクが備えられている。   However, the LED element that is the light source of this LED lamp is very vulnerable to heat. For example, when the temperature exceeds an allowable temperature such as 100 ° C., the luminous efficiency is lowered, and further, the life of the LED element is affected. is there. In order to solve this problem, since it is necessary to dissipate heat at the time of light emission of the LED element to the surrounding space, the LED lamp is provided with a large heat sink.

このLEDランプ(LED照明)用ヒートシンクには、従来から、アルミニウム(アルミニウム合金を含む)を材料とした、アルミダイキャストや押出形材によるものが多く採用されている。(特許文献1〜4参照)。これら従来のヒートシンクは、図4に斜視図で例示するように、共通して、LED素子(光源)Lが正面側に配置固定された基板部30と、その基板部30の背面側に間隔を置いて突出する複数枚の平行に配置されたフィン部40を有してなる。   Conventionally, heat sinks for LED lamps (LED lighting), which are made of aluminum (including an aluminum alloy) and are made of aluminum die cast or extruded shape material, are often used. (See Patent Documents 1 to 4). These conventional heat sinks, as illustrated in a perspective view in FIG. 4, are commonly provided with a substrate part 30 on which the LED element (light source) L is arranged and fixed on the front side, and a gap on the back side of the board part 30. It has a plurality of fin portions 40 arranged in parallel and projecting.

これらLEDランプ用ヒートシンクを車載LEDランプ(車両用灯具)に組み込む場合の、灯具ユニット(LEDランプユニット)の構造は、一般的に前面レンズとハウジングとによって灯室が形成され、その灯室内に光源となるLEDが支持される(例えば特許文献5、6参照)。これらの灯具ユニットは、具体的には、図5に例示するように、車両用LED灯具51は前面レンズ52とハウジング53によって灯室54が形成され、灯室54内に灯具ユニット55が支持されている。   When these heat sinks for LED lamps are incorporated in an in-vehicle LED lamp (vehicle lamp), the lamp unit (LED lamp unit) generally has a lamp chamber formed by a front lens and a housing, and a light source in the lamp chamber. Are supported (see, for example, Patent Documents 5 and 6). Specifically, as illustrated in FIG. 5, these lamp units include a vehicular LED lamp 51 in which a lamp chamber 54 is formed by a front lens 52 and a housing 53, and the lamp unit 55 is supported in the lamp chamber 54. ing.

灯具ユニット55は光学系と放熱系を備えており、光学系はLED素子(光源)56、LED素子56の実装基板が載置されたマウントプレート57、この基板7に連接されたリフレクタ(反射板)58、このリフレクタ58に連接されたレンズホルダ59、レンズホルダ59内底面から上方に延びる遮蔽体60およびレンズホルダ59に支持された投影レンズ61で構成され、プロジェクタランプを形成している。   The lamp unit 55 includes an optical system and a heat dissipation system. The optical system includes an LED element (light source) 56, a mount plate 57 on which a mounting substrate for the LED element 56 is mounted, and a reflector (reflector) connected to the substrate 7. 58, a lens holder 59 connected to the reflector 58, a shield 60 extending upward from the inner bottom surface of the lens holder 59, and a projection lens 61 supported by the lens holder 59 to form a projector lamp.

一方、放熱系はLED素子56の実装基板が載置されたマウントプレート57、この基板57に固定されたヒートシンク62、およびマウントプレート57とヒートシンク62とが一体化された放熱部材63に接続されたリフレクタ58で構成されている。これら、基板57、ヒートシンク12およびリフレクタ58はいずれもAl、Al合金、Cu、およびCu合金のうちいずれかの金属からなっている。   On the other hand, the heat dissipation system is connected to a mount plate 57 on which the mounting substrate of the LED element 56 is placed, a heat sink 62 fixed to the substrate 57, and a heat dissipation member 63 in which the mount plate 57 and the heat sink 62 are integrated. A reflector 58 is used. The substrate 57, the heat sink 12, and the reflector 58 are all made of any one of Al, Al alloy, Cu, and Cu alloy.

次に、光学系は、LED素子(光源)56が点灯して光を発すると、LED素子56からリフレクタ58の光反射面64に向かう光は、この光反射面64で反射されて前方の投影レンズ61方向に向かい、その一部は遮蔽体60によって光路が遮られる。一方、リフレクタ58の光反射面64で反射された光のうち遮蔽体60に遮られることのない光は、レンズホルダ59内を導光されて投影レンズ61に至り、投影レンズ61で所望の配光に制御されて、車両の前面レンズ52を介して車両用LED灯具51の前方に照射される。   Next, in the optical system, when the LED element (light source) 56 is turned on to emit light, light directed from the LED element 56 toward the light reflecting surface 64 of the reflector 58 is reflected by the light reflecting surface 64 and projected forward. The optical path is blocked by the shield 60 in part toward the lens 61. On the other hand, of the light reflected by the light reflecting surface 64 of the reflector 58, the light not blocked by the shield 60 is guided through the lens holder 59 and reaches the projection lens 61. Controlled by light, the light is irradiated in front of the vehicle LED lamp 51 through the front lens 52 of the vehicle.

また、放熱系における熱については、LED素子56が点灯すると、光を発すると共に熱も発生する。そこで、LED素子56で発生した熱(自己発熱)はLED素子56が実装された基板(図示せず)に移動し、この基板を伝導されて、この基板が載置されたマウントプレート57に移動する。そして、マウントプレート57を伝導された熱は、マウントプレート57に固定されたヒートシンク62に移動する。そして、ヒートシンク62に移り、ヒートシンク62内を伝導されて、ヒートシンク62の表面に達した熱は、表面近傍の空気に熱伝達されて移動し、空気を媒体としてヒートシンク62外に放散される。   As for the heat in the heat dissipation system, when the LED element 56 is lit, it emits light and also generates heat. Therefore, the heat (self-heating) generated in the LED element 56 moves to a substrate (not shown) on which the LED element 56 is mounted, is conducted through this substrate, and moves to the mount plate 57 on which the substrate is placed. To do. Then, the heat conducted through the mount plate 57 moves to the heat sink 62 fixed to the mount plate 57. Then, the heat is transferred to the heat sink 62, and the heat that has been conducted through the heat sink 62 and reaches the surface of the heat sink 62 is transferred to the air in the vicinity of the surface of the heat sink 62, and is dissipated outside the heat sink 62 using air as a medium.

特開2007−193960号公報JP 2007-193960 A 特開2008−7558号公報JP 2008-7558 A 特開2009−277535号公報JP 2009-277535 A 特開2010−278350号公報JP 2010-278350 A 特開2008−130232号公報JP 2008-130232 A 特開2009−76377号公報JP 2009-76377 A

ただ、このようなヒートシンクを自動車のヘッドライトやテールランプなどの車載照明としてハウジングに組み込んで適用する場合には、前記図5のように、必然的に、限られた狭い空間乃至閉鎖空間のなかに設置され、使用されることになる。   However, when such a heat sink is incorporated in a housing as an in-vehicle lighting such as a headlight or tail lamp of an automobile, it is inevitably in a limited narrow space or closed space as shown in FIG. Will be installed and used.

このような車載照明用のハウジングの狭い空間内乃至閉鎖空間内では、放熱空間も小さく限定され、図4で前記した従来のヒートシンクの基板部30やフィン部40が位置する周囲の放熱空間(容積)も小さくなり、空気の対流がほとんどない。このような使用環境下では、空気の対流による放熱効果がほとんど期待できず、放射による放熱が必要とされる。   In such a narrow space or closed space of the housing for in-vehicle lighting, the heat dissipation space is also limited to a small size, and the surrounding heat dissipation space (volume) where the substrate portion 30 and the fin portion 40 of the conventional heat sink described above with reference to FIG. ) Becomes smaller and there is almost no air convection. Under such a use environment, almost no heat dissipation effect due to air convection can be expected, and radiation heat dissipation is required.

しかし、従来のヒートシンクは、記載した通り、前記図4のフィン部40や前記図5のヒートシンク62などの放熱面の面積を増加させた、この放熱面からの空気の対流による放熱効果を主体としており、前記放射による放熱が考慮されていない。このため、従来のヒートシンクは、必然的に、前記放射による放熱が不十分となり、車載照明用のハウジングの狭い空間内乃至閉鎖空間内では、効率的な放熱が達成できない問題を抱えていた。   However, as described above, the conventional heat sink mainly increases the heat radiation effect by the convection of air from the heat radiation surface, which increases the area of the heat radiation surface such as the fin portion 40 of FIG. 4 or the heat sink 62 of FIG. Therefore, heat dissipation due to the radiation is not considered. For this reason, the conventional heat sink inevitably has insufficient heat radiation due to the radiation, and has a problem that efficient heat radiation cannot be achieved in a narrow space or a closed space of the housing for in-vehicle illumination.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、放射による効率的な放熱が可能なLED照明用ヒートシンクを提供することにある。言い換えると、空気による対流がないか少ない(空気の対流による放熱が期待できない)閉鎖された空間内に設置される場合であっても、LED発光源からの熱を放射主体で効率的に放熱できる、LED照明用ヒートシンクを提供することにある。   This invention is made | formed in view of such a problem, The place made into the objective is to provide the heat sink for LED lighting which can perform efficient heat dissipation by radiation | emission. In other words, even when installed in a closed space where there is little or no convection due to air (heat dissipation due to air convection cannot be expected), heat from the LED light source can be efficiently radiated mainly by the radiation. An object of the present invention is to provide a heat sink for LED lighting.

上記目的達成のために、本発明LED照明用ヒートシンクは、LED素子を取付けた基板の側面に、この基板を頂部とする板状放熱面を一体かつ連続して有するヒートシンクであって、前記板状放熱面の互いに異なる二つの方向の投影面積が、前記板状放熱面に対して各々直角方向から照射される平行光によって投影される各投影面積Pとして、前記LED素子の取付位置を通るとともに前記投影面と互いに平行な断面である前記基板の各断面積Sに対して、P≧8×SおよびP/Sが33以下を各々満足しており、空気の対流が生じない自動車のヘッドライトに用いられることである。
To achieve the above object, the heat sink for LED lighting of the present invention is a heat sink having a plate-like heat radiation surface with the substrate as a top on the side surface of the substrate on which the LED element is mounted, and is continuously formed. Projection areas in two directions different from each other on the heat radiating surface pass through the mounting positions of the LED elements as projection areas P projected by parallel light respectively irradiated from a direction perpendicular to the plate-shaped heat radiating surface. A vehicle headlight in which P ≧ 8 × S and P / S satisfy 33 or less for each cross-sectional area S of the substrate, which is a cross-section parallel to the projection plane, and no air convection occurs. Is to be used .

ここで、前記板状放熱面の互いに異なる二つの方向の投影面積Pが、前記P≧8×Sを各々満足しているとは、この関係を満足している互いに異なる二つの方向の前記板状放熱面さえあれば、これを満足しない前記板状放熱面が他にあったとしても、これを許容するという意味である。
このように、本発明ではLED照明用ヒートシンクにおける板状放熱面の互いに異なる二つの方向の投影面積Pを、前記基板の断面積Sとの関係で規定した、一定以上の大きさとしている。前記基板の側面にこの基板を頂部とする板状放熱面を一体かつ連続して形成した立体形状のタイプのヒートシンクでは、車載LEDランプ用などの空気による対流がないか少ない閉鎖された空間内で使用される場合に、その放熱面形状や立体形状との相乗による、特有の問題として、その板状放熱面の投影面積が、放射による放熱に大きく影響する。
Here, the projection areas P in the two different directions of the plate-like heat radiation surface satisfy the above-mentioned relationship of P ≧ 8 × S. The plates in the two different directions satisfying this relationship. If there is a plate-like heat radiation surface, this means that even if there is another plate-shaped heat radiation surface that does not satisfy this condition, this is allowed.
As described above, in the present invention, the projected area P in two different directions of the plate-like heat radiation surface in the LED illumination heat sink is set to a certain size or more, which is defined in relation to the cross-sectional area S of the substrate. In a three-dimensional type heat sink in which a plate-like heat radiation surface with the substrate as a top is integrally and continuously formed on the side surface of the substrate, in a closed space where there is little or no convection due to air, such as for in-vehicle LED lamps. When used, the projection area of the plate-like heat radiation surface greatly affects the heat radiation due to radiation, as a special problem due to the synergy with the heat radiation surface shape and the three-dimensional shape.

本発明によれば、この板状放熱面の投影面積を一定以上に大きくして、前記基板を頂部として板状放熱面を一体かつ連続して形成したタイプのヒートシンクの、放射を主体とする放熱効率を格段に向上させることができる。このため、素材のムダをなくして、素材使用量を最小限にし、ヒートシンクの小型化及び薄型化が可能で、デザインの自由度が高く、製造コストが廉価なLED照明用ヒートシンク、特に車両用LED灯具を提供できる。   According to the present invention, the radiation of the heat sink mainly composed of radiation of the heat sink of the type in which the projected area of the plate-shaped heat radiation surface is made larger than a certain value and the plate-shaped heat radiation surface is integrally and continuously formed with the substrate as a top. Efficiency can be improved significantly. For this reason, the waste of the material is eliminated, the amount of the material used is minimized, the heat sink can be made smaller and thinner, the design freedom is high, and the manufacturing cost is low, especially the LED for the vehicle. Can provide lighting fixtures.

本発明ヒートシンクの一態様を示す斜視図である。It is a perspective view which shows one aspect | mode of this invention heat sink. 本発明ヒートシンクの他の態様を示す斜視図である。It is a perspective view which shows the other aspect of this invention heat sink. 本発明ヒートシンクの他の態様を示す斜視図である。It is a perspective view which shows the other aspect of this invention heat sink. 従来のヒートシンクの一態様を示す斜視図である。It is a perspective view which shows the one aspect | mode of the conventional heat sink. 従来のヒートシンクを組み込んだ車載LEDランプの一例を示す断面図である。It is sectional drawing which shows an example of the vehicle-mounted LED lamp incorporating the conventional heat sink.

以下に図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

ヒートシンクの基本構造:
図1〜2を用いて、LED素子発光源からの熱を放射主体で効率的に放熱するための、本発明ヒートシンク1の前提となる基本構造の態様を、先ず以下に説明する。
Basic structure of heat sink:
First, the aspect of the basic structure which is the premise of the heat sink 1 of the present invention for efficiently radiating heat from the LED element light source mainly by radiation will be described below with reference to FIGS.

図1〜2において、本発明ヒートシンク1は、共通して、基板2の表面3にLED素子9を取付け(実装し)ている。そして、この基板2の側面(板厚乃至厚み方向の側面)5、6、7、8のいずれかまたは全部に、基板2を頂部とする板状放熱面10〜12を、一つ以上、一体かつ連続して有している。これら板状放熱面10〜12は、基板2とともに、LED素子9を中心として、このLED素子9の周囲(基板2の辺乃至周縁)に配置された熱放射面(以下、放熱面とも言う)となる。   1 and 2, the heat sink 1 of the present invention has an LED element 9 attached (mounted) to the surface 3 of the substrate 2 in common. Then, one or more plate-like heat radiation surfaces 10 to 12 having the substrate 2 as the top are integrated with any or all of the side surfaces (side surfaces in the thickness or thickness direction) 5, 6, 7, and 8 of the substrate 2. And it has continuously. These plate-like heat radiation surfaces 10 to 12 are heat radiation surfaces (hereinafter also referred to as heat radiation surfaces) disposed around the LED elements 9 (sides or rims of the substrate 2) with the substrate 2 as the center. It becomes.

ここで、基板2を頂部とするとは、本発明ヒートシンク1の基板2と板状放熱面10〜12とが形成する三次元立体形状において、基板2を平坦な(平面な)頂部あるいは頂点として、その下方に向かって板状放熱面10〜12が延在する、ヒートシンク1の全体形状を言う。このような構成とすることによって、基板2と板状放熱面10〜12とによって、X、Y、Z方向など、3次元のいずれの方向へも向いた放熱面を有することができる。   Here, when the substrate 2 is the top, in the three-dimensional shape formed by the substrate 2 and the plate-like heat radiation surfaces 10 to 12 of the heat sink 1 of the present invention, the substrate 2 is defined as a flat (planar) top or apex, It refers to the overall shape of the heat sink 1 in which the plate-like heat radiation surfaces 10 to 12 extend downward. With such a configuration, the substrate 2 and the plate-like heat radiating surfaces 10 to 12 can have a heat radiating surface facing in any of three-dimensional directions such as the X, Y, and Z directions.

図1〜2において、各板状放熱面10〜12は、基板2の平坦面(平面)の向きをY方向とすると、これに対して各々直角方向(90方向)のX、Z方向に向いて(対向して)いる。ただ、基板2の平坦面(平面)も厳密にY方向である必要はなく、各板状放熱面10〜12も、このY方向に対して、厳密に各直角方向(90方向)であるX、Z方向に各々向く必要はなく、相対的に多少の角度のズレは勿論許容される。すなわち、基板2と板状放熱面10〜12とによって3次元のいずれの方向へも向いた放熱面を有するとは、互いに厳密に各直角方向(90方向)に向き合う関係である必要はなく、多少の角度のズレは許容される。したがって、板状放熱面10〜12の各投影面積Pや、基板2の各断面積Sも、これら板状放熱面10〜12が各々向く方向に見合った(対応する)方向を選択する。   1 and 2, the plate-like heat radiation surfaces 10 to 12 are oriented in the X and Z directions perpendicular to each other (90 directions) when the direction of the flat surface (plane) of the substrate 2 is the Y direction. (Opposite). However, the flat surface (plane) of the substrate 2 does not have to be strictly in the Y direction, and each of the plate-like heat radiating surfaces 10 to 12 is strictly in the direction perpendicular to each Y direction (90 directions). , It is not necessary to face each other in the Z direction. That is, having the heat radiation surface facing in any of the three dimensions by the substrate 2 and the plate-shaped heat radiation surfaces 10 to 12 does not need to be in a relationship that faces each other in the right angle direction (90 directions) strictly. Some angle deviation is allowed. Therefore, the projection areas P of the plate-shaped heat radiation surfaces 10 to 12 and the cross-sectional areas S of the substrate 2 are also selected in a direction corresponding to (or corresponding to) the direction in which the plate-shaped heat radiation surfaces 10 to 12 face.

板状放熱面10〜12は、基板2の平坦面(平面)に対して、必ずしも90度の角度で直交する必要はない。また、基板2も、その平坦面あるいは平面が水平方向に延在しても良く、水平方向から傾いても良い。例えば、ヒートシンク1の用途や設計に応じて、90度よりも大きく山の裾野状に板状放熱面10〜12が広がって延在しても、90度よりも小さく漏斗状に板状放熱面10〜12が狭まって延在しても良い。また、板状放熱面10〜12の基板2の平坦面(平面)に対してなす角度をすべての板状放熱面で同じ角度とする必要はなく、板状放熱面ごとに変えても良い。   The plate-like heat radiation surfaces 10 to 12 are not necessarily orthogonal to the flat surface (plane) of the substrate 2 at an angle of 90 degrees. Further, the flat surface or plane of the substrate 2 may extend in the horizontal direction, or may be inclined from the horizontal direction. For example, depending on the use and design of the heat sink 1, even if the plate-shaped heat radiation surfaces 10 to 12 extend in a mountain-like shape larger than 90 degrees and extend, the plate-shaped heat radiation surface smaller than 90 degrees in a funnel shape. 10-12 may extend narrowing. Moreover, it is not necessary to make the angle made with respect to the flat surface (plane) of the board | substrate 2 of the plate-shaped heat radiation surfaces 10-12 the same angle by all the plate-shaped heat radiation surfaces, and you may change for every plate-shaped heat radiation surface.

基板2の形状につき、図1〜2では、平面視で矩形(四角形)あるいは円形の平板状乃至平面形状を例示している。ただ、この基板2の平面形状(平面視形状)では、LED照明用ヒートシンクの用途に応じて、三角形、多角形、不定形などの平面形状、あるいは設計に応じて、必要な段差や凹凸形状、切り欠き、スリットなどを設けることが適宜選択できる。また、図1〜2では、共通して、基板2の表面3の中央部にLED素子9を取付け(実装し)ているが、取り付け位置は設計に応じて自由に選択できる。これらの形状は、例えば素材をアルミニウムとすると、押出棒材の機械加工、圧延板材の曲げ加工、鋳造などにより製造できる。   1-2, the shape of the board | substrate 2 has illustrated rectangular (square) or circular flat form thru | or planar shape by planar view. However, in the planar shape (planar shape) of the substrate 2, depending on the application of the heat sink for LED lighting, a planar shape such as a triangle, a polygon, an indeterminate shape, or a necessary step or uneven shape depending on the design, Providing notches and slits can be selected as appropriate. 1 and 2, the LED element 9 is attached (mounted) to the central portion of the surface 3 of the substrate 2 in common, but the attachment position can be freely selected according to the design. These shapes can be produced, for example, by machining an extruded bar, bending a rolled plate, or casting if the material is aluminum.

図1:
図1は、平面視が四角形(矩形)の基板2の表面3に、LED素子9を取付け(実装し)ている。そして、この基板2の四周囲の側面5、6、7、8のうちの互いに直角に交差する二つの側面(二つの辺)5、6に、基板2を頂部として、各々平面視が四角形(矩形)の板状放熱面10、11を2つ、一体かつ連続して形成してなる。すなわち、この図1の態様では、基板2の平坦面(平面)の向きをY方向とすると、X方向に向く板状放熱面10と、Z方向に向く板状放熱面11との各々の投影面積Pが、板状放熱面の互いに異なる二つの方向の投影面積となる。したがって、これらの投影面積が、基板2の各断面積Sに対して、P≧8×Sを各々満足するかどうかが問題となる。
Figure 1:
In FIG. 1, an LED element 9 is attached (mounted) on a surface 3 of a substrate 2 having a quadrangular (rectangular) plan view. The two side surfaces (two sides) 5 and 6 of the four peripheral side surfaces 5, 6, 7, and 8 of the substrate 2 that intersect at right angles to each other are square ( (Rectangular) plate-like heat radiation surfaces 10 and 11 are formed integrally and continuously. That is, in the embodiment of FIG. 1, when the orientation of the flat surface (plane) of the substrate 2 is the Y direction, each projection of the plate-shaped heat radiation surface 10 facing the X direction and the plate-shaped heat radiation surface 11 facing the Z direction. The area P is a projected area in two different directions of the plate-shaped heat radiation surface. Therefore, it is a problem whether these projected areas satisfy P ≧ 8 × S for each cross-sectional area S of the substrate 2.

図1のこれら板状放熱面10、11の各長さ(幅)は、各々対応する前記基板2の二つの側面(二つの辺)5、6の各長さ(幅)と、それぞれ同じ長さ(幅)を有する。ただ、これら板状放熱面10、11のうちの少なくともひとつが、規定する投影面積を得られるのであれば、いずれか、あるいは両方とも、各々対応する前記基板2の二つの側面5、6の長さ(幅)よりも小さくしても良い。また、同じ板状放熱面10、11に、基板側面5、6の延在方向で隙間やスリットを設けて、板状放熱面10、11を幾つかに分割あるいは放熱面の面積(大きさ)や形状を変えて、投影面積を部分的に変えるようにしても良い。   The lengths (widths) of these plate-like heat radiation surfaces 10 and 11 in FIG. 1 are the same as the lengths (widths) of the two side surfaces (two sides) 5 and 6 of the substrate 2 respectively. (Width). However, as long as at least one of these plate-like heat radiating surfaces 10 and 11 can obtain a prescribed projected area, either or both of the lengths of the two side surfaces 5 and 6 of the corresponding substrate 2 are respectively. It may be smaller than the width (width). Further, the same plate-like heat radiation surfaces 10 and 11 are provided with gaps and slits in the extending direction of the substrate side surfaces 5 and 6 so that the plate-like heat radiation surfaces 10 and 11 are divided into several parts or the area (size) of the heat radiation surface. Alternatively, the projected area may be partially changed by changing the shape.

また、これら二つの板状放熱面10、11は、基板2(表面3)を頂部とし、直角に交差するものの、直交せずに、間隔(隙間)24を介して立設させている。しかし、これら板状放熱面10、11のうちの少なくともひとつが、規定する投影面積を得られるのであれば、これら放熱面(放熱フィン)10、11同士を、隙間24を介さずに、あるいは部分的に介在させて、互いに直交させて一体化(連続化)させても良い。これらは、基板2の他の側面7、8などに板状放熱面を一体かつ連続して形成した場合も同様である。   Further, these two plate-like heat radiating surfaces 10 and 11 have the substrate 2 (surface 3) as the top and intersect at right angles, but do not intersect at right angles but are erected via an interval (gap) 24. However, if at least one of these plate-like heat radiation surfaces 10 and 11 can obtain a defined projection area, these heat radiation surfaces (heat radiation fins) 10 and 11 may be connected to each other without the gap 24 therebetween. Alternatively, they may be integrated (continuous) so as to be orthogonal to each other. The same applies to the case where a plate-like heat radiation surface is integrally and continuously formed on the other side surfaces 7 and 8 of the substrate 2.

図2:
図2は、平面視が真円形(円盤)あるいは楕円形であるような、円形基板2の表面3に、LED素子9を取付け(実装し)ている。そして、この基板2の周囲の円弧状に連続する側面全部(全周)に、基板2を頂部とする円筒状の板状放熱面12を、放熱面としては一つ、一体かつ連続して形成している。この図2の態様では、基板2の平坦面(平面)の向きをY方向とすると、互いに異なるX、Z方向に各々向く、二つの方向の投影面積P2、P3が、互いに異なる二つの方向の投影面積となる。このX方向に向く投影面積P2と、Z方向に向く投影面積P3が基板2の各断面積Sに対して、P≧8×Sを各々満足するかどうかが問題となる。
Figure 2:
In FIG. 2, the LED element 9 is mounted (mounted) on the surface 3 of the circular substrate 2 whose plan view is a perfect circle (disk) or an ellipse. A cylindrical plate-shaped heat radiation surface 12 having the substrate 2 as the top is formed integrally and continuously as a heat radiation surface on the entire side surface (entire circumference) continuous in an arc shape around the substrate 2. doing. In the embodiment of FIG. 2, if the orientation of the flat surface (plane) of the substrate 2 is the Y direction, the projected areas P2 and P3 in the two directions respectively facing the different X and Z directions are in the two different directions. This is the projected area. Whether the projected area P2 facing in the X direction and the projected area P3 facing in the Z direction satisfy P ≧ 8 × S with respect to each cross-sectional area S of the substrate 2 becomes a problem.

勿論、規定する投影面積を得られるのであれば、基板2の周囲の円弧状に連続する側面(板厚乃至厚み方向の側面)部分5、6、7、8のうちの一部のみに、円筒状の板状放熱面12を、基板2を頂部として一体かつ連続して形成して良い。すなわち、板状放熱面12を基板2の周囲(円周)の側面全部(全周)に設けずとも、円周方向でスリットや隙間を設けて、いくつかに分割するか、板状放熱面12を円周方向で部分的に設けず、基板側面5、6、7、8のうちのいずれかが部分的に露出するようにしても良い。   Of course, if a prescribed projected area can be obtained, only a part of the side surfaces (side surfaces in the thickness or thickness direction) portions 5, 6, 7, and 8 that are continuous in an arc shape around the substrate 2 is cylindrical. The plate-like heat radiation surface 12 may be formed integrally and continuously with the substrate 2 as the top. That is, without providing the plate-like heat radiation surface 12 on the entire side surface (circumference) of the periphery (circumference) of the substrate 2, slits or gaps are provided in the circumferential direction to divide it into several parts, or 12 may not be partially provided in the circumferential direction, and any one of the substrate side surfaces 5, 6, 7, and 8 may be partially exposed.

図2では、基板2の周囲(円周)の側面全部に設けられた円筒状の板状放熱面12の長さ(幅)は、当然ながら基板2の円周に相当する。ちなみに、この板状放熱面12が規定する投影面積を得られるのであれば、前記分割した他の板状放熱面や、一体であっても板状放熱面12が部分的に、規定する投影面積を満たさず、小さな投影面積であっても良い。また、基板が平面視で三角形や四角形、多角形であれば、板状放熱面12もこの形状に対応した三角形や四角形、多角形の角筒状となる。この点、図1は基板が平面視で四角形の二辺のみに板状放熱面10、11を設けた角筒状とも言える。   In FIG. 2, the length (width) of the cylindrical plate-shaped heat radiation surface 12 provided on the entire side surface (circumference) of the substrate 2 naturally corresponds to the circumference of the substrate 2. By the way, if the projected area defined by the plate-shaped heat radiation surface 12 can be obtained, the other divided plate-shaped heat radiation surface, or the projected area defined by the plate-shaped heat radiation surface 12 partially even if integrated. A small projected area may be sufficient. Further, if the substrate is a triangle, a quadrangle, or a polygon in plan view, the plate-like heat radiating surface 12 is also a triangular, quadrangle, or polygonal square tube corresponding to this shape. In this respect, FIG. 1 can also be said to be a rectangular tube shape in which the substrate is provided with plate-like heat radiating surfaces 10 and 11 on only two sides of a square in plan view.

これら本発明のヒートシンク1は、例えば、好ましくはアルミニウムなどの一定の板厚を有する金属薄板を一体に成形してなり、全体が中空な筒状の立体形状を有している。すなわち、これら本発明のヒートシンク1は、金属薄板を曲げ加工あるいは絞り加工するによって、一枚の金属薄板から基板2と板状放熱面10〜12とを一体かつ連続して形成する実施形態が好ましい。   These heat sinks 1 of the present invention are formed, for example, by integrally forming a thin metal plate having a certain plate thickness, such as aluminum, and has a hollow cylindrical solid shape as a whole. That is, the heat sink 1 of the present invention is preferably an embodiment in which the substrate 2 and the plate-like heat radiation surfaces 10 to 12 are integrally and continuously formed from one metal thin plate by bending or drawing the metal thin plate. .

放熱面:
これら図1〜2のヒートシンク1の場合、各々共通して、前記した通り、基板2の側面5、6、7、8のいずれかまたは全部に、板状放熱面10〜12を、基板2を頂部として、一体かつ連続して形成してなる。このため、これら基板2と、板状放熱面10〜12とで、LED素子9の周囲に配置された、3次元のX、Y、Zの3方向全てに各々向く、連続した放熱面を形成している。すなわち、X、Y、Zの3次元のいずれの方向へも向いた放熱面を有する。
Heat dissipation surface:
In the case of these heat sinks 1 and 2, in common with each other, as described above, the plate-like heat radiating surfaces 10 to 12 are provided on any or all of the side surfaces 5, 6, 7 and 8 of the substrate 2. The top is formed integrally and continuously. For this reason, the substrate 2 and the plate-like heat radiation surfaces 10 to 12 form a continuous heat radiation surface that faces each of all three directions of the three-dimensional X, Y, and Z arranged around the LED element 9. doing. That is, it has a heat radiating surface facing in any of the three-dimensional directions of X, Y, and Z.

図1では、Y方向に各々向く基板2の表裏面3、4と、X方向、Z方向の2方向に各々向く板状放熱面10、11の平板状の表裏面とで、X、Y、Zの3方向に各々向く、連続した平板状放熱面を形成している。更に、この図1では、好ましくは0.7〜6mmの範囲の一定の板厚さえあれば、基板2の板厚方向(厚み方向)の側面7、8や、板状放熱面10の板厚方向(厚み方向)の各両側面14、15と底面16、板状放熱面11の板厚方向(厚み方向)の各両側面17、18と底面19も、X、Y、Zの3方向に各々向く、連続した平板状放熱面を形成している。板状放熱面10、11との間に前記隙間30を介在させれば、このような板状放熱面10の板厚方向の側面15と、板状放熱面11の板厚方向側面16とを得ることができる利点もある。以上の通り、図1では、基板や板状放熱面(放熱フィン)の各表裏面の平板状放熱面だけでなく、基板や板状放熱面の前記板厚方向の各放熱面も含めて、X、Y、Zの3次元のいずれの方向へも向いた放熱面を有する。   In FIG. 1, the front and back surfaces 3 and 4 of the substrate 2 facing each other in the Y direction, and the flat front and back surfaces of the plate-like heat radiation surfaces 10 and 11 facing each of the two directions of the X direction and the Z direction, A continuous flat plate-like heat radiation surface is formed in each of the three Z directions. Further, in FIG. 1, the thickness of the side surfaces 7 and 8 in the thickness direction (thickness direction) of the substrate 2 and the thickness of the plate-like heat radiating surface 10 as long as the plate thickness is preferably in the range of 0.7 to 6 mm. Both side surfaces 14 and 15 and bottom surface 16 in the direction (thickness direction), and both side surfaces 17 and 18 and bottom surface 19 in the plate thickness direction (thickness direction) of the plate-like heat radiation surface 11 are also in three directions of X, Y and Z. A flat plate heat dissipating surface facing each other is formed. If the gap 30 is interposed between the plate-like heat radiating surfaces 10, 11, the side surface 15 in the plate thickness direction of the plate-like heat radiating surface 10 and the plate thickness direction side surface 16 of the plate-shaped heat radiating surface 11 are connected. There are also advantages that can be obtained. As described above, in FIG. 1, not only the plate-like heat radiation surfaces on the front and back surfaces of the substrate and the plate-shaped heat radiation surface (heat radiation fin), but also each heat radiation surface in the plate thickness direction of the substrate and the plate-shaped heat radiation surface, It has a heat dissipation surface that faces in any of the three-dimensional directions of X, Y, and Z.

図2の場合にはひとつの板状放熱面12のみである。ただ、この板状放熱面12は基板2の周囲の円形な(円弧状に連続する)側面全部(全周)に亘って、円形に(円弧状あるいは円筒状に)連続して一体かつ連続して形成されている。したがって、この図2でも、Y方向に各々向く基板2の表裏面3、4と、X、Z方向に各々向く板状放熱面12の平板状の表裏面と、好ましくは0.7〜6mmの範囲の一定の板厚さえあれば、Y方向に各々向く円形に(円弧状に)連続した底面20とで、連続した放熱面を形成している。以上の通り、図2でも、基板や板状放熱面(放熱フィン)の各表裏面の平板状放熱面だけでなく、板状放熱面12の底面20の各放熱面も含めて、X、Y、Zの3次元のいずれの方向へも向いた放熱面を有する。このため、LED素子9からの熱が、基板2のLED素子取付側の面(表面)3を介して、裏面4や各板状放熱面10〜12へ連続して伝熱される連続伝熱面を形成している。また、これら連続伝熱面から連続して熱を放射する連続放熱面を形成している。   In the case of FIG. 2, there is only one plate-like heat radiating surface 12. However, the plate-like heat radiating surface 12 is continuously and integrally formed in a circular shape (in an arc shape or in a cylindrical shape) over the entire circular (circular shape) side surface (continuous in an arc shape) around the substrate 2. Is formed. Therefore, also in FIG. 2, the front and back surfaces 3 and 4 of the substrate 2 facing in the Y direction, and the flat front and back surfaces of the plate-like heat radiation surface 12 facing in the X and Z directions, respectively, preferably 0.7 to 6 mm. As long as the plate thickness is within a certain range, a continuous heat radiating surface is formed by the bottom surface 20 that is continuous in a circular shape (circular arc shape) that faces in the Y direction. As described above, in FIG. 2, X and Y include not only the plate-like heat radiation surfaces on the front and back surfaces of the substrate and the plate-shaped heat radiation surfaces (heat radiation fins) but also the heat radiation surfaces on the bottom surface 20 of the plate-shaped heat radiation surface 12. , Z has a heat dissipation surface facing in any of the three-dimensional directions. For this reason, the continuous heat transfer surface in which the heat from the LED element 9 is continuously transferred to the back surface 4 and the plate-like heat radiation surfaces 10 to 12 through the surface (front surface) 3 on the LED element mounting side of the substrate 2. Is forming. Moreover, the continuous heat radiating surface which radiates | emits heat continuously from these continuous heat transfer surfaces is formed.

板状放熱面の投影面積:
以上の3次元のいずれの方向へも向いた放熱面を有してなるヒートシンクの基本構造を前提に、本発明では、前記板状放熱面10〜12における、互いに異なる二つの方向の板状放熱面同士の投影面積Pが、P≧8×S、すなわち投影面積Pが対応する基板断面積Sの8倍以上、好ましくはP≧12×S、すなわち投影面積Pが対応する基板断面積Sの12倍以上を各々満足するものとする。言い換えると、互いに異なる二つの方向の前記板状放熱面の投影面積P同士が、P≧8×S、好ましくはP≧12×Sなる関係(式)を各々満足していれば、これを満足していない板状放熱面が他にあっても、また板状放熱面にこの関係を満足していない部分が部分的にあっても勿論良い。
Projected area of plate-shaped heat radiation surface:
In the present invention, on the premise of the basic structure of the heat sink having the heat radiating surface facing in any of the above three dimensions, in the present invention, the plate-shaped heat radiating surfaces of the plate-shaped heat radiating surfaces 10 to 12 are different from each other. The projected area P between the planes is P ≧ 8 × S, that is, eight or more times the substrate sectional area S corresponding to the projected area P, preferably P ≧ 12 × S, that is, the projected sectional area P of the corresponding substrate sectional area S. It shall satisfy each of 12 times or more. In other words, if the projection areas P of the plate-shaped heat radiation surfaces in two different directions satisfy the relationship (formula) of P ≧ 8 × S, preferably P ≧ 12 × S, this is satisfied. Of course, there may be other plate-shaped heat radiation surfaces that are not provided, or there may be a portion of the plate-shaped heat radiation surface that does not satisfy this relationship.

互いに異なる二つの方向の前記板状放熱面同士の投影面積Pが、この基板断面積Sとの関係を満足するよう、各々(二つとも、両方とも)一定以上の大きさとすることによって、ヒートシンクが閉鎖空間内で使用される場合に、放射を主体とする放熱効率を格段に向上させることができる。すなわち、投影面積Pをこの一定以上の大きさとすることによって、車載LEDランプ用などの空気による対流がないか少ない閉鎖空間内での、図1〜2のタイプのヒートシンクのLED素子9の放熱を、放射を主体とする放熱とし、その放熱効率を格段に向上させることができる。言い換えると、図1〜2のX、Y、Zの3次元のいずれの方向へも向いた放熱面を有するヒートシンクは、その形状(構造)と前記投影面積Pとの相乗効果によって、車載LEDランプ用などの空気による対流がないか少ない閉鎖空間内でのLED素子9の放熱を、放射を主体とする放熱とし、その放熱効率を格段に向上させることができる。   By setting the projected area P between the plate-like heat radiating surfaces in two different directions from each other (both or both) to a certain size or more so as to satisfy the relationship with the substrate cross-sectional area S, the heat sink When used in a closed space, the heat dissipation efficiency mainly composed of radiation can be remarkably improved. That is, by setting the projected area P to a certain size or more, heat dissipation of the LED element 9 of the heat sink of the type shown in FIGS. The heat dissipation is mainly composed of radiation, and the heat dissipation efficiency can be remarkably improved. In other words, the heat sink having a heat radiating surface facing in any of the three-dimensional directions X, Y, and Z in FIGS. 1 and 2 is based on the synergistic effect of its shape (structure) and the projected area P. The heat radiation of the LED element 9 in a closed space where there is little or no convection due to air, such as for use, can be made heat radiation mainly, and the heat radiation efficiency can be significantly improved.

一方、前記板状放熱面10〜12において、互いに異なる二つの方向の板状放熱面同士の投影面積Pがこの関係を満足せず、いずれもか、あるいはいずれかが、投影面積PがP<8×S、すなわち投影面積Pが対応する基板断面積Sの8倍未満、と小さすぎると、ヒートシンクが閉鎖空間内で使用される場合に、放射を主体とする放熱効率を向上させることができない。言い換えると、図1〜2のX、Y、Zの3次元のいずれの方向へも向いた放熱面を有するヒートシンクであっても、その形状(構造)との相乗効果が発揮されず、車載LEDランプ用などの空気による対流がないか少ない閉鎖空間内でのLED素子9の放熱を、放射を主体とする放熱とするか、その放熱効率を向上させることができない。前記した通り、図1〜2のX、Y、Zの3次元のいずれの方向へも向いた放熱面を有するタイプのヒートシンクは、車載LEDランプ用などの前記閉鎖空間内で使用される場合には、その放熱面形状や立体形状との相乗による、特有の問題として、その板状放熱面の投影面積が、放射による放熱に大きく影響するからである。   On the other hand, in the plate-like heat radiating surfaces 10 to 12, the projected areas P between the plate-like heat radiating surfaces in two different directions do not satisfy this relationship, and either or any of the projected areas P is P < If 8 × S, that is, the projected area P is too small, such as less than 8 times the corresponding substrate cross-sectional area S, when the heat sink is used in a closed space, it is not possible to improve the heat dissipation efficiency mainly composed of radiation. . In other words, even if the heat sink has a heat radiating surface facing in any of the three directions X, Y, and Z in FIGS. The heat radiation of the LED element 9 in a closed space where there is little or no convection due to air for lamps or the like cannot be made heat radiation, or the heat radiation efficiency cannot be improved. As described above, a heat sink of a type having a heat radiation surface facing in any of the three-dimensional directions of X, Y, and Z in FIGS. 1 and 2 is used when used in the enclosed space for an in-vehicle LED lamp or the like. This is because the projected area of the plate-shaped heat radiation surface greatly affects the heat radiation due to radiation, as a unique problem due to the synergy between the heat radiation surface shape and the three-dimensional shape.

ここで、板状放熱面10〜12の投影面積Pとは、各板状放熱面10〜12の投影面積として、各板状放熱面に対して直角方向から照射される平行光によって投影される投影面積Pとして規定する。この照射される平行光の角度が、各板状放熱面に対して各々直角方向ではなく、それ以外の角度となると,最も効率的に放射伝熱が起こる条件である,2つの伝熱面が正対する場合の放熱面積を規定することにならず、板状放熱面の放熱性能を正しく決める指標として好ましくない。この場合に規定される投影面積は伝熱面が最も効率良く放射伝熱をする場合の放熱面積となり、板状放熱面の放熱面積の影響を最も適切に表現する指標として好適である。   Here, the projected area P of the plate-shaped heat radiation surfaces 10 to 12 is projected by parallel light irradiated from a direction perpendicular to each plate-shaped heat radiation surface as the projection area of each plate-shaped heat radiation surface 10 to 12. The projected area P is defined. When the angle of the irradiated parallel light is not perpendicular to each plate-shaped heat radiation surface, but is at any other angle, the two heat transfer surfaces are the most efficient conditions for radiation heat transfer. This is not preferable as an index for correctly determining the heat radiation performance of the plate-shaped heat radiation surface, without defining the heat radiation area when facing directly. The projected area defined in this case is a heat dissipation area when the heat transfer surface performs the most efficient radiation heat transfer, and is suitable as an index that most appropriately represents the influence of the heat dissipation area of the plate-shaped heat dissipation surface.

本発明では前記板状放熱面10〜12の投影面積Pを、図1〜2に示す前記基板2の断面積Sに対する倍率として規定するが、この基板2の断面積Sとは、図1〜2の基板2に点線で示す通り、基板2の前記LED素子の取付位置9を通る(9に交わる)とともに、前記板状放熱面10〜12の各投影面と互いに平行な各断面Cの各面積Sである。   In the present invention, the projected area P of the plate-like heat radiation surfaces 10 to 12 is defined as a magnification with respect to the cross-sectional area S of the substrate 2 shown in FIGS. As shown by the dotted line on the second substrate 2, each of the cross-sections C passing through the mounting positions 9 of the LED elements of the substrate 2 (intersecting with 9) and parallel to the respective projection surfaces of the plate-like heat radiation surfaces 10 to 12 Area S.

図1では、板状放熱面10の投影面積P0と、板状放熱面11の投影面積P1との、互いに異なる方向の二つの板状放熱面の投影面積Pがいずれも規定を満足することが必要となる。すなわち、この板状放熱面10に対して直角方向から照射される光によって投影される投影面積P0が、基板2の断面積として、LED素子9の取付位置を通るとともに板状放熱面10の投影面と互いに平行な断面C0の面積S0に対して、P≧8×Sを満足することが必要となる。また、板状放熱面11に対して直角方向から照射される光によって投影される投影面積P1が、基板2の断面積として、LED素子9の取付位置を通るとともに板状放熱面11の投影面と互いに平行な断面C1の面積S1に対して、P≧8×Sを満足することが必要となる。   In FIG. 1, the projection area P0 of the plate-shaped heat radiation surface 10 and the projection area P1 of the plate-shaped heat radiation surface 11 of the two plate-shaped heat radiation surfaces in directions different from each other satisfy the regulation. Necessary. That is, the projection area P0 projected by light irradiated from a right angle to the plate-shaped heat radiation surface 10 passes through the mounting position of the LED element 9 as the cross-sectional area of the substrate 2 and is projected from the plate-shaped heat radiation surface 10. It is necessary to satisfy P ≧ 8 × S with respect to the area S0 of the cross section C0 parallel to the surface. In addition, a projection area P1 projected by light irradiated from a right angle direction with respect to the plate-shaped heat radiation surface 11 passes through the mounting position of the LED element 9 as a cross-sectional area of the substrate 2 and is a projection surface of the plate-shaped heat radiation surface 11 It is necessary to satisfy P ≧ 8 × S for the area S1 of the cross section C1 parallel to each other.

図2では、基板が楕円状の場合や円弧や小判形の場合には、長径側(あるいは面積が多きな部分側)の板状放熱面の投影面積P2と、方向が異なる短径側(あるいは面積が小さな部分側)の板状放熱面の投影面積P3との二つの投影面積の1つ以上が規定を満足するかどうかの対象となる。これに対して、真円状の場合には、いずれの方向の投影面積も等しいので、基板2の平坦面(平面)の向きをY方向とすると、互いに異なるX、Z方向に向く少なくとも二つの板状放熱面を選択する。この二つの板状放熱面とは、X方向に向く投影面積P2を有する板状放熱面と、Z方向に向く投影面積P3を有する板状放熱面である。そして、これら板状放熱面の各投影面積P2、P3が基板2の各断面積Sに対して、P≧8×Sを各々満足することが必要となる。すなわち、これら板状放熱面に対して直角方向から照射される光によって投影される投影面積P2かP3が、基板2の断面積として、LED素子9の取付位置を通るとともに、各投影面と互いに平行な断面C2、C3の面積S2、S3に対して、P≧8×Sを満足することが必要となる。   In FIG. 2, when the substrate is elliptical, circular or oval, the projected area P2 of the plate-shaped heat radiation surface on the longer diameter side (or the portion with a larger area) and the shorter diameter side (or the different direction) (or One or more of the two projected areas with the projected area P3 of the plate-like heat radiating surface on the small area side) is subject to whether or not the regulation is satisfied. On the other hand, in the case of a perfect circle, since the projected area in any direction is the same, if the direction of the flat surface (plane) of the substrate 2 is the Y direction, there are at least two that are directed in different X and Z directions. Select a plate-like heat dissipation surface. The two plate-shaped heat radiation surfaces are a plate-shaped heat radiation surface having a projected area P2 facing the X direction and a plate-shaped heat radiation surface having a projected area P3 facing the Z direction. The projection areas P2 and P3 of the plate-like heat radiation surfaces must satisfy P ≧ 8 × S with respect to the cross-sectional areas S of the substrate 2, respectively. That is, the projection area P2 or P3 projected by the light irradiated from a right angle direction with respect to these plate-like heat radiation surfaces passes through the mounting position of the LED element 9 as the cross-sectional area of the substrate 2, and is mutually connected to each projection surface. It is necessary to satisfy P ≧ 8 × S for the areas S2 and S3 of the parallel sections C2 and C3.

放熱の原理、作用:
このような本発明のヒートシンク1を、空気の対流のない空間に設置してLED照明を行う場合の放熱の原理(作用)について説明する。LED素子取付面3に装着されたLED素子9を発光させると、これに伴ってLED素子9の発する熱(熱流束)Qが、基板2のLED素子取付面3に、LED素子9の底部の装着部(図示せず)を通じて伝導される。これに引き続き,LED素子取付面3に伝導された熱Qは、取付面3側の放熱面10、11だけでなく、裏面4や、この裏面4側の放熱面12、13にも、前記した各放熱面に連続して速やかに(遅滞無く)、しかもほぼ等しく高いレベルで、LED素子9を中心とする同心円状に伝達(伝導)される。これに対して、これら基板と板状放熱面とによって、LED素子9を中心として、このLED素子9の周囲に、X、Y、Zの3次元のいずれの方向へも向いた板状放熱面を形成している。そして、これら板状放熱面は充分な投影面積を有する。このため、これら放熱面の表面から、X、Y、Zの3次元のいずれの方向へも放射による放熱が等しく一定レベル以上で行われ、放熱効率を著しく高めることができる。
Principle and action of heat dissipation:
The principle (action) of heat dissipation when the heat sink 1 of the present invention is installed in a space without air convection to perform LED illumination will be described. When the LED element 9 mounted on the LED element mounting surface 3 is caused to emit light, the heat (heat flux) Q generated by the LED element 9 along with this is generated on the LED element mounting surface 3 of the substrate 2 at the bottom of the LED element 9. Conducted through a mounting (not shown). Subsequently to this, the heat Q conducted to the LED element mounting surface 3 is described not only on the heat radiating surfaces 10 and 11 on the mounting surface 3 side but also on the back surface 4 and the heat radiating surfaces 12 and 13 on the back surface 4 side. It is transmitted (conducted) in a concentric manner around the LED element 9 in a continuous and prompt manner (without delay) to each heat radiating surface, and at a substantially equal high level. On the other hand, with these substrates and the plate-shaped heat radiation surface, the plate-shaped heat radiation surface facing the LED element 9 in the three-dimensional directions of X, Y, Z around the LED element 9. Is forming. These plate-like heat radiation surfaces have a sufficient projected area. For this reason, heat radiation by radiation is equally performed at a certain level or more in the three-dimensional directions of X, Y, and Z from the surfaces of these heat radiation surfaces, and the heat radiation efficiency can be remarkably enhanced.

ここで、車載照明用のハウジングの狭い空間内乃至閉鎖空間内で必要とされる、放射による放熱の場合には、図1〜図3の左下あるいは右下に表示したX、Y、Z軸方向(3次元方向)での投影面積の大きさがその効率を左右することになり、この投影面積が大きいほど、熱の放射効率が向上することになる。
この点、図4の従来例のヒートシンクHは、Y方向の投影面積は、基板部30の平面とフィン部40の上側の平面との合計となるので、フィン部40同士の重なりがないので、材料のムダがなく、投影面積が大きい。しかし、Z方向の投影面積は、基板部30の側面とフィン部40の側面との合計となり、櫛歯状となり空間が多いため、基板部30の長さとフィン部40の高さを掛けた総面積の50%に満たない小さな面積となる。また、X方向の投影面積は、基板部30の正面とフィン部40の正面の合計となり、フィン部40が例えば4枚もあるにもかかわらず、これらが重複して1枚と同じ投影面積であり、材料のムダが多く、放熱面積当りの熱の放射効率が低い。すなわち、X方向においては、多数のフィンが重複して空間を占有しているが、この占有空間が大きい割には投影面積が小さく、熱の放射効率が低い。更には、このX方向フィンの枚数が過剰で、この過剰なフィンのために材料のムダも大きく、重量が重くなる問題もある。
Here, in the case of heat radiation by radiation, which is required in a narrow space or closed space of the housing for in-vehicle illumination, the X, Y, and Z axis directions displayed at the lower left or lower right of FIGS. The size of the projected area in the (three-dimensional direction) affects the efficiency. The larger the projected area, the better the heat radiation efficiency.
In this regard, the heat sink H of the conventional example of FIG. 4 has a projected area in the Y direction that is the sum of the plane of the substrate section 30 and the upper plane of the fin section 40, so there is no overlap between the fin sections 40. There is no waste of material and the projected area is large. However, since the projected area in the Z direction is the sum of the side surface of the substrate portion 30 and the side surface of the fin portion 40 and has a comb-like shape with a lot of space, the total of the length of the substrate portion 30 and the height of the fin portion 40 is multiplied. The area is less than 50% of the area. Further, the projected area in the X direction is the total of the front surface of the substrate portion 30 and the front surface of the fin portion 40. Even though there are, for example, four fin portions 40, these overlap and have the same projected area as one. There are many wastes of material, and the heat radiation efficiency per heat radiation area is low. That is, in the X direction, a large number of fins overlap and occupy a space, but the projected area is small and the heat radiation efficiency is low for a large space. Furthermore, there is a problem that the number of fins in the X direction is excessive, and the excessive fins increase the waste of material and increase the weight.

言い換えると、図4の従来例のヒートシンクHは、X、Y、Z軸方向(3次元方向)のいずれかの方向の熱の放射効率が必ず低くなる。この結果、3次元方向のいずれの方向の熱の放射効率を高めることができないので、総合的な熱の放射効率が低くなる。また、前記したX方向などでフィンの枚数が過剰となって材料のムダも大きい。すなわち、これら従来技術に共通するのは、ヒートシンクの三次元のいずれの方向においても、材料のムダがなく、占有空間が小さい割りに、熱の放射効率が高いヒートシンクとはできなかったいう点である。   In other words, the heat sink H of the conventional example in FIG. 4 always has low heat radiation efficiency in any of the X, Y, and Z axis directions (three-dimensional directions). As a result, the heat radiation efficiency in any one of the three-dimensional directions cannot be increased, so that the overall heat radiation efficiency is lowered. In addition, the number of fins is excessive in the X direction and the like, and material waste is large. In other words, what is common to these prior arts is that in any of the three-dimensional directions of the heat sink, there is no waste of material, and although the occupied space is small, a heat sink with high heat radiation efficiency could not be achieved. is there.

ちなみに、この点は、前記特許文献5も同様であって、多数配列されたコの字状のひしゃく部分の放熱部が重複する方向では、占有空間が大きい割に、熱の放射効率が低く、3次元の3つの方向の総合的な熱の放射効率からすると、特にX方向の材料のムダが多い。また、前記スリット状の開口部の幅には、ヒートシンクの大きさ自体や前記放熱部の側の面積を確保するための大きな制約があって、必然的に狭幅となるため、閉鎖された空間内に適用される場合、空気の対流による放熱効率の向上も、実際に期待するほどには発揮されない。   By the way, this point is the same as in the above-mentioned Patent Document 5, and in the direction where the heat dissipating portions of the U-shaped ladle portions arranged in large numbers overlap, although the occupied space is large, the heat radiation efficiency is low, Considering the overall heat radiation efficiency in three directions in three dimensions, there is a lot of waste of material in the X direction in particular. In addition, the width of the slit-shaped opening has large restrictions for securing the size of the heat sink itself and the area on the side of the heat radiating portion, and inevitably becomes a narrow width. When applied to the inside, the improvement of the heat radiation efficiency by the convection of air is not exhibited as much as actually expected.

図3:
また、図3のヒートシンク25は比較例を示しており、基板の1側面に板状放熱面13のみのひとつしか無く、この板状放熱面13の投影面積をいかに広くしても、放射による放熱性が不十分となる。
Figure 3:
Further, the heat sink 25 of FIG. 3 shows a comparative example, and there is only one plate-like heat radiating surface 13 on one side surface of the substrate, and no matter how wide the projected area of the plate-like heat radiating surface 13 is, heat radiation by radiation is possible. The property becomes insufficient.

この図3では、平面視が四角形(矩形)の基板2の表面3に、LED素子9を取付け、この基板2の四周囲の側面5、6、7、8のうちの側面5のみに、基板2を頂部として、板状放熱面13を1つ、一体かつ連続して形成してなる。すなわち、前記図1の発明例の場合と比較して、基板2の側面6の板状放熱面11が無いことを除いた以外は基本的に同じである。   In FIG. 3, the LED element 9 is attached to the front surface 3 of the substrate 2 having a square shape (rectangular shape) in plan view, and the substrate 2 is disposed only on the side surface 5 of the four side surfaces 5, 6, 7, 8. The plate-shaped heat radiation surface 13 is formed integrally and continuously with 2 as the top. That is, it is basically the same as that of the invention example of FIG. 1 except that there is no plate-like heat radiation surface 11 on the side surface 6 of the substrate 2.

また、この図3の場合には、基板側面の板状放熱面は、基板側面5の板状放熱面13のみであり、Y方向に各々向く基板2の表裏面3、4と、X方向に各々向く板状放熱面13の平板状の表裏面とで、X、Yの2方向に各々向く、連続した平板状放熱面は形成している。また、0.7〜6mmの範囲の一定の板厚さえあれば、基板2の板厚方向(厚み方向)の側面6、7、8や、板状放熱面13の板厚方向(厚み方向)の各両側面21、22と底面23も放熱面を形成している。そして、板状放熱面13の投影面積P4は、基板2の断面積C4の断面積S4に対して、P≧8×Sを満足している。   In the case of FIG. 3, the plate-like heat radiation surface on the side surface of the substrate is only the plate-shaped heat radiation surface 13 on the side surface 5 of the substrate, and the front and back surfaces 3 and 4 of the substrate 2 respectively facing in the Y direction. The flat plate-shaped heat radiation surface facing each other in the two directions of X and Y is formed with the flat plate-shaped heat radiation surface of the plate-shaped heat radiation surface 13 facing each other. Further, as long as a certain plate thickness in the range of 0.7 to 6 mm is provided, the side surfaces 6, 7, and 8 in the plate thickness direction (thickness direction) of the substrate 2 and the plate thickness direction (thickness direction) of the plate-like heat radiation surface 13 are used. Each of the side surfaces 21 and 22 and the bottom surface 23 also form a heat radiating surface. The projected area P4 of the plate-like heat radiation surface 13 satisfies P ≧ 8 × S with respect to the cross-sectional area S4 of the cross-sectional area C4 of the substrate 2.

しかし、この図3のZ方向の放熱面は、基板2の板厚方向(厚み方向)の側面6や、板状放熱面13の板厚方向(厚み方向)の各両側面22のみであって、平板状放熱面が無い。この結果、前記側面6や22からなる、Z方向に各々向く放熱面の投影面積P5を大きくするには限界があり、この投影面積P5を、P≧8×Sとはできない。このため、板状放熱面13の前記投影面積P4によって、X方向の投影面積を満足しても、このZ方向の放熱面の投影面積が不足してしまうので、互いに異なる方向に向く少なくとも二つの板状放熱面がP≧8×Sを各々満足できていない。このため、このZ方向の放熱面の放射による放熱性は小さく、全体として十分な放射放熱性は発揮されない。   However, the heat dissipating surfaces in the Z direction of FIG. 3 are only the side surfaces 6 in the plate thickness direction (thickness direction) of the substrate 2 and the both side surfaces 22 in the plate thickness direction (thickness direction) of the plate heat dissipating surface 13. There is no flat heat dissipation surface. As a result, there is a limit to increasing the projected area P5 of the heat radiating surface composed of the side surfaces 6 and 22, each facing in the Z direction, and this projected area P5 cannot be P ≧ 8 × S. For this reason, even if the projected area in the X direction is satisfied by the projected area P4 of the plate-like heat radiating surface 13, the projected area of the heat radiating surface in the Z direction is insufficient. The plate-like heat radiation surfaces do not satisfy P ≧ 8 × S. For this reason, the heat dissipation by radiation | emission of this Z direction heat dissipation surface is small, and sufficient radiation heat dissipation is not exhibited as a whole.

本発明ヒートシンクは、周囲の放熱空間が閉鎖されて容積が小さく空気の対流がほとんどないような使用(設置)状態で、空気の対流による放熱がほとんど期待できない使用(設置)環境で最適である。このような使用環境では、放熱のためには、放射による放熱を中心とする必要があり、放熱面表面積の増加によって空気の対流を主たる放熱性能とする、前記従来のヒートシンク構造では、この放射による放熱が不十分となり、全体として効率的な放熱が達成できない。これに対して、本発明ヒートシンクは、前記放熱側面などの放熱面からの熱の放射による放熱が主体であり、空気の対流による放熱がほとんど期待できない使用(設置)環境に最適なヒートシンクと言える。   The heat sink of the present invention is optimal in a use (installation) environment in which the heat dissipation by the air convection is hardly expected in a use (installation) state where the surrounding heat dissipation space is closed and the volume is small and there is almost no air convection. In such a use environment, it is necessary to focus on heat dissipation by radiation for heat dissipation, and in the conventional heat sink structure in which the main heat dissipation performance is air convection by increasing the surface area of the heat dissipation, this radiation Insufficient heat dissipation makes it impossible to achieve efficient heat dissipation as a whole. On the other hand, the heat sink of the present invention is a heat sink that is optimal for use (installation) environments where heat dissipation by heat radiation from the heat radiating surface such as the heat radiating side is mainly used and heat dissipation by air convection is hardly expected.

しかも、LED素子取り付け面3と板状放熱面を含めた各放熱面が、その間に接合面を介さない一体構造であるため、別個に製作されたこれら両者を接合する場合に発生するような接触熱抵抗が生じない。このため、LED素子取り付け面3と各放熱面の間の熱伝導が容易で、結果としてヒートシンク全体の放熱性能が著しく高くなる。また、ヒートシンク1の構造が、放熱面が3次元のX、Y、Zのいずれの方向へも向いている構造ゆえに剛性が高い。このため、車載照明等において振動を受けるような用途であっても、特段の補強部材等を用いることなく、その形状を保つことができ、メンテナンスフリーや高寿命化を達成できる。   Moreover, since each heat radiating surface including the LED element mounting surface 3 and the plate-shaped heat radiating surface has an integral structure without a joint surface therebetween, contact that occurs when both of these manufactured separately are joined. Thermal resistance does not occur. For this reason, heat conduction between the LED element mounting surface 3 and each heat radiating surface is easy, and as a result, the heat radiating performance of the entire heat sink is remarkably enhanced. Further, the structure of the heat sink 1 has high rigidity because the heat dissipation surface is oriented in any of the three-dimensional X, Y, and Z directions. For this reason, even if it is a use which receives a vibration in vehicle-mounted illumination etc., the shape can be maintained without using a special reinforcement member etc., and maintenance-free and lifetime improvement can be achieved.

LEDの消費電力:
本発明のヒートシンク1は優れた放熱効果を有するが、熱源となるLED9の消費電力が莫大になると、その優れた放熱効果をもってしても、放熱性能が不足することもある。よって、本発明の好ましい適用範囲として、LED9の消費電力が20W以下が好適な範囲といえる。なお、比較的消費電力の小さいLED9が複数取り付けられるような場合では、それら複数のLEDの消費電力の和が20W以下になる範囲が好適な条件といえる。
LED power consumption:
Although the heat sink 1 of the present invention has an excellent heat dissipation effect, if the power consumption of the LED 9 as a heat source becomes enormous, the heat dissipation performance may be insufficient even with the excellent heat dissipation effect. Therefore, it can be said that the preferred range of application of the present invention is that the power consumption of the LED 9 is 20 W or less. In addition, in the case where a plurality of LEDs 9 with relatively low power consumption are attached, it can be said that a preferable range is a range in which the sum of the power consumptions of these LEDs is 20 W or less.

素材:
本発明のヒートシンク1は、優れた放熱効果を、ヒートシンクの形状、構造を複雑化させず、放熱面の数を多くせず、逆に、構造を単純化し、放熱面の数を少なくすることによって達成できる。この結果、種々の素材材料や製造方法あるいは製造工程を選択することができ、安価でつくりやすいヒートシンクを提供することができる。この点で、素材、材料は、例えば、アルミニウム(純アルミニウム)やアルミニウム合金、銅(純銅)や銅合金、鋼板、樹脂、セラミックなどの種々の素材材料や、板を素材とする絞り加工、折り曲げ加工、ダイキャストや鋳造、鍛造、押出などの製造方法あるいは製造工程を選択することができる。
Material:
The heat sink 1 of the present invention has an excellent heat dissipation effect without complicating the shape and structure of the heat sink, without increasing the number of heat dissipation surfaces, and conversely, by simplifying the structure and reducing the number of heat dissipation surfaces. Can be achieved. As a result, various material materials, manufacturing methods, or manufacturing processes can be selected, and a heat sink that is inexpensive and easy to manufacture can be provided. In this respect, the materials and materials are, for example, various material materials such as aluminum (pure aluminum), aluminum alloy, copper (pure copper), copper alloy, steel plate, resin, ceramic, drawing processing using metal plates, bending A manufacturing method or manufacturing process such as processing, die casting, casting, forging, or extrusion can be selected.

アルミニウムまたはアルミニウム合金:
ヒートシンク1としての必要特性である、強度、剛性、軽量化、耐食性、熱伝導性,熱伝達性、熱放熱性、加工性などを兼備する素材としては、アルミニウム(純アルミニウム)やアルミニウム合金が好ましい。アルミニウム(純アルミニウム)やアルミニウム合金は、ヒートシンクに求められる熱伝導特性と放熱特性が特に大きく、AA乃至JIS規格に規定される1050など、1000系の純アルミニウムが好ましい。
Aluminum or aluminum alloy:
Aluminum (pure aluminum) or an aluminum alloy is preferable as a material having strength, rigidity, weight reduction, corrosion resistance, thermal conductivity, heat transfer property, thermal heat dissipation property, workability, etc., which are necessary characteristics as the heat sink 1. . Aluminum (pure aluminum) and aluminum alloy have particularly large heat conduction characteristics and heat dissipation characteristics required for a heat sink, and 1000 series pure aluminum such as 1050 defined by AA to JIS standards is preferable.

ただ、ヒートシンク1、すなわち基板2と板状放熱面10〜12とをアルミニウムまたはアルミニウム合金からなる場合には、このアルミニウムまたはアルミニウム合金素材あるいはヒートシンク1の、熱伝導率λや各放熱面の表面放射率ε、板厚を規定することが好ましい。これによって、アルミニウムまたはアルミニウム合金からなるヒートシンク1の、車載LEDランプ用などの前記閉鎖空間内でのLED素子9の放熱を放射を主体とする放熱として放熱効率をより向上させることができる。具体的には、熱伝導率λが120W/(m・K)以上であるアルミニウムまたはアルミニウム合金からなるとともに、前記基板と板状放熱面との表面放射率εが0.65以上であり、前記基板と板状放熱面との板厚を0.7〜6mmの範囲とする。   However, when the heat sink 1, that is, the substrate 2 and the plate-like heat radiation surfaces 10 to 12 are made of aluminum or an aluminum alloy, the heat conductivity λ or the surface radiation of each heat radiation surface of the aluminum or aluminum alloy material or the heat sink 1 is used. It is preferable to define the rate ε and the plate thickness. As a result, the heat dissipation efficiency of the heat sink 1 made of aluminum or an aluminum alloy can be further improved by using the heat radiation of the LED element 9 in the enclosed space such as for an in-vehicle LED lamp as heat radiation. Specifically, it is made of aluminum or an aluminum alloy having a thermal conductivity λ of 120 W / (m · K) or more, and the surface emissivity ε between the substrate and the plate-like heat radiation surface is 0.65 or more, The plate thickness between the substrate and the plate-like heat radiation surface is set to a range of 0.7 to 6 mm.

熱伝導率λ:
ヒートシンク1を構成するアルミニウムまたはアルミニウム合金の熱伝導率λは120W/(m・K)以上、好ましくは140W/(m・K)以上とする。この熱伝導率λが低いと、前記した通り、ヒートシンク1の構造として、LED素子9からの熱が基板2のLED素子取付側の面(表面)3を介して、裏面4や各放熱面の周囲の側面や板厚方向の面へ連続して伝熱される連続伝熱面を形成したとしても、高い熱伝導率が達成できない。
Thermal conductivity λ:
The thermal conductivity λ of aluminum or aluminum alloy constituting the heat sink 1 is 120 W / (m · K) or more, preferably 140 W / (m · K) or more. When the thermal conductivity λ is low, as described above, the heat sink 1 has a structure in which the heat from the LED element 9 passes through the surface (front surface) 3 on the LED element mounting side of the substrate 2 and the back surface 4 and each heat radiation surface. Even if a continuous heat transfer surface that continuously transfers heat to the surrounding side surface or the surface in the plate thickness direction is formed, high thermal conductivity cannot be achieved.

熱伝導率λのW/(m・K)の単位の意味は、1メートルにつき1度の温度勾配があるとき、1平方メートルの断面を通って1秒間に1ジュールの熱が移動することである。代表的な金属の27℃の熱伝導率は、化学便覧改訂4版によれば、銅:402、アルミニウム:237、ステンレス(Cr 18%, Ni 9%, C 0.05% 残りFe):15、真鍮(Cu 70%, Zn 30%):119となっている。   The meaning of the unit of W / (m · K) in thermal conductivity λ is that 1 Joule of heat travels per second through a 1 square meter section when there is a temperature gradient of 1 degree per meter. . According to the 4th edition of the Chemical Handbook, the representative metal has a thermal conductivity of 27 ° C. Copper: 402, Aluminum: 237, Stainless steel (Cr 18%, Ni 9%, C 0.05% Fe remaining): 15, Brass (Cu 70%, Zn 30%): 119.

ヒートシンク1を、鋳造材(鋳物)、冷延板材(圧延板材)、押出形材などのアルミニウムまたはアルミニウム合金展伸材から構成すれば、前記熱伝導率λを120W/(m・K)以上、好ましくは140W/(m・K)以上とすることができる。この点、アルミダイキャストは密度の関係から、熱伝導率λが80W/(m・K)程度であり、前記熱伝導率を達成できないため、不適である。また、使用するアルミニウムの合金種は、高熱伝導率化の点では、JIS規格内の組成や、この規格に相当する組成である純アルミニウムが好ましい。ただ、熱伝導率は低くなるものの、ヒートシンクへの成形性や加工性の向上、あるいは強度、剛性の向上の点から、JIS規格内の組成や、この規格に相当する組成である、種々のアルミニウム合金も、薄板でも高強度である特性を活かして利用可能である。   If the heat sink 1 is made of aluminum or an aluminum alloy stretched material such as a cast material (casting), a cold-rolled plate material (rolled plate material), an extruded profile, the thermal conductivity λ is 120 W / (m · K) or more, Preferably, it can be set to 140 W / (m · K) or more. In this respect, aluminum die-casting is not suitable because of its density, because the thermal conductivity λ is about 80 W / (m · K) and the thermal conductivity cannot be achieved. In addition, the alloy type of aluminum used is preferably pure aluminum having a composition within the JIS standard or a composition corresponding to this standard in terms of increasing the thermal conductivity. However, although the thermal conductivity is low, various aluminum materials with compositions within the JIS standard and compositions corresponding to this standard from the viewpoint of improving moldability and workability to heat sinks, and improving strength and rigidity. Alloys can be used by utilizing the properties of high strength even in thin plates.

各放熱面の表面放射率ε:
以上の基本構造や熱伝導率λを前提にした、ヒートシンク1の前記した放射主体の放熱効率を高めるためには(ヒートシンク1の高い放熱性を得るためには)、ヒートシンク1、すなわち、ヒートシンク1を構成する基板2および板状放熱面10〜12の各放熱面の表面放射率εは高い方が好ましい。この表面放射率εが高いほど、ヒートシンクとしての放射による伝達熱量を増大することができる。この点で、前記表面放射率εは0.65以上とする。
Surface emissivity ε of each heat dissipation surface:
In order to increase the heat radiation efficiency of the above-mentioned radiation main body of the heat sink 1 on the premise of the above basic structure and thermal conductivity λ (in order to obtain the high heat dissipation of the heat sink 1), the heat sink 1, that is, the heat sink 1 It is preferable that the surface emissivity ε of each heat radiating surface of the substrate 2 and the plate-shaped heat radiating surfaces 10 to 12 constituting the above is higher. The higher the surface emissivity ε, the greater the amount of heat transferred by radiation as a heat sink. In this respect, the surface emissivity ε is set to 0.65 or more.

この放射率εとは、実際の物体の熱放射の理論値(理想的な熱放射体である黒体の熱放射)に対する割合であって、実際の測定は、特開2002−234460号公報に記載された方法でもよく、市販のポータブル放射率測定装置によって測定してもよい。   This emissivity ε is a ratio with respect to a theoretical value of thermal radiation of an actual object (a thermal radiation of a black body which is an ideal thermal radiator), and actual measurement is disclosed in Japanese Patent Application Laid-Open No. 2002-234460. The described method may be used, and measurement may be performed by a commercially available portable emissivity measuring apparatus.

本発明のヒートシンク1をアルミニウム(純アルミニウム)またはアルミニウム合金から構成すれば、比較的低い表面放射率εしか得られないが、表面放射率εを0.65以上の高い値とするために、基板および板状放熱面の各放熱面の表面に、放熱率が高い、黒色、グレー、白色などの塗料のプレコート処理(塗装皮膜)を施しても良い。このプレコート処理は、絞り加工前に予め素材金属薄板に施せば、絞り加工における潤滑剤の役割も果たす。またこの他に成形加工後のヒートシンクの表面に電着塗装やアルマイト処理などを行って、表面放射率εを高めても良い。   If the heat sink 1 of the present invention is made of aluminum (pure aluminum) or an aluminum alloy, only a relatively low surface emissivity ε can be obtained, but in order to increase the surface emissivity ε to a high value of 0.65 or more, the substrate In addition, the surface of each heat radiating surface of the plate-shaped heat radiating surface may be subjected to a pre-coating treatment (paint coating) of a paint having a high heat dissipation rate such as black, gray or white. This pre-coating process also serves as a lubricant in the drawing process if it is applied to the metal sheet in advance before the drawing process. In addition, the surface emissivity ε may be increased by performing electrodeposition coating or anodizing on the surface of the heat sink after the molding process.

基板および板状放熱面の板厚:
前記基本構造や熱伝導率λを前提にして、ヒートシンク1の放射主体の放熱効率を高めるために、ヒートシンク、すなわち、基板2および板状放熱面10〜12の板厚は0.7〜6mmの範囲、好ましくは0.9〜3.0mmの範囲とする。
板厚が大きい(厚い)ほど放射主体の高い放熱効率が得られる。これは、板厚が大きい(厚い)ほど板面内での熱伝導が生じ易くなるためである。このため、LED素子9からの熱が基板2のLED素子取付側の面(表面)3を介して、裏面4や各放熱面の周囲の側面や板厚方向の面へ連続して伝熱される連続伝熱面を形成したヒートシンク1構造となってさえいれば、大きいサイズの基板および板状放熱面が使えるなど、高い放熱性が期待できる。
Thickness of substrate and plate-shaped heat radiation surface:
On the premise of the basic structure and the thermal conductivity λ, in order to increase the heat radiation efficiency of the radiation main body of the heat sink 1, the thickness of the heat sink, that is, the substrate 2 and the plate-like heat radiation surfaces 10 to 12 is 0.7 to 6 mm. The range is preferably in the range of 0.9 to 3.0 mm.
The larger (thick) the plate thickness, the higher the radiation efficiency of the radiation main body. This is because heat conduction in the plate surface is more likely to occur as the plate thickness is larger (thicker). For this reason, the heat from the LED element 9 is continuously transferred through the surface (front surface) 3 of the substrate 2 on the LED element mounting side to the back surface 4, the side surfaces around each heat radiating surface, and the surface in the plate thickness direction. As long as the heat sink 1 structure has a continuous heat transfer surface, high heat dissipation can be expected, such as using a large-sized substrate and a plate-shaped heat dissipation surface.

ただ、車載LEDランプなど、軽量化が要求され、設置される空間が限られる用途では、そのサイズや板厚の上限にも自ずと限界がある。したがって、基板および板状放熱面の板厚は6mm以下、好ましくは3.0mm以下とし、前記の通り規定した0.7〜6mmの範囲、好ましくは0.9〜3.0mmの範囲とする。   However, in applications such as in-vehicle LED lamps that require weight reduction and installation space is limited, the upper limit of the size and thickness is naturally limited. Accordingly, the thickness of the substrate and the plate-like heat radiation surface is 6 mm or less, preferably 3.0 mm or less, and is in the range of 0.7 to 6 mm, preferably in the range of 0.9 to 3.0 mm as defined above.

基板および板状放熱面の板厚は前記範囲内であれば、全て同じであっても、互いに種々変えても良い。   As long as the thicknesses of the substrate and the plate-like heat radiating surface are within the above ranges, they may all be the same or different from each other.

実施形態の共通事項:
以上説明した、基板2の取付面3や裏面4、放熱面10〜12の各放熱面に、ヒートシンク1の用途や取り付け部位に応じて、部品取付け用の空間やスリットあるいは部分形状などが、これら各面の一部に、これらの面を切り欠く加工や、凹凸あるいは段差などを設ける三次元の成形加工によって設けられても良い。更には、放熱側面は、部品取付け等の必要に応じて、各面の一部が省略あるいは形状が変更されていても良い。
Common items of the embodiment:
The mounting surface 3 and back surface 4 of the substrate 2 and the heat radiating surfaces of the heat radiating surfaces 10 to 12 are each provided with a space for mounting components, a slit, or a partial shape depending on the use of the heat sink 1 and the mounting portion. A part of each surface may be provided by a process of cutting out these surfaces, or a three-dimensional forming process in which unevenness or a step is provided. Furthermore, as for the heat radiating side surface, a part of each surface may be omitted or the shape may be changed according to the necessity of component mounting or the like.

本発明のヒートシンク1は、優れた放熱効果を、ヒートシンクの形状、構造、特に、板状放熱面の形状、構造を複雑化させず、板状放熱面の数を多くせず、逆に、構造を単純化し、板状放熱面の数を少なくすることによって達成できる。この結果、種々の素材材料や製造方法あるいは製造工程を選択することができ、安価でつくりやすいヒートシンクを提供することができる。   The heat sink 1 of the present invention has an excellent heat dissipation effect, and does not complicate the shape and structure of the heat sink, in particular, the shape and structure of the plate-shaped heat dissipation surface, and does not increase the number of plate-shaped heat dissipation surfaces. Can be achieved by reducing the number of plate-like heat radiation surfaces. As a result, various material materials, manufacturing methods, or manufacturing processes can be selected, and a heat sink that is inexpensive and easy to manufacture can be provided.

(車載ランプへの装着)
車載LEDランプなどへの本発明ヒートシンクの装着は、これまで汎用されているヒートシンクの装着と同様に行うことができ、この点が利点でもある。
通常、車載LEDランプ(車両用灯具)は、光源としてのLED素子が実装されたLED基板と、LEDからの光を光照射方向前方に向かって反射するリフレクタと、これらのLED基板及びリフレクタを包囲するハウジングと、ハウジングの開放した前端を閉鎖する透明材料から成るアウターレンズ、LED基板に熱的に接触して配置されたヒートシンクとを含んでいる。前記リフレクタは、金属や樹脂材料から成形されていて、LED基板上のLED付近に焦点を有する放物面系の反射面を備えている。ここで、本発明のヒートシンクは、前記LED基板あるいはLED基板に熱的に接触して配置されたヒートシンクとして用いられる。
(Mounting on vehicle lamp)
The mounting of the heat sink of the present invention to an in-vehicle LED lamp or the like can be performed in the same manner as the mounting of a heat sink that has been widely used so far, and this is also an advantage.
Usually, an in-vehicle LED lamp (vehicle lamp) includes an LED board on which an LED element as a light source is mounted, a reflector that reflects light from the LED forward in the light irradiation direction, and surrounds the LED board and the reflector. And an outer lens made of a transparent material for closing the open front end of the housing, and a heat sink disposed in thermal contact with the LED substrate. The reflector is formed of a metal or a resin material, and includes a parabolic reflecting surface having a focal point near the LED on the LED substrate. Here, the heat sink of the present invention is used as the LED substrate or a heat sink disposed in thermal contact with the LED substrate.

この点で、本発明ヒートシンクは、例えば、前記した図5の車載LEDランプに対しても、前記灯具ユニット55として、マウントプレート57上に、本発明のLED素子を実装した基板2を装着し、ヒートシンクとして組み込むことができる。ただ、この場合にでも、本発明ヒートシンクは、車載LEDランプとして、従来のヒートシンクのような空気に熱伝達で加熱された空気の対流による放熱ではなく、熱の放射による放熱が主体である点が大きく異なる。   In this regard, the heat sink of the present invention, for example, mounts the substrate 2 on which the LED element of the present invention is mounted on the mount plate 57 as the lamp unit 55 also for the above-described in-vehicle LED lamp of FIG. Can be incorporated as a heat sink. However, even in this case, the heat sink of the present invention is not a heat release by the convection of air heated by heat transfer to the air like a conventional heat sink, but a heat release by heat radiation is the main feature as an in-vehicle LED lamp. to differ greatly.

前記図1、2、3の各形状のヒートシンクであって、板状放熱面の投影面積を種々変えて、実際に製造し、車載LEDランプを模擬した閉空間内で、装着したLED素子に電流を加え、発光させた上で、LED素子の温度を実測した。これらの熱の放射による放熱性能の評価結果を表1に示す。   The heat sinks of the shapes shown in FIGS. 1, 2, and 3 are manufactured by changing the projected area of the plate-shaped heat radiation surface, and the current is applied to the mounted LED elements in a closed space that simulates an in-vehicle LED lamp. Was added to cause light emission, and the temperature of the LED element was measured. Table 1 shows the evaluation results of the heat radiation performance by these heat radiations.

各ヒートシンクの各々の板状放熱面の投影面積の変更は、矩形の板状放熱面10〜12の面積=サイズ(Y方向の高さ)のみを変えて行った。基板2の形状や大きさ、基板2と放熱面10〜12の板厚は2.0mmと全て同じとし、熱伝導率λも共通して210W/(m・K)であった。図1、3の基板2の矩形形状(平面視)の大きさは共通して100mm(Z方向)×100mm(X方向)、図2は、共通して板厚2mm×直径100mmの真円形(平面視)の基板2とした。   The change of the projected area of each plate-shaped heat radiation surface of each heat sink was performed by changing only the area = size (the height in the Y direction) of the rectangular plate-shaped heat radiation surfaces 10-12. The shape and size of the substrate 2 and the thickness of the substrate 2 and the heat radiation surfaces 10 to 12 were all the same as 2.0 mm, and the thermal conductivity λ was 210 W / (m · K) in common. The size of the rectangular shape (plan view) of the substrate 2 in FIGS. 1 and 3 is commonly 100 mm (Z direction) × 100 mm (X direction), and FIG. 2 is a true circle (plate thickness 2 mm × diameter 100 mm in common). The substrate 2 was obtained in plan view.

図1、3の各ヒートシンクは、プレス成形にてJISの1050系アルミニウム冷延板の端部を各板状放熱面に折り曲げ加工し、図2のヒートシンクは、プレス成形にてJISの1050系アルミニウム冷延板を絞り加工して製造した。   Each of the heat sinks in FIGS. 1 and 3 is formed by bending the end portion of a JIS 1050 series aluminum cold-rolled plate into a plate-like heat radiation surface by press molding, and the heat sink in FIG. 2 is JIS 1050 series aluminum by press molding. A cold-rolled sheet was produced by drawing.

各例とも共通して、表面には、市販の黒色のカチオン系樹脂皮膜を電着塗装した。このときの表面放射率は、宇宙航空研究開発機構が開発した市販のポータブル放射率測定装置で測定すると、各例とも基板2と板状放熱面10〜12の各放熱面はいずれも共通して同じ0.85であった。   In common with each example, a commercially available black cationic resin film was electrodeposited on the surface. When the surface emissivity at this time is measured by a commercially available portable emissivity measuring device developed by the Japan Aerospace Exploration Agency, both the substrate 2 and the heat radiation surfaces of the plate-shaped heat radiation surfaces 10 to 12 are common to each example. It was the same 0.85.

また、各例とも共通して、基板に市販のLED素子を装着した上で、直流電源より、3.7V、0.85Aの電流(3.145W)を加えてLED素子を発光させた。この際、LED素子の温度を熱電対でモニタしながら、車載LEDランプの空気の対流の無い閉空間を模擬した300mm×300mm×300mmの木製の筒体内にヒートシンクを密閉して置いた。そして、ヒートシンク周囲の雰囲気温度を車載LEDランプの閉鎖空間を模擬し、20℃とした室内雰囲気中で発光させた。そして、一定時間経過後に上昇あるいは下降せずに定常状態となった温度を計測した。計測は各例とも5回行い、その平均温度を求めて評価した。   Moreover, in common with each example, after mounting a commercially available LED element on a board | substrate, the electric current (3.145W) of 3.7V and 0.85A was applied from the DC power supply, and the LED element was light-emitted. At this time, while monitoring the temperature of the LED element with a thermocouple, a heat sink was hermetically sealed in a 300 mm × 300 mm × 300 mm wooden cylinder simulating a closed space without air convection of the in-vehicle LED lamp. Then, the ambient temperature around the heat sink was simulated in the enclosed space of the in-vehicle LED lamp, and light was emitted in an indoor atmosphere at 20 ° C. And the temperature which became a steady state, without rising or falling after progress for a fixed time was measured. Each example was measured five times, and the average temperature was obtained and evaluated.

表1に示す通り、好ましい形状のヒートシンクである図1、2の発明例1、2、4、5は、前記した通り、基板と板状放熱面との熱伝導率λが120W/(m・K)以上であるアルミニウムからなるとともに、前記基板と板状放熱面との表面放射率εが0.65以上である。その上で、ヒートシンクの板厚が各々0.7〜6mmの規定範囲内の2.0mmで、板状放熱面10〜12の互いに異なる二つの方向の投影面積P0、P1(単位mm)がともに、あるいはP2、P3(単位mm)がともにP≧8×Sを各々満足する。 As shown in Table 1, inventive examples 1, 2, 4, and 5 of FIGS. 1 and 2, which are heat sinks having a preferable shape, as described above, the thermal conductivity λ between the substrate and the plate-like heat radiation surface is 120 W / (m · K) The surface emissivity ε between the substrate and the plate-like heat radiating surface is 0.65 or more. In addition, the plate thickness of the heat sink is 2.0 mm within a specified range of 0.7 to 6 mm, respectively, and the projection areas P0 and P1 (unit mm 2 ) in two different directions of the plate-like heat radiation surfaces 10 to 12 are obtained. Both or P2 and P3 (unit: mm 2 ) both satisfy P ≧ 8 × S.

この結果、車載LEDランプを模擬した空気の対流の無い閉空間の中でも、定常時のLED素子温度は、素子の発光効率が低下しない許容温度が例示した前記100℃以下である、42℃以下の極めて低温に保持できている。したがって、これら発明例は、熱の放射による優れた放熱性能(冷却性能)を有することが確認できた。   As a result, even in a closed space without air convection that simulates an in-vehicle LED lamp, the LED element temperature during steady state is the allowable temperature at which the luminous efficiency of the element does not decrease is 100 ° C. or less, which is 42 ° C. or less. It can be kept at a very low temperature. Therefore, it was confirmed that these inventive examples have excellent heat dissipation performance (cooling performance) due to heat radiation.

これに対して、比較例3、6は、好ましい形状のヒートシンクである図1、2であり、前記熱伝導率λが120W/(m・K)以上で、前記表面放射率εが0.65以上であり、ヒートシンクの板厚が各々0.7〜6mmの規定範囲内の2.0mmである。しかし、比較例3は板状放熱面の投影面積P0、P1(単位mm)がともに、比較例6はP2、P3(単位mm)がともに、基板の断面積Sに対してP≧8×Sを満たさず、小さすぎる。このため、板状放熱面10〜11の互いに異なる二つの方向の投影面積PがP≧8×Sを各々満足できていない。 On the other hand, Comparative Examples 3 and 6 are FIGS. 1 and 2 which are heat sinks having a preferable shape, the thermal conductivity λ is 120 W / (m · K) or more, and the surface emissivity ε is 0.65. The plate thickness of the heat sink is 2.0 mm within the specified range of 0.7 to 6 mm. However, Comparative Example 3 has both the projection areas P0 and P1 (unit mm 2 ) of the plate-like heat radiation surface, and Comparative Example 6 has both P2 and P3 (unit mm 2 ) P ≧ 8 with respect to the cross-sectional area S of the substrate. * S is not satisfied and is too small. For this reason, the projection areas P in the two different directions of the plate-like heat radiation surfaces 10 to 11 do not satisfy P ≧ 8 × S, respectively.

また、比較例7は、図3の通り、X方向に向いた板状放熱面13の影面積P4(単位mm)はP≧8×Sを満たしているが、Z方向に向いた放熱面6、22の影面積P5(単位mm)がP≧8×Sを満たしておらず、Z方向の放熱面の放射による放熱性能が不足している。このため、板状放熱面12の互いに異なる二つの方向の投影面積PがP≧8×Sを各々満足できていない。 Further, in Comparative Example 7, as shown in FIG. 3, the shadow area P4 (unit mm 2 ) of the plate-like heat radiation surface 13 facing in the X direction satisfies P ≧ 8 × S, but the heat radiation surface facing in the Z direction. The shadow area P5 (unit mm 2 ) of 6 and 22 does not satisfy P ≧ 8 × S, and the heat dissipation performance due to radiation on the heat dissipation surface in the Z direction is insufficient. For this reason, the projection areas P in the two different directions of the plate-like heat radiation surface 12 do not satisfy P ≧ 8 × S, respectively.

この結果、これら比較例のヒートシンクは、定常時のLED素子温度は、許容温度の100℃以下ではあるが、前記発明例よりも高温となっており、車載LEDランプを模擬した空気の対流の無い閉空間の中では、熱の放射による放熱性能(冷却性能)が劣る。   As a result, in the heat sinks of these comparative examples, the LED element temperature in the steady state is 100 ° C. or less of the allowable temperature, but is higher than the above-described invention example, and there is no air convection simulating an in-vehicle LED lamp In a closed space, heat dissipation performance (cooling performance) due to heat radiation is poor.

なお、これら一連の試験は、実際の車に搭載時に想定されるエンジンや熱交換器、各種の電気機器からの入熱、直射日光による入熱などが考慮されていない。このため、LED素子温度は、実際の車載LED(実車搭載LED)でのLED素子温度よりも低めに出ていると考えられる。ただ、これら一連の試験は、ヒートシンクの性能比較としては十分な精度と再現性とを有する。   These series of tests do not take into account the heat input from an engine, heat exchanger, various electric devices, heat input by direct sunlight, etc. that are assumed when mounted in an actual vehicle. For this reason, it is thought that LED element temperature has come out lower than the LED element temperature in actual vehicle-mounted LED (real vehicle mounting LED). However, these series of tests have sufficient accuracy and reproducibility as a performance comparison of heat sinks.

以上の事実から、本発明ヒートシンクの構造、熱伝導率λ、表面放射率ε、ヒートシンクの板厚、各板状放熱面の投影面積Pの、放射を主体とする放熱効率の臨界的な意義が裏付けられる。   From the above facts, the critical significance of the radiation efficiency, mainly radiation, of the structure of the heat sink of the present invention, the thermal conductivity λ, the surface emissivity ε, the plate thickness of the heat sink, and the projected area P of each plate-like heat radiation surface is It is supported.

Figure 0005940863
Figure 0005940863

以上、本発明ヒートシンクは、前記放熱側面などの放熱面からの熱の放射による放熱が主体であり、しかも、この放射を主体とする放熱効率を格段に向上させることができる。このため、空気対流がほとんどない狭い使用空間(使用、設置環境)に最適なヒートシンクである。また、アルミニウムまたはアルミニウム合金などの素材の使用量を最小限にし、ヒートシンクの小型化及び薄型化が可能で、デザインの自由度が高く、製造コストが廉価なヒートシンクを提供できる。このため、車載LEDランプなど車両用照明灯具向け放熱部品あるいはインバーターや各種の電気機器の冷却用の冷却ボックスに使用することができる。   As described above, the heat sink of the present invention is mainly radiated by heat radiation from the heat radiating surface such as the heat radiating side surface, and the heat radiating efficiency mainly having this radiation can be remarkably improved. For this reason, it is an optimal heat sink for a narrow use space (use and installation environment) with almost no air convection. In addition, it is possible to provide a heat sink that minimizes the amount of material used such as aluminum or an aluminum alloy, can reduce the size and thickness of the heat sink, has a high degree of design freedom, and is inexpensive to manufacture. For this reason, it can be used for the cooling box for cooling of the heat radiating component for vehicle illumination lamps, such as a vehicle-mounted LED lamp, or an inverter or various electric equipment.

1:ヒートシンク、2:基板、3:基板のLED素子取付面、4:基板の裏面、5、6、7、8:基板の板厚方向側面、9:LED素子、10、11、12、13:板状放熱面、14、15、16、17、18、19、21、22、23:板状放熱面の側面側、底面側の板厚方向の放熱面、P:板状放熱面の投影面積、C:基板の断面、S:断面Cの断面積 1: heat sink, 2: substrate, 3: LED element mounting surface of substrate, 4: back surface of substrate, 5, 6, 7, 8: side surface in thickness direction of substrate, 9: LED element, 10, 11, 12, 13 : Plate-shaped heat radiation surface, 14, 15, 16, 17, 18, 19, 21, 22, 23: side surface side of plate-shaped heat radiation surface, heat radiation surface in the plate thickness direction on the bottom surface side, P: projection of plate-shaped heat radiation surface Area, C: cross section of substrate, S: cross sectional area of cross section C

Claims (5)

LED素子を取付けた基板の側面に、この基板を頂部とする板状放熱面を一体かつ連続して有するヒートシンクであって、前記板状放熱面の互いに異なる二つの方向の投影面積が、前記板状放熱面に対して各々直角方向から照射される平行光によって投影される各投影面積Pとして、前記LED素子の取付位置を通るとともに前記投影面と互いに平行な断面である前記基板の各断面積Sに対して、P≧8×SおよびP/Sが33以下を各々満足しており、空気の対流が生じない自動車のヘッドライトに用いられることを特徴とするLED照明用ヒートシンク。 A heat sink having a plate-like heat dissipation surface integrally and continuously on the side surface of the substrate on which the LED element is mounted, the projected areas of the plate-like heat dissipation surface being different from each other in two directions. As each projection area P projected by parallel light irradiated from a right angle direction with respect to the shape heat radiation surface, each cross-sectional area of the substrate that is a cross-section passing through the mounting position of the LED element and parallel to the projection surface A heat sink for LED lighting characterized by being used for a headlight of an automobile in which P ≧ 8 × S and P / S satisfy 33 or less with respect to S and air convection does not occur . 前記基板と板状放熱面によって3次元のいずれの方向へも向いた放熱面を有する請求項1のLED照明用ヒートシンク。   The heat sink for LED lighting of Claim 1 which has the heat sinking surface which faced any three-dimensional direction by the said board | substrate and a plate-shaped heat sinking surface. 前記基板が平面視で四角形であり、この四角形の一辺以上に前記板状放熱面を形成した請求項1または2に記載のLED照明用ヒートシンク。   The heat sink for LED lighting according to claim 1 or 2, wherein the substrate has a quadrangular shape in plan view, and the plate-like heat radiating surface is formed on one or more sides of the quadrangular shape. 前記基板が平面視で円形であり、この円形の辺の一部または全部に前記板状放熱面を筒状に形成した請求項1乃至3のいずれか1項に記載のLED照明用ヒートシンク。   The heat sink for LED lighting according to any one of claims 1 to 3, wherein the substrate is circular in a plan view, and the plate-like heat radiation surface is formed in a cylindrical shape at a part or all of the circular side. 前記基板と板状放熱面とが熱伝導率λが120W/(m・K)以上であるアルミニウムまたはアルミニウム合金からなるとともに、前記基板と板状放熱面との表面放射率εが0.65以上であり、前記基板と板状放熱面との板厚を0.7〜6mmの範囲とした請求項1乃至4のいずれか1項に記載のLED照明用ヒートシンク。   The substrate and the plate-shaped heat radiation surface are made of aluminum or an aluminum alloy having a thermal conductivity λ of 120 W / (m · K) or more, and the surface emissivity ε between the substrate and the plate-shaped heat radiation surface is 0.65 or more. The heat sink for LED lighting according to any one of claims 1 to 4, wherein a plate thickness between the substrate and the plate-shaped heat radiation surface is in a range of 0.7 to 6 mm.
JP2012081542A 2012-03-30 2012-03-30 LED lighting heat sink Expired - Fee Related JP5940863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012081542A JP5940863B2 (en) 2012-03-30 2012-03-30 LED lighting heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012081542A JP5940863B2 (en) 2012-03-30 2012-03-30 LED lighting heat sink

Publications (2)

Publication Number Publication Date
JP2013211195A JP2013211195A (en) 2013-10-10
JP5940863B2 true JP5940863B2 (en) 2016-06-29

Family

ID=49528857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012081542A Expired - Fee Related JP5940863B2 (en) 2012-03-30 2012-03-30 LED lighting heat sink

Country Status (1)

Country Link
JP (1) JP5940863B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114963057B (en) * 2022-04-29 2023-10-20 佛山电器照明股份有限公司 Fishing lamp and design method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844777A (en) * 1997-01-27 1998-12-01 At&T Corp. Apparatus for heat removal from a PC card array
JP5212532B2 (en) * 2005-10-31 2013-06-19 豊田合成株式会社 Method for manufacturing light emitting device
JP2010089573A (en) * 2008-10-06 2010-04-22 Mitsubishi Cable Ind Ltd Led unit and in-vehicle illumination lamp with led unit
US20130094187A1 (en) * 2010-06-25 2013-04-18 Sharp Kabushiki Kaisha Led backlight device and liquid crystal display device

Also Published As

Publication number Publication date
JP2013211195A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
US9869463B2 (en) Heat sink for light emitting diode
TWI407043B (en) Light emitting diode light module and light engine thereof
WO2012128383A1 (en) Heat sink for led lighting
CN107076527B (en) Low-weight tube fin radiator
JP5415019B2 (en) LED light source device
US9857047B2 (en) Cooling member and motor vehicle lighting or signaling device comprising such a member
JP5902973B2 (en) Heat sink for in-vehicle LED lamp
JP5608152B2 (en) Heat sink for in-vehicle LED lighting
JP2014135350A (en) Heat sink
JP6022183B2 (en) LED lighting heat sink
JP5940863B2 (en) LED lighting heat sink
JP2016081687A (en) Double type high luminance led head lamp
JP5026901B2 (en) Lamp
JP6989507B2 (en) heat sink
JP2012216382A (en) Vehicular lamp fitting
JP2013211453A (en) Heat sink for led lighting
WO2013085024A1 (en) Led lighting heat sink and method for manufacturing same
WO2015170552A1 (en) Vehicle lamp
JP2014203534A (en) Heat sink
CA2909726C (en) Air cooling of electronic driver in a lighting device
KR20150019787A (en) Heatsink increasing heat emitting performance and Head lamp having it for vehicle
JP6349798B2 (en) Vehicle lighting
JP5636326B2 (en) heatsink
TWM522310U (en) Heat dissipation structure of light-emitting diode car lamp
JP5877598B1 (en) Heat pipe cooling double type high brightness LED headlamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160308

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160519

R150 Certificate of patent or registration of utility model

Ref document number: 5940863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160713

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

LAPS Cancellation because of no payment of annual fees