JP5938842B2 - 撮像装置及びaf評価値算出方法、並びにプログラム - Google Patents

撮像装置及びaf評価値算出方法、並びにプログラム Download PDF

Info

Publication number
JP5938842B2
JP5938842B2 JP2010221319A JP2010221319A JP5938842B2 JP 5938842 B2 JP5938842 B2 JP 5938842B2 JP 2010221319 A JP2010221319 A JP 2010221319A JP 2010221319 A JP2010221319 A JP 2010221319A JP 5938842 B2 JP5938842 B2 JP 5938842B2
Authority
JP
Japan
Prior art keywords
detection
frame
correction
image signal
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010221319A
Other languages
English (en)
Other versions
JP2011175232A (ja
Inventor
村木 淳
淳 村木
博 清水
博 清水
星野 博之
博之 星野
英理奈 市川
英理奈 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2010221319A priority Critical patent/JP5938842B2/ja
Publication of JP2011175232A publication Critical patent/JP2011175232A/ja
Application granted granted Critical
Publication of JP5938842B2 publication Critical patent/JP5938842B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Description

本発明は、撮像装置及びAF評価値算出方法、並びにプログラムに関し、特に、AF検波領域をより適切に設定する技術に関する。
従来より、CMOS(Complementary Metal Oxide Semiconductor)型の撮像素子を有する撮像装置が存在する。このようなCMOS型の撮像素子を有するイメージセンサを、以下、「CMOSセンサ」と呼ぶ。
CMOSセンサの画像の読み出し方式としては、例えば水平方向(ライン方向)については左から右方向に、垂直方向については上から下方向に走査することで、画素毎に蓄積された電荷をライン毎に順次電圧に変換して画像信号として出力する、といった方式が採用されている。このような画像の読み出し方式を、本明細書では「フォーカルプレーン方式」と呼ぶ。なお、フォーカルプレーン方式は、「ローリングシャッタ方式」と呼ばれる場合もある。また、フォーカルプレーン方式における走査の方向、即ち、上述した例では、水平方向については左から右方向に、垂直方向については上から下方向を、以下、「走査方向」と呼ぶ。
このように、フォーカルプレーン方式が採用されたCMOSセンサでは、読み出される画像信号の出力タイミングは、ライン毎の時間差、より正確には画素毎の時間差が生じている。このため、走査の途中で手ぶれが発生した場合、走査方向(ライン方向)に画像がずれるような歪みが生ずる。なお、このような歪みを、以下、「フォーカルプレーン歪み」又は「FPD」と呼ぶ。
このようなFPDを補正する従来の手法としては、ジャイロセンサを用いて手ぶれを検出して、この検出結果に基づいて補正する手法(特許文献1参照)や、ソフトウェア処理によって補正する手法(特許文献2参照)が知られている。
ところで、従来より、このようなCMOSセンサを有する撮像装置の中には、AF(Automatic Focus)処理(オートフォーカス処理)を実行可能なものも存在する。AF処理の代表的な手法としては、例えば特許文献3に開示されているように、画像信号に含まれる周波数成分(直流成分を除く)が合焦位置(フォーカス位置)で最大になることを利用して、画像信号に含まれる周波数成分の量を評価値として合焦状態を検出する、といった手法が存在する。
このようなAF処理の手法を、以下、「AF検波」と呼ぶ。AF検波により検出される評価値は、撮像画像の一領域から検出される。このような評価値を、以下、「AF評価値」と呼び、AF評価値が検出される当該一領域を、以下、「AF検波領域」と呼ぶ。即ち、AF検波領域内の各画素の各々に対応する画像信号に含まれる周波数成分の量が積分され、その結果得られる積分値がAF評価値として検出される。また、このAF検波領域を設定するための枠が、ライブビュー画像上に設定される。このような枠を、以下、「AF枠」と呼ぶ。即ち、このようなライブビュー画像と共に表示されているAF枠に基づいて、AF検波領域が設定されることになる。
特開2007−235819号公報 特開2007−208580号公報 特開平3−1668号公報
しかしながら、AF枠が設定されるライブビュー画像は、FPDの補正後の画像である。従って、AF検波領域は、このようなAF枠が設定されたライブビュー画像の座標系、即ち、FPDの補正後の撮像画像の座標系(以下、「FPD補正後座標系」と呼ぶ)で設定される。一方、AF検波は、FPDの補正前の撮像画像の座標系(以下、「FPD補正前座標系」と呼ぶ)で行われる。よって、FPD補正後座標系のAF枠に対応して設定される実際のAF検波領域と、本来FPD補正前座標系で設定されるべき理想的なAF検波領域との間には、ズレが生じてしまうことになる。
さらに以下、AF枠に対応して設定される実際のAF検波領域と、理想的なAF検波領域との間に生ずるズレについて詳細に説明する。
図9は、従来の撮像装置が有する各種機能のうち、AF検波の機能を実現するための機能的構成を示す機能ブロック図である。
従来の撮像装置は、CMOSセンサ11と、前処理部12と、AF検波部13と、メモリ14と、YUV生成部15と、FPD補正部16と、ジャイロセンサ17と、定時計測部18と、CPU(Central Processing Unit)19と、表示制御部20と、を備えている。
CMOSセンサ11は、撮像画像の画像信号を、画素単位で走査方向の順番で順次出力する。前処理部12は、CMOSセンサ11から順次出力される画素単位の画像信号を、黒レベルの補正等の前処理を実行した上で、AF検波部13とメモリ14とにそれぞれ出力する。
AF検波部13は、Y生成部31と、AF検波フィルタ部32と、ブロック積分部33と、センサ座標供給部34と、を備えている。
Y生成部31は、CMOSセンサ11から出力されて前処理部12を介して供給される画素単位の画像信号から、AF検波の対象となる輝度成分を生成する。AF検波フィルタ部32は、Y生成部31により生成された画素単位の輝度成分から、上述した周波数成分(直流成分を除く)を抽出して、AF検波値としてブロック積分部33に供給する。ブロック積分部33は、AF検波フィルタ部32から画素単位で供給されるAF検波値のうち、上述したAF検波領域内の各画素のAF検波値を積算することで、AF評価値を算出する。センサ座標供給部34は、ブロック積分部33に供給されたAF検波値に対応する画素位置を、CMOSセンサ11の座標、即ちFPD補正前座標系の座標としてブロック積分部33に供給する。そこで、ブロック積分部33は、AF検波フィルタ部32から供給されたAF検波値が、AF検波領域内の画素に対応するものであるか否かを、センサ座標供給部34から供給される、FPD補正前座標系の座標に基づいて判断する。
このように、AF検波部13は、CMOSセンサ11から出力されて前処理部12を介して供給される撮像画像の画像信号、即ち、後述するFPD補正部16によりFPDの補正がなされる前の画像信号に対して、AF検波を実行する。
CMOSセンサ11から出力された撮像画像の画像信号はまた、前処理部12を介してメモリ14に供給される。ここで、CMOSセンサ11から出力された画素単位の画像信号の、CMOSセンサ11の入力画角内の全画素分の集合体からなる画像データを、以下、フレーム画像データと呼ぶ。メモリ14の記憶の単位は、このようなフレーム画像データとされている。即ち、メモリ14は、CMOSセンサ11から出力されて前処理部12を介して供給されるフレーム画像データ51を記憶する。このフレーム画像データ51は、上述したようにFPDが生じているRAW画像の画像データである。そこで、このようなフレーム画像データ51を、以下、「FPD RAW51」と呼ぶ。
YUV生成部15は、FPD RAW51をメモリ14から読み出して、輝度信号(Y)と、青色成分の差分信号(U)と、赤色成分の差分信号(V)との3要素からなるフレーム画像データ52を生成し、メモリ14に記憶させる。ここで、フレーム画像データ52には依然としてFPDが生じている。そこで、このようなフレーム画像データ52を、以下、「FPD YUV52」と呼ぶ。
FPD補正部16は、FPD YUV52をメモリ14から読み出して、FPDの補正を行い、その結果得られるフレーム画像データ53をメモリ14に記憶させる。このようなフレーム画像データ53を、以下、「補正YUV53」と呼ぶ。
図10は、このようなFPD補正部16によるFPDの補正の概略を説明する図である。
図10に示すように、FPD補正部16は、CMOSセンサ11の入力画角と同サイズのFPD YUV52の中から、FPDのために各ライン位置が走査方向(水平方向)にずれている領域のデータを切り出す。なお、このようにしてFPD YUV52から切り出される領域を、以下、「YUV切出領域」と呼ぶ。次に、FPD補正部16は、YUV切出領域のデータを変形補正することで、CMOSセンサ11の入力画角と同サイズの補正YUV53を生成する。
図9に戻り、ジャイロセンサ17は、いわゆるジャイロスコープ(gyrosope)であり、撮像装置の角度や角速度を検出し、検出信号(以下、「ジャイロ信号」と呼ぶ)を出力する。定時計測部18は、ジャイロ信号を、CMOSセンサ11からの画像信号の出力に同期して定時計測する。具体的には、CMOSセンサ11からフレーム画像データが出力される時間間隔(以下、「フレーム期間」と呼ぶ)の間に16回程、ジャイロ信号が定時計測部18により検出され、ジャイロデータ54としてメモリ14に記憶される。
CPU19は、撮像装置全体を制御するが、このような制御の1つとして、FPD補正部16を制御する。即ち、CPU19は、このジャイロデータ54に基づいてFPDの補正量を求め、FPD補正部16に供給する。FPD補正部16は、この補正量に基づいて、上述したFPDの補正を行う。即ち、図9の例のFPDの補正手法としては、上述した特許文献1に記載の手法と同様に、ジャイロセンサを用いて手ぶれを検出して、この検出結果に基づいて補正する手法が採用されている。
表示制御部20は、このようにしてFPD補正部16により生成された補正YUV53をメモリ14から読み出し、ライブビュー画像として図示せぬ表示部に表示させる。
図11は、このようにして表示部に表示されるライブビュー画像の一例を示している。
図11に示すように、ライブビュー画像61は、補正YUV53により表現される画像である。このライブビュー画像61の所定位置にはAF枠55が設定される。
従って、AF検波部13により用いられるAF検波領域は、このようなAF枠55が設定されたライブビュー画像61の座標系、即ち、FPD補正後座標系で設定される。一方、AF検波部13によるAF検波は、FPD補正前座標系、即ち、FPD RAW51の座標系で行われる。
図12(A)、(B)は、AF検波部13がAF検波を行う場合の、AF枠55と、FPD YUV52との関係を示している。
なお、上述したように、AF検波の対象はFPD RAW51であるが、図10等で示す補正YUV53との比較を明確にすべく、図12(A)、(B)においては、FPD YUV52が図示されている。即ち、図12(A)、(B)に示すFPD YUV52の意味は、図10等で示す補正YUV53の座標系であるFPD補正後座標系に対する、AF検波が行われるFPD補正前座標系を示すことにある。
即ち、上述したように、AF枠55が設定されるライブビュー画像(図12には図示せず)は、FPD補正後座標系で表わされている。換言すると、AF枠55は、FPD補正後座標系で設定される。一方、AF検波は、図12(A)、(B)に示すFPD YUV52の座標系、即ち、FPD補正前座標系で行われる。しかしながら、図12(A)に示すように、従来においては、FPD補正後座標系のAF枠55に対応して実際のAF検波領域が設定される。即ち、図12(A)のAF枠55の配置位置が、実際のAF検波領域の配置位置となる。これに対して、本来FPD補正前座標系で設定されるべき理想的なAF検波領域の配置位置は、図12(B)のAF枠55の配置位置となる。このように、従来においては、実際のAF検波領域と、理想的なAF検波領域との間にズレが生じてしまうことになる。
本発明は、このような状況に鑑みてなされたものであり、AF検波領域をより適切に設定することを目的とする。
本発明の第1の観点によると、
フォーカルプレーン方式により画像信号を出力する撮像手段と、
前記撮像手段によって出力された画像信号の出力タイミングの違いにより生じる各ライン位置毎の座標補正量を算出し、この座標補正量に基づいて当該画像信号の歪みを補正する補正手段と、
前記撮像手段によって出力された画像信号に対してAF検波フィルタをかけることによって、AF検波信号を出力するAF検波手段と、
前記補正手段によって補正された画像信号に基づく画像にAF枠を配置する配置手段と、
前記AF検波手段から出力されたAF検波信号のうちのAF評価値を算出すべき画像信号を含む領域であって、前記配置手段により配置されたAF枠に対応するAF評価領域を設定する設定手段と、
前記設定手段により設定されたAF評価領域内の画像信号からAF評価値を算出する算出手段と、
を備え、
前記設定手段はさらに、前記補正手段により算出された前記座標補正量に応じて、前記配置手段により配置されたAF枠に対応するAF評価領域を変形させる、
撮像装置を提供する。
本発明の第2の観点によると、
前記AF検波手段から出力されたAF検波信号を1フレーム分蓄積する蓄積手段を備え、
前記配置手段は、前記AF枠の位置を変化させて配置し、
前記設定手段は、前記蓄積手段に蓄積された1フレーム分のAF検波信号のうちのAF評価値を算出すべき画像信号を含む領域であって、前記配置手段により配置されたAF枠に対応するAF評価領域を設定する
撮像装置を提供する。
本発明の第3の観点によると、
前記AF検波手段から出力されたAF検波信号のうちの前記AF評価領域に対応するAF検波信号のみを蓄積する蓄積手段を備え、
前記配置手段は、予め決められた固定位置にAF枠を配置し、
前記設定手段は、前記蓄積手段に蓄積されたAF検波信号を含む領域をAF評価領域として設定する、
撮像装置を提供する。
本発明の第4の観点によると、
前記撮像手段は、CMOSセンサで構成され、順次画像信号を出力し、
前記配置手段によってAF枠が配置された状態の画像信号を逐次表示する表示手段をさらに備える、
撮像装置を提供する。
本発明の第5の観点によると、
フォーカルプレーン方式により駆動する撮像部より出力される画像信号からAF評価値を算出するAF評価値算出方法であって、
出力された画像信号の出力タイミングの違いにより生じる各ライン位置毎の座標補正量を算出し、この座標補正量に基づいて当該画像信号の歪みを補正する補正ステップと、
前記撮像部によって出力された画像信号に対してAF検波フィルタをかけることによって、AF検波信号を出力するAF検波ステップと、
前記補正ステップにて補正された画像信号に基づく画像にAF枠を配置する配置ステップと、
前記AF検波ステップにて出力された1フレーム分のAF検波信号のうちのAF評価値を算出すべき画像信号を含む領域であって、前記配置ステップにより配置されたAF枠に対応するAF評価領域を設定する設定ステップと、
前記設定ステップにて設定されたAF評価領域内の画像信号からAF評価値を算出する算出ステップと、
を含み、
前記設定ステップはさらに、前記補正ステップにより算出された前記座標補正量に応じて、前記配置ステップにより配置されたAF枠に対応するAF評価領域を変形させる、
AF評価値算出方法を提供する。
本発明の第6の観点によると、
フォーカルプレーン方式により駆動する撮像部を備える撮像装置を制御するコンピュータを、
出力された画像信号の出力タイミングの違いにより生じる各ライン位置毎の座標補正量を算出し、この座標補正量に基づいて当該画像信号の歪みを補正する補正手段、
前記撮像部によって出力された画像信号に対してAF検波フィルタをかけることによって、AF検波信号を出力するAF検波手段、
前記補正手段によって補正された画像信号に基づく画像にAF枠を配置する配置手段、
前記AF検波手段から出力されたAF検波信号のうちのAF評価値を算出すべき画像信号を含む領域であって、前記配置手段により配置されたAF枠に対応するAF評価領域を設定する設定手段、
前記設定手段により設定されたAF評価領域内の画像信号からAF評価値を算出する算出手段、
として機能させ、
前記設定手段はさらに、前記補正手段により算出された前記座標補正量に応じて、前記配置手段により配置されたAF枠に対応するAF評価領域を変形させる、
プログラムを提供する。
本発明によれば、AF検波領域をより適切に設定することができる。
本発明の一実施形態に係る撮像装置のハードウェアの構成を示すブロック図である。 図1の撮像装置が有する各種機能のうち、AF検波の機能を実現するための機能的構成を示す機能ブロック図である。 図2の撮像装置の座標変形補正部による座標補正の処理と、AF枠との関係を模式的に示す図である。 図2の撮像装置が実行するAF処理の流れの一例を示すフローチャートである。 図2の撮像装置が実行するAF処理の流れの一例を示すタイミングチャートである。 図2の撮像装置が実行するAF評価値検出処理の流れの一例を示すフローチャートである。 図1の撮像装置が有する各種機能のうち、AF検波の機能を実現するための機能的構成を示す機能ブロック図であって、図2の実施形態とは異なる実施形態の機能ブロック図である。 手ぶれ補正のみを実行する場合における、AF枠と手ぶれ補正後YUVとの関係の従来と本発明の対比を示す図である。 従来の撮像装置が有する各種機能のうち、AF検波の機能を実現するための機能的構成を示す機能ブロック図である。 FPDの補正の概略を示す図である。 表示部に表示されるライブビュー画像の一例を示す図である。 図9の従来の撮像装置がAF検波を行う場合の、AF枠と、FPD YUVとの関係を示す図である。
以下、本発明の一実施形態として、第1実施形態及び第2実施形態をその順番で図面に基づいて説明する。
[第1実施形態]
図1は、本発明の第1実施形態に係る撮像装置100のハードウェアの構成を示すブロック図である。撮像装置100は、例えばデジタルカメラにより構成することができる。
撮像装置100は、光学レンズ装置111と、AF機構112と、シャッタ装置113と、アクチュエータ114と、CMOSセンサ115と、前処理部116と、TG(Timing Generator)117と、信号処理部118と、DRAM(Dynamic Random Access Memory)119と、CPU120と、RAM(Random Access Memory)121と、ROM(Read Only Memory)122と、表示制御部123と、表示部124と、操作部125と、メモリカード126と、ジャイロセンサ127と、を備える。
光学レンズ装置111は、例えばフォーカスレンズやズームレンズ等で構成される。フォーカスレンズは、CMOSセンサ115の受光面に被写体像を結像させるためレンズである。ズームレンズは、焦点距離を一定の範囲で自在に変化させるレンズである。
AF機構112は、AF評価値に基づくCPU120の制御に従って、フォーカスレンズを移動させることで、AF枠内の被写体にフォーカス(焦点)を合わせる。なお、以下、このようなCPU120の制御を、「レンズ制御」と呼ぶ。
シャッタ装置113は、例えばシャッタ羽根等から構成される。シャッタ装置113は、CMOSセンサ115へ入射する光束を遮断する機械式のシャッタとして機能する。シャッタ装置113はまた、CMOSセンサ115へ入射する光束の光量を調節する絞りとしても機能する。
アクチュエータ114は、CPU120の制御に従って、シャッタ装置113のシャッタ羽根を開閉させる。
CMOSセンサ115には、光学レンズ装置111からシャッタ装置113を介して被写体像が入射される。そこで、CMOSセンサ115は、TG117から供給されるクロックパルスに従って、一定時間毎に被写体像を光電変換(撮影)して画像信号を画素毎に蓄積し、蓄積した画像信号を出力する。即ち、CMOSセンサ115は、フォーカルプレーン方式に従って、撮像画像の画像信号を、画素単位で走査方向の順番で順次出力する。
前処理部116は、TG117から供給されるクロックパルスに従って、CMOSセンサ115から順次出力される画素単位の画像信号を、黒レベルの補正等の前処理を実行した上で、信号処理部118とDRAM119とにそれぞれ出力する。
TG117は、CPU120の制御に従って、一定時間毎にクロックパルスをCMOSセンサ115と前処理部116とにそれぞれ供給する。
信号処理部118は、例えばDSP(Digital Signal Processor)等で構成され、CPU120の制御に従って、前処理部116から供給された画像信号又はDRAM119に記憶された画像信号に対して各種信号処理を実行する。例えば、信号処理部118は、AF検波を実行する。AF検波の詳細については、図2以降の図面を参照して後述する。
DRAM119は、前処理部116から供給された画像信号、又は信号処理部118により信号処理が実行された画像信号を、フレーム画像データ単位で一時的に記憶(保持)する。DRAM119はまた、ジャイロセンサ127の検出結果を示すジャイロデータ等の各種データも一時的に記憶する。
CPU120は、撮像装置100全体の動作を制御する。RAM121は、CPU120が各処理を実行する際にワーキングエリアとして機能する。ROM122は、撮像装置100が各処理を実行するのに必要なプログラムやデータを記憶する。CPU120は、RAM121をワーキングエリアとして、ROM122に記憶されているプログラムとの協働により各種処理を実行する。
表示制御部123は、CPU120の制御に従って、DRAM119やメモリカード126に記憶されているフレーム画像データ(後述する図2の補正YUV203等)を読み出して、当該フレーム画像データにより表現されるフレーム画像、例えばAF枠が設定されたライブビュー画像を、表示部124に表示させる。
操作部125は、ユーザによる各種ボタンの操作を受け付ける。操作部125は、例えば電源釦、十字釦、決定釦、メニュー釦、レリーズ釦等を備える。操作部125は、受け付けた各種ボタンの操作に対応する信号を、CPU120に供給する。CPU120は、操作部125からの信号に基づいてユーザの操作内容を解析し、その操作内容に応じた処理を実行する。例えば、画像データの記録の指示操作が対応付けられている釦が押下された場合、CPU120は、記録の指示があったと解釈し、後述する補正YUV203をメモリカード126等に記録させる。
メモリカード126は、このようにしてCPU120の記録制御によって、補正YUV203を記録する。メモリカード126はまた、必要に応じて各種データを記録する。
ジャイロセンサ127は、いわゆるジャイロスコープ(gyrosope)であり、撮像装置100の角度や角速度を検出し、その検出結果を示すジャイロ信号を出力する。
図2は、このような構成の撮像装置100の信号処理部118が有する各種機能のうち、AF検波の機能を実現するための、第1実施形態に係る機能的構成を示す機能ブロック図である。
撮像装置100の信号処理部118は、AF検波部151と、定時計測部152と、YUV生成部153と、FPD補正部154と、を備えている。
ここで、AF検波部151を除く機能ブロック、即ち、定時計測部152、YUV生成部153、及びFPD補正部154の各々は、図9の定時計測部18、YUV生成部15、FPD補正部16の各々と基本的に同様の構成と機能を有している。このため、FPD RAW201、FPD YUV202、補正YUV203、及びジャイロデータ205の各々は、図9のFPD RAW51、FPD YUV52、補正YUV53、及びジャイロデータ54の各々と基本的に同様の構造を有している。従って、以下、これらの説明は適宜省略し、主に、図9とは異なるAF検波部151について説明する。
AF検波部151は、Y生成部171と、AF検波フィルタ部172と、ブロック積分部173と、センサ座標供給部174と、座標変形補正部175と、を備えている。
Y生成部171は、CMOSセンサ115から出力されて前処理部116を介して供給される画素単位の画像信号から、AF検波の対象となる輝度成分を生成する。ここで、Y生成部171の出力は、従来のようにAF検波フィルタ部172に直接供給されずに、DRAM119に供給されて一旦記憶される。即ち、DRAM119は、Y生成部171から画素単位で供給される輝度成分を、1フレーム分蓄積する。なお、このような輝度成分の1フレーム分からなるフレーム画像データ204を、以下、「AF用Y画像データ204」と呼ぶ。
このようにしてDRAM119にAF用Y画像データ204が生成されると、このAF用Y画像データ204を構成する各輝度成分は、画素単位で走査方向の順番でAF検波フィルタ部172に順次供給される。AF検波フィルタ部172は、このようにしてDRAM119から画素単位で供給される輝度成分から、周波数成分(直流成分を除く)を抽出して、AF検波値としてブロック積分部173に供給する。ブロック積分部173は、AF検波フィルタ部172から画素単位で供給されるAF検波値のうち、AF検波領域内の各画素のAF検波値を積算することで、AF評価値を算出する。
センサ座標供給部174は、ブロック積分部173に供給されたAF検波値に対応する画素の画素位置(以下、「注目画素位置」と呼ぶ)を、CPU120から取得し、CMOSセンサ115の座標として座標変形補正部175に供給する。即ち、センサ座標供給部174は、AF用Y画像データ204から画素単位で走査方向の順番でAF検波フィルタ部172に順次供給される輝度成分のCMOSセンサ115上の座標を、CPU120から取得し、その座標を注目画素位置として、ブロック積分部173に供給されたAF検波値の座標と同期させてセンサ座標供給部174に供給する。従って、図示はしないが、CPU120からセンサ座標供給部174に対して注目画素位置を示す信号が送られる。ここで、CMOSセンサ115の座標系は、FPD補正前座標系であり、AF枠が設定される座標系はFPD補正後座標系である。そこで、座標変形補正部175は、FPD補正前座標系で示される注目画素位置の座標を、FPD補正後座標系の座標、即ち、補正YUV203の座標(以下、「変形補正後座標」と呼ぶ)に変換する。注目画素位置の変形補正後座標は、ブロック積分部173に供給される。ブロック積分部173は、AF検波フィルタ部172から供給されたAF検波値が、AF検波領域内の画素に対応するものであるか否かを、座標変形補正部175から供給された注目画素位置の変形補正後座標に基づいて判断する。
以下、注目画素位置の変形補正後座標についてさらに詳しく説明する。
座標変形補正部175には、FPD補正前座標系で表現されるCMOSセンサ115の各画素の座標が、走査方向の順番にセンサ座標供給部174から順次供給されてくる。このようなFPD補正前座標系の座標が座標変形補正部175に供給されるタイミングは、画素単位のAF検波値がブロック積分部173に供給されるタイミングと同期している。従って、所定のタイミングでセンサ座標供給部174から座標変形補正部175に供給された座標は、当該所定のタイミングでブロック積分部173に供給されたAF検波値に対応する画素の画素位置、即ち、注目画素位置についてのFPD補正前座標系の座標を示している。
座標変形補正部175は、このようなFPD補正前座標系の注目画素位置の座標を、ジャイロデータ205を用いた所定のアルゴリズムに従って、変形補正後座標に変換する。
ジャイロデータ205は、座標変形補正部175の処理が実行されるフレーム期間の1つ前の1フレーム期間の間に、等間隔で16回程定時計測部152により検出されたジャイロ信号に基づいて生成されている。即ち、ジャイロデータ205とは、当該1フレーム期間内の各時刻のジャイロ計測値に基づいて生成されたデータである。換言すると、当該フレーム期間において、Y生成部171から出力される画素単位の輝度成分が、AF用Y画像データ204を構成する画素データ(画素値)としてDRAM119に順次記憶されていくのと並行して、ジャイロデータ205も生成される。このため、AF用Y画像データ204を構成する各ラインの各々に対して、各々の時刻のジャイロ計測値が対応することになる。
そこで、CPU120は、ジャイロデータ205における各時刻(各ライン位置)のジャイロ計測値に基づいて、各ライン位置での移動量を、画角中央の移動量がゼロとなるように補正する。CPU120は、所定のライン位置での補正後の移動量を、当該所定のライン位置での座標補正量として、各ライン位置の各々と、その座標補正量の各々とを対応付けたテーブルを生成する。
ここで、CMOSセンサ115における注目画素位置の座標、即ちFPD補正前座標系における注目画素位置の座標を(xs,ys)と記述するものとする。そして、CPU120により生成された当該テーブルによる、注目画素位置が存在するライン位置から、座標補正量に変換する関数を、Ffpdx(ys),Ffpdy(ys)と定義するものとする。ここで、注目画素位置が存在するライン位置のCMOSセンサ115上のY座標は、注目画素位置のY座標ysに他ならないから、関数Ffpdx(ys)とは、当該Y座標ysを入力パラメータとして、x軸方向の座標補正量を出力する関数である。同様に、関数Ffpdy(ys)とは、ライン位置のY座標ysを入力パラメータとして、y軸方向の座標補正量を出力する関数である。この場合、このFPD補正前座標系における注目画素位置の座標(xs,ys)に対して、その変形補正後座標を(xi,yi)と記述すると、変形補正後座標のX座標xiは式(1)のように表わされ、変形補正後座標のY座標yiは式(2)のように表わされる。
xi = xs + Ffdpdx(ys) ・・・(1)
yi = ys + Ffdpdy(ys) ・・・(2)
従って、座標変形補正部175は、CPU120により生成されたテーブルを用いて、式(1),(2)の演算を実行することで、FPD補正前座標系における注目画素位置の座標(xs,ys)を、変形補正後座標(xi,yi)に変換することができる。
図3は、座標変形補正部175による座標補正の処理と、AF枠との関係を模式的に示す図である。
図3において、矢印261と矢印262とは、CMOSセンサ115の走査順、即ち、ブロック積分部173に対する画素単位の輝度成分の入力順を示している。
矢印261は、座標変形補正部175による座標補正前のCMOSセンサ115上の座標系、即ちFPD補正前座標系における走査順を示している。従って、1つの矢印261が、FPD補正前座標系における1つのライン位置を示している。ここで、図10や図12との比較を容易なものとするために、便宜上、矢印261は、FPD補正前座標系で表わされるFPD YUV202の上に図示されている。
一方、矢印262は、座標変形補正部175による座標補正後の座標系、即ちFPD補正後座標系における走査順を示している。従って、1つの矢印262が、FPD補正後座標系における1つのライン位置を示している。即ち、座標変形補正部175により、FPD補正前座標系における各矢印261の各々で示されるライン位置が、FPD補正後座標系における各矢印262の各々で示されるライン位置に変換されることになる。このような変換は、図10と図3とを比較すると容易にわかるように、FPD補正部154によるFPDの補正と等価の処理である。このため、矢印262は、便宜上、FPD補正後座標系で表わされる補正YUV203の上に図示されている。
このようにして、座標変形補正部175からは、FPD補正後座標系で表わされる矢印262に沿って、注目画素位置の変形補正後座標(xi,yi)がブロック積分部173に順次供給されることになる。なお、ブロック積分部173は注目画素位置がAF検波領域に存在するか否かを判定することになるが、この場合の注目画素位置の座標は、FPD補正後座標系で表わされた変形補正後座標(xi,yi)であり、かつ、AF検波領域も、同様のFPD補正後座標系で表わされたAF枠271から設定される。換言すると、CMOSセンサ115上のFPD補正前座標系の視点からすると、図3と図12(B)とを比較すれば容易にわかるように、実際のAF検波領域を設定するためのAF枠271の配置位置は、理想的なAF検波領域の配置位置と一致する。即ち、この処理は、FPD補正後の座標系で表現されるAF枠に対応する、FPD補正前の座標系で表現される領域を、AF検波領域として設定するのと同様の効果を奏する。これにより、AF検波領域をより理想的な位置に近付けて設定することが可能になる。
以上まとめると、AF検波部151は、2フレーム期間を単位として動作する。即ち、最初の1フレーム期間では、Y生成部171が動作して、AF用Y画像データ204をDRAM119上に生成する。この間、定時計測部152により計測されたジャイロ信号に基づいてジャイロデータ205がDRAM119上に生成される。次の1フレーム期間では、AF検波フィルタ部172乃至座標変形補正部175が動作して、前の1フレーム期間に生成されたAF用Y画像データ204及びジャイロデータ205を用いて、AF検波領域内の各画素のAF検波値を積算することで、AF評価値を算出する。従って、以下、最初の1フレーム期間に動作するパス、即ち、Y生成部171を含むパスを、「第1パス161」と呼ぶ。一方、次の1フレーム期間に動作するパス、即ち、AF検波フィルタ部172乃至座標変形補正部175を含むパスを、「第2パス162」と呼ぶ。
次に、このような第1パス161及び第2パス162からなるAF検波部151を備える撮像装置100が実行する処理のうち、AF処理について説明する。
図4は、AF処理の流れの一例を示すフローチャートである。図5は、AF処理の流れの一例を示すタイミングチャートである。
図4のステップS1において、CPU120は、AF処理を継続するか否かを判定する。AF処理が継続されない場合、ステップS1においてNOであると判定されて、AF処理は終了となる。これに対して、AF処理が継続される場合、ステップS1においてYESであると判定されて、処理はステップS2に進む。
ステップS2において、AF検波部151は、第1パス161を動作させる。ここで、図5において、同図中に図示されている3つのフレーム期間の各々を、左から順に「第1フレーム期間」、「第2フレーム期間」、及び「第3フレーム期間」の各々と呼ぶ。この場合、ステップS2の処理は、最初の第1フレーム期間の間に実行されるものとして、以下の説明を行う。具体的には、第1フレーム期間の間に、CMOSセンサ115では1フレーム分の画像の読み込みが行われる。即ち、CMOSセンサ115からは、撮像画像の画像信号が、画素単位で走査方向の順番で順次出力され、前処理部116を介して、DRAM119と、AF検波部151の第1パス161との各々に順次供給される。DRAM119に画素単位の画像信号が順次蓄積されることで、FPD RAW201が生成されていく。一方、第1パス161に画素単位で供給された画像信号はY生成部171により輝度成分となって、DRAM119に順次供給される。このようにして、DRAM119に画素単位の輝度成分が順次蓄積されることで、AF用Y画像データ204が生成されていく。
CMOSセンサ115からフレームの最後の画素の画像信号が出力されると、処理はステップS2からステップS3に進む。ステップS3において、第1パス161のY生成部171は、AF用Y画像データ204の生成を完了させる。
また、ステップS2の処理が実行されている最中の第1フレーム期間においては、定時計測部152によって、ジャイロセンサ127のジャイロ信号が等時間間隔で16回程計測され、DRAM119に順次供給されている。このようにして、DRAM119にジャイロ信号が順次蓄積されることで、ジャイロデータ205が生成されていく。従って、第1フレーム期間が終了したタイミングのステップS4において、定時計測部152は、1フレーム分のジャイロデータ205の生成を完了させる。
ステップS5において、CPU120は、ステップS4の処理で生成が完了したジャイロデータ205を用いて、各ライン位置毎の座標補正量を算出する。ステップS6において、CPU120は、ステップS5の処理で算出した各ライン位置毎の座標補正量を、AF検波部151の第2パス162の座標変形補正部175に設定する。即ち、CPU120は、上述したように、式(1)の関数Ffpdx(ys)及び式(2)の関数Ffpdy(ys)を、座標補正量として座標変形補正部175に設定する。すると、ステップS7において、AF検波部151は、第2パス162を起動させる。
次に、ステップS8おいて、AF検波部151は、第2パス162を動作させる。即ち、第2パス162は、ステップS3の処理で生成が完了したAF用Y画像データ204、及び、ステップS6の処理で設定された座標補正量を用いて、AF検波領域内の各画素のAF検波値を積算する処理を繰り返す。なお、以下、このような処理を、「AF評価値検出処理」と呼ぶ。AF評価値検出処理の詳細については、図6を参照して後述する。
AF評価値検出処理が終了すると、AF検波部151においてAF評価値が算出されることになるので、ステップS9において、CPU120は、AF評価値をAF検波部151から取得(検出)する。そして、ステップS10において、CPU120は、このAF評価値を、AF機構112に対するレンズ制御に反映させる。これにより、処理はステップS1に戻され、それ以降の処理が繰り返される。即ち、AF処理が継続されている限り、上述したステップS1乃至S10の処理が繰り返される。
以上説明したように、第1フレーム期間に第1パス161が動作し、次の第2フレーム期間に第2パス162が動作する。ただし、図5のタイミングチャートから明らかなように、第1パス161は、第1フレーム期間にのみ動作するのではなく、第2フレーム期間も、第3フレーム期間も、さらにはそれ以降のフレーム期間も動作する。同様に、第2パス162は、第2フレーム期間にのみ動作するのではなく、第3フレーム期間も、さらにはそれ以降のフレーム期間も動作する。即ち、図4のフローチャートは、CMOSセンサ115により読み取られた1フレーム分の画像信号の流れという視点でAF処理の流れを記載したものであるの。これに対して、図5のタイミングチャートは、AF検波部151の視点からAF処理の流れを記載したものであり、実線の矢印が第1パス161の動作を示しており、点線の矢印が第2パス162の動作を示したものである。このように、第1パス161と第2パス162との各々は、相互に独立して処理を実行している。換言すると、第2パス162は、第k(kは1以上の整数値)フレーム期間における第1パス161の処理結果としてのAF用Y画像データ204と、第kフレーム期間に得られたジャイロデータ205を用いて、次の第k+1フレーム期間に動作して、AF評価値を検出していることになる。
次に、図6を参照して、ステップS8において第2パス162が動作している時に実行されるAF評価値検出処理について説明する。
図6は、AF評価値検出処理の流れの一例を示すフローチャートである。
ステップS21において、CPU120は、AF枠を設定し、第2パス162のブロック積分部173に通知する。即ち、第1フレーム期間において生成されたFPD RAV201は、YUV生成部153によりFPD YUV202となり、さらに、FPD補正部154によりFPDの補正がなされて、補正YUV203となる。図3を用いて上述したように、この補正YUV203の座標系、即ちFPD補正後座標系でAF枠は設定される。このようにして設定されたAF枠は、補正YUV203と共に、表示制御部123の制御により表示部124に表示される。また、当該AF枠は、ブロック積分部173に通知される。なお、本実施形態では、AF枠は矩形の枠であり、左上端の座標が(x0,y0)となり、右下端の座標が(x1,y1)となるように設定されるものとする。
ステップS22において、ブロック積分部173は、AF検波値の積分値を初期化する。ここで、積分値をSumと記述すると、Sum=0となるように初期設定される。
ステップS23において、ブロック積分部173は、AF検波値及び変形補正座標が入力されてくるまで待機する。
AF評価値検出処理が開始すると、AF用Y画像データ204を構成する各輝度成分のうち、注目画素位置として設定された画素位置の輝度成分がAF検波フィルタ部172に順次供給される。注目画素位置は、後述するステップS28の処理で更新されるが、ステップS22の処理後にステップS23の処理が実行された時点では、補正YUV203の左上端の画素の画素位置が設定されている。AF検波フィルタ部172は、注目画素位置の輝度成分から周波数成分(直流成分を除く)を抽出して、注目画素位置のAF検波値(以下、「Flt」と記述する)としてブロック積分部173に供給する。このとき、座標変形補正部175は、図4のステップS6の処理で設定された座標補正量を用いて、式(1)及び式(2)の演算を行うことで、注目画素位置の変形補正後座標(xi,yi)を算出し、ブロック積分部173に供給する。
そこで、ステップS24において、ブロック積分部173は、注目画素位置のAF検波値Flt及び変形補正後座標(xi,yi)を取得する。
ステップS25において、ブロック積分部173は、ステップS24の処理で取得した注目画素位置の変形補正後座標(xi,yi)を用いて、枠内判定をする。即ち、ブロック積分部173は、ステップS21の処理で設定されたAF枠をAF検波領域として、注目画素位置の変形補正後座標(xi,yi)が当該AF検波領域内に含まれているか否かを判定する。具体的には本実施形態では、次の式(3)と式(4)で示される不等式を両方とも満たすか否かが判定される。
x0 ≦ xi ≦ x1 ・・・(3)
y0 ≦ yi ≦ y1 ・・・(4)
式(3)と式(4)とのうち少なくとも一方の不等式が満たされない場合とは、注目画素位置の変形補正後座標(xi,yi)が当該AF検波領域内に含まれない場合を意味する。このような場合、ステップS25においてNOであると判定されて、ステップS26の処理は実行されずに、即ち、ステップS24の処理で取得されたAF検波値Fltは積算されずに、処理はステップS27に進む。
これに対して、式(3)と式(4)と何れの不等式も満たされる場合とは、注目画素位置の変形補正後座標(xi,yi)が当該AF検波領域内に含まれる場合を意味する。このような場合、ステップS25においてYESであると判定されて、処理はステップS26に進む。ステップS26において、ブロック積分部173は、これまでの積分値Sumに対して、ステップS24の処理で取得したAF検波値Fltを積算し、その積算値を新たな積分値Sumとする(Sum=Sum+Flt)。
換言すると、ステップS25及びS26の処理とは、FPD補正後座標系(補正YUV203の座標系)で表現されるAF枠に対応する、FPD補正前座標系(CMOSセンサ115の座標系)で表現される領域をAF検波領域として設定し、注目画素位置が当該AF検波領域内である場合にはAF検波値Fltを積算する、といった処理と等価な処理であるといえる。
このようにして、ステップS26の処理が終了するか、又はステップS25の処理でNOであると判定されると、処理はステップS27に進む。ステップS27において、ブロック積分部173は、1フレーム分の処理が終了したか否かを判定する。
注目画素位置が、フレーム内の最後に走査される画素の位置でない場合、ステップS27においてNOであると判定されて、処理はステップS28に進む。ステップS28において、ブロック積分部173は、注目画素位置を走査方向に1画素分ずらす。これにより、処理はステップS23に戻され、それ以降の処理が繰り返される。
即ち、AF用Y画像データ204を構成する各輝度成分の各々が、注目画素位置の輝度成分として順次出力される毎に、ステップS23乃至S27のループ処理が繰り返される。これにより、AF検波領域内の各輝度成分の各々に対応するAF検波値FLtが順次積分されて、積分値Sumが更新されていく。そして、フレーム内の最後に走査される画素の位置が注目画素位置になって、ステップS25の処理でNOであると判定されるか、或いは、ステップS26の処理が実行されると、次のステップS27においてYESであると判定されて、処理はステップS29に進む。
ステップS29において、ブロック積分部173は、積分値Sumを、AF評価値として検出する。
これにより、AF評価値検出処理が終了する。すると、このようにして算出された当該AF評価値は、上述した図4のステップS9の処理でCPU120に取得され、ステップS10の処理でレンズ制御に反映される。即ち、図2には図示されていないが、ブロック積分部173からCPU120へ、算出されたAF評価値が送られる。
以上説明した内容をまとめると、本実施形態に係る撮像装置100において、CMOSセンサ115は、フォーカルプレーン方式に従って撮像することにより、FPDが生じたFPD RAW201を前処理部116を介して出力する。FPD RAW201は、DRAM119に一旦記憶され、YUV生成部153によりFPD YUV202に変換されて、再度DRAM119に記憶される。FPD補正部154は、このようなFPD YUV202から、FPDが補正された補正YUV203を生成してDRAM119に記憶する。表示制御部123は、補正YUV203により表現されるライブビュー画像と共に、当該ライブビュー画像の上にAF枠を配置させて表示部124に表示させる制御を行う。AF検波部151の第2パス162は、補正YUV203の座標系(補正後FPD座標系)で表現されるAF枠に対応する、歪みが補正される前のFPD YUV202の座標系(補正前FPD座標系であって、CMOSセンサ115やFPD RAW201と同一の座標系)で表現される領域(以下、「補正前AF枠」と呼ぶ)を、AF検波領域として設定するのと等価な処理を実行する。このようにして、AF検波領域がより適切に設定される。
さらに、撮像装置100のAF検波部151には、第2パス162とは独立して動作する第1パス161が設けられている。この第1パス161に設けられているY生成部171は、FPD RAW201から、同一の座標系で表現される、AF評価値の算出用のAF用Y画像データ204を生成する。このようにして、第1パス161によりAF用Y画像データ204が生成されると、第2パス162は、次のフレーム期間において、当該AF用Y画像データ204のうち補正前AF枠に属するデータから、AF評価値を算出することができる。このようにして、AF検波領域がさらに適切に設定される。
以上、本発明の第1実施形態に係る撮像装置100について説明した。次に、本発明の第2実施形態に係る撮像装置100について説明する。
[第2実施形態]
本発明の第2実施形態に係る撮像装置100は、第1実施形態に係る撮像装置100と基本的に同様のハードウェアの構成を取ることができる。従って、図1は、第2実施形態に係る撮像装置100のハードウェアの構成を示すブロック図でもある。第2実施形態に係る撮像装置100は、第1実施形態と同様に、例えばデジタルカメラにより構成することができる。
図7は、図1の撮像装置100の信号処理部118が有する各種機能のうち、AF検波の機能を実現するための、第2実施形態に係る機能的構成を示す機能ブロック図である。
撮像装置100についての、図2に示す第1実施形態の機能的構成と、図7に示す第2実施形態の機能的構成とを比較するに、AF検波部151内の機能的構成が異なる点が差異であり、その他の点は一致する。そこで、以下、このような差異点について主に説明し、一致点の説明は適宜省略する。
第2実施形態のAF検波部151は、第1パス301と、第2パス302と、を備えている。
第2実施形態の第1パス301は、第1実施形態の第1パス161(図2)と同様にY生成部171を備えているのに加えて、さらに、第1実施形態では第2パス162に備えられていたAF検波フィルタ部172も備えている。
このAF検波フィルタ部172は、コントラストの強い部分、高周波成分の多い部分で大きな検波値をとるようなフィルタ、演算回路によって構成される。
第1パス301において、Y生成部171は、CMOSセンサ115から出力されて前処理部116を介して供給される画像信号から、AF検波の対象となる輝度成分を生成する。AF検波フィルタ部172は、Y生成部171により生成された輝度成分から、上述した周波数成分(直流成分を除く)を抽出して、AF検波値としてDRAM119に供給して一旦記憶させる。即ち、第2実施形態では、DRAM119は、AF検波フィルタ部172から画素単位で供給されるAF検波値を、1フレーム分蓄積する。なお、このようなAF検波値の1フレーム分からなるフレーム画像データ311を、以下、「AF検波値画像データ311」と呼ぶ。
このように、第1実施形態では、第1パス161からAF用Y画像データ204が出力されてDRAM119に記憶されていたのに対して、第2実施形態では、第1パス301からAF検波値画像データ311が出力されてDRAM119に記憶される点で相違する。
このような相違点のため第1実施形態の第2パス162とは異なり、第2実施形態の第2パス302は、変形補正部321と、変座標供給部322と、を備えている。一方、第2実施形態の第2パス302は、第1実施形態の第1パス162と同様に、ブロック積分部173を備えている。
即ち、第2実施形態でDRAM119に記憶されるAF検波値画像データ311は、FPD補正前座標系のフレーム画像データである。そこで、変形補正部321は、AF検波値画像データ311の座標系を、FPD補正前座標系から、AF枠が設定されるFPD補正後座標系の座標、即ち変形補正後座標に変換する。変形補正後座標に変換されたAF検波値画像データ311を構成する各AF検波値は、画素単位で走査方向の順番(以下、適宜「ラスタ順」と呼ぶ)でブロック積分部173に順次供給される。
変形座標供給部174は、変形補正部321からブロック積分部173に供給されるAF検波値に対応する画素の画素位置、即ち注目画素位置を、変形後補正座標としてブロック積分部173に供給する。換言すると、変形座標供給部174は、変形補正後座標系におけるフレーム画像の各画素をラスタ順に順次注目画素に設定して、変形補正後座標系における注目画素の画素位置を、注目画素位置としてブロック積分部173に供給する。
この場合、変形補正部321は、詳細には、変形座標供給部174からブロック積分部173に対して変形補正後座標系(FPD補正後座標系)で供給された注目画素位置について、そのFPD補正前座標系での位置(以下、「変形前座標」と呼ぶ)を算出する。ここで、変形補正部321は、算出した注目画素位置の変形前座標が小数部を含む場合には、最近傍の整数座標を、変形前座標として採用する。そして、変形補正部321は、AF検波値画像データ311を構成する各AF検波値のうち、変形前座標に対応するAF検波値を、注目画素位置のAF検波値としてDRAM119から読み出して、ブロック積分部173に供給する。
ブロック積分部173は、変形補正部321から供給されたAF検波値が、AF検波領域内の画素に対応するものであるか否かを、変形座標供給部322から供給された注目画素位置の変形補正後座標に基づいて判断する。
なお、このような第1パス301及び第2パス302からなるAF検波部151を備える撮像装置100が実行する処理のうち、AF処理の流れは、原則として、図4のフローチャート及び図5のタイミングチャートに従ったものになる。
ただし、第2実施形態のステップS3の処理では、AF用Y画像データ204ではなく、AF検波値画像データ311の生成が完了する。また、第2実施形態のステップS6の処理では、座標補正量は変形補正部321や変形後座標供給部322に供給される。これにより、ステップS7の処理で第2パス302が起動し、ステップS8の処理で第2パス303が上述したように動作する。ステップS9以降の処理は、第1形態における処理と同様であるため、ここではその説明は省略する。
なお、本発明は上述の第1又は第2の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、上述した実施形態では、FPDの補正のみを処理対象としたが、図8(A),(B)に示すように、いわゆる通常の手ぶれ補正も対象にすることができる。
図8(A)、(B)は、手ぶれ補正のみを実行する場合における、AF枠(またはAF検波領域)と、手ぶれ補正前YUVとの関係の従来と本発明の対比を示している。即ち、図8(A)は、従来の撮像装置(図9参照)が手ぶれ補正のみを実行する場合における、AF枠55と手ぶれ補正前YUV52との関係を示している。これに対して、図8(B)は、本発明が適用された撮像装置が手ぶれ補正のみを実行する場合における、AF枠271と手ぶれ補正前YUV202との関係を示している。
なお、ここでは、補正対象は手ぶれ補正のみなので、図7までの説明において「FPD」の語句を用いていた箇所は「手ぶれ補正」という語句に替えて説明する。上述したように、従来のAF検波の対象は手ぶれ補正前RAW51であるが、図12と同様の理由で、図8においては、手ぶれ補正前YUV52が図示されている。即ち、図8に示す手ぶれ補正前YUV52の意味は、手ぶれ補正後座標系に対して、AF検波が行われる手ぶれ補正前座標系を示すことにある。全く同様の理由で、本実施形態におけるAF検波の対象は手ぶれ補正前RAW201、より正確にはAF用Y画像データ204であるが、図8においては、手ぶれ補正前YUV202が図示されている。即ち、図8に示す手ぶれ補正前YUV202の意味は、手ぶれ補正後座標系に対して、AF検波が行われる手ぶれ補正前座標系を示すことにある。
即ち、従来においては、上述したように、AF枠55が設定されるライブビュー画像(図8には図示せず)は、手ぶれ補正後座標系で表わされている。換言すると、AF枠55は、手ぶれ補正後座標系で設定される。一方、AF検波は、図8(A)に示す手ぶれ補正前YUV52の座標系、即ち、手ぶれ補正前座標系で行われる。しかしながら、図8(A)に示すように、従来においては、手ぶれ補正後座標系のAF枠55に対応して実際のAF検波領域が設定される。即ち、図8(A)のAF枠55の配置位置が、実際のAF検波領域の配置位置となる。これに対して、本来手ぶれ補正前座標系で設定されるべき理想的なAF検波領域の配置位置は、後述する本発明が適用された図8(B)のAF枠271の配置位置となる。このように、手ぶれ補正のみを行う場合にもFPD補正を行う場合と同様に、従来においては、実際のAF検波領域と、理想的なAF検波領域との間にズレが生じてしまうことになる。
これに対して、本発明に係る撮像装置として、図2や図7の構成の撮像装置100に対して、FPD補正部154の代わりに手ぶれ補正のみを実行する補正部を採用した構成の撮像装置であって、図4のステップS5の処理として、手ぶれ補正と同様に座標補正量を算出する撮像装置を採用することができる。この場合、図8(B)に示すように、手ぶれ補正後座標系で表現されるAF枠に対応する、手ぶれ補正前座標系で表現される補正前AF枠271に対応して、AF検波領域として設定される。即ち、実際のAF検波領域の配置位置も、理想的なAF検波領域の配置位置である補正前AF枠271と一致することになる。このように、手ぶれ補正のみを行う場合にも本発明を適用することで、実際のAF検波領域をより理想的な位置に設定することが可能になる。
また例えば、上述した実施形態では、撮像素子として、CMOS型の素子が採用されていた。しかしながら、本発明が適用可能な撮像素子は、これに限定されず、フォーカルプレーン方式が採用されている撮像素子であれば、任意の撮像素子を採用することができる。
また例えば、上述した実施形態では、Y生成部171から画素単位で供給される輝度成分を、1フレーム分蓄積し、このような輝度成分の1フレーム分からなるフレーム画像データ204を、AF用Y画像データ204としたが、Y生成部171は、CMOS120の所定範囲分の輝度成分を画素単位で供給するようにしてもよい。即ち、予めAF枠の配置位置が決まっているような場合、Y生成部171は、その配置位置に対応する領域を含む所定領域分の輝度成分のみAF用Y画像データ204とするようにしてもよい。これにより、AF用Y画像データ204の容量を小さくすることができ、処理を軽くすることができる。
また例えば、上述した実施形態では、本発明が適用される撮像装置は、デジタルカメラとして構成される例として説明した。しかしながら、本発明は、デジタルカメラに特に限定されず、撮像機能を有する電子機器一般に適用することができる。具体的には例えば、本発明は、ビデオカメラ、携帯型ナビゲーション装置、ポータブルゲーム機等に適用可能である。
上述した一連の処理は、ハードウェアにより実行させることもできるし、ソフトウェアにより実行させることもできる。
一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、コンピュータ等にネットワークや記録媒体からインストールされる。コンピュータは、専用のハードウェアに組み込まれているコンピュータであってもよい。また、コンピュータは、各種のプログラムをインストールすることで、各種の機能を実行することが可能なコンピュータ、例えば汎用のパーソナルコンピュータであってもよい。
このようなプログラムを含む記録媒体は、図示はしないが、ユーザにプログラムを提供するために装置本体とは別に配布されるリムーバブルメディアにより構成されるだけでなく、装置本体に予め組み込まれた状態でユーザに提供される記録媒体等で構成される。リムーバブルメディアは、例えば、磁気ディスク(フロッピディスクを含む)、光ディスク、又は光磁気ディスク等により構成される。光ディスクは、例えば、CD−ROM(Compact Disk−Read Only Memory),DVD(Digital Versatile Disk)等により構成される。光磁気ディスクは、MD(Mini−Disk)等により構成される。また、装置本体に予め組み込まれた状態でユーザに提供される記録媒体は、例えば、プログラムが記録されている図1のROM122や、図示せぬハードディスク等で構成される。
なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、その順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的或いは個別に実行される処理をも含むものである。
100・・・画像処理装置、111・・・光学レンズ装置、112・・・AF機構、113・・・シャッタ装置、114・・・アクチュエータ、115・・・CMOSセンサ、116・・・前処理部、117・・・TG、118・・・信号処理部、119・・・DRAM、120・・・CPU、121・・・RAM、122・・・ROM、123・・・表示制御部、124・・・表示部、125・・・操作部、126・・・メモリカード、151・・・AF検波部、152・・・定時計測部、153・・・YUV生成部、154・・・FPD補正部、161・・・第1パス、162・・・第2パス

Claims (6)

  1. フォーカルプレーン方式により画像信号を出力する撮像手段と、
    前記撮像手段によって出力された画像信号の出力タイミングの違いにより生じる各ライン位置毎の座標補正量を算出し、この座標補正量に基づいて当該画像信号の歪みを補正する補正手段と、
    前記撮像手段によって出力された画像信号に対してAF検波フィルタをかけることによって、AF検波信号を出力するAF検波手段と、
    前記補正手段によって補正された画像信号に基づく画像にAF枠を配置する配置手段と、
    前記AF検波手段から出力されたAF検波信号のうちのAF評価値を算出すべき画像信号を含む領域であって、前記配置手段により配置されたAF枠に対応するAF評価領域を設定する設定手段と、
    前記設定手段により設定されたAF評価領域内の画像信号からAF評価値を算出する算出手段と、
    を備え、
    前記設定手段はさらに、前記補正手段により算出された前記座標補正量に応じて、前記配置手段により配置されたAF枠に対応するAF評価領域を変形させる、
    ことを特徴とする撮像装置。
  2. 前記AF検波手段から出力されたAF検波信号を1フレーム分蓄積する蓄積手段を備え、
    前記配置手段は、前記AF枠の位置を変化させて配置し、
    前記設定手段は、前記蓄積手段に蓄積された1フレーム分のAF検波信号のうちのAF評価値を算出すべき画像信号を含む領域であって、前記配置手段により配置されたAF枠に対応するAF評価領域を設定する
    ことを特徴する請求項1に記載の撮像装置。
  3. 前記AF検波手段から出力されたAF検波信号のうちの前記AF評価領域に対応するAF検波信号のみを蓄積する蓄積手段を備え、
    前記配置手段は、予め決められた固定位置にAF枠を配置し、
    前記設定手段は、前記蓄積手段に蓄積されたAF検波信号を含む領域をAF評価領域として設定する、
    ことを特徴する請求項1に記載の撮像装置。
  4. 前記撮像手段は、CMOSセンサで構成され、順次画像信号を出力し、
    前記配置手段によってAF枠が配置された状態の画像信号を逐次表示する表示手段をさらに備える、
    ことを特徴とする請求項1乃至3のいずれかに記載の撮像装置。
  5. フォーカルプレーン方式により駆動する撮像部より出力される画像信号からAF評価値を算出するAF評価値算出方法であって、
    出力された画像信号の出力タイミングの違いにより生じる各ライン位置毎の座標補正量を算出し、この座標補正量に基づいて当該画像信号の歪みを補正する補正ステップと、
    前記撮像部によって出力された画像信号に対してAF検波フィルタをかけることによって、AF検波信号を出力するAF検波ステップと、
    前記補正ステップにて補正された画像信号に基づく画像にAF枠を配置する配置ステップと、
    前記AF検波ステップにて出力された1フレーム分のAF検波信号のうちのAF評価値を算出すべき画像信号を含む領域であって、前記配置ステップにより配置されたAF枠に対応するAF評価領域を設定する設定ステップと、
    前記設定ステップにて設定されたAF評価領域内の画像信号からAF評価値を算出する算出ステップと、
    を含み、
    前記設定ステップはさらに、前記補正ステップにより算出された前記座標補正量に応じて、前記配置ステップにより配置されたAF枠に対応するAF評価領域を変形させる、
    ことを特徴とするAF評価値算出方法。
  6. フォーカルプレーン方式により駆動する撮像部を備える撮像装置を制御するコンピュータを、
    出力された画像信号の出力タイミングの違いにより生じる各ライン位置毎の座標補正量を算出し、この座標補正量に基づいて当該画像信号の歪みを補正する補正手段、
    前記撮像部によって出力された画像信号に対してAF検波フィルタをかけることによって、AF検波信号を出力するAF検波手段、
    前記補正手段によって補正された画像信号に基づく画像にAF枠を配置する配置手段、
    前記AF検波手段から出力されたAF検波信号のうちのAF評価値を算出すべき画像信号を含む領域であって、前記配置手段により配置されたAF枠に対応するAF評価領域を設定する設定手段、
    前記設定手段により設定されたAF評価領域内の画像信号からAF評価値を算出する算出手段、
    として機能させ、
    前記設定手段はさらに、前記補正手段により算出された前記座標補正量に応じて、前記配置手段により配置されたAF枠に対応するAF評価領域を変形させる、
    ことを特徴とするプログラム。
JP2010221319A 2010-01-26 2010-09-30 撮像装置及びaf評価値算出方法、並びにプログラム Expired - Fee Related JP5938842B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010221319A JP5938842B2 (ja) 2010-01-26 2010-09-30 撮像装置及びaf評価値算出方法、並びにプログラム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010013886 2010-01-26
JP2010013886 2010-01-26
JP2010221319A JP5938842B2 (ja) 2010-01-26 2010-09-30 撮像装置及びaf評価値算出方法、並びにプログラム

Publications (2)

Publication Number Publication Date
JP2011175232A JP2011175232A (ja) 2011-09-08
JP5938842B2 true JP5938842B2 (ja) 2016-06-22

Family

ID=44688094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010221319A Expired - Fee Related JP5938842B2 (ja) 2010-01-26 2010-09-30 撮像装置及びaf評価値算出方法、並びにプログラム

Country Status (1)

Country Link
JP (1) JP5938842B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106605102B (zh) * 2014-09-05 2019-10-22 西门子公司 用于燃气涡轮发动机的燃烧器的声学阻尼系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4732303B2 (ja) * 2006-11-02 2011-07-27 キヤノン株式会社 撮像装置
JP5197064B2 (ja) * 2008-02-23 2013-05-15 三洋電機株式会社 ビデオカメラ

Also Published As

Publication number Publication date
JP2011175232A (ja) 2011-09-08

Similar Documents

Publication Publication Date Title
JP4509925B2 (ja) 画像処理装置及びカメラシステム並びに画像処理方法及び動画像表示方法
JP4509917B2 (ja) 画像処理装置及びカメラシステム
JP5421647B2 (ja) 撮像装置及びその制御方法
JP6355454B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP4732303B2 (ja) 撮像装置
JP2012070241A (ja) 撮像装置及び方法、並びにプログラム
KR101393560B1 (ko) 화상 처리 장치, 화상 처리 방법, 및 기록 매체
JP2009194700A (ja) 画像処理装置及び画像処理プログラム
JP2013165483A (ja) 画像処理装置、撮像装置、およびコンピュータブログラム
JP5999746B2 (ja) 撮像装置、af評価値算出方法、及びプログラム
JP2012231262A (ja) 撮像装置、ぶれ補正方法、制御プログラム、及び制御プログラムを記録する記録媒体
JP5696419B2 (ja) 画像処理装置及び方法、並びにプログラム
US9883096B2 (en) Focus detection apparatus and control method thereof
JP4953770B2 (ja) 撮像装置
US9383626B2 (en) Imaging apparatus, focus control method, and program
JP5393877B2 (ja) 撮像装置および集積回路
WO2012147337A1 (ja) フリッカ検出装置、フリッカ検出方法およびフリッカ検出プログラム
JP5938842B2 (ja) 撮像装置及びaf評価値算出方法、並びにプログラム
JP2018142983A (ja) 画像処理装置及びその制御方法、プログラム、記憶媒体
JP5831492B2 (ja) 撮像装置、表示制御方法及びプログラム
JP5882785B2 (ja) 撮像装置
JP2011135537A (ja) 撮像装置及び撮像装置の制御方法
US11206344B2 (en) Image pickup apparatus and storage medium
US11568521B2 (en) Apparatus, method thereof, and recording medium
WO2012053136A1 (ja) 立体映像処理回路および立体映像撮影装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160502

R150 Certificate of patent or registration of utility model

Ref document number: 5938842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees