JP5937924B2 - Ground density estimation method, ground landfill management method using this ground density estimation method, ground compaction management method, and caisson filling management method - Google Patents
Ground density estimation method, ground landfill management method using this ground density estimation method, ground compaction management method, and caisson filling management method Download PDFInfo
- Publication number
- JP5937924B2 JP5937924B2 JP2012184121A JP2012184121A JP5937924B2 JP 5937924 B2 JP5937924 B2 JP 5937924B2 JP 2012184121 A JP2012184121 A JP 2012184121A JP 2012184121 A JP2012184121 A JP 2012184121A JP 5937924 B2 JP5937924 B2 JP 5937924B2
- Authority
- JP
- Japan
- Prior art keywords
- ground
- density
- ground density
- management method
- compaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 54
- 238000007726 management method Methods 0.000 title claims description 25
- 238000005056 compaction Methods 0.000 title claims description 20
- 238000012360 testing method Methods 0.000 claims description 50
- 230000035515 penetration Effects 0.000 claims description 47
- 239000002689 soil Substances 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 22
- 239000004576 sand Substances 0.000 claims description 9
- 239000002344 surface layer Substances 0.000 claims description 4
- 238000012625 in-situ measurement Methods 0.000 claims 1
- 230000003068 static effect Effects 0.000 description 14
- 238000005070 sampling Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000001739 density measurement Methods 0.000 description 5
- 230000005251 gamma ray Effects 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Description
本発明は、コーン貫入試験結果に基づいて地盤の密度を推定する方法、この地盤密度の推定方法を用いた地盤埋立ての管理方法、地盤締固めの管理方法およびケーソン中詰めの管理方法に関する。 The present invention relates to a method for estimating the density of ground based on the results of a cone penetration test, a method for managing land reclamation using the ground density estimating method, a method for managing ground compaction, and a method for managing caisson filling.
従来、地盤調査の一環として、たとえば埋め立て地盤や締め固めた地盤などにおいて所定の地盤密度を達成できているかなどを把握するために地盤密度の計測が行われている。この地盤密度の計測方法として、ラジオアイソトープ(RI)から放出されるγ(ガンマ)線を利用するRIコーン貫入試験による密度計測や乱さない試料をサンプリングして直接密度を計測する方法が知られている。 Conventionally, as part of ground investigation, for example, ground density is measured in order to ascertain whether a predetermined ground density has been achieved, for example, in landfill ground or compacted ground. As a method for measuring the ground density, there are known a density measurement by an RI cone penetration test using γ (gamma) rays emitted from a radioisotope (RI) and a method of directly measuring the density by sampling a sample that is not disturbed. Yes.
RIコーン貫入試験では、密度計測する際にバックグラウンドガンマ線強度が必要である。したがって、はじめに三成分コーンを地盤に挿入し、バックグラウンドガンマ線強度を計測し、三成分コーンを引き抜いて、RIコーンを設置してから再び挿入してガンマ線強度を計測する必要がある。 The RI cone penetration test requires background gamma ray intensity when measuring density. Therefore, it is necessary to first insert the three-component cone into the ground, measure the background gamma ray intensity, extract the three-component cone, install the RI cone, and insert it again to measure the gamma ray intensity.
特許文献1は、重錘付コーンを地盤に落下貫入させてそのときの加速度を測定し、その加速度を解析して地盤の密度を測定する地盤密度測定装置を開示する。 Patent Document 1 discloses a ground density measuring device that measures the acceleration at a time when a cone with a weight is dropped and penetrates into the ground, analyzes the acceleration, and measures the density of the ground.
RIコーン貫入試験は、通常のコーン貫入試験と比較してラジオアイソトープを使用するため機器の取扱いが難しく、また計測可能な密度は2.3Mg/m3までである。RIコーン貫入試験において、地盤の密度はガンマ線強度の測定結果から算出されるものであるが、土以外の材料でガンマ線の遮蔽効果がある材料を対象にする場合は、密度の計測精度が悪くなる。一般に、鉛、鉄、コンクリートなど比重の重い材料は、ガンマ線を遮蔽する効果があることが知られており、例えば鉄鋼スラグなどによって構成される地盤の密度計測には誤差を伴いやすい。 The RI cone penetration test uses a radioisotope compared to the normal cone penetration test, making it difficult to handle the equipment, and the measurable density is up to 2.3 Mg / m 3 . In the RI cone penetration test, the density of the ground is calculated from the measurement result of gamma ray intensity. However, when measuring materials other than soil that have a gamma ray shielding effect, the density measurement accuracy deteriorates. . In general, it is known that a material having a high specific gravity such as lead, iron, or concrete has an effect of shielding gamma rays. For example, density measurement of the ground composed of steel slag or the like is likely to involve an error.
また、地盤密度の計測のためのサンプリングについては、乱さない試料をサンプリングすることが簡便にできないことやコストがかかるといった問題がある。引用文献1は、重錘付コーンの落下高さを正確かつ極く短時間で設定可能とするもので、かかる問題を解決するものではない。 In addition, sampling for measuring the ground density has a problem that it is not possible to simply sample a sample that is not disturbed, and costs are high. Cited Document 1 makes it possible to set the falling height of a cone with a weight accurately and in a very short time, and does not solve such a problem.
本発明は、上述のような従来技術の問題に鑑み、機器の取扱いの難しいRIコーン貫入試験ではなく、また地盤密度の計測のためのサンプリングをすることなしに、コーン貫入試験に基づいて地盤の密度を推定可能な地盤密度の推定方法、この地盤密度の推定方法を用いた地盤埋立ての管理方法、地盤締固めの管理方法およびケーソン中詰めの管理方法を提供することを目的とする。 In view of the problems of the prior art as described above, the present invention is not a RI cone penetration test, which is difficult to handle the equipment, and it is based on the cone penetration test without sampling for measuring the ground density. An object of the present invention is to provide a ground density estimation method capable of estimating the density, a ground landfill management method, a ground compaction management method, and a caisson filling management method using the ground density estimation method.
上記目的を達成するために、本実施形態による地盤密度の推定方法は、地盤密度の計測対象である原位置においてコーン貫入試験により先端抵抗を計測するステップと、地盤密度を仮定するステップと、前記計測した先端抵抗と前記仮定した地盤密度とに基づいて相対密度を算定するステップと、事前に得た土質の最小・最大密度試験の結果と前記算定した相対密度とに基づいて地盤密度を算定するステップと、前記仮定した地盤密度と前記算定した地盤密度とを比較し、両者が等しくない場合、前記地盤密度仮定ステップに戻って前記仮定した地盤密度を変えてから前記相対密度算定ステップおよび前記地盤密度算定ステップを実行し、等しい場合、その地盤密度を地盤密度推定値と決定するステップと、を含む。 In order to achieve the above object, the ground density estimation method according to the present embodiment includes a step of measuring a tip resistance by a cone penetration test at an original position, which is a ground density measurement target, a step of assuming a ground density, The step of calculating relative density based on the measured tip resistance and the assumed ground density, and the soil density is calculated based on the results of the minimum and maximum soil density tests obtained in advance and the calculated relative density. Comparing the assumed ground density with the calculated ground density, and if both are not equal, returning to the ground density assuming step and changing the assumed ground density, the relative density calculating step and the ground Performing a density calculation step and, if equal, determining the ground density as a ground density estimate.
この地盤密度の推定方法によれば、RIコーン貫入試験などのような取扱いの難しい計測機器を使うことなしに、さらに地盤密度の計測のためのサンプリングをすることなしに、原位置においてコーン貫入試験を実施することで地盤密度を算定し簡単に推定することができる。また、地盤密度の計測のためのサンプリングをすることなしに土以外の粒状体材料の密度を計測することができる。また、コーン貫入試験のコーンを地盤に貫入でき先端抵抗が計測できる場所であれば、どのような地盤でも適用可能であり、適用範囲がきわめて広い。 According to this ground density estimation method, the cone penetration test is performed in situ without using difficult measuring instruments such as the RI cone penetration test and without sampling for the measurement of ground density. It is possible to calculate and easily estimate the ground density. Moreover, the density of granular material other than soil can be measured without sampling for measuring the ground density. Further, any place where the cone of the cone penetration test can penetrate into the ground and the tip resistance can be measured is applicable, and the applicable range is extremely wide.
上記地盤密度の推定方法において、前記コーン貫入試験により先端抵抗を深さ方向に複数点計測し、前記地盤密度を算定する深さ位置を地盤の表層から深さ方向へと変えることが好ましい。これにより、より深い深度の地盤密度の算定にそれよりも浅い深度のデータを用いることができ、また、地盤密度の深さ方向分布を推定することができる。 In the ground density estimation method, it is preferable that the tip resistance is measured at a plurality of points in the depth direction by the cone penetration test, and the depth position for calculating the ground density is changed from the surface layer of the ground to the depth direction. Thereby, the data of shallower depth can be used for the calculation of the deeper ground density, and the depth direction distribution of the ground density can be estimated.
また、測定する土質に対応した前記先端抵抗と前記相対密度と前記地盤密度(または鉛直有効応力)との関係を予め求めておくことが好ましい。 Moreover, it is preferable to obtain | require previously the relationship between the said tip resistance corresponding to the soil to measure, the said relative density, and the said ground density (or vertical effective stress).
本実施形態による地盤埋立ての管理方法は、埋立て対象地に土砂を投入するステップと、前記土砂の投入によって形成された土領域について締め固めを実施するステップと、前記締め固められた土領域について上述の地盤密度の推定方法を実施して地盤密度を推定するステップと、前記推定された地盤密度に基づいてその地盤密度が妥当な値であるか否かを判断するステップと、を含み、前記地盤密度が妥当な値でない場合、前記締め固めステップに戻ることを特徴とする。 The land reclamation management method according to the present embodiment includes a step of throwing earth and sand into a landfill target site, a step of compacting a soil region formed by throwing the earth and sand, and the compacted soil region Performing the above-described ground density estimation method for estimating the ground density, and determining whether the ground density is an appropriate value based on the estimated ground density, If the ground density is not an appropriate value, the process returns to the compacting step.
この地盤埋立ての管理方法によれば、締め固められた土領域について上述の地盤密度の推定方法を実施することで地盤密度を簡単に推定できるので、妥当な値、たとえば所定の地盤密度を達成できているか否かを把握することができ、地盤の埋立ての施工を効率よく管理することができる。 According to this landfill management method, the ground density can be easily estimated by performing the above-described ground density estimation method for the compacted soil region, so that a reasonable value, for example, a predetermined ground density is achieved. It is possible to grasp whether or not it is made, and it is possible to efficiently manage landfill construction.
本実施形態による地盤締固めの管理方法は、締め固め対象の地盤について締め固めを実施するステップと、前記締め固められた地盤について上述の地盤密度の推定方法を実施して地盤密度を推定するステップと、前記推定された地盤密度に基づいてその地盤密度が妥当な値であるか否かを判断するステップと、を含み、前記地盤密度が妥当な値でない場合、前記締め固めステップに戻ることを特徴とする。 The ground compaction management method according to the present embodiment includes a step of compacting the ground to be compacted, and a step of estimating the ground density by performing the above-described ground density estimation method for the compacted ground. And determining whether the ground density is a reasonable value based on the estimated ground density, and if the ground density is not a reasonable value, returning to the compacting step Features.
この地盤締固めの管理方法によれば、締め固められた地盤について上述の地盤密度の推定方法を実施して地盤密度を簡単に推定できるので、妥当な値、たとえば、所定の地盤密度を達成できているか否かを把握することができ、地盤の締め固めの施工を効率よく管理することができる。 According to this ground compaction management method, the ground density can be easily estimated by performing the above-described ground density estimation method for the compacted ground, so that an appropriate value, for example, a predetermined ground density can be achieved. It is possible to grasp whether or not the ground is compacted, and to efficiently manage the compaction work of the ground.
本実施形態によるケーソン中詰めの管理方法は、ケーソンに中詰材を投入するステップと、前記中詰材の投入によって形成された中詰材領域について締め固めを実施するステップと、前記締め固められた中詰材領域について上述の地盤密度の推定方法を実施して地盤密度を推定するステップと、前記推定された地盤密度に基づいてその地盤密度が妥当な値であるか否かを判断するステップと、を含み、 前記地盤密度が妥当な値でない場合、前記締め固めステップに戻ることを特徴とする。 The management method of caisson filling according to the present embodiment includes a step of throwing the filling material into the caisson, a step of compacting the filling material region formed by the filling of the filling material, and the compaction. Performing the above-described ground density estimation method for the filling material region and estimating the ground density, and determining whether the ground density is an appropriate value based on the estimated ground density And when the ground density is not an appropriate value, the process returns to the compacting step.
このケーソン中詰めの管理方法によれば、水底に設置したケーソンに土や砂などの中詰材を投入し、その中詰材の投入によって形成され締め固められた中詰材領域について、上述の地盤密度の推定方法を実施して中詰材の密度を簡単に推定できるので、妥当な値、たとえば所定の密度を達成できているか否かを把握することができ、ケーソンへの中詰材の投入施工を効率よく管理することができる。 According to this management method for caisson filling, the filling material region formed by compacting the filling material such as soil and sand into the caisson installed at the bottom of the water and compacted by the filling material is described above. Since the density of the filling material can be easily estimated by implementing the ground density estimation method, it is possible to grasp whether a reasonable value, for example, a predetermined density has been achieved, and The input construction can be managed efficiently.
本発明の地盤密度の推定方法によれば、機器の取扱いの難しいRIコーン貫入試験を実施することなく、また、地盤密度の計測のためのサンプリングをすることなしに、コーン貫入試験に基づいて地盤の密度を簡単に推定することができる。 According to the ground density estimation method of the present invention, the ground can be measured based on the cone penetration test without performing the RI cone penetration test, which is difficult to handle the equipment, and without sampling for measuring the ground density. Can be easily estimated.
本発明の地盤埋立ての管理方法によれば、締め固められた土領域において、その地盤密度が妥当な値であるか否かを把握することができ、地盤の埋立ての施工を効率よく管理することができる。 According to the land reclamation management method of the present invention, it is possible to grasp whether or not the ground density is an appropriate value in the compacted soil region, and efficiently manage the land reclamation construction. can do.
本発明の地盤締固めの管理方法によれば、締め固められた地盤において、その地盤密度が妥当な値であるか否かを把握することができ、地盤の締め固めの施工を効率よく管理することができる。 According to the ground compaction management method of the present invention, it is possible to grasp whether or not the ground density is an appropriate value in the compacted ground, and efficiently manage the construction of the ground compaction. be able to.
本発明のケーソン中詰めの管理方法によれば、締め固められた中詰材領域において、その地盤密度が妥当な値であるか否かを把握することができ、ケーソン中詰の施工を効率よく管理することができる。 According to the caisson filling method of the present invention, it is possible to grasp whether or not the ground density is an appropriate value in the compacted filling material region, and the caisson filling is efficiently performed. Can be managed.
以下、本発明を実施するための形態について図面を用いて説明する。図1は本実施形態による地盤密度の推定方法のステップS01〜S06を説明するためのフローチャートである。図2は図1の地盤密度の推定方法において実施する静的コーン貫入試験の試験装置の例を示す概略図である。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a flowchart for explaining steps S01 to S06 of the ground density estimation method according to this embodiment. FIG. 2 is a schematic view showing an example of a test apparatus for a static cone penetration test performed in the ground density estimation method of FIG.
本実施形態による地盤密度の推定方法は、事前の土質試験結果と静的コーン貫入試験結果とに基づいて地盤の密度を推定するものである。 The ground density estimation method according to the present embodiment estimates the ground density based on the preliminary soil test results and the static cone penetration test results.
まず、図2を参照して静的コーン貫入試験装置について説明する。静的コーン貫入試験装置10は、ロッド13の先端に装着されたコーン14を油圧などにより地盤Gに一定速度で貫入させる貫入装置11と、貫入装置11を固定し地盤表面Sに載置され地盤G内のアンカー17により固定される固定部12と、コーン14の貫入深さを測定する深さ測定器15と、コーン14や深さ測定器15からの電気信号を入力し各種データを測定し記憶する測定装置16と、を備える。コーン14は、たとえば鋼製で先端角60度、底面積1000mm2に作製される。
First, a static cone penetration test apparatus will be described with reference to FIG. The static cone
静的コーン貫入試験装置10は、たとえば、コーンの先端抵抗、周面摩擦、間隙水圧の3成分を測定する3成分コーン電気式タイプに構成することができる。図2の試験装置10は一例であって、他の構成であってもよいことはもちろんである。
The static cone
図1,図2を参照して本実施形態による地盤密度の推定方法の各ステップS01〜S06について説明する。 Each step S01 to S06 of the ground density estimation method according to the present embodiment will be described with reference to FIGS.
図2の静的コーン貫入試験装置10により地盤密度の計測対象である原位置の地盤Gにコーン14を地盤Gに一定速度で貫入させながら、測定装置16によりコーン14の先端抵抗qcを計測する(S01)。
The tip resistance qc of the
次に、地盤密度ρdを仮定する(S02)。 Next, the ground density ρd is assumed (S02).
次に、得られた先端抵抗qcと、仮定した地盤密度ρdから得られる鉛直有効応力σv'より相対密度Drを算定する(S03)。 Next, the relative density Dr is calculated from the obtained tip resistance qc and the vertical effective stress σv ′ obtained from the assumed ground density ρd (S03).
従来から先端抵抗qc(kg/cm2)と相対密度Dr(%)との関係式は提唱されている。その関係式の例を次の式(1)に示す(非特許文献1の305頁)。
Dr = -98+66log(qc/√(σv')) (1)
Conventionally, a relational expression between the tip resistance qc (kg / cm 2 ) and the relative density Dr (%) has been proposed. An example of the relational expression is shown in the following expression (1) (page 305 of Non-Patent Document 1).
Dr = -98 + 66log (qc / √ (σv ')) (1)
式(1)で先端抵抗qc(kg/cm2)から相対密度Dr(%)を算定する際には、得られた先端抵抗qc(kg/cm2)と、鉛直有効応力σv' (kg/cm2)とを用いるが、鉛直有効応力σv'は、地盤密度ρdから次の式により求めることができる。
e=ρs/ρd -1
γsat=((ρs+ρw*e)/(1+e))*g
γ'=γsat-γw
σv'=Z'*γ'
ただし、
e:間隙比
ρs:土粒子密度
ρw:間隙水の密度
g:重力加速度
γw:間隙水の単位体積重量
Z':深度(m)
When calculating the relative density Dr (%) from the tip resistance qc (kg / cm 2 ) in Equation (1), the obtained tip resistance qc (kg / cm 2 ) and the vertical effective stress σv ′ (kg / cm 2 ), the vertical effective stress σv ′ can be obtained from the ground density ρd by the following equation.
e = ρs / ρd -1
γsat = ((ρs + ρw * e) / (1 + e)) * g
γ '= γsat-γw
σv '= Z' * γ '
However,
e: Pore ratio ρs: Soil particle density ρw: Pore water density
g: Gravity acceleration γw: Unit volume weight of pore water
Z ': Depth (m)
先端抵抗qc,鉛直有効応力σv',相対密度Drの関係を示す式(1)は、砂質土に対応して一般に提案されている関係式をそのまま用いているが、これに限定されず、実際の地盤を調査して、その地盤に適した関係式を構築して用いるようにしてもよい。 The equation (1) indicating the relationship between the tip resistance qc, the vertical effective stress σv ′, and the relative density Dr is directly using a relationship equation generally proposed for sandy soil, but is not limited thereto. The actual ground may be investigated, and a relational expression suitable for the ground may be constructed and used.
次に、事前に実施した土質の最小・最大密度試験結果と、算定した相対密度Drとを用いて地盤の密度ρdを算定する(S04)。なお、土質の最小・最大密度試験は、たとえば、日本工業規格(JIS A 1224:2009)「砂の最小密度・最大密度試験方法」によって行うことができる。 Next, the density ρd of the ground is calculated using the results of the minimum and maximum density tests of the soil conducted in advance and the calculated relative density Dr (S04). The soil minimum / maximum density test can be performed, for example, according to Japanese Industrial Standard (JIS A 1224: 2009) “Sand Minimum / Maximum Density Test Method”.
土質の最小密度ρdmin(g/cm3)と最大密度ρdmax(g/cm3)とから次の式(2)により乾燥密度ρd(g/cm3)を算定できる。
ρd = (ρdmax・ρdmin) / (ρdmax-Dr(ρdmax-ρdmin)) (2)
The dry density ρd (g / cm 3 ) can be calculated from the minimum density ρdmin (g / cm 3 ) and maximum density ρdmax (g / cm 3 ) of the soil according to the following equation (2).
ρd = (ρdmax ・ ρdmin) / (ρdmax-Dr (ρdmax-ρdmin)) (2)
次に、ステップS02で仮定した地盤密度と、ステップS04で算定された地盤密度(乾燥密度)とを比較し、両者が等しいか否かを判断する(S05)。両者が等しくない場合、ステップS02に戻り、仮定した地盤密度を変えてから、ステップS03,S04を実行し、ステップS05で等しいと判断されるまで、これらのステップS02〜S04を繰り返す。 Next, the ground density assumed in step S02 is compared with the ground density (dry density) calculated in step S04, and it is determined whether or not they are equal (S05). When both are not equal, it returns to step S02, changes the assumed ground density, performs step S03, S04, and repeats these steps S02-S04 until it is judged that it is equal in step S05.
両者が等しいと判断されたときの地盤密度を地盤密度推定値と決定する(S06)。 The ground density when both are determined to be equal is determined as the ground density estimated value (S06).
上記ステップS01〜S06で決定された地盤密度は、先端抵抗qcを計測した深さ位置におけるものである。この深さ位置を地盤Gの表層から深さ方向へと変えて各深さ位置で計測した先端抵抗に基づいて各深さ位置における地盤密度を推定することで、地盤全体の密度分布を算定することができる。 The ground density determined in the above steps S01 to S06 is at the depth position where the tip resistance qc is measured. By changing the depth position from the surface layer of the ground G to the depth direction and estimating the ground density at each depth position based on the tip resistance measured at each depth position, the density distribution of the entire ground is calculated. be able to.
本実施形態による地盤密度の推定方法によれば、RIコーン貫入試験などのような取扱いの難しい計測機器を使うことなしに、さらに地盤密度の計測のためのサンプリングをすることなしに、原位置において静的コーン貫入試験を実施することで地盤密度を算定し簡単に推定することができる。また、地盤密度の計測のためのサンプリングをすることなしに土以外の粒状体材料の密度を計測することができる。 According to the ground density estimation method according to the present embodiment, without using a difficult-to-handle measuring device such as an RI cone penetration test, and without performing sampling for measuring the ground density, in situ. By conducting a static cone penetration test, the ground density can be calculated and easily estimated. Moreover, the density of granular material other than soil can be measured without sampling for measuring the ground density.
また、コーンを地盤に貫入でき先端抵抗が計測できる場所であれば、どのような地盤でも適用可能であり、適用範囲がきわめて広い。たとえば、鉄鋼スラグやコンクリートがらなどの砂以外の粒状体材料を投入して造成した地盤の密度についても計測可能である。 In addition, any ground can be used as long as the cone can penetrate into the ground and the tip resistance can be measured, and the application range is extremely wide. For example, it is possible to measure the density of the ground formed by introducing granular materials other than sand such as steel slag and concrete waste.
なお、地盤の湿潤密度を把握する必要がある場合は、飽和度を事前に把握しておく必要がある。飽和度が事前にわかっていない場合、コーン貫入試験機として3成分コーンタイプを用いて水圧応答特性から地下水位を把握し、飽和度が100%となっている場所を把握することが可能となる。不飽和部については、必要に応じて水分計を用いて飽和度を把握することができる。また、深い部分の密度を算定するには、対象部分よりも浅い部分の密度が必要であるので、浅い部分から算定していくことで、より正確な密度を算定することができる。 In addition, when it is necessary to grasp the wet density of the ground, it is necessary to grasp the saturation degree in advance. When saturation is not known in advance, it is possible to grasp the groundwater level from the water pressure response characteristics using a three-component cone type as a cone penetration tester, and to understand where the saturation is 100%. . About an unsaturated part, a saturation degree can be grasped | ascertained using a moisture meter as needed. In addition, since the density of the portion shallower than the target portion is required to calculate the density of the deep portion, more accurate density can be calculated by calculating from the shallow portion.
また、たとえば、所定の材料を用いて盛土や埋立てや中詰め等を実施する場合、上記地盤密度の推定方法においては、その材料の最小密度最大密度が必要であり、すでに盛土や埋め立てや中詰め等が完了している地盤の密度を算定する場合は、別途サンプリングを実施し、最小密度と最大密度を計測する必要がある。 In addition, for example, when embankment, reclamation or filling is performed using a predetermined material, the above ground density estimation method requires the minimum density and maximum density of the material. When calculating the density of ground that has been stuffed, it is necessary to perform sampling separately and measure the minimum and maximum densities.
次に、図1の地盤密度の推定方法を用いた地盤の埋め立て管理方法について図3を参照しながら説明する。図3は図1の地盤密度の推定方法を用いた地盤の埋め立て管理方法のステップS11〜S14を説明するためのフローチャートである。 Next, a ground reclamation management method using the ground density estimation method of FIG. 1 will be described with reference to FIG. FIG. 3 is a flowchart for explaining steps S11 to S14 of the land reclamation management method using the ground density estimation method of FIG.
まず、埋め立て対象地に土砂を投入する(S11)。次に、所定の締め固め方法により、土砂の投入により形成された土領域について締め固めを実施する(S12)。なお、締め固め方法としては、各種の公知方法を使用可能で、たとえば、ローラによる転圧、タンパなどによる振動荷重を利用して土を締め固める振動固め、重錘を高所から落下させて地盤を締め固める衝撃式、ケーソン中詰材を締固める振動棒の挿入などがある。 First, earth and sand are thrown into the landfill target site (S11). Next, compaction is performed on the soil region formed by the introduction of soil by a predetermined compaction method (S12). As the compaction method, various known methods can be used. For example, vibration compaction by compacting the soil using a rolling load by a roller, a vibration load by a tamper, etc., and dropping a weight from a high place There is an impact type that tightens and a vibration rod that tightens the caisson filling material.
次に、締め固められた地盤について、図1,図2の静的コーン貫入試験を実施し、図1のようにして地盤密度を推定する(S13)。このとき、必要に応じて地盤密度の分布も同様にして推定する。 Next, the static ground penetration test shown in FIGS. 1 and 2 is performed on the compacted ground, and the ground density is estimated as shown in FIG. 1 (S13). At this time, if necessary, the distribution of ground density is estimated in the same manner.
次に、上記推定した地盤密度および必要に応じて地盤密度の分布に基づいて妥当な地盤密度および必要に応じて地盤密度の分布であるか否かを判断する(S14)。その結果、妥当でないと判断されると、締め固めステップS12にもどり、締め固めをさらに実施する。妥当であると判断されると、次工程へと移る。 Next, based on the estimated ground density and, if necessary, the distribution of the ground density, it is determined whether or not the distribution is an appropriate ground density and, if necessary, the ground density (S14). As a result, if it is determined that it is not appropriate, the process returns to the compaction step S12 and further compaction is performed. If it is determined to be appropriate, the process proceeds to the next step.
図3の地盤の埋め立て管理方法によれば、地盤埋め立てにおいて投入された土砂を締め固めた後の地盤が所定の地盤密度を達成できたか否かの確認を、コーン貫入試験の実施により簡単に行うことができるので、地盤の埋め立て管理を簡単かつ確実に行うことができる。 According to the land reclamation management method of FIG. 3, it is easily confirmed by performing a cone penetration test whether or not the ground after compacting the earth and sand introduced in the land reclamation has achieved a predetermined ground density. Therefore, landfill management can be performed easily and reliably.
また、地盤埋め立てにおいて投入された土砂を締め固めた後の地盤について、従来の地盤密度の計測のためのサンプリングを行う場合であっても、本実施形態による地盤密度の推定方法を併用することで、そのサンプリング点数を減らすことができ、地盤の埋め立て管理を効率的に行うことができる。また、サンプリングにより計測した地盤密度と、本実施形態の推定方法で推定した地盤密度とを比較することで、本実施形態による地盤密度の推定方法の正確性・妥当性を確認することができる。 In addition, for the ground after the earth and sand put in the ground reclamation is compacted, even when sampling for conventional ground density measurement is performed, the ground density estimation method according to this embodiment can be used together. The number of sampling points can be reduced, and landfill management can be efficiently performed. Further, by comparing the ground density measured by sampling with the ground density estimated by the estimation method of the present embodiment, the accuracy and validity of the ground density estimation method according to the present embodiment can be confirmed.
次に、本発明を実施例により具体的に説明するが、本発明は本実施例に限定されるものではない。まず、地盤の密度(ρd)を仮定し、計測した先端抵抗(qc)から鉛直有効応力σv’を求め、式(1)により相対密度(Dr)を算定する(表1,表2の算定値a)。次に、相対密度(Dr)と最小密度(ρdmin)、最大密度(ρdmax)とから式(2)により地盤の密度(ρd)を算定する(表1,表2の算定値b)。このようにして、表層近くの0.5mから深さ22.5mまでの各深度Z’(m)で地盤密度を算定する。次の表1は各値の初期値を示す。なお、計算に当たり、土粒子密度ρsを2.65g/cm3としたが、通常は土粒子密度試験結果より算定することが好ましい。間隙水の密度ρwを1.03g/cm3とした。 EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to a present Example. First, assuming the density (ρd) of the ground, the vertical effective stress σv ′ is calculated from the measured tip resistance (qc), and the relative density (Dr) is calculated by the equation (1) (calculated values in Tables 1 and 2). a). Next, the density (ρd) of the ground is calculated from the relative density (Dr), the minimum density (ρdmin), and the maximum density (ρdmax) by Equation (2) (calculated values b in Tables 1 and 2). In this way, the ground density is calculated at each depth Z ′ (m) from 0.5 m near the surface layer to a depth of 22.5 m. Table 1 below shows the initial value of each value. In the calculation, the soil particle density ρs is 2.65 g / cm 3 , but it is usually preferable to calculate from the soil particle density test result. The density ρw of the pore water was 1.03 g / cm 3 .
上記表1に示された仮定の地盤密度(ρd)と、算定の地盤密度 (ρd)とは、相違するので、仮定の地盤密度(ρd)を変え、この地盤密度で再度、地盤密度を算定し、算定した地盤密度が収束し、両者が等しくなるまで繰り返す。このようにして、両者が等しくなった収束後の計算結果を次の表2に示す。表2において、仮定した地盤密度と算定した地盤密度が等しくなったときの密度がその計測地点における地盤密度推定値(算定値b)である。 Since the assumed ground density (ρd) shown in Table 1 is different from the calculated ground density (ρd), the assumed ground density (ρd) is changed, and the ground density is calculated again with this ground density. Repeat until the calculated ground density converges and becomes equal. Table 2 below shows the calculation results after the convergence in which both are equal. In Table 2, the density when the assumed ground density is equal to the calculated ground density is the estimated ground density (calculated value b) at the measurement point.
以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、本発明の地盤密度の推定方法を図3の地盤の埋め立て管理方法に利用したが、これに限定されず、たとえば、地盤を締め固める際の締め固めの管理方法に利用してもよい。また、ケーソン内部への中詰材の投入後、その投入された中詰材による密度を本発明の地盤密度の推定方法により推定することで、ケーソンの中詰材の投入を管理するケーソン中詰材の投入管理方法に利用してもよい。 As described above, the modes for carrying out the present invention have been described. However, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, the ground density estimation method of the present invention is used in the ground reclamation management method of FIG. 3, but the present invention is not limited to this. For example, the ground density estimation method may be used as a compaction management method when compacting the ground. In addition, after charging the filling material into the caisson, the density due to the filled filling material is estimated by the ground density estimation method of the present invention, thereby controlling the filling of the caisson filling material. You may use for the input management method of material.
また、本発明のコーン貫入試験として、本実施形態では静的コーン貫入試験を用いたが、これに限定されず、動的コーン貫入試験であってもよい。静的コーン貫入試験としては、電気式静的コーン貫入試験以外に、たとえばコーン貫入抵抗を計測するオランダ式二重管コーン貫入試験や単管式コーン貫入試験であってもよい。具体的には、次のコーン貫入試験を用いることができる(非特許文献1参照)。
・簡易動的コーン貫入試験(地盤工学会基準 JGS 1433-2003)
・ポータブルコーン貫入試験(地盤工学会基準 JGS 1431-2003)
・オランダ式二重管コーン貫入試験(日本工業規格 JIS A 1220:2001)
・電気式静的コーン貫入試験(地盤工学会基準 JGS 1435-2003)
Moreover, although the static cone penetration test was used in this embodiment as the cone penetration test of the present invention, the present invention is not limited to this, and a dynamic cone penetration test may be used. The static cone penetration test may be, for example, a Dutch double tube cone penetration test or a single tube cone penetration test for measuring cone penetration resistance, in addition to the electric static cone penetration test. Specifically, the following cone penetration test can be used (see Non-Patent Document 1).
・ Simple dynamic cone penetration test (JGS 1433-2003)
・ Portable cone penetration test (JGS 1431-2003)
・ Dutch type double pipe cone penetration test (Japanese Industrial Standard JIS A 1220: 2001)
・ Electric static cone penetration test (JGS 1435-2003)
10 静的コーン貫入試験装置
11 貫入装置
14 コーン
G 地盤
10 Static cone
Claims (6)
地盤密度を仮定するステップと、
前記計測した先端抵抗と前記仮定した地盤密度とに基づいて相対密度を算定するステップと、
事前に得た土質の最小・最大密度試験の結果と前記算定した相対密度とに基づいて地盤密度を算定するステップと、
前記仮定した地盤密度と前記算定した地盤密度とを比較し、両者が等しくない場合、前記地盤密度仮定ステップに戻って前記仮定した地盤密度を変えてから前記相対密度算定ステップおよび前記地盤密度算定ステップを実行し、等しい場合、その地盤密度を地盤密度推定値と決定するステップと、を含む地盤密度の推定方法。 A step of measuring the tip resistance by a cone penetration test at an in-situ measurement target of the ground density;
Assuming a ground density;
Calculating a relative density based on the measured tip resistance and the assumed ground density;
Calculating the ground density based on the minimum and maximum density test results of the soil obtained in advance and the calculated relative density;
Comparing the assumed ground density with the calculated ground density, if both are not equal, return to the ground density assumption step and change the assumed ground density, then the relative density calculation step and the ground density calculation step And, if equal, determining the ground density as a ground density estimate, comprising:
前記土砂の投入によって形成された土領域について締め固めを実施するステップと、
前記締め固められた土領域について請求項1〜3のいずれか1項に記載の地盤密度の推定方法を実施して地盤密度を推定するステップと、
前記推定された地盤密度に基づいてその地盤密度が妥当な値であるか否かを判断するステップと、を含み、
前記地盤密度が妥当な値でない場合、前記締め固めステップに戻ることを特徴とする地盤埋立ての管理方法。 Throwing earth and sand into the landfill site;
Performing a compaction on the soil region formed by charging the soil;
Performing the ground density estimation method according to any one of claims 1 to 3 for the compacted soil region, and estimating the ground density;
Determining whether the ground density is a reasonable value based on the estimated ground density,
If the ground density is not a reasonable value, the ground reclamation management method returns to the compacting step.
前記締め固められた地盤について請求項1〜3のいずれか1項に記載の地盤密度の推定方法を実施して地盤密度を推定するステップと、
前記推定された地盤密度に基づいてその地盤密度が妥当な値であるか否かを判断するステップと、を含み、
前記地盤密度が妥当な値でない場合、前記締め固めステップに戻ることを特徴とする地盤締固めの管理方法。 A step of compacting the ground to be compacted;
The step of estimating the ground density by performing the ground density estimating method according to any one of claims 1 to 3 for the compacted ground;
Determining whether the ground density is a reasonable value based on the estimated ground density,
If the ground density is not a reasonable value, the ground compaction management method returns to the compaction step.
前記中詰材の投入によって形成された中詰材領域について締め固めを実施するステップと、
前記締め固められた中詰材領域について請求項1〜3のいずれか1項に記載の地盤密度の推定方法を実施して地盤密度を推定するステップと、
前記推定された地盤密度に基づいてその地盤密度が妥当な値であるか否かを判断するステップと、を含み、
前記地盤密度が妥当な値でない場合、前記締め固めステップに戻ることを特徴とするケーソン中詰めの管理方法。 Charging the caisson with filling material;
Performing compaction on the filling material region formed by charging the filling material;
Performing the ground density estimating method according to any one of claims 1 to 3 for the compacted filling material region, and estimating the ground density;
Determining whether the ground density is a reasonable value based on the estimated ground density,
If the ground density is not an appropriate value, the method returns to the compacting step, and the caisson filling method is characterized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012184121A JP5937924B2 (en) | 2012-08-23 | 2012-08-23 | Ground density estimation method, ground landfill management method using this ground density estimation method, ground compaction management method, and caisson filling management method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012184121A JP5937924B2 (en) | 2012-08-23 | 2012-08-23 | Ground density estimation method, ground landfill management method using this ground density estimation method, ground compaction management method, and caisson filling management method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014040743A JP2014040743A (en) | 2014-03-06 |
JP5937924B2 true JP5937924B2 (en) | 2016-06-22 |
Family
ID=50393187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012184121A Active JP5937924B2 (en) | 2012-08-23 | 2012-08-23 | Ground density estimation method, ground landfill management method using this ground density estimation method, ground compaction management method, and caisson filling management method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5937924B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104179164A (en) * | 2014-08-22 | 2014-12-03 | 同济大学 | Method of using standard penetration test blow count N for detecting relative density Dr of sandy soil of Yangtze River estuary, sand spit and barrier island stratums |
CN106480868B (en) * | 2016-09-22 | 2018-10-26 | 长沙理工大学 | Fine grained soil roadbed permanent deformation estimation method |
JP6472927B1 (en) * | 2018-12-26 | 2019-02-20 | 五洋建設株式会社 | Ground subsidence measuring method and ground subsidence measuring system |
KR102064730B1 (en) * | 2019-03-14 | 2020-02-11 | (주)대한건설이엔지 | Automatic horizontal compaction apparatus for sandy grounds around the joint and the sewer drilling perimeter, Horizontal compaction method using the same |
JP7508188B1 (en) | 2023-12-19 | 2024-07-01 | 株式会社不動テトラ | Method for estimating ground strength using compaction method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2946502B2 (en) * | 1996-11-29 | 1999-09-06 | 信夫 渡辺 | Ground penetration resistance measuring device |
JP3086662B2 (en) * | 1996-12-25 | 2000-09-11 | 株式会社大林組 | Sand compaction pile design method |
JP3952138B2 (en) * | 2001-10-25 | 2007-08-01 | 東亜建設工業株式会社 | Evaluation method of static earth pressure coefficient of pile or sand compaction pile placement ground and evaluation method of static earth pressure coefficient of sand compaction pile itself of sand compaction pile placement ground |
JP4029335B2 (en) * | 2002-12-25 | 2008-01-09 | 清水建設株式会社 | Consolidation accelerated landfill method |
JP4169633B2 (en) * | 2003-05-29 | 2008-10-22 | 東亜建設工業株式会社 | Evaluation method of cavity and loosening area of sandy ground using resistivity |
JP4461390B2 (en) * | 2006-03-07 | 2010-05-12 | 飛島建設株式会社 | Liquefaction resistance estimation method for young ground |
-
2012
- 2012-08-23 JP JP2012184121A patent/JP5937924B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014040743A (en) | 2014-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Sensitivity of the initiation and runout of flowslides in loose granular deposits to the content of small particles: An insight from flume tests | |
Wartman et al. | Shaking table modeling of seismically induced deformations in slopes | |
JP5937924B2 (en) | Ground density estimation method, ground landfill management method using this ground density estimation method, ground compaction management method, and caisson filling management method | |
Portelinha et al. | Performance of nonwoven geotextile-reinforced walls under wetting conditions: laboratory and field investigations | |
CN108717082A (en) | A kind of compaction of earth rock material quality continuous assessment method based on integrated sonic detection technology | |
CN103061320B (en) | Method for determining soil permeability coefficient on basis of piezocone sounding | |
Lehtonen et al. | Full-scale embankment failure test under simulated train loading | |
US20090214300A1 (en) | Devices, systems, and methods for measuring and controlling compactive effort delivered to a soil by a compaction unit | |
Heib et al. | Large-scale soil–structure physical model (1 g)–assessment of structure damages | |
JP2018154975A (en) | Quality control method of soil, and quality monitoring system of soil | |
Smith et al. | Optimum water content tests for earthen construction materials | |
Ghali et al. | Laboratory simulator for geotechnical penetration tests | |
Hajialilue-Bonab et al. | Investigation on tamping spacing in dynamic compaction using model tests | |
Jia et al. | Interpretation of density profile of seabed sediment from nuclear density cone penetration test results | |
Shaban et al. | Comparative analyses of granular pavement moduli measured from lightweight deflectometer and miniaturized pressuremeter tests | |
Alam et al. | Development of correlation between dynamic cone resistance and relative density of sand | |
Park | Evaluation of the sand-cone method for determination of the in-situ density of soil | |
JP2005024347A (en) | Simple measurement tool for infiltrating volume and swelling volume of bentonite material, measurement method therefor, and simple calculation method for infiltrating speed and swelling rate of the bentonite material by using the tool | |
Benali et al. | Bored pile capacity by direct SPT methods applied to 40 case histories | |
Vlcek et al. | Analysis of applicability of Clegg impact soil tester for clayey soils | |
Elisha et al. | Effect of installation techniques on the allowable bearing capacity of modeled circular piles in layered soil | |
Nikudel et al. | Using Miniature Cone Penetration Test (Mini-CPT) to determine engineering properties of sandy soils | |
JP2013019121A (en) | Soil property determination method by swedish sounding test | |
Kumara et al. | Understanding inner friction mechanism of open-ended piles-an experimental study | |
Abelev et al. | Determining the Deformability Characteristics of Sandy Soils at a Construction Base Using Field and Laboratory Techniques. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160513 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5937924 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |